
GC-Bench: An Open and Unified Benchmark for
Graph Condensation

Qingyun Sun1∗, Ziying Chen1∗, Beining Yang2, Cheng Ji1, Xingcheng Fu3

Sheng Zhou4, Hao Peng1, Jianxin Li1, Philip S. Yu5

1Beihang University, 2University of Edinburgh, 3Guangxi Normal University
4Zhejiang University, 5University of Illinois, Chicago

{sunqy,chanztuying}@buaa.edu.cn

Abstract

Graph condensation (GC) has recently garnered considerable attention due to its
ability to reduce large-scale graph datasets while preserving their essential prop-
erties. The core concept of GC is to create a smaller, more manageable graph
that retains the characteristics of the original graph. Despite the proliferation of
graph condensation methods developed in recent years, there is no comprehensive
evaluation and in-depth analysis, which creates a great obstacle to understand-
ing the progress in this field. To fill this gap, we develop a comprehensive Graph
Condensation Benchmark (GC-Bench) to analyze the performance of graph conden-
sation in different scenarios systematically. Specifically, GC-Bench systematically
investigates the characteristics of graph condensation in terms of the following
dimensions: effectiveness, transferability, and complexity. We comprehensively
evaluate 12 state-of-the-art graph condensation algorithms in node-level and graph-
level tasks and analyze their performance in 12 diverse graph datasets. Further,
we have developed an easy-to-use library for training and evaluating different GC
methods to facilitate reproducible research. The GC-Bench library is available at
https://github.com/RingBDStack/GC-Bench.

1 Introduction

Data are the driving force behind advancements in machine learning, especially with the advancement
of large models. However, the rapidly increasing size of datasets presents challenges in management,
storage, and transmission. It also makes model training more costly and time-consuming. This
issue is particularly pronounced in the graph domain, where larger datasets mean more large-scale
structures, making it challenging to train models in environments with limited resources. Compared
to graph coarsening, which groups nodes into super nodes, and sparsification, which selects a subset
of edges, graph condensation [39, 10] synthesizes a smaller, informative graph that retains enough
data for models to perform comparably to using the full dataset.

Graph condensation. Graph condensation aims to learn a new small but informative graph. A general
framework of GC are shown in Figure 1. Given a graph dataset G, the goal of Graph condensation is
to achieve comparable results on synthetic condensed graph dataset G′ as training on the original
G. For Node-level condensation, the original dataset G = {G} = {X ∈ RN×d,A ∈ RN×N}
and the condensed dataset G′ = {G′} = {X ∈ RN ′×d′

,A ∈ RN ′×N ′}, where N ′ ≪ N . For
Graph-level condensation, the original dataset G = {G1,G2, · · · ,Gn} and the condensed dataset
G′ = {G′

1,G′
2, · · · ,G′

n′}, where n′ ≪ n. The condensation ratio r can be calculated by condensed
dataset size / whole dataset size.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

37900 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

(a) Gradient Matching (c) Distribution Matching (b) Trajectory Matching

(d) Kernel Ridge Regression (KRR) (e) Computation Tree Compression (CTC)

Backbone

Backbone

Distribution
Matching

Kernel Ridge Regression

Backbone

Backbone

ℒ����

ℒ����

Gradient
Matching�

Backbone

Backbone

ℒ����

ℒ����

Trajectory
Matching ��

��−1

��’(�) =
��,�’(��’,�’ + ��) −1��’

Computation Tree Frequent Tree

...
Original Dataset Condensed Dataset

Figure 1: The GC methods can be broadly divided into two categories: The first category depends
on the backbone model, refining the condensed graph by aligning it with the backbone’s gradients
(a), trajectories (b), and output distributions (c) trained on both original and condensed graphs. The
second category, independent of the backbone, optimizes the graph by matching its distribution with
that of the original graph data (d) or by identifying frequently co-occurring computation trees (e).

