GC-Bench: An Open and Unified Benchmark for
Graph Condensation

Qingyun Sun'; Ziying Chen'; Beining Yang?, Cheng Ji!, Xingcheng Fu?
Sheng Zhou*, Hao Peng', Jianxin Li', Philip S. Yu®
!Beihang University, 2University of Edinburgh, 3Guangxi Normal University
4Zhejiang University, ®University of Illinois, Chicago
{sunqgy, chanztuying}@buaa.edu.cn

Abstract

Graph condensation (GC) has recently garnered considerable attention due to its
ability to reduce large-scale graph datasets while preserving their essential prop-
erties. The core concept of GC is to create a smaller, more manageable graph
that retains the characteristics of the original graph. Despite the proliferation of
graph condensation methods developed in recent years, there is no comprehensive
evaluation and in-depth analysis, which creates a great obstacle to understand-
ing the progress in this field. To fill this gap, we develop a comprehensive Graph
Condensation Benchmark (GC-Bench) to analyze the performance of graph conden-
sation in different scenarios systematically. Specifically, GC-Bench systematically
investigates the characteristics of graph condensation in terms of the following
dimensions: effectiveness, transferability, and complexity. We comprehensively
evaluate 12 state-of-the-art graph condensation algorithms in node-level and graph-
level tasks and analyze their performance in 12 diverse graph datasets. Further,
we have developed an easy-to-use library for training and evaluating different GC
methods to facilitate reproducible research. The GC-Bench library is available at
https://github.com/RingBDStack/GC-Bench.

1 Introduction

Data are the driving force behind advancements in machine learning, especially with the advancement
of large models. However, the rapidly increasing size of datasets presents challenges in management,
storage, and transmission. It also makes model training more costly and time-consuming. This
issue is particularly pronounced in the graph domain, where larger datasets mean more large-scale
structures, making it challenging to train models in environments with limited resources. Compared
to graph coarsening, which groups nodes into super nodes, and sparsification, which selects a subset
of edges, graph condensation [39, 10] synthesizes a smaller, informative graph that retains enough
data for models to perform comparably to using the full dataset.

Graph condensation. Graph condensation aims to learn a new small but informative graph. A general
framework of GC are shown in Figure 1. Given a graph dataset G, the goal of Graph condensation is
to achieve comparable results on synthetic condensed graph dataset G’ as training on the original
G. For Node-level condensation, the original dataset G = {G} = {X € RV*4 A ¢ RVXN}

and the condensed dataset G’ = {G'} = {X € RN %4 A e RN'*N'} where N’ < N. For
Graph-level condensation, the original dataset G = {G1,Gs,--- , G, } and the condensed dataset
G’ ={G1,G5, - ,Gl.}, where n’ < n. The condensation ratio 7 can be calculated by condensed
dataset size / whole dataset size.

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

37900 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

(a) Gradient Matching (b) Trajectory Matching (¢) Distribution Matching

G Backbone ___~ G Backbone ___~ G Backbone
v \7
Gradient Trajectory 1 Distribution
VR B e Matching ™" Matching . Matching
S | : |
‘\\ 4 5 . 2 Y 2 : [o/
—@ o~ ’ ’ ! €= Badbone €t —g—
Ay G Backbone ¢~ G Backbone ¢ ___ G’ <777 Backbone < P
gl 4=
o & el
X (d) Kernel Ridge Regression (KRR) (e) Computation Tree Compression (CTC) 2
G G G’
Kernel Ridge Regression 5 " d
Original Dataset ()= G ¢ ° ° Py Condensed Dataset
S)T 0
. .
G/ € Computation Tree Frequent Tree

Figure 1: The GC methods can be broadly divided into two categories: The first category depends
on the backbone model, refining the condensed graph by aligning it with the backbone’s gradients
(a), trajectories (b), and output distributions (c) trained on both original and condensed graphs. The
second category, independent of the backbone, optimizes the graph by matching its distribution with
that of the original graph data (d) or by identifying frequently co-occurring computation trees (e).

Research Gap. Although several studies aim to comprehensively discuss existing GC meth-
ods [39, 10], they either overlook graph-specific properties or lack systematic experimentation.
This discrepancy highlights a significant gap in the literature, partly due to limitations in datasets and
evaluation dimensions. A concurrent work [23] analyzed the performance of node-level GC methods
but it included only a subset of representative methods, lacking an analysis of graph-level methods,
a deep structural analysis, and an assessment of the generalizability of the methods. To bridge this
gap, we introduce GC-Bench, an open and unified benchmark to systematically evaluate existing
graph condensation methods focusing on the following aspects: @ Effectiveness: the progress in
GC, and the impact of structure and initialization on GC; @ Transferability: the transferability of
GC methods across backbone architectures and downstream tasks; © Efficiency: the time and space
efficiency of GC methods. The contributions of GC-Bench are as follows:

* Comprehensive benchmark. GC-Bench systematically integrated 12 representative and compet-
itive GC methods on both node-level and graph-level by unified condensation and evaluation,
giving multi-dimensional analysis in terms of effectiveness, transferability, and efficiency.

* Key findings. (1) Graph-level GC methods is still far from achieving the goal of lossless com-
pression. A large condensation ratio does not necessarily lead to better performance with current
methods. (2) GC methods can retain semantic information from the graph structure in a condensed
graph, but there is still significant improvement room in preserving complex structural properties.
(3) All condensed datasets struggle to perform well outside the specific tasks they were condensed,
leading to limited applicability. (4) Backbone-dependent GC methods embed model-specific
information in the condensed datasets, and popular graph transformers are not compatible with
current GC methods as backbones. (5) The initialization mechanism affects both the performance
and convergence according to the characteristics of the dataset and the GC method. (6) Most GC
methods coupled with backbones and whole dataset training have poor time and space efficiency,
contradicting the initial purpose of using GC for efficient training.

* Open-sourced benchmark library and future directions. GC-Bench is open-sourced and easy to
extend to new methods and datasets, which can help identify directions for further exploration
and facilitate future endeavors.

2 Overview of GC-Bench

We introduce Graph Condensation Benchmark (GC-Bench) in terms of datasets (> Section 2.1),
algorithms (> Section 2.2), research questions that guide our benchmark design (> Section 2.3) and
the comparison with related benchmarks (> Section 2.4). The overview of GC-Bench is shown in
Table 1. More details can be found in the Appendix provided in the Supplementary Material.

https://doi.org/10.52202/079017-1197 37901

Table 1: An overview of GC-Bench

Methods

Traditional core-set methods

Random, Herding [36], K-Center [30]

Gradient matching

GCond [15], DosCond [14], SGDD [42]

Trajectory matching

SFGC[47], GEOM [45]

Distribution matching

GCDM [20], DM [24,22]

Kernel Ridge Regression

KiDD [41]

Computation Tree Compression

Mirage [11]

Datasets

Homogeneous datasets

Cora [16], Citeseer [16], ogbn-arxiv [13], Flickr [43], Reddit [12]

Heterogeneous datasets

ACM [46], DBLP [7]

Graph-level datasets

NCII [32], DD [4], ogbg-molbace [13], ogbg-molbbbp [13], ogbg-molhiv [13]

Downstream Tasks

Node-level task

Node classification, Link prediction, Anomaly detection

Graph-level task

Graph classification

Evaluations

Performance under different condensation ratios, Impact of structural properties,

Effectiveness P .

Impact of initialization mechanism
Transferability Different downstream tasks, Different backbone model architectures
Efficiency Time and memory consumption

2.1 Benchmark Datasets

Regarding evaluation datasets, we adapt the 12 widely-used datasets in the current literature. The node
level dataset include 5 homogeneous dataset (Cora [16], Citeseer [16], ogbn-arxiv [13], Flickr [43],
Reddit [12]) and 2 heterogeneous datasets (ACM [46] and DBLP [7]). The graph-level dataset include
NCII [32], DD [4], ogbg-molbace [13], ogbg-molbbbp [13], ogbg-molhiv [13]. We leverage the
public train, valid, and test split of these datasets. We report the dataset statistics in Appendix A.1.

2.2 Benchmark Algorithms

We selected 12 representative and competitive GC methods across 6 categories for evaluation.
The main ideas of these methods are shown in Figure 1. The evaluated methods include: (1)
traditional core-set methods including Random, Herding [36], K-Center [30], (2) gradient matching
methods including DosCond [14], GCond [15] and SGDD [42], (3) trajectory matching methods
including SFGC [47] and GEOM [45], (4) distribution matching methods including GCDM [20] and
DM [22, 24], (5) Kernel Ridge Regression (KRR) based method KiDD [41], and (6) Computation
Tree Compression (CTC) method Mirage [11]. The details of evaluated methods are in Appendix A.2.

2.3 Research Questions

We systematically design the GC-Bench to comprehensively evaluate the existing GC algorithms and
inspire future research. In particular, we aim to investigate the following research questiones.

RQ1: How much progress has been made by existing GC methods?

Motivation and Experiment Design. Previous GC methods always adopt different experimental
settings, making it difficult to compare them fairly. Given the unified settings of GC-Bench, the first
question is to revisit the progress made by existing GC methods and provide potential enhancement
directions. A good GC method is expected to perform well consistently under different datasets and
different condensation ratios. To answer this question, we evaluate GC methods’ performance on
7 node-level datasets and 5 graph-level datasets with a broader range of condensation ratio r than
previous works. The results are shown in Sec. 3.1 and Appendix B.1.

RQ2: How do the potential flaws of the structure affect the graph condensation performance?

Motivation and Experiment Design. Most of the current GC methods borrow the idea of image
condensation and overlook the specific non-IID properties of irregular graph data. The impact of
structural properties in GC is still not thoroughly explored. On one hand, the structure itself possesses
various characteristics such as homogeneity and heterogeneity, as well as homophily and heterophily.
It remains unclear whether these properties should be preserved in GC and how to preserve them.
On the other hand, some structure-free GC methods [47] suggest that the condensed dataset may not

37902 https://doi.org/10.52202/079017-1197

need to explicitly preserve graph structure, and preserving structural information in the generated
samples is sufficient. To answer this question, we evaluated GC methods on both homogeneous
and heterogeneous as well as homophilic and heterophilic datasets to further explore the impact of
structural properties. The results are shown in Sec. 3.2 and Appendix B.2.

RQ3: Can the condensed graphs be transferred to different types of tasks?

Motivation and Experiment Design. Most existing GC methods are primarily designed for node
classification and graph classification tasks. However, there are numerous downstream tasks on graph
data, such as link prediction and anomaly detection, which focus on different aspects of graph data.
The transferability of GC across various graph tasks has yet to be thoroughly explored. To answer this
question, we perform condensation guided by node classification and use the condensed dataset to
train models for 3 classic downstream tasks: link prediction, node clustering, and anomaly detection.
The evaluation results are shown in Sec. 3.3 and Appendix B.3.

RQ4: How does the backbone model architecture used for condensation affect the performance?

Motivation and Experiment Design. The backbone model plays an important role in extracting
the critical features of the original dataset and guiding the optimization process of generating the
condensed dataset. Most GC methods choose a specific graph neural network (GNN) as the backbone.
The impact of the backbone model architecture and its transferability is under-explored. A high-
quality condensed dataset is expected to be used for training models with not only the specific
one used for condensation but also various architectures. To answer this question, we evaluate the
transferability performance for 5 representative GNN models (SGC [37], GCN [16], GraphSAGE [12],
APPNP [18], and ChebyNet [2]) and 2 non-GNN models (the popular Graph Transformer [31]) and
simple MLP). We also investigated the performance variation of different backbones with the number
of training steps. The evaluation results are shown in Sec. 3.4 and Appendix B.4.