Research Gap. Although several studies aim to comprehensively discuss existing GC meth-
ods [39, 10], they either overlook graph-specific properties or lack systematic experimentation.
This discrepancy highlights a significant gap in the literature, partly due to limitations in datasets and
evaluation dimensions. A concurrent work [23] analyzed the performance of node-level GC methods
but it included only a subset of representative methods, lacking an analysis of graph-level methods,
a deep structural analysis, and an assessment of the generalizability of the methods. To bridge this
gap, we introduce GC-Bench, an open and unified benchmark to systematically evaluate existing
graph condensation methods focusing on the following aspects: ❶ Effectiveness: the progress in
GC, and the impact of structure and initialization on GC; ❷ Transferability: the transferability of
GC methods across backbone architectures and downstream tasks; ❸ Efficiency: the time and space
efficiency of GC methods. The contributions of GC-Bench are as follows:

• Comprehensive benchmark. GC-Bench systematically integrated 12 representative and compet-
itive GC methods on both node-level and graph-level by unified condensation and evaluation,
giving multi-dimensional analysis in terms of effectiveness, transferability, and efficiency.

• Key findings. (1) Graph-level GC methods is still far from achieving the goal of lossless com-
pression. A large condensation ratio does not necessarily lead to better performance with current
methods. (2) GC methods can retain semantic information from the graph structure in a condensed
graph, but there is still significant improvement room in preserving complex structural properties.
(3) All condensed datasets struggle to perform well outside the specific tasks they were condensed,
leading to limited applicability. (4) Backbone-dependent GC methods embed model-specific
information in the condensed datasets, and popular graph transformers are not compatible with
current GC methods as backbones. (5) The initialization mechanism affects both the performance
and convergence according to the characteristics of the dataset and the GC method. (6) Most GC
methods coupled with backbones and whole dataset training have poor time and space efficiency,
contradicting the initial purpose of using GC for efficient training.

• Open-sourced benchmark library and future directions. GC-Bench is open-sourced and easy to
extend to new methods and datasets, which can help identify directions for further exploration
and facilitate future endeavors.

2 Overview of GC-Bench

We introduce Graph Condensation Benchmark (GC-Bench) in terms of datasets (▷ Section 2.1),
algorithms (▷ Section 2.2), research questions that guide our benchmark design (▷ Section 2.3) and
the comparison with related benchmarks (▷ Section 2.4). The overview of GC-Bench is shown in
Table 1. More details can be found in the Appendix provided in the Supplementary Material.

2

37901https://doi.org/10.52202/079017-1197

Table 1: An overview of GC-Bench
Methods

Traditional core-set methods Random, Herding [36], K-Center [30]
Gradient matching GCond [15], DosCond [14], SGDD [42]
Trajectory matching SFGC[47], GEOM [45]
Distribution matching GCDM [20], DM [24, 22]
Kernel Ridge Regression KiDD [41]
Computation Tree Compression Mirage [11]

Datasets
Homogeneous datasets Cora [16], Citeseer [16], ogbn-arxiv [13], Flickr [43], Reddit [12]
Heterogeneous datasets ACM [46], DBLP [7]
Graph-level datasets NCI1 [32], DD [4], ogbg-molbace [13], ogbg-molbbbp [13], ogbg-molhiv [13]

Downstream Tasks
Node-level task Node classification, Link prediction, Anomaly detection
Graph-level task Graph classification

Evaluations

Effectiveness Performance under different condensation ratios, Impact of structural properties,
Impact of initialization mechanism

Transferability Different downstream tasks, Different backbone model architectures
Efficiency Time and memory consumption

2.1 Benchmark Datasets

Regarding evaluation datasets, we adapt the 12 widely-used datasets in the current literature. The node
level dataset include 5 homogeneous dataset (Cora [16], Citeseer [16], ogbn-arxiv [13], Flickr [43],
Reddit [12]) and 2 heterogeneous datasets (ACM [46] and DBLP [7]). The graph-level dataset include
NCI1 [32], DD [4], ogbg-molbace [13], ogbg-molbbbp [13], ogbg-molhiv [13]. We leverage the
public train, valid, and test split of these datasets. We report the dataset statistics in Appendix A.1.

2.2 Benchmark Algorithms

We selected 12 representative and competitive GC methods across 6 categories for evaluation.
The main ideas of these methods are shown in Figure 1. The evaluated methods include: (1)
traditional core-set methods including Random, Herding [36], K-Center [30], (2) gradient matching
methods including DosCond [14], GCond [15] and SGDD [42], (3) trajectory matching methods
including SFGC [47] and GEOM [45], (4) distribution matching methods including GCDM [20] and
DM [22, 24], (5) Kernel Ridge Regression (KRR) based method KiDD [41], and (6) Computation
Tree Compression (CTC) method Mirage [11]. The details of evaluated methods are in Appendix A.2.