RQ5: How does the initialization mechanism affect the performance of graph condensation?

Motivation and Experiment Design. The initialization mechanism of the condensed dataset is
crucial for convergence and performance in image dataset condensation but remains unexplored for
irregular graph data. To answer this question, we adopt 5 distinct initialization strategies (Random
Noise, Random Sample, Center, K-Center, and K-Means) to evaluate their impact on condensation
performance and converge speed. The results are shown in Sec. 3.5 and Appendix B.5.

RQ6: How efficient are these GC methods in terms of time and space?

Motivation and Experiment Design. As the GC methods aim to achieve comparable performance
on the condensed dataset and the original dataset, they always rely on the training process on the
original datasets. The efficiency and scalability of GC methods are overlooked by existing methods,
which is crucial in practice since the original intent of GC is to reduce computation and storage costs
for large graphs. To answer this question, we evaluate the time and memory consumption of these
GC methods. Specifically, we record the overall time when achieving the best result, the peak CPU
memory, and the peak GPU memory. The results are shown in Sec. 3.6 and Appendix B.6.

2.4 Discussion on Existing Benchmarks

To the best of our knowledge, GC-Bench is the first comprehensive benchmark for both node-level
and graph-level graph condensation. There are a few image dataset condensation benchmark works
for image classification task [1] and condensation adversarial robustness [38]. A recent work GCon-
denser [23] evaluates some node-level GC methods for node classification on homogeneous graphs
with limited evaluation dimensions in terms of performance and time efficiency. Our GC-Bench an-
alyzes more GC methods on a wider variety of datasets (both homogeneous and heterogeneous)
and tasks (node classification, graph classification), encompassing both node-level and graph-level
methods. In addition to performance and efficiency analysis, we further explore the transferability
across different tasks (link prediction, node clustering, anomaly detection) and backbones. With GC-
Bench covering more in-depth investigation over a wider scope, we believe it will provide valuable
insights into existing works and future directions. A comprehensive comparison with GCondenser
can be found in Appendix A.5.

https://doi.org/10.52202/079017-1197 37903

Table 2: Node classification accuracy (%) (meanz+std) across datasets with varying condensation
ratios 7. ‘H denotes the homophily ratio [29]. The best results are shown in bold and the runner-ups
are shown in underlined . Red color highlights entries that exceed the whole dataset performance.

| | Traditional Core-set Methods | Distribution | Gradient | Trajectory |
Dataset Ratio(r) Whole
‘ ‘ Random Herding K-Center | GCDM DM DosCond GCond SGDD ‘ SFGC GEOM | Dataset
026% | 316512 486514 486514 | 390104 356439 | 787415 | 198207 786107 7188112 50.1i10
0.52% | 470517 56.0:06 447107 | 423207 385144 | 8L1io: 802407 (812405 792418 70.5400
Cora 1.30% | 623110 69.9+08 62.0£13 | 634101 632405 | 812104 802422 8l6igs | 794107 785410 8080 -
(H=0.81) 260% | 124105 142406 73507 | 734102 72.6107 | 796102 80.5+03 818ips 8170100 76.1447 03
390% | 74.6+06 76.0406 774+03 | 764105 753101 | 789101 798104 82.dips 815105 783400
520% | 77.1x06 76.7+04 765106 | 784+00 779402 | 797106 77.8+36 | 820414 81419 80440s
0.05% | 452417 546494 507492 | 611404 60.6407 | S0.1i1s 844406 83.6417 872497 73.6112
0.10% | 533416 623116 500t | 723105 687110 | 595108 | 847419 83.8105 | 815140 762439
Reddit 0.20% 651412 694401 542419 | 808406 767401 | 65.8404 863124 883405 904409 89.9i06 94.0.
(H=0.78) 0.50% 76.1118 8ldigr 67.8113 | 864101 842402 | 658104 879127 91.0101 9NTio2 917103 02
1.00% 849105 859103 T4.640s OOM 789407 | 7831413 872412 859409 918102 OOM
5.00% 923:01 919401 88.410.3 OOM OOM OOM OOM OOM 91.940.7 OOM
0.18% | 39.3419 36.6126 36.6126 | 30.6425 321415 | 78401 713106 717432 | 707411 637104
E 036% | 441100 415126 387132 | 362400 433413 | 73103 704415 733435 | 709416 698101
S| Citeseer | 090% | 493:1y 565:15 Sldiis | 526011 53740 | B30s0s 1070y T28:06 | 107r0s 70505 | 5, -
5, | (M=074) | 180% | 574107 684ses 6ldirs | 64706 664102 | ILbros 702414 T36iog | T04ers 675s0s | /500
g 270% | 662410 68.110s 67.5108 | 692416 68.5100 | 717410 677102 72.din5 | 71.0410 709405
e 3.60% | 692403 69.1107 693107 | 693104 704104 | 7244103 684116 | 733412 | 70.6400 707401
0.05% | 107409 32.7£09 369+12 | Sl.lio2 404430 | 595410 60.0+00 597102 682403 64.5109
0.10% | 36.5411 41.6410 403409 | 559415 477400 | 609+08 59.5411 S56.1i34 69.dig7 64.6414
ogbn-arxiv 0.20% 432408 489108 427110 | 593408 471407 | 622404 614107 609109 69.0404 6434100 715
(H=0.65) 0.50% 483404 Sliédioa 483105 | 61.0401 577402 | 621403 630109 632102 67.1400 672400 E0.0
1.00% | 512104 520104 503105 | 61.0400 598402 | 618413 628100 620125 684413 691403
5.00% 572402 56102 56.540.4 OOM OOM OOM OOM OOM 69.7101 706405
0.05% | 40.5404 418406 439107 | 458404 447405 | 407400 442105 (466401 | 443404 448103
0.10% | 420406 4l4i06 4ldios | 475000 454401 | 432400 442114 468402 | 440415 455407
Flickr 0.20% 431400 415407 41405 | 488101 428406 | 439406 444114 468103 | 414456 46.14056 46.8
(H=0.24) | 050% | 43.1405 444.05 426407 | 490405 48.6103 | 450103 447106 4554009 | 4654000 471401 OE02
1.00% | 43.0404 445506 432402 | 493100 496105 | 46.0103 451105 472400 | 46.6400 47.0104
5.00% 452103 447104 455102 OOM OOM OOM OOM OOM 4574106 471503
.003% 839417 825116 763104 | 848103 848103 | 893106 80.6408 903403 922.05 734405
007% | 847110 84.5:08 809+16 | 87.1402 87.1io2 | 898100 819416 912419 916412 734405
ACM 013% | 86.8109 88.64+06 87.1112 | 904100 904400 | 899401 804134 919434 920404 793130 917004
@ 033% | 877414 883110 88.6407 | 96102 916402 | 909101 890412 912445 922405 828419 S04
2 066% | 89.1:06 87.9+11 888110 | 916102 916402 | 9ldio2 866421 91940y 91.8.10 T7Tl.ligs
% 332% | 893109 894106 887109 | 93102 913402 | 910405 893106 894404 918103 809426
éb .002% 46.6126 589107 547106 | 61.6407 56.6411 | 71.6418 7154100 778402 (81955 72345,
g .004% 570414 629409 549159 | 604411 620415 | 754406 762101 8094 817i35 723405
T DBLP 007% | 675408 613116 60.9+04 | 707405 683406 | 717444 736107 8lligs 8L2404 673410 | g
019% | 68.041.1 657112 6451171 | 736402 735104 | 76.6406 746111 179103 80815 72.0109 09
037% | 67.6415 650411 66.6415 | 74.6401 752401 | 769418 764105 785t06 819435 716423
.186% 657410 663108 660110 OOM OOM OOM OOM OOM 82.1.03 699109

3 Experimental Results and Analysis

3.1 Performance Comparison (RQ1)

We evaluate the GC methods across a spectrum of condensation ratios” to identify their progress and
effective ranges. Prior studies primarily utilize three ratios of labeling rates, a selection that is far
from comprehensive. We broaden the evaluation of existing condensation methods and the node-level
and graph-level GC results are shown in Table 2 and Table 3, respectively. The experiment setting
and additional results can be found in Appendix B.1.

For node-level experiments (Table 2), we observe that: (1) GC methods can achieve lossless re-
sults [45] compared to the whole dataset in 5 out of 7 cases (highlighted in red), generally out-
performing traditional core-set methods, especially at smaller condensation ratios (e.g., Citeseer
with r=0.18%, ACM with r=0.003%, DBLP with r=0.002%). (2) Distribution matching methods
underperform compared to gradient matching and trajectory matching methods in 6 out of 7 datasets.
The gradient matching methods and the trajectory matching methods perform well in our benchmark.

From graph-level experiments on GIN (Table 3) and GCN (Section B.1), our observations are: (1)
KiDD with GIN shows significant advantages in 18 out of 25 cases, while DosCond and Mirage do
not consistently outperform traditional core-set methods, indicating room for improvement in future
work. (2) KiDD performs well when GIN is used as the model for downstream tasks but performs

The condensation ratio is defined as r = N’ /N for node-level experiments and r = n’ /n for graph-level
experiments. We use Graph/Cls to denote the number of condensed graphs per class in graph-level experiments.

37904 https://doi.org/10.52202/079017-1197

Table 3: Graph classification performance on GIN (meanzstd) across datasets with varying con-
densation ratios . The best results are shown in bold and the runner-ups are shown in underlined .
Red color highlights entries that exceed the whole dataset values.

D | Graph . \ Traditional Core-set methods | Gradient | KRR | CTC | Whole
ataset ICls Ratio(r) Dataset

| Random Herding K-Center | DosCond | KiDD | Mirage |

1 0.06% | 50904010 51901160 519041160 | 49201110 | 61405050 | 50801220

Nell 5 024% | 52104100 60501040 47.004110 | 51.1010.80 | 63201090 | 51301110
Ace, (%) 10 049% | 55.601100 61801150 49.4011 80 | 50.301130 | 64200010 | 517011 40 | 80.041s

: 20 097% | 58701140 60901100 55201160 | 50301130 | 60901070 | 52.1010 90

50 243% | 61101190 59.004150 62704150 | 50.3041 30 | 65405060 | 52.401 70

1 0.21% 49.70411.30 58.8046.10 58.8046.10 | 46.304550 | 71.3041 50 | 74.001 40

. 5 1.06% | 40801430 58701580 51.301530 | 57.501560 | 709011 10 | -

Acc (%) 10 2.12% 63.10i5_2(‘| 64-10i5.80 53-40i3.10 46.30ig_50 71-5010_50 - 70~1i2.2

20 425% | 56401430 67001060 58.501570 | 40.7010.00 | 71205000 | -
50 10.62% | 58901650 68401400 62301250 | 44.00 1670 | 718011 00 | -

1 0.17% | 0.468+ 045 0.4864.035 0.4864.035 | 0.5124 092 | 0.706-+ 000 | 0.590-+ 004
ogbg-molbace 5 0.83% | 03124019 04701042 0.5531+ 024 | 0.5554 079 | 0.562+ 000 | 0.419+ 010
RocALC | 10 165% | 044240 05324031 05%i019 | 0.5364072 | 08945000 | 04194010 | 0.7631.020

20 331% | 0.510+.023 0.5091052 0.5124 031 | 0484+ 080 | 0.640+ 011 | 0423+ 011
50 8.26% | 04861020 0.625+ 026 0.595+ 026 | 0.503+.0s4 | 07234011 | -

1 0.12% | 05105015 0.5322.015 05324 015 | 05462026 | 06162000 | 0.592- 001
ogbg-molbbbp 5 0.61% | 05224 014 05461020 0.5814+ 022 | 05194041 | 0.607L005 | 0.4314+ 013
OSTODRIP | 10 123% | 05081055 0578017 0619 gor | 05055 025 | 0.6635 000 | 0465 0 | 06355 017
20 2.45% 0.567+ 010 0.5334 009 0.5464 012 | 0.4931 031 | 0.677+ 001 | 0.610+ 22

50 6.13% | 0.5954 014 0.5524018 0.5944 016 | 0.509+ 015 | 0.684+ 009 | 0.590 031

1 0.01% | 0.3664+.0s7 0.4624 72 0.4624 g72 | 0.6744 131 | 0.664+ 916 | 0.7104 o090
oeba-molhiv 5 0.03% | 0.5014+051 0.496+044 0.5194 096 | 0.369+ 175 | 0.657+ 05 | 0.703+ 012
898 10 0.06% | 0.554+ 031 0.458+0s58 04711054 | 0457+ 214 | 0.6324 000 | 0.513+ 055 | 0.7014 28

ROC-AUC 20 0.12% | 0.621500 05824057 0.6271 020 | 02815 007 | 0.6485 095 | 0.633+ 01

50 0.30% | 0.625: 062 0.6001 034 | 0.680% 049 | 0455+ 214 | 0.5871.035 | 0.588 067

*Mirage cannot directly generate graphs with the required ratio. Parameter search aligns generated graphs with DosCond disk usage
(see Appendix B.1). ‘-” denotes results unavailable due to recursive limits reached in MP Tree search.

poorly with GCN. This is because KiDD does not rely on the backbone and depends solely on the
structure. Consequently, the stronger the downstream model’s expressive ability, the better the results.

From both node-level and graph-level results, we observe that as the condensation ratio increases,
traditional core-set methods improve, narrowing the performance gap with deep methods. However,
deep GC methods show a saturation point or even a decline in performance beyond a certain threshold,
suggesting that larger condensed data may introduce noise and biases that degrade performance.

Key Takeaways 1: Current node-level GC methods can achieve nearly lossless condensation
performance. However, there is still a significant gap between graph-level GC and whole dataset
training, indicating there is substantial room for improvement.

Key Takeaways 2: A large condensation ratio does not necessarily lead to better performance with
current methods.

3.2 Structure in Graph Condensation (RQ2)

We analyze the impact of structure in terms of heterogeneity and heterophily. Experimental settings
and additional results can be found in Appendix B.2.

(1) Heterogeneity v.s. Homogeneity. For the heterogeneous datasets ACM and DBLP, we convert the
heterogeneous graphs into homogeneous ones for evaluation. From the results in Table 2, we observe
that GC methods designed for homogeneous graphs preserve most of the semantic information and
perform comparably to models training on the whole dataset.

(2) Heterophily v.s. Homophily. From the results of the heterophilous dataset Flickr (with homophily
ratio H = 0.24) in Table 2, we can observe that current GC methods can achieve almost the same
accuracy as models training on the whole dataset. However, there is still a significant gap compared
to the state-of-the-art results of the model designed for heterophilic graphs.

https://doi.org/10.52202/079017-1197 37905

® 090% 1.80% 3.60% — — — Whole Dataset

o0
73
=
S

0.95

54
3

e
o
S

-
G
<
9
L

=N
n
°®

w

<

»
e
>
[]

o n

e

n

=
®

S
n

Link Prediction Acc.(%)
IS

Node Clustering F1(%)
S 8
L
Anomaly Detection ROC-AUC
=3
=}
=

Anomaly Detection ROC-AUC

v
b
=)

0.4

n

R

g
Cor,
OQ%;

2%
x(\oud
0001741
N6 Dpy

R. ”]‘70/;,

<

R,
l”‘la,

He,
X.

(@) NCto LP (b) NC to NClu (c) NC to AD (Structure) (d) NC to AD (Context)

Figure 2: Cross-task performance on Citeseer. For all downstream tasks, the models are trained
solely using data of graphs condensed by node classification. For anomaly detection (c, d), structural
and contextual anomalies [3] are injected into both the condensed graph and the original graph.

Key Takeaways 3: Existing GC methods primarily address simple graph data. However, the
conversion process to specific data types is non-trivial, leaving significant room for improvement in
preserving complex structural properties.

3.3 Transferability on Different Tasks (RQ3)

To evaluate the transferability of GC methods, we condense the dataset by node classification (NC)
and use the condensed dataset to train models for link prediction (LP), node clustering (NClu), and
anomaly detection (AD) tasks. The results on Citeseer are shown in Figure 2. Settings and additional
results can be found in Appendix B.3.

As shown in Figure 2, performance with condensed datasets was significantly lower compared to
original datasets in all transferred tasks. This decline may be due to the task-specific nature of the
condensation process, which retains only task-relevant information while ignoring other semantically
rich details. For instance, AD task prioritizes high-frequency graph signals more than NC and LP
tasks, leading to poor performance when transferring condensed datasets from NC to AD tasks.
Among the methods, gradient matching methods (GCond, DosCond, and SGDD) demonstrated better
transferability in downstream tasks. In contrast, while structure-free methods (SFGC and GEOM)
perform well in node classification (Section 3.1), they show a significant performance gap in AD
tasks compared to gradient matching methods.

Key Takeaways 4: All condensed datasets struggle to perform well outside the context of the specific
tasks for which they were condensed, leading to limited applicability.

3.4 Transferability of Backbone Model Architectures (RQ4)

We adopt one model (SGC or Graph Transformer) as the backbone for condensation and use the
various models in downstream tasks evaluation. Details and additional results are in Appendix B.4.

As shown in Figure 3(a) and 3(b), each column shows the generalization performance of a condensed
graph generated by different methods for various downstream models. We can observe that datasets
condensed with SGC generally maintain performance when transferred across models. However,
datasets condensed with Graph Transformer (GTrans) consistently underperform across various
methods, and other models also exhibit reduced performance when adapted to Graph Transformer.
Intuitively, SGC’s basic neighbor message-passing strategy may overlook global dependencies critical
to more complex models, and similarly, complex models may not perform well when adapted to
simpler models. As we can observe, DosCond exhibits generally better transferability compared to
other gradient-matching methods. Since it can be regarded as the one-step gradient matching variant
of GCond, we further test the impact of gradient matching steps on transferability (Figure 3(c)).
Increasing the number of matching steps was found to correlate with reduced performance across
architectures, indicating that extensive gradient matching may encode model-specific biases.

37906 https://doi.org/10.52202/079017-1197

o
=4

" 80 80 ~
TTRE 80 S 801 BBp--9-0-s-"a-Nnp-Sg-t
. P >
78 76 79 §70
60 60 <§ 60
50
40 40 £ 40
30,
5 10 15
Number of Gradient Matching Steps
20 20 -8 SGC APPNP —<— GT
NS S o 00 OC 0@ B GC Cheb;
0@0%00&%‘60 MRS oS ;:A(I;lh ¥y MLP

(a) Cross-arch. Acc. from SGC (b) Cross-arch. Acc. from GTrans (c) GCond across different steps.

Figure 3: Cross-architecture performance. Using SGC and Graph Transformer (GTrans) to
condense Cora with a 2.6% ratio, we then test the accuracy on various downstream architectures (a,
b). Furthermore, we evaluate the influence of gradient matching steps on GCond (c).

—— K-Center Center —— K-Means Random Sample Random Noise
0.8 mm 0.8
0.6
> > >
g 20.6 3
506 5 3
3 3 3
< < |, 204
%04 04 b7
e & &

o
()
N
)
o
)

0 100 200 0 100 200 0 100 200 300
Epoch Epoch Epoch
(a) GCond on Cora (2.60%) (b) GCond on Cora (0.26%) (c) GCond on ogbn-arxiv (0.50%)

Figure 4: The impact of initialization under different condensation ratios (a, b) and the impact
across different datasets Cora (a, b) and ogbn-arxiv (c).

Key Takeaways 5: Current GC methods exhibit significant performance variability when transferred
to different backbone architectures. Involving the entire training process potentially may lead to
encoding backbone-specific details in the condensed datasets.

Key Takeaways 6: Despite their strong performance in general graph learning tasks, transformers
surprisingly yield suboptimal results in graph condensation.

3.5 Initialization Impact (RQS)

We evaluate 5 distinct initialization strategies, namely: Random Noise, Random Sample, Center,
K-Center, and K-Means. The results of GCond on Cora and ogbn-arxiv are shown in Figure 4.
Detailed settings and additional results can be found in Appendix B.5.

As shown in Figure 4(a) and Figure 4(b), the choice of the initialization method can significantly
influence the efficiency of the condensation process but with little impact on the final accuracy. For
instance, using Center on Cora reduces the average time to reach the same accuracy by approximately
25% compared to Random Sample and 71% compared to Random Noise. However, this speed
advantage diminishes as the scale of the condensed graph increases. Additionally, different datasets
have their preferred initialization methods for optimal performance. For example, Center is generally
faster for Cora condensed by GCond while K-Means performs better on ogbn-arxiv.

Key Takeaways 7: Different datasets have their preferred initialization methods for optimal
performance even for the same GC method.

Key Takeaways 8: The initialization mechanism primarily affects the convergence speed with
little impact on the final performance. The smaller the condensed graph, the greater the influence of
different initialization strategies on the convergence speed.

https://doi.org/10.52202/079017-1197 37907

3.6 Efficiency and Scalability (RQ6)

. . . 70
In this subsection, we evaluate the condensation B Distribution

time and memory consumption of GC methods. 68 @ Gradient
The results on ogbn-arxiv are shown in Figure 5,
where the x-axis denotes the overall condensation

({)cEOM FsrGe
66/ @ Trajectory 7/ —/

time (min) when achieving the best validation per- 64 SGDD

formance, the y-axis denotes the test accuracy (%), § DosCond /'/'\G.C@'“{

the inner size of the marker represents the peak < 62 7\ I U/)

CPU memory usage (MB), while the outer size 60 &/ N4
DM B GCDM

represents the peak GPU memory usage (MB).

As we can observe, the gradient matching meth- 58
ods have higher time and space consumption com- 56
pared to other types of methods. However, Ta-

ble 2 shows that current gradient and distribution))
matching GC methods may trigger OOM (Out of F}gure 5: Time and memory consumption of
Memory) errors on large datasets with high con- different methods on ogbn-arxiv (0.50%).
densation ratios, making them unsuitable for large-scale scenarios, which contradicts the goal of
applying graph condensation to extremely large graphs. More detailed results in Appendix B.6.

|

50 100 150 200 250 300
Time (min)

Key Takeaways 9: GC methods that rely on backbones and full-scale data training have large time
and space consumption.

4 Future Directions
Notwithstanding the promising results, there are some directions worthy to explore in the future:

Theory of optimal condensation. According to our findings, GC methods are striving to achieve
better performance with smaller condensed dataset sizes but it’s not necessarily true that larger
compressed datasets lead to better results. How to trade off between dataset size, information
condensation, and information preservation, and whether there exists a theory of Pareto-optimal
condensation in the graph condensation process, are future research directions.