2.3 Research Questions

We systematically design the GC-Bench to comprehensively evaluate the existing GC algorithms and
inspire future research. In particular, we aim to investigate the following research questiones.

RQ1: How much progress has been made by existing GC methods?

Motivation and Experiment Design. Previous GC methods always adopt different experimental
settings, making it difficult to compare them fairly. Given the unified settings of GC-Bench, the first
question is to revisit the progress made by existing GC methods and provide potential enhancement
directions. A good GC method is expected to perform well consistently under different datasets and
different condensation ratios. To answer this question, we evaluate GC methods’ performance on
7 node-level datasets and 5 graph-level datasets with a broader range of condensation ratio r than
previous works. The results are shown in Sec. 3.1 and Appendix B.1.

RQ2: How do the potential flaws of the structure affect the graph condensation performance?

Motivation and Experiment Design. Most of the current GC methods borrow the idea of image
condensation and overlook the specific non-IID properties of irregular graph data. The impact of
structural properties in GC is still not thoroughly explored. On one hand, the structure itself possesses
various characteristics such as homogeneity and heterogeneity, as well as homophily and heterophily.
It remains unclear whether these properties should be preserved in GC and how to preserve them.
On the other hand, some structure-free GC methods [47] suggest that the condensed dataset may not

3

37902 https://doi.org/10.52202/079017-1197

need to explicitly preserve graph structure, and preserving structural information in the generated
samples is sufficient. To answer this question, we evaluated GC methods on both homogeneous
and heterogeneous as well as homophilic and heterophilic datasets to further explore the impact of
structural properties. The results are shown in Sec. 3.2 and Appendix B.2.

RQ3: Can the condensed graphs be transferred to different types of tasks?

Motivation and Experiment Design. Most existing GC methods are primarily designed for node
classification and graph classification tasks. However, there are numerous downstream tasks on graph
data, such as link prediction and anomaly detection, which focus on different aspects of graph data.
The transferability of GC across various graph tasks has yet to be thoroughly explored. To answer this
question, we perform condensation guided by node classification and use the condensed dataset to
train models for 3 classic downstream tasks: link prediction, node clustering, and anomaly detection.
The evaluation results are shown in Sec. 3.3 and Appendix B.3.

RQ4: How does the backbone model architecture used for condensation affect the performance?

Motivation and Experiment Design. The backbone model plays an important role in extracting
the critical features of the original dataset and guiding the optimization process of generating the
condensed dataset. Most GC methods choose a specific graph neural network (GNN) as the backbone.
The impact of the backbone model architecture and its transferability is under-explored. A high-
quality condensed dataset is expected to be used for training models with not only the specific
one used for condensation but also various architectures. To answer this question, we evaluate the
transferability performance for 5 representative GNN models (SGC [37], GCN [16], GraphSAGE [12],
APPNP [18], and ChebyNet [2]) and 2 non-GNN models (the popular Graph Transformer [31]) and
simple MLP). We also investigated the performance variation of different backbones with the number
of training steps. The evaluation results are shown in Sec. 3.4 and Appendix B.4.

RQ5: How does the initialization mechanism affect the performance of graph condensation?

Motivation and Experiment Design. The initialization mechanism of the condensed dataset is
crucial for convergence and performance in image dataset condensation but remains unexplored for
irregular graph data. To answer this question, we adopt 5 distinct initialization strategies (Random
Noise, Random Sample, Center, K-Center, and K-Means) to evaluate their impact on condensation
performance and converge speed. The results are shown in Sec. 3.5 and Appendix B.5.

RQ6: How efficient are these GC methods in terms of time and space?

Motivation and Experiment Design. As the GC methods aim to achieve comparable performance
on the condensed dataset and the original dataset, they always rely on the training process on the
original datasets. The efficiency and scalability of GC methods are overlooked by existing methods,
which is crucial in practice since the original intent of GC is to reduce computation and storage costs
for large graphs. To answer this question, we evaluate the time and memory consumption of these
GC methods. Specifically, we record the overall time when achieving the best result, the peak CPU
memory, and the peak GPU memory. The results are shown in Sec. 3.6 and Appendix B.6.