Condensation for more complex graph data. Current GC methods are predominantly tailored
to the simplest types of graphs, overlooking the diversity of graph structures such as heterogeneous
graphs, directed graphs, hypergraphs, signed graphs, dynamic graphs, text-rich graphs, etc. There is a
pressing need for research on graph condensation methods that cater to more complex graph data.

Task-Agnostic graph condensation. Task-agnostic GC methods could greatly enhance flexibility
and utilization in graph data analysis, promoting versatility across various domains. Current methods
often depend on downstream labels or task-specific training. Future research should focus on
developing task-agnostic, unsupervised, or self-supervised GC methods that preserve crucial structural
and semantic information independently of specific tasks or datasets.

Improving the efficiency and scalability of graph condensation methods. Efficient and scalable
GC methods are crucial yet challenging to design. Most current methods combine condensation
with full training, making them resource-heavy and less scalable. Decoupling these processes could
significantly enhance GC'’s efficiency and scalability, broadening its use across various domains.

5 Conclusion and Future Works

This paper introduces a comprehensive graph condensation benchmark, GC-Bench, by integrating and
comparing 12 methods across 12 datasets covering varying types and scopes. We conduct extensive
experiments to reveal the performance of GC methods in terms of effectiveness, transferability,
and efficiency. We implement an library (https://github.com/RingBDStack/GC-Bench) that
incorporates all the aforementioned protocols, baseline methods, datasets, and scripts to reproduce
the results in this paper. The GC-Bench library offers a comprehensive and unbiased platform for
evaluating current methods and facilitating future research. In this study, we mainly evaluate the
performance of GC methods for the node classification and graph classification task, which is widely
adopted in the previous literature. In the future, we plan to extend the GC-Bench with broader
coverage of datasets and tasks, providing further exploration of the generalization ability of GC
methods. We will update the benchmark regularly to reflect the most recent progress in GC methods.

37908 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

Acknowledgements

The corresponding author is Jianxin Li. This work is supported by the NSFC through grants
No0.62225202 and No0.62302023, the Fundamental Research Funds for the Central Universities,
CAAI-MindSpore Open Fund, developed on Openl Community. This work is also supported in part
by NSF under grants I11-2106758, and POSE-2346158.

References

(1]

[2

—

(3]

(4]

[5

—

[6

—_

[7

—

[8

—_—

(9]

(10]

(1]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark. In
NeurlPS, 2022.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv: Learning,arXiv: Learning, 2016.

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep Anomaly Detection on Attributed Networks,
page 594-602. 2019.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 2003.

Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang, and Xiangnan
He. Exgc: Bridging efficiency and explainability in graph condensation. arXiv preprint arXiv:2402.05962,
2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous information
networks for representation learning. In CIKM, pages 1797-1806, 2017.

Jian Gao and Jianshe Wu. Multiple sparse graphs condensation. Knowledge-Based Systems, 278:110904,
2023.

Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen, Kai Zheng, and Hongzhi
Yin. Graph condensation for inductive node representation learning. In /CDE, 2024.

Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin. Graph condensation: A
survey. arXiv preprint arXiv:2401.11720, 2024.

Mridul Gupta, Sahil Manchanda, Sayan Ranu, and Hariprasad Kodamana. Mirage: Model-agnostic graph
distillation for graph classification. In /CLR, 2024.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin. Condensing
graphs via one-step gradient matching. In SIGKDD, 2022.

Wei Jin, Lingxiao Zhao, Shi-Chang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In ICLR, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In /CLR, 2018.

Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and Di Wu. Attend who is weak: Enhancing graph
condensation via cross-free adversarial training. arXiv preprint arXiv:2311.15772, 2023.

https://doi.org/10.52202/079017-1197 37909

[20] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

[21] Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation via eigenbasis matching. In ICML, 2024.

[22] Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph condensation.
In ICDM, pages 1157-1162. IEEE, 2023.

[23] Yilun Liu, Ruihong Qiu, and Zi Huang. Gcondenser: Benchmarking graph condensation. arXiv preprint
arXiv:2405.14246, 2024.

[24] Yilun Liu, Ruihong Qiu, Yanran Tang, Hongzhi Yin, and Zi Huang. Puma: Efficient continual graph
learning with graph condensation. arXiv preprint arXiv:2312.14439, 2023.

[25] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress?: Revisiting, benchmarking and
refining heterogeneous graph neural networks. In SIGKDD, 2021.

[26] Runze Mao, Wenqi Fan, and Qing Li. Gcare: Mitigating subgroup unfairness in graph condensation
through adversarial regularization. Applied Sciences, 13(16):9166, 2023.

[27] Christopher]. Morris, NilsM. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv: Learning,arXiv: Learning,
Jul 2020.

[28] Qiying Pan, Ruofan Wu, Tengfei Liu, Tianyi Zhang, Yifei Zhu, and Weigiang Wang. Fedgkd: Unleashing
the power of collaboration in federated graph neural networks. arXiv preprint arXiv:2309.09517, 2023.

[29] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In /CLR, 2019.

[30] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
In ICLR, 2018.

[31] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

[32] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 2008.

[33] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed graph
clustering: A deep attentional embedding approach. In IJCAI, 2019.

[34] Lin Wang, Wengqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-based
neural tangent kernel. In The Web Conference, 2024.

[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The Web Conference, 2019.

[36] Max Welling. Herding dynamical weights to learn. In ICML, pages 1121-1128, 2009.

[37] Felix Wu, Tianyi Zhang, AmauriH. Souza, Christopher Fifty, Tao Yu, and KilianQ. Weinberger. Simplifying
graph convolutional networks. arXiv: Learning,arXiv: Learning, 2019.

[38] Yifan Wu, Jiawei Du, Ping Liu, Yuewei Lin, Wenqing Cheng, and Wei Xu. Dd-robustbench: An adversarial
robustness benchmark for dataset distillation. arXiv preprint arXiv:2403.13322, 2024.

[39] Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu Jiajun. A survey on graph
condensation. arXiv preprint arXiv:2402.02000, 2024.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In ICLR, 2018.

[41] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hanghang Tong.
Kernel ridge regression-based graph dataset distillation. In SIGKDD, pages 2850-2861, 2023.

[42] Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin Li.
Does graph distillation see like vision dataset counterpart? In NeurIPS, 2023.

37910 https://doi.org/10.52202/079017-1197

[43] Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graphsaint:
Graph sampling based inductive learning method. In /CLR, 2020.

[44] Tianle Zhang, Yuchen Zhang, Kun Wang, Kai Wang, Beining Yang, Kaipeng Zhang, Wenqi Shao, Ping
Liu, Joey Tianyi Zhou, and Yang You. Two trades is not baffled: Condense graph via crafting rational
gradient matching. arXiv preprint arXiv:2402.04924, 2024.

[45] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and Yang
You. Navigating complexity: Toward lossless graph condensation via expanding window matching. CoRR,
abs/2402.05011, 2024.

[46] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. Network schema preserving heteroge-
neous information network embedding. In 1IJCAI, 2020.

[47] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.

Structure-free graph condensation: From large-scale graphs to condensed graph-free data. In NeurIPS,
2023.

https://doi.org/10.52202/079017-1197 37911

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix C.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A 4.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2.1 and
Appendix A.2.
(b) Did you mention the license of the assets? [Yes] See Appendix C.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [Yes] See Appendix C.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Appendix C.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

37912 https://doi.org/10.52202/079017-1197

A Details of GC-Bench

A.1 Datasets

The evaluation node-level datasets include 5 homogeneous datasets (3 transductive datasets, i.e.,
Cora, Citeseer [16] and ogbn-arxiv [13], and 2 inductive datasets, i.e., Flickr [43] and Reddit [12])
and 2 heterogeneous datasets (ACM [46] and DBLP [7]). The evaluation graph-level datasets include
5 datasets (NCII [32], DD [4], ogbg-molbace [13], ogbg-molhiv [13], ogbg-molbbbp [13]).

We utilize the standard data splits provided by PyTorch Geometric [6] and the Open Graph Benchmark
(OGB) [13] for our experiments. For datasets in TUDataset [27], we split the data into 10% for
testing, 10% for validation, and 80% for training. For ACM and DBLP datasets, we follow the settings
outlined in [25]. Dataset statistics are shown in Table A1l.

Table Al: Dataset statistics. For heterogeneous datasets, the features are from the target nodes (papers
in ACM and authors in DBLP).

#Nodes / #Edges / #Features /

Dataset #Avg. Nodes #Avg. Edges #Classes Graphs
Cora 2,708 5,429 7 1,433
— Citeseer 3,327 4,732 6 3,703
% ogbn-arxiv 169,343 1,166,243 40 128
S Flickr 89,250 899,756 7 500
B Reddit 232,965 57,307,946 210 602
Z ACM 10,942 547,872 3 1,902
DBLP 37,791 170,794 4 334
< ogbg-molhiv 25.5 54.9 2 41,127
2 ogbg-molbace 34.1 36.9 2 1,513
i ogbg-molbbbp 241 26.0 2 2,039
s NCII 29.8 323 2 4,110
O DD 284.3 715.7 2 1,178

A.2 Algorithms

We summarize the current GC algorithms in Table A2. We choose 12 representative ones for
evaluation in this paper including Random, K-Center [30], Herding [36], GCond [15], DosCond [14],
SGDD [42], GCDM [20], DM [24], SFGC [47], GEOM [45], KiDD [41], Mirage [11]. We will
continue to update and improve the benchmark to include more algorithms. Here we introduce
the GC algorithms in detail:

* Traditional Core-set Methods

— Random: For node classification tasks, nodes are randomly selected to form a new subgraph.
For graph classification, the graphs are randomly selected to create a new subset.

— Herding [36]: The nodes or graphs are selected samples that are closest to the cluster center.

— K-Center [30]: Nodes or graphs are chosen such that they have the minimal distance to the
nearest cluster center, which is generated using the K-Means Clustering method.

* Gradient Matching Methods

— GCond [15]: In GCond, the optimization of the synthetic dataset is framed as a bi-level
problem. It adapts a gradient matching scheme to match the gradients of GNN parameters
between the condensed and original graphs, while optimizing the model’s performance on
the datasets. For generating the synthetic adjacency matrix, GCond employs a Multi-Layer
Perceptron (MLP) to model the edges by using node features as input, maintaining the
correlations between node features and graph structures.

— DosCond [14]: In DosCond, the gradient matching scheme only matches the network
gradients for model initialization 6y while discarding the training trajectory of 6,, which
accelerated the entire condensation process by only informing the direction to update the

https://doi.org/10.52202/079017-1197 37913

Table A2: Summary of Graph Condensation (GC) algorithms. We also provide public access to
the official algorithm implementations. “KRR” is short for Kernel Ridge Regression and “CTC”
is short for computation tree compression. “GNN is short for Graph, “GNTK” is short for graph
neural tangent kernel, “SD” is short for spectral decomposition. “NC” is short for node classification,
“LP” is short for link prediction, “AD” is short for anomaly detection, and “GC” is short for graph
classification.