2.4 Discussion on Existing Benchmarks

To the best of our knowledge, GC-Bench is the first comprehensive benchmark for both node-level
and graph-level graph condensation. There are a few image dataset condensation benchmark works
for image classification task [1] and condensation adversarial robustness [38]. A recent work GCon-
denser [23] evaluates some node-level GC methods for node classification on homogeneous graphs
with limited evaluation dimensions in terms of performance and time efficiency. Our GC-Bench an-
alyzes more GC methods on a wider variety of datasets (both homogeneous and heterogeneous)
and tasks (node classification, graph classification), encompassing both node-level and graph-level
methods. In addition to performance and efficiency analysis, we further explore the transferability
across different tasks (link prediction, node clustering, anomaly detection) and backbones. With GC-
Bench covering more in-depth investigation over a wider scope, we believe it will provide valuable
insights into existing works and future directions. A comprehensive comparison with GCondenser
can be found in Appendix A.5.

4

37903https://doi.org/10.52202/079017-1197

Table 2: Node classification accuracy (%) (mean±std) across datasets with varying condensation
ratios r. H denotes the homophily ratio [29]. The best results are shown in bold and the runner-ups
are shown in underlined . Red color highlights entries that exceed the whole dataset performance.

Traditional Core-set Methods Distribution Gradient Trajectory
Dataset Ratio(r) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM

Whole
Dataset

0.26% 31.6±1.2 48.6±1.4 48.6±1.4 39.0±0.4 35.6±3.9 78.7±1.3 79.8±0.7 78.6±2.7 78.8±1.2 50.1±1.2

0.52% 47.1±1.7 56.0±0.6 44.7±2.7 42.3±0.7 38.5±4.4 81.1±0.1 80.2±0.7 81.2±0.5 79.2±1.8 70.5±0.9

1.30% 62.3±1.0 69.9±0.8 62.0±1.3 63.4±0.1 63.2±0.5 81.2±0.4 80.2±2.2 81.6±0.5 79.4±0.7 78.5±1.9

2.60% 72.4±0.5 74.2±0.6 73.5±0.7 73.4±0.2 72.6±0.7 79.6±0.2 80.5±0.3 81.8±0.2 81.7±0.0 76.1±4.7

3.90% 74.6±0.6 76.0±0.6 77.4±0.3 76.4±0.5 75.3±0.1 78.9±0.1 79.8±0.4 82.1±0.8 81.5±0.5 78.3±2.0

Cora
(H=0.81)

5.20% 77.1±0.6 76.7±0.4 76.5±0.6 78.4±0.0 77.9±0.2 79.7±0.6 77.8±3.6 82.0±1.4 81.4±0.0 80.4±0.8

80.8±0.3

0.05% 45.2±1.7 54.6±2.4 50.7±2.2 61.1±0.4 60.6±0.7 50.1±1.8 84.4±2.6 83.6±1.7 87.2±2.1 73.6±1.2

0.10% 53.3±1.6 62.3±1.6 50.1±1.3 72.3±0.5 68.7±1.2 59.5±2.8 84.7±1.9 83.8±2.2 81.5±4.2 76.2±3.9

0.20% 65.1±1.2 69.4±2.1 54.2±1.9 80.8±0.6 76.7±0.1 65.8±0.4 86.3±2.4 88.3±0.5 90.4±0.9 89.9±0.6

0.50% 76.1±1.8 81.4±0.7 67.8±1.3 86.4±0.1 84.2±0.2 65.8±0.4 87.9±2.7 91.0±0.1 91.7±0.2 91.7±0.3

1.00% 84.9±0.5 85.9±0.3 74.6±0.8 OOM 78.9±0.7 78.3±1.3 87.2±1.2 85.9±0.9 91.8±0.2 OOM

Reddit
(H=0.78)

5.00% 92.3±0.1 91.9±0.1 88.4±0.3 OOM OOM OOM OOM OOM 91.9±0.7 OOM

94.0±0.2

0.18% 39.3±1.9 36.6±2.6 36.6±2.6 30.6±2.5 32.1±1.5 71.8±0.1 71.3±0.6 71.7±3.2 70.7±1.1 63.7±0.4

0.36% 44.1±2.0 41.5±2.6 38.7±3.2 36.2±2.0 43.3±1.3 73.1±0.3 70.4±1.8 73.3±3.3 70.9±1.6 69.8±0.1