Backbone Downstream

Taxonomy Method Initialization Model Task Code Venue
Traditional Rapdom B B B L o
Methods Herding [36] — — — l}nk ICML, 2009
" K-Center [30] — — — link ICLR, 2018
GCond [15] Random Sample GNN NC link ICLR, 2021
DosCond [14] Random Sample GNN NC, GC link SIGKDD, 2022
MSGC [8] Zero Matrix GNN NC — KBS, 2023
Gradient SGDD [42] Random Sample GNN NC, LP, AD link NeurlPS, 2023
Matching GCARe [26] — GNN NC — Appl. Sci. 2023
CTRL [44] K-Means GNN NC, GC link arXiv, 2024
GroC [19] Random Sample GNN NC, GC — arXiv, 2023
EXGC [5] Random Sample GNN NC link! WWW 2024
MCond [9] Random Sample GNN NC — ICDE, 2024
Distribution GCDM [20] Random Sample GNN NC — arXiv, 2022
Matching DM [22, 24] Random Sample GNN NC — ICDM, 2023
GDEM [21] Eigenbasis Approximation SD NC link ICML, 2024
FedGKD [28] Random Noise GNN NC — arXiv, 2023
Trajectory SFGC [47] K-Center GNN NC link NeurIPS, 2023
Matching GEOM [45] K-Center GNN NC link ICML, 2024
KRR GC-SNTK [34] Random Noise GNTK NC link WWW, 2024
KiDD [41] Random Sample GNTK GC link SIGKDD, 2023
CTC Mirage [11] — GNN GC link ICLR, 2024

! The code repository for EXGC is not fully developed.

synthetic dataset. DosCond also modeled the discrete graph structure as a probabilistic
model and each element in the adjacency matrix follows a Bernoulli distribution.

— MSGC [8]: MSGC condenses a large-scale graph into multiple small-scale sparse graphs,
leveraging neighborhood patterns as substructures to enable the construction of various
connection schemes. This process enriches the diversity of embeddings generated by GNNs,
enhances the representation power of GNNs con complex graphs.

— SGDD [42]: SGDD uses graphon approximation to ensure that the structural information
of the original graph is retained in the synthetic, condensed graph. The condensed graph
structure is optimized by minimizing the optimal transport (OT) distance between the original
structure and the condensed structure.

— GCARe [26]: GCARe addresses biases in condensed graphs by regularizing the condensa-
tion process, ensuring that the knowledge of different subgroups is distilled fairly into the
resulting graphs.

— CTRL [44]: CTRL clusters each class of the original graph into sub-clusters and uses these
as initial value for the synthetic graph. By considering both the direction and magnitude
of gradients during gradient matching, it effectively minimizes matching errors during the
condensation phase.

— GroC [19]: GroC uses an adversarial training (bi-level optimization) framework to explore
the most impactful parameter spaces and employs a Shock Absorber operator to apply
targeted adversarial perturbation.

— EXGC [5]: EXGC leverages Mean-Field variational approximation to address inefficiency
in the current gradient matching schemes and uses the Gradient Information Bottleneck
objective to tackle node redundancy.

— MCond [9]: MCond addresses the limitations of traditional condensed graphs in handling
unseen data by learning a one-to-many node mapping from original nodes to synthetic nodes
and uses an alternating optimization scheme to enhance the learning of synthetic graph and
mapping matrix.

* Distribution Matching Methods

37914 https://doi.org/10.52202/079017-1197

https://github.com/ozansener/active_learning_coreset
https://github.com/ozansener/active_learning_coreset
https://github.com/ChandlerBang/GCond
https://github.com/amazon-science/doscond
https://github.com/RingBDStack/SGDD
https://github.com/NUS-HPC-AI-Lab/CTRL
https://github.com/MangoKiller/EXGC
https://github.com/liuyang-tian/GDEM
https://github.com/Amanda-Zheng/SFGC
https://github.com/NUS-HPC-AI-Lab/GEOM
https://github.com/WANGLin0126/GCSNTK
https://github.com/pricexu/KIDD
https://github.com/idea-iitd/Mirage

— GCDM [20]: GCDM synthesizes small graphs with receptive fields that share a similar
distribution to the original graph, achieved through a distribution matching loss quantified
by maximum mean discrepancy (MMD).

— DM [22, 24]: DM can be regarded as a one-step variant of GCDM. In DM, the optimization
is centered on the initial parameters. Notably, in [22] and [24], DM does not learn any
structures for efficiency. However, for better comparison in our experiments, we continue to
learn the adjacency matrix.

— FedGKD [28]: FedGKD trains models on condensed local graphs within each client to
mitigate the potential leakage of the training set membership. FedGKD features a Federated
Graph Neural Network framework that enhances client collaboration using a task feature
extractor for graph data distillation and a task relator for globally-aware model aggregation.

* Trajectory Matching Methods

— SFGC [47]: SFGC uses trajectory matching instead of a gradient matching scheme. It first
trains a set of GNNs on original graphs to acquire and store an expert parameter distribution
offline. The expert trajectory guides the optimization of the condensed graph-free data. The
generated graphs are evaluated using closed-form solutions of GNNs under the graph neural
tangent kernel (GNTK) ridge regression, avoiding iterative GNN training.

— GEOM [45]: GEOM makes the first attempt toward lossless graph condensation using
curriculum-based trajectory matching. A homophily-based difficulty score is assigned to
each node and the easy nodes are learned in the early stages while more difficult ones are
learned in the later stages. On top of that, GEOM incorporated a Knowledge Embedding
Extraction (KEE) loss into a matching loss.

* Kernel Ridge Regression Methods

— GC-SNTK [34]: GC-SNTK introduces a Structure-based Neural Tangent Kernel(SNTK)
to capture graph topology, replacing the inner GNNss training in traditional GC paradigm,
avoiding multiple iterations.

— KiDD [41]: KiDD uses kernel ridge regression (KRR) with a graph neural tangent kernel
(GNTK) for graph-level tasks. To enhance efficiency, KiDD introduces LiteGNTK, a
simplified GNTK, and proposes KiDD-LR for faster low-rank approximation and KiDD-D
for handling discrete graph topology using the Gumbel-Max reparameterization trick. We
use KiDD-LR for experiments as it has generally demonstrated better performance compared
to KiDD-D.

* Computation Tree Compression Methods

— Mirage [11]: Mirage decomposes graphs in datasets into a collection of computation trees
and then mines frequently co-occurring trees from this set. Mirage then uses aggregation
functions (MEANPOOL, SUMPOOL, etc.) on the embeddings of the root node of each tree
to approximate the graph embedding.

A.3 Hyper-Parameter Setting

For the implementation of various graph condensation methods, we adhere to the default parameters
as specified by the authors in their respective original implementations. This approach ensures that
our results are comparable to those reported in the foundational studies. For condensation ratios
that were not explored in the original publications, we employ a grid search strategy to identify
the optimal hyperparameters within the predefined search space. This includes experimenting with
various combinations, such as differing learning rates for the feature optimizer and the adjacency
matrix optimizer. The corresponding hyperparameter space are shown in Table A3.

A.4 Computation resources

All experiments were conducted on a high-performance GPU cluster to ensure a fair comparison.
The cluster consists of 32 identical dell-GPU nodes, each featuring 256GB of memory, 2 Intel Xeon
processors, and 4 NVIDIA Tesla V100 GPUs, with each GPU having 64 GB of GPU memory. If any
experiment setting exceeds the GPU memory limit, it is reported as out-of-memory (OOM).

https://doi.org/10.52202/079017-1197 37915

Table A3: Hyperparameter search space of different methods

Method Hyperparameter Values
Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001
Epochs 300, 400, 500, 800, 1000, 2000, 3000, 4000, S000
Layers 2,3

General Dropout Rate 0,0.05,0.1,0.5,0.6,0.7, 0.8

Settines Weight Decay 0, 0.0005

&5 Hidden Units 128,256

Pooling sum, mean
Activation LeakyReL U, ReLU, Sigmoid, Softmax
Batch Size (16,6000)
mx_size 50, 100

SGDD opt_scale 5,10

GCond, DosCond, SGDD, GCDM, DM outer loop 1,2,5,10, 15,20
GCond, SGDD, GCDM inner loop 1,5, 10, 15,20

SEGC expert_epochs 50, 70, 100, 350, 600, 800, 1000, 1500, 1600, 1900

GEOl\/i start_epoch 10, 20, 50, 100, 200, 300
teacher_epochs 800, 1000, 1200, 2400, 3000
lam 0.6,0.7,0.75, 0.8, 0.85, 0.9, 0.95

GEOM T 250, 500, 600, 800, 1000, 1200
scheduler linear, geom, root
scale uniform, degree

KiDD rank 8, 16,32
orth_reg 0.01, 0.001, 0.0001

A.5 Discussion on Existing Benchmarks

To the best of our knowledge, the only concurrent work is GCondenser [23]. The comparison
of GCondser and our GC-Bench are list in Table A4. GCondenser [23] focus the node-level GC
methods for node classification on homogeneous graphs with limited evaluation dimensions in terms
of performance and time efficiency. Our GC-Bench analyzes more GC methods on a wider variety of
datasets (both homogeneous and heterogeneous) and tasks (node classification, graph classification),
encompassing both node-level and graph-level methods. In addition to performance and efficiency
analysis, we further explore the transferability across different tasks (link prediction, node clustering,
anomaly detection) and backbones (GNN models and the popular Graph Transformer). With GC-
Bench covering more in-depth investigation over a wider scope, we believe it will provide valuable
insights into existing works and future directions.

B Settings and Additional Results

In this section, we provide more details of the experimental settings and the additional results for the
proposed 6 research questions, respectively.

B.1 Settings and Additional Results of Performance Comparison (RQ1)
B.1.1 Comparison Setting

Node Classification Graph Dataset Setting. We compared ten state-of-the-art GC methods. The
selection of the condensation ratio r is based on the labeling rates of different datasets. For datasets
like Cora and Citeseer, the labeling rates are less than 50%, we select r as a proportion of the labeling
rate, specifically at {5%, 10%, 25%, 50%, 75%, 100%}. For datasets like ogbn-arxiv, and inductive
datasets where all nodes in the training graphs are labeled, with a relatively higher labeling rate, r
is chosen to be {5%, 10%, 25%, 50%, 75%, 100%}. Corresponding condensation rates are shown in
Table B2.