0.90% 49.3±1.0 56.5±1.3 51.4±1.4 52.6±1.1 53.7±0.3 73.0±0.4 70.7±0.9 72.8±0.6 70.7±0.5 70.5±0.3

1.80% 57.4±0.7 68.4±0.8 61.4±1.2 64.7±0.6 66.4±0.2 71.6±0.6 70.2±1.4 73.6±0.6 70.4±1.2 67.5±0.6

2.70% 66.2±1.0 68.1±0.8 67.5±0.8 69.2±1.6 68.5±0.0 71.7±1.0 67.7±0.2 72.1±0.5 71.0±1.0 70.9±0.5

Citeseer
(H=0.74)

3.60% 69.2±0.3 69.1±0.7 69.3±0.7 69.3±0.4 70.4±0.4 72.4±0.3 68.4±1.6 73.3±1.2 70.6±0.1 70.7±0.1

71.7±0.0

0.05% 10.7±0.9 32.7±0.9 36.9±1.2 51.1±0.2 40.4±3.0 59.5±1.0 60.0±0.0 59.7±0.2 68.2±2.3 64.5±0.9

0.10% 36.5±1.1 41.6±1.0 40.3±0.9 55.9±1.5 47.7±2.0 60.9±0.8 59.5±1.1 56.1±3.4 69.1±0.7 64.6±1.4

0.20% 43.2±0.8 48.9±0.8 42.7±1.0 59.3±0.8 47.1±0.7 62.2±0.4 61.4±0.7 60.9±0.9 69.0±0.4 64.3±0.0

0.50% 48.3±0.4 51.4±0.4 48.3±0.5 61.0±0.1 57.7±0.2 62.1±0.3 63.0±0.9 63.2±0.2 67.1±0.0 67.2±0.0

1.00% 51.2±0.4 52.0±0.4 50.3±0.5 61.0±0.0 59.8±0.2 61.8±1.3 62.8±0.0 62.0±2.8 68.4±1.3 69.1±0.3

ogbn-arxiv
(H=0.65)

5.00% 57.2±0.2 56.1±0.2 56.5±0.4 OOM OOM OOM OOM OOM 69.7±0.1 70.6±0.5

71.5±0.0

0.05% 40.5±0.4 41.8±0.6 43.9±0.7 45.8±0.4 44.7±0.5 40.7±1.1 44.2±2.3 46.6±0.1 44.3±0.4 44.8±0.8

0.10% 42.0±0.6 41.4±0.6 41.4±0.8 47.5±0.2 45.4±0.1 43.2±0.0 44.2±1.4 46.8±0.2 44.0±1.5 45.5±0.7

0.20% 43.1±0.2 41.5±0.7 41.4±0.8 48.8±0.1 42.8±0.6 43.9±0.6 44.4±1.4 46.8±0.3 41.4±5.6 46.1±0.6

0.50% 43.1±0.3 44.4±0.3 42.6±0.7 49.1±0.3 48.6±0.3 45.0±0.3 44.7±0.6 45.5±0.9 46.5±0.1 47.1±0.1

1.00% 43.0±0.4 44.5±0.6 43.2±0.2 49.3±0.1 49.6±0.5 46.0±0.3 45.1±0.5 47.2±0.2 46.6±0.0 47.0±0.4

H
om

og
en

eo
us

Flickr
(H=0.24)

5.00% 45.2±0.3 44.7±0.4 45.5±0.2 OOM OOM OOM OOM OOM 45.7±0.6 47.1±0.3

46.8±0.2

.003% 83.9±1.7 82.5±1.6 76.3±2.4 84.8±0.3 84.8±0.3 89.3±0.6 80.6±0.8 90.3±2.3 92.2±0.2 73.4±0.5

.007% 84.7±1.0 84.5±0.8 80.9±1.6 87.1±0.2 87.1±0.2 89.8±0.0 81.9±1.6 91.2±1.9 91.6±1.2 73.4±0.5

.013% 86.8±0.9 88.6±0.6 87.1±1.2 90.4±0.0 90.4±0.0 89.9±0.1 80.4±3.4 91.9±3.4 92.0±0.4 79.3±3.0