Graph Classification Graph Dataset Setting. We compared three state-of-the-art GC algorithms
on graph classification datasets: DosCond [14], KiDD [41], and Mirage [11]. Mirage [11] does not
condense datasets into unified graphs measurable by Graphs per Class(GPC) as DosCond [14] and

37916 https://doi.org/10.52202/079017-1197

Table A4: Comparison of GCondenser and GC-Bench

Benchmark Coverage

GCondenser

GC-Bench

Traditional Core-set Methods

Random, K-Center

Random, K-Center, Herding

é’ Gradient Matching GCond, DosCond, SGDD GCond, DosCond, SGDD
,‘:’ Distribution Matching GCDM, DM GCDM, DM
5 Trajectory Matching SFGC SFGC, GEOM
= KRR — KiDD
CTC — Mirage
Node-level H Cora, Citeseer, ogbn-arxiv Cora, Citeseer, ogbn-arxiv
g ocerievel HOMOEENCIOUs pyickr, Reddit, PubMed Flickr, Reddit
:'g’ Node-level Heterogenerous — ACM, DBLP
S NCI1, DD, ogbg-molbace
S Graph-level o ogbg-molbbbp, ogbg-molhiv
node classification
£ Nodel-level node classification link predlctlpn
4 node clustering
= anomaly detection
Graph-level — graph classification
Condensation
Ratios v v
I structure v.s. structure-free
mpact of .
S structure v.s. structure-free structure properties
» truture : .
€ perf (Heterogeneity, Heterophily)
£ ert. Impact of v v
g Initialization
2 SGC and GCN transfer to SGC, GCN and Graph Transformer
= Backbone SGC. GCN. GraphSAGE transfer to
g Trans. APPNP. CHel, ﬁet MLp SGC,GCN, GraphSAGE, APPNP,
= ’ yet ChebyNet, MLP, Graph Transformer
= Trans. f .
= node classification
g . o
= Task Trans. . link predlctlpn
node clustering
anomaly detection
. Time v v
Efficiency Space C v

KiDD [41] do. Therefore, we measure the condensed dataset size by storing its elements in .pt format,
similar to DosCond [14] and KiDD [41]. We select the Mirage-condensed dataset size closest to
DosCond’s as the corresponding GPC. KiDD [41] generally occupies more disk space than DosCond
under the same GPC. The size of Mirage datasets is determined by two parameters: the number of
GNN layers (L) and the frequency threshold ©. We fix L = 2, consistent with the 2-layer model used
for validation, and employ a grid search strategy to identify the threshold combination that yields a
dataset size closest to the targeted GPC. The corresponding disk space, GPC, and threshold choices
are presented in Table B1. Note that for small thresholds, the MP Tree search algorithms used in
Mirage [11] may reach recursive limits. Consequently, in DD and ogbg-molbace, certain GPCs lack
corresponding threshold values.

Heterogeneous Graph Dataset Setting. Due to the absence of condensation methods specifically
for heterogeneous graphs, we convert heterogeneous datasets into homogeneous graphs for conden-
sation, focusing on target nodes. We uniformly summed the adjacency matrices corresponding to
various meta-paths as in [25], and applied zero-padding to match the maximum feature dimension as
well as one-hot encoding for nodes without features. Specifically, in GEOM [45], when calculating
heterophily, all nodes without labels (non-target nodes) are assigned the same distinct label, ensuring
a consistent heterophily calculation.

B.1.2 Additional Results

The graph classification performance on GCN is shown in Table B3. DosCond [14] with GCN
demonstrates significant advantages in 12 out of 25 cases, while KiDD [41] underperforms in most
scenarios. Notably, DosCond [14] and Mirage [11] even outperform the results of the whole dataset

https://doi.org/10.52202/079017-1197 37917

Table B1: Comparison of Disk Size and Graph per Class (GPC) for condensed datasets between
Mirage and DosCond.

Dataset Gra]ph/ Mirage DosCond Class 0 Class 1
Cls Disk Size %Bytes) Disk Size (Bytes) Threshold Threshold
: 8160 8743 32 31

, 7

NCII [32] 10 142228 162.301 301 291
20 195.609 324,035 251 231
50 995.277 806,403 201 171
P mEr B O
DD [4] 10 — 8,520,583 — —
20 — 17.056.751 — —
50 — 42.638.383 — —
1 13,836 14143 120 90
bg-molbace [13] 5 60,047 60,927 230 80
ogbg-molbace [1: 10 106.077 119,497 120 80
20 232191 236,489 140 70
50 - 587.337 — —
A
0gbg-molbbbp [13] 10 66.433 65.929 30 90
20 104.091 129,289 20 80
50 324,425 319369 17 87
1 9,606 9,717 8,000 250
be-molhiv [13] 5 54.669 38.837 1.760 170
ogbg-molhiv [13 10 74524 75.263 1,680 130
20 148,028 148,095 1,420 110
50 330,498 366,463 800 110

Table B2: Different condensation ratios of transductive datasets. For heterogeneous datasets, the
number of nodes in the original graph is the sum of all types of nodes.

Ratio (r) Cora Citeseer ACM DBLP

5% 026% 0.18% 0.003% 0.002%
10% 0.52% 0.36% 0.007% 0.004%
25% 1.30% 0.90% 0.013% 0.007%
50% 2.60% 1.80% 0.033% 0.019%
75% 390% 2.70% 0.066% 0.037%

100% 5.20% 3.60% 0.332% 0.186%

on ogbg-molbace. For Mirage [11], due to the algorithm’s recursive depth under low threshold
parameters, we have only one result corresponding to GPC 1 on DD. However, this single result
already surpasses all datasets condensed by KiDD [41] and the dataset with GPC 1 condensed by
DosCond.

B.2 Settings and Additional Results of Structure in Graph Condensation (RQ2)

B.2.1 Experimental Settings

The homophily ratio we use is the edge homophily ratio, which represents the fraction of edges that
connect nodes with the same labels. It can be calculated as:

1 .
H(C) = g > Ayj =), i€V, (A1)
(7,k)e€

where V is the node set, £ is the edge set, |£| is the number of edges in the graph, y; is the label of
node ¢ and 1(-) is the indicator function. A graph is typically considered to be highly homophilous
when H is large (typically, 0.5 < H < 1), such as Cora and Reddit. Conversely, a graph with a low
edge homophily ratio is considered to be heterophilous, such as Flickr.

37918 https://doi.org/10.52202/079017-1197

Table B3: Graph classification performance on GCN (meanz+std) across datasets with varying con-
densation ratios . The best results are shown in bold and the runner-ups are shown in underlined .
Red color highlights entries that exceed the whole dataset values.

Dataset | Graph Ratio(r \ Traditional Core-set methods | Gradient | KRR | CTC | Whole
/Cls) . ; N Dataset
| Random Herding K-Center | DosCond | KiDD | Mirage |

1 0.06% 5330406 5520126 5520496 5730109 49.30411 49.1040.9

NCII 5 0.24% 55.00414 56.50+09 53.20106 5840+14 | 56.10410 | 49.6012.
Acc. (%) 10 0.49% 58.10122 58.60.ps 57.00126 ‘ 57.80+1.6 57.5041.1 48.6040.1 711108

’ 20 0.97% 5440408 59.10111 60104, 35 60.10. 3 56.40106 | 48.70+0.0

50 2.43% 56.8041.1 5870111 644009 ‘ 58.2042.8 59.90106 | 48.60+0.1

1 0.21% 59-70i1§) 66.90i2_8 66.90i2_8 68.30iﬁ_ﬁ 58460i2,4 71'2016.6

i 5 1.06% | 6190411 6620105 62.00117 7310405 | 58.6011. -

Ace (%) 10 212% | 6370i08 6800136 6250105 71303 | 61.60138 - 784417

20 425% | 6470455 6970408 63.104109 | 7300458 | 62.60414 .
50 10.62% | 66.60451 68.50414 6890415 7420436 | 59.30400 y

1 0.17% | 05102 053 05152010 05172 011 0658+ 061 | 0.5682 017 | 07334 01
ogbg-molbace 5 0.83% | 0.6124 036 0.6534.043 0508+ 087 0.6911 06 | 0.356+.022 | 0.760.+ 02
ROC-AUC 10 1.65% | 0.6204. 054 0.658+ 046 0.6464 047 07024 ga5 | 0.5424 027 | 0.7594 002 | 0.7114.019
20 331% | 06421053 0.631s051 0575103 06594 010 | 0.5264 014 | 07611 03

50 826% | 0.6771015 0.6294 005 05764087 | 07144 050 | 0.446- 012 ;

1 0.12% | 0.5344 041 0.5604 17 0.5604 917 0.600+ g23 | 0.5044 042 | 0.600 (02

ogbg-molbbbp 5 0.61% | 05611014 0.5741 020 0.5851 g05 | 0.579+.056 | 0.5614 004 | 0.609- 061
ROC-AUC 10 123% | 05664011 0.5904 024 = 0.5984 25 | 0.556+ 063 | 0.5501.005 | 05174028 | 0.6464 013

20 2.45% 0.5931 023 0.568+ 019 0.5451 009 | 0.590+ o057 | 0.594+ 922 | 0.626+ 32

50 6.13% 0.587+.007 0.579+022 0.621% o171 | 0.5984+ g24 | 0.603+ 01 0.6024 18

1 0.01% | 07334 g0s 0.7274.012 0.727+.012 0.7344 002 | 0.7251 007 | 0.7284 012

ogbg-molhiv 5 0.03% | 0.729+.006 0.720+.015 | 0.739+ 01 | 0.736+.00s | 0.738+ 003 | 0.717+ 003
ROC-AUC 10 0.06% | 0.7241 011 0.7264 014 0.7231 012 0.736+ 007 | 0.7314 gos | 0.735+ p2s | 0.7504 010

20 0.12% | 07231015 07264 015 0724401 | 07334 007 | 07034 097 | 07104 16
50 0.30% | 07125014 07234019 07214012 0731011 | 07234 011 | 0.7184 25

*Mirage cannot directly generate graphs with the required ratio. Thus, we search the parameter space and aligned the generated graph
to match DosCond’s disk usage as substitution (see Appendix B.1).

We also calculate the homophily ratio of condensed datasets. Since the condensed datasets have
weighted edges, we first sparsify the graph by removing all edges with weights less than 0.05,
then calculate the homophily ratio by adjusting the fraction to a weighted fraction, which can be
represented as:

_ Lgwee Wity = yr)

Z(j,k)eé‘ Wik

H(G) L i€V, (A.2)

where w;y, is the weight of the edge between nodes j and k.

B.2.2 Additional Results

The results of homophily ratios of condensed datasets are shown in Table B4. It appears that
condensed datasets often struggle to preserve the homophily properties of the original datasets. For
instance, in the case of the heterophilous dataset Flickr, an increase in the homophily rate is observed
under most methods and ratios.

Table B4: Homophily ratio comparison of different condensed datasets

pvhole - patio() GCDM DM DosCond GCond SGDD

130% 076, 0881 020 0641 019

Cora 081 260% 011] 074 016 055 0.19]
520% 1007 021, 015 0621 015]

090% 016 0757 0.9 0571 0.14]

Citeseer 074 180% 008] 030, 020 036, 019
360% 1001 034] 015 022 015]

0.05% 0281 0291 025 0281 0321

Flickr 024 050% 0291 022] 008 0281 03071
100% 0361 0.8] 006 0287 0261

https://doi.org/10.52202/079017-1197 37919

We visualize the condensed datasets using force-directed graph visualization, as shown in Figure B.1,
Figure B.2, and Figure B.3. Since SFGC [47] and GEOM [45] synthesize edge-free datasets, we
do not visualize the datasets they condensed. As shown in the visualization, graphs condensed
by different methods exhibit distinct structural characteristics. For example, distribution matching
methods often result in less pronounced community structures compared to other methods.

We also visualize the node degree distribution of the original graph and the condesed graphs in
Figure B.4. Note that the graphs condensed by GCDM [20] and DM [24] are dense and each edge has
an extremely small weight under most situations, the degree of each node is also small. We observe
that the degree distributions of most condensed datasets deviate significantly from the original graph.
Among them, SGDD [42] demonstrates a relatively similar degree distribution to that of the original
graph.

S

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.1: Visualization of the Condensed Citeseer (1.80%) Dataset. Only the top 20% of edges
ranked by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.2: Visualization of the Condensed Cora (2.60%) Dataset. Only the top 20% of edges ranked
by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.3: Visualization of the Condensed Flickr (0.50%) Dataset. Only the top 1% of edges ranked
by weight are visualized.

B.3 Settings and Additional Results of Transferability in Different Tasks (RQ3)
B.3.1 Link Prediction

For the link prediction task, we utilize a graph autoencoder (GAE)[17] based on Graph Convolutional
Networks (GCN[16]). The GAE consists of a two-layer GCN encoder that creates node embeddings.
During training, we enhance the dataset by randomly adding negative links and use a decoder to
perform binary classification on edges. During evaluation, we test the model using the test set of the

37920 https://doi.org/10.52202/079017-1197

21 21 21

= .. = .. (=] ..

g Original 12 Original 12 Original

jon jon o

=1 2 2

=07% 20 40 =07% 20 40 = 0% 20 40
Degree Degree Degree

> > >

g 1 5 1 g 1

g GCDM g GCDM g GCDM

jon jon o

=1 2 2

=07 20 40 =07% 20 40 = 0% 20 40
Degree Degree Degree

> > >

g 1 5 1 g 1

5 DM S DM S DM

jon jon o

=1 2 2

=07% 20 40 =07% 20 40 = 0% 20 40
Degree Degree Degree

> > >

g 1 5 1 g 1

2 DosCond g DosCond g DosCond

jon jon o

=1 2 2

=07% 20 40 =07% 20 40 = 0% 20 40
Degree Degree Degree

> > >

g 1 5 1 g 1

8 GCond g GCond g GCond

jon jon o

=1 2 2

=07% 20 40 =07% 20 40 = 0% 20 40
Degree Degree Degree

> > >

g 1 5 1 g 1

g SGDD g SGDD g SGDD

jon jon o

=1 2 2

=079 20 40 =079 20 40 = 0% 20 40
Degree Degree Degree

Figure B.4: Degree distribution in the condensed graphs for Citeseer (1.80%), Cora (2.60%), and
Flickr (0.05%). The first, second, and third columns correspond to Citeseer, Cora, and Flickr,
respectively.

original graph. Since trajectory matching methods do not generate any edges, we do not use them
for link prediction tasks. The results of condensed datasets on the link prediction task are shown in
Table B5. We observe that most condensed datasets underperform in link prediction tasks, especially
on ogbn-arxiv and Flickr. Most methods’ condensed datasets consistently underperform compared to
traditional core-set methods, indicating room for improvement.

B.3.2 Node Clustering

For the node clustering tasks on condensed datasets, we utilize DAEGC [33] to train on synthetic
datasets condensed using the node classification task. We then test the trained model on the original
large-scale datasets and include the results of other methods on the original graph for comprehensive
comparison. Due to the performance degradation of GAT with large neighborhood sizes, we use
GCN as the encoder.Performance metrics include Accuracy (Acc.), Normalized Mutual Information
(NMI), F-score, and Adjusted Rand Index (ARI).

To fully leverage the condensed datasets, we include the results of node clustering with pertaining. In
this experiment, the GCN encoder is first trained on the synthetic datasets with a node classification
task, which incorporates the synthetic labels’ information. Using the pre-trained GCN as an encoder,
we then perform node clustering on the synthetic datasets and the original graph. Results of node
clustering tasks, both without and with pertaining are shown in Table B6 and Table B7 respectively.

https://doi.org/10.52202/079017-1197 37921

Table B5: Link Prediction Accuracy (%) of different condensed datasets. The best results are shown
in bold.

Dataset R2H® Random Herding K-Center GCDM DM DosCond GCond SGDD ' pole
(r) Dataset
090% 0.2 0.52 0.55 053 053 050 065 0.69
Citeseer 180% 052 0.52 0.54 051 052 051 051 067 082
360% 054 0.53 0.53 053 053 053 053 061
130% 0.8 0.54 0.58 072 071 067 061 051
Cora 2.60% 0.55 0.55 0.56 069 067 058 077 062 078
520% 057 0.56 0.58 070 071 059 065 056
0.05% 076 0.68 0.67 066 068 0.63 060 070
ogbn-arxiv 020% 072 0.72 0.73 072 072 0.69 071 051 075
050% 0.74 0.73 0.74 071 073 072 072 070
005% 055 0.54 0.53 060 053 052 054 05
Flickr 020% 063 0.63 0.63 063 051 053 057 070 075
050% 0.70 0.68 0.70 056 065 062 067 06l

We observe that most condensed datasets perform worse in the node clustering task compared to the
original dataset. However, when additional information from the pretraining of the node classification
task on condensed dataset is utilized, the results of node clustering significantly improve. Notably,
some datasets in Table B6 exhibit identical results with the Adjusted Rand Index (ARI) being O or
even negative. This occurs because the clustering results do not match the number of classes in
the labels, requiring manual splitting of clusters in such scenarios. An ARI of 0 indicates that the
clustering result is as good as random, while a negative ARI suggests it is worse than random.

B.3.3 Anomaly Detection

For the anomaly detection tasks, we generate two types of anomalies, Contextual Anomalies and
Structural Anomalies, following the method described in [3]. We set the anomaly rate to 0.05; if the
condensed dataset is too small, we inject one contextual anomaly and two structural anomalies.

Contextual Anomalies: Each outlier is generated by randomly selecting a node and substituting its
attributes with those from another node with the maximum Euclidean distance in attribute space.

Structural Anomalies: Outliers are generated by randomly selecting a small group of nodes and
making them fully connected, forming a clique. The nodes in this clique are then regarded as structural
outliers. This process is repeated iteratively until a predefined number of cliques are generated.

We conduct anomaly detection by training a DOMINANT model [3], which features a shared graph
convolutional encoder, a structure reconstruction decoder, and an attribute reconstruction decoder.
Initially, we inject predefined anomalies into the test set of the original graph and use it for evaluation
across different condensed datasets derived from this graph. The model is then trained on these
condensed datasets, which were injected with specific types of anomalies before training. The
DOMINANT model measures reconstruction errors as anomaly scores for both the graph structure
and node attributes, combining these scores to detect anomalies. The results are evaluated using the
ROC-AUC metric, as shown in Table B8 and B9.

B.4 Settings and Additional Results of Transferability across Backbone Model Architectures
(RQ4)

B.4.1 Experimental Settings

For transferability evaluation, we use different models as backbones to test the condensation methods.
For distribution matching methods, two backbone models with shared parameters are used to generate
embeddings that are matched. For trajectory matching methods, two backbone models are used
to generate expert trajectories and student trajectories, respectively, to match the corresponding
parameters. For gradient matching methods, two backbone models with shared parameters are
used to generate gradients for real and synthetic data. Models are selected using grid-searched
hyperparameters. The details of the backbone architecture are as follows:

37922 https://doi.org/10.52202/079017-1197

Table B6: Node Clustering without Pretraining Results on Cora and Citeseer with varying
condensation ratios (7). The best results are highlighted in bold, the runner-ups are underlined, and
the best results of condensed datasets are shaded in gray .

Citeseer Cora
Methods Ratio () ‘Acc. NMI ARl F1 | Ratiol) Acc. NMI ARI F1
K-means 544 312 285 413 | 500 317 376 239
DAEGC[33] Tl 672 397 410 36| M 704 528 682 496
090% 406 191 175 360 | 130% 366 135 9.0 343
Random 180% 383 148 136 345| 260% 335 139 7.1 334
3.60% 418 181 169 394 | 520% 302 04 00 68
090% 419 169 153 400 | 1.30% 374 182 117 350
Herding 180% 449 187 160 4Ll | 260% 366 164 119 340
3.60% 581 278 292 523 | 520% 267 137 29 206
090% 379 134 111 352 | 1.30% 343 135 7.8 324
K-Center 180% 500 235 229 465 | 260% 425 223 150 423
3.60% 319 140 102 310 | 520% 302 04 00 68
090% 414 169 162 386 | 1.30% 302 04 00 68
GCDM 180% 441 181 181 388 | 2:60% 302 04 00 68
3.60% 228 18 12 209 | 520% 302 04 00 68
090% 235 21 L1 177 130% 302 04 00 638
DM 180% 453 191 177 429 | 260% 292 20 00 95
3.60% 259 45 35 200 | 520% 302 04 00 68
090% 286 102 63 251 1.30% 302 04 00 68
DosCond 180% 571 314 262 495 | 260% 302 04 00 68
3.60% 443 206 170 386 | 520% 296 162 7.7 234
090% 618 340 347 559 | 1.30% 466 367 273 412
GCond 180% 39.6 330 326 503 | 260% 499 393 279 443
3.60% 578 320 302 548 | 520% 446 409 251 373
090% 565 273 268 506 | 1.30% 302 04 00 68
SGDD 1.80% 454 240 200 439 | 2:60% 302 04 00 68
3.60% 425 236 208 382 | 520% 332 179 88 255
090% 467 199 188 434 | 130% 421 235 177 392
SFGC 180% 568 274 27.6 528 | 2.60% 544 318 264 502
3.60% 477 190 169 453 | 520% 300 04 -0.1 638
090% 414 169 162 386 | 1.30% 407 169 116 373
GEOM 180% 441 181 181 388 | 260% 308 129 93 292
360% 228 18 12 209 | 520% 356 160 115 336

* MLP: MLP is a simple neural network consisting of fully connected layers. The MLP we use
is structured similarly to a GCN but without the adjacency matrix input, effectively functioning
as a standard multi-layer perceptron (MLP). The MLP we adopted consists of 2 layers with 256
hidden units in each layer.

* GCN [16]: GCN is the most common architecture for evaluating condensed datasets in main-
stream GC methods. GCN defines a localized, first-order approximation of spectral graph
convolutions, effectively aggregating and combining features from a node’s local neighborhood,
leveraging the graph’s adjacency matrix to update node representations through multiple layers.
We adhere to the setting in previous work [15] and use 2 graph convolutional layers for node
classification, each followed by ReLu activation and batch normalization depending on the config-
uration. For graph classification, we use a 3-layer GCN with a sum pooling function. The hidden
unit size is set to 256.

* SGC [37]: SGC is the standardized model used for condensation in previous works. It can be
regarded as a simplified version of GCN, which ignores the nonlinear activation function but still
keeps two Graph Convolution layers, thereby preserving similar graph filtering behaviors. In the
experiments, we use 2-layer SGC with no bias.

https://doi.org/10.52202/079017-1197 37923

Table B7: Node Clustering with Pretraining Results on Cora and Citeseer with varying condensa-
tion ratios (). The best results are highlighted in bold and the runner-ups are underlined.

Citeseer | Cora
Methods Ratio (") Acc. NMI ARI F1 | Ratio(") pce. NMI ARI F1
090% 273 55 47 246 | 130% 417 158 135 373
Random 1.80% 327 97 78 314| 260% 365 146 91 354
360% 446 160 141 430 | 520% 444 235 149 457
090% 367 128 111 344 | 130% 407 183 129 400
Herding 1.80% 368 131 102 362 | 260% 361 146 87 349
360% 394 169 141 381 | 520% 350 166 109 320
090% 337 97 83 295| 130% 418 193 145 392
K-Center 1.80% 37.6 156 139 349 | 2:60% 385 208 148 383
360% 417 171 143 405 | 520% 385 174 109 363
090% 311 96 66 273 | 130% 213 37 17 201
GCDM 1.80% 331 119 111 304 | 260% 270 109 57 267
360% 397 180 152 344 | 520% 300 124 70 296
090% 365 157 129 300 | 130% 273 93 45 257
DM 180% 371 106 86 314 260% 208 33 09 190
360% 292 60 40 236 | 520% 235 48 1.6 163
090% 627 359 351 60.6| 130% 602 425 294 612
DosCond 1.80% 452 179 154 408 | 260% 445 301 166 465
360% 586 296 285 558 | 520% 254 98 50 250
090% 440 225 187 403 | 130% 674 451 404 658
GCond 180% 585 309 29.6 549 | 2:60% 637 445 362 618
360% 520 268 225 466 | 520% 609 47.1 37.1 56.0
090% 467 235 191 423 | 130% 651 446 371 646
SGDD 1.80% 554 280 258 509 | 260% 357 192 117 348
360% 405 183 143 348 | 520% 748 519 531 728
090% 342 98 84 322 130% 412 212 139 402
SFGC 1.80% 471 217 206 435 260% 387 207 135 362
360% 485 233 215 448 | 520% 373 211 144 341
090% 327 105 86 317 130% 391 201 114 400
GEOM 180% 482 236 227 452 | 260% 322 145 89 294
360% 542 257 249 521 | 520% 381 220 127 347

Table B8: Structural Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.

Dataset R(’:,‘)"’ Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM
090% 044 0.38 0.44 076 076 0.73 077 067 062 0.59
Citeseer 1.80% 0.46 0.45 0.46 0.78 0.78 0.66 0.75 0.68 0.60 0.56
3.60% 044 0.40 0.44 076 076 0.0 074 075 059 0.57
130% 0.56 0.59 0.62 080 080 079 081 075 054 0.51
Cora 2.60% 0.50 0.65 0.67 0.80 0.80 0.82 0.79 0.81 0.53 0.53
520% 0.65 0.55 0.67 082 082 082 0.81 071 0.54 0.55

* Cheby [2]: Cheby utilizes Chebyshev polynomials to approximate the graph convolution op-
erations, which retains the essential graph filtering properties of GCN while reducing the com-
putational complexity. We use a 2-layer Cheby with 256 hidden units and ReL.U activation
function.

* GraphSAGE [12]: GraphSAGE is a spatial-based graph neural network that directly samples
and aggregates features from a node’s local neighborhood. In the experiments, We use a two-layer
architecture and a hidden dimension size of 256 while using a mean aggregator.

* APPNP [18]: APPNP leverages personalized PageRank to propagate information throughout
the graph. This method decouples the neural network used for prediction from the propagation
mechanism, enabling the use of personalized PageRank for message passing. In the experiments,

37924 https://doi.org/10.52202/079017-1197

Table B9: Contextual Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.
Ratio

Dataset) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM
0.90% 0.62 0.60 0.62 0.65 0.65 0.55 0.70 0.74 0.62 0.59
Citeseer 1.80% 0.60 0.54 0.60 0.64 0.65 0.58 0.68 0.67 0.60 0.56
3.60% 0.57 0.56 0.57 0.68 0.68 0.59 0.68 0.52 0.59 0.57
1.30% 0.52 0.48 0.53 052 052 0.45 0.54 0.41 0.54 0.51
Cora 2.60% 0.50 0.45 0.54 0.54 0.54 0.56 0.55 0.57 0.53 0.53
5.20% 0.56 0.58 0.59 055 055 0.55 0.57 0.62 0.54 0.55

we use a 2-layer model implemented with ReLU activation and sparse dropout to condense and
evaluate.

* GIN [40]: GIN aggregates features by linearly combining the node features with those of their
neighbors, achieving classification power as strong as the Weisfeiler-Lehman graph isomorphism
test. We specifically applied a 3-layer GIN with a mean pooling function to compress and evaluate
graph classification datasets. For the datasets DD and NCII, we use negative log-likelihood loss
function for training and softmax activation in the final layer. For ogbg-molhiv, ogbg-molbbbp
and ogbg-molbace, we use binary cross-entropy with logits and sigmoid activation in the final
layer.

* Graph Transformer [31]: The Graph Transformer leverages the self-attention mechanism of the
Transformer to capture long-range dependencies between nodes in a graph. It employs multi-head
self-attention to dynamically weigh the importance of different nodes, effectively modeling
complex relationships within the graph. We use a two-layer model with layer normalization and
gated residual connections, following the settings outlined in [31].

B.4.2 Additional Results

Table B10 shows the node classification accuracy of datasets condensed by traditional core-set
methods, which is backbone-free, evaluated across different backbone architectures on Cora.

Table B10: Node Classification Accuracy (%) of core-set datasets across different backbone
architectures on Cora (2.6%).

Methods SGC GCN GraphSage APPNP Cheby GTrans. MLP

Full Dataset 80.8 80.8 80.8 80.3 78.8 69.6 81.0
Herding 748 74.0 74.1 73.3 69.6 65.4 74.1
K-Center 725 724 71.8 71.5 63.0 64.3 72.2
Random 717 724 71.6 71.3 65.3 62.7 71.6

B.5 Settings and Additional Results of Initialization Impacts (RQS5)
B.5.1 Experimental Settings

The details of evaluated initialization mechanism are as follows:

* Random Sample. We randomly select features from nodes in the original graph that correspond
to the same label, using these features to initialize the synthetic nodes.

* Random Noise. Consistent with prevalent dataset condensation methods, we initialize node
features by sampling from a Gaussian distribution.

* Center. This method involves extracting features from nodes within the same label, applying the
K-Means clustering algorithm to these features while treating the graph as a singular cluster and
utilizing the centroid of this cluster as the initialization point for all synthetic nodes bearing the
same label.

* K-Center. Similar to the Center initialization method, but employ the K-Means Clustering
method on original nodes by dividing each class of the original graph nodes into n clusters,

https://doi.org/10.52202/079017-1197 37925

where n is the number of synthetic nodes per class. We select the center of these clusters as the
initialization of synthetic nodes in this class.

* K-Means. Similar to the K-Center initialization method, but instead of using the centroids of
clusters to initialize the synthetic dataset, randomly select one node from each cluster to serve as
the initial state for the synthetic node.

B.5.2 Additional Results

The performance of different initialization mechanism on Cora (2.6%) and Cora (0.26%) are shown
in Table B11 and Table B12, respectively. It is evident that distribution matching methods are highly
sensitive to the choice of initialization, especially when the dataset is condensed to a smaller scale.
Additionally, trajectory matching methods perform poorly with random noise initialization and often
fail to converge.

Table B11: Performance comparison of differ- Table B12: Performance comparison of differ-
ent initialization on various methods for Cora ent initialization on various methods for Cora
(2.60%).The best results are shown in bold . (0.26%). The best results are shown in 'bold .

Methods Random Random Center K-Center K-Means Methods Random Random

Center K-Center K-Means

Noise Sample Noise Sample

GCDM 34.5 73.3 77.4 78.7 75.9 GCDM 32.3 37.8 78.7 78.7 343
DM 345 73.7 71.7 78.1 75.9 DM 322 384 779 77.9 342
DosCond 78.8 81.9 81.8 82.5 81.8 DosCond 78.7 824 80.5 82.0 81.9
GCond 74.8 75.1 76.3 76.2 75.1 GCond 80.2 81.6 80.1 81.2 80.7
SGDD 81.7 81.8 82.6 82.7 82.5 SGDD 822 822 82.7 82.7 81.5
SFGC 525 80.7 79.7 81.5 81.8 SFGC 79.7 79.7 79.8 79.8 72.0
GEOM - 77.9 48.3 78.8 78.9 GEOM - 49.6 513 513 65.0

B.6 Settings and Additional Results of Efficiency and Scalability (RQ6)
B.6.1 Experimental Settings

For a fair comparison, all the experiments are conducted on a single NVIDIA A100 GPU. Then we
report the overall condensation time (min) when achieving the best validation performance, the peak
CPU memory usage (MB) and the peak GPU memory usage (MB).

B.6.2 Additional Results

The detailed time and space consumption of the node-level GC methods on ogbn-arxiv (0.50%) and
graph-level GC methods on ogbg-molhiv (1 Graph/Cls) are shown in Table B13 and Table B14
respectively. For node-level methods, although trajectory matching methods (SFGC [47], GEOM [45])
may consume less time and memory due to their offline matching mechanism, the expert trajectories
generated before matching can occupy up to 764 GB of space as shown in Table B 15, significantly
impacting storage requirements. Among all the graph-level GC methods, Mirage [11] stands out by
not relying on any GPU resources for calculation and can condense data extremely quickly, taking
only 1% of the time required by other methods.

Table B13: Time and memory consumption of different methods on ogbn-arxiv (0.50%).
Consumption GCDM DM DosCond GCond SGDD SFGC GEOM

Time (min) 212.90 57.70 11738 266.57 226.62 245.65 148.37
Acc. (%) 58.09 58.09 60.73 61.28 61.51 67.13 67.29

CPU Memory (MB) 2720.88 2708.70 5372.60 5270.70 5426.30 3075.30 3335.10
GPU Memory (MB) 2719.74 2552.63 3850.24 3850.24 8326.35 4050.12 5308.42

C Reproducibility and Limitations

Accessibility and license. All the datasets, algorithm implementations, and experimental settings
are publicly available in our open project (https://github.com/RingBDStack/GC-Bench). Our

37926 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

Table B14: Time and memory consumption of Table B15: Expert trajectory size (GB) for

different methods on ogbg-molhiv (1 Graph/Cls). trajectory matching methods.
Consumption DosCond KiDD Mirage Citeseer Cora ogbn-arxiv
Time (min) 218.11 202.38 291 129 152 15
Acc. (%) 67.41 66.44 71.09 3 .
CPU Memory (MB) 266629 3660.79 752.22 Flickr _ Reddit ACM DBLP
GPU Memory (MB) 1005.98 6776.42 0.00 21 42 312 764

package (codes and datasets) is licensed under the MIT License. This license permits users to freely
use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the software, provided
that the original copyright notice and permission notice are included in all copies or or substantial
portions of the software. The MIT License is widely accepted for its simplicity and permissive terms,
ensuring ease of use and contribution to the codes and datasets. We bear all responsibility in case of
violation of rights, efc, and confirmation of the data license.

Datasets. Cora, Citeseer, Flickr, Reddit and DBLP are publicly available online’® with the MIT
license. ogbn-arxiv, ogbg-molbace, ogbg-molbbbp and ogbg-molhiv are released by OGB [13]
with the MIT license. ACM [46] is the subset hosted in [35] with the MIT license. NCII [32] and
DD [4] are available in TU Datasets [27] with the MIT license. All the datasets are consented to by
the authors for academic usage. All the datasets do not contain personally identifiable information or
offensive content.

Limitations. GC-Bench has some limitations that we aim to address in future work. Our current
benchmark is limited to a specific set of graph types and graph tasks and might not reflect the full
potential and versatility of GC methods. We hope to implement more GC algorithms for various tasks
(e.g. subgraph classification, community detection) on more types of graphs (e.g., dynamic graph,
directed graph). Besides, due to resource constraints and the availability of implementations, we
could not include some of the latest GC algorithms in our benchmark. We will continuously update
our repository to keep track of the latest advances in the field. We are also open to any suggestions
and contributions that will improve the usability and effectiveness of our benchmark, ensuring it
remains a valuable resource for the IGL research community.

*https://github.com/pyg-team/pytorch_geometric

https://doi.org/10.52202/079017-1197 37927

https://github.com/pyg-team/pytorch_geometric