.033% 87.7±1.4 88.3±1.0 88.6±0.7 91.6±0.2 91.6±0.2 90.9±0.1 89.0±1.2 91.2±4.8 92.2±0.2 82.8±1.0

.066% 89.1±0.6 87.9±1.1 88.8±1.0 91.6±0.2 91.6±0.2 91.4±0.2 86.6±2.1 91.9±2.0 91.8±1.0 71.1±0.6

ACM

.332% 89.3±0.9 89.4±0.6 88.7±0.9 91.3±0.2 91.3±0.2 91.0±0.5 89.3±0.6 89.4±0.4 91.8±2.3 80.9±2.6

91.7±0.4

.002% 46.6±2.6 58.9±2.7 54.7±2.6 61.6±0.7 56.6±1.1 71.6±1.8 71.5±2.2 77.8±0.2 81.9±2.2 72.3±3.1

.004% 57.0±1.4 62.9±0.9 54.9±2.9 60.4±1.1 62.0±1.5 75.4±2.6 76.2±2.1 80.9±1.4 81.7±3.5 72.3±0.5

.007% 67.5±0.8 61.3±1.6 60.9±0.4 70.7±0.3 68.3±0.6 71.7±4.4 73.6±0.7 81.1±0.6 81.2±0.4 67.3±1.0

.019% 68.0±1.1 65.7±1.2 64.5±1.1 73.6±0.2 73.5±0.4 76.6±0.6 74.6±1.1 77.9±0.3 80.8±2.1 72.0±0.9

.037% 67.6±1.5 65.0±1.1 66.6±1.5 74.6±0.1 75.2±0.1 76.9±1.8 76.4±0.8 78.5±0.6 81.9±3.2 71.6±2.3

H
et

er
og

en
eo

us

DBLP

.186% 65.7±1.0 66.3±0.8 66.0±1.0 OOM OOM OOM OOM OOM 82.1±0.3 69.9±0.9

80.1±0.9

3 Experimental Results and Analysis

3.1 Performance Comparison (RQ1)

We evaluate the GC methods across a spectrum of condensation ratios2 to identify their progress and
effective ranges. Prior studies primarily utilize three ratios of labeling rates, a selection that is far
from comprehensive. We broaden the evaluation of existing condensation methods and the node-level
and graph-level GC results are shown in Table 2 and Table 3, respectively. The experiment setting
and additional results can be found in Appendix B.1.

For node-level experiments (Table 2), we observe that: (1) GC methods can achieve lossless re-
sults [45] compared to the whole dataset in 5 out of 7 cases (highlighted in red), generally out-
performing traditional core-set methods, especially at smaller condensation ratios (e.g., Citeseer
with r=0.18%, ACM with r=0.003%, DBLP with r=0.002%). (2) Distribution matching methods
underperform compared to gradient matching and trajectory matching methods in 6 out of 7 datasets.
The gradient matching methods and the trajectory matching methods perform well in our benchmark.

From graph-level experiments on GIN (Table 3) and GCN (Section B.1), our observations are: (1)
KiDD with GIN shows significant advantages in 18 out of 25 cases, while DosCond and Mirage do
not consistently outperform traditional core-set methods, indicating room for improvement in future
work. (2) KiDD performs well when GIN is used as the model for downstream tasks but performs

2The condensation ratio is defined as r = N ′/N for node-level experiments and r = n′/n for graph-level
experiments. We use Graph/Cls to denote the number of condensed graphs per class in graph-level experiments.

5

37904 https://doi.org/10.52202/079017-1197

Table 3: Graph classification performance on GIN (mean±std) across datasets with varying con-
densation ratios r. The best results are shown in bold and the runner-ups are shown in underlined .
Red color highlights entries that exceed the whole dataset values.

Dataset Graph
/Cls Ratio(r) Traditional Core-set methods Gradient KRR CTC Whole

DatasetRandom Herding K-Center DosCond KiDD Mirage

NCI1
Acc. (%)

1 0.06% 50.90±2.10 51.90±1.60 51.90±1.60 49.20±1.10 61.40±0.50 50.80±2.20

80.0±1.8

5 0.24% 52.10±1.00 60.50±2.40 47.00±1.10 51.10±0.80 63.20±0.20 51.30±1.10

10 0.49% 55.60±1.90 61.80±1.50 49.40±1.80 50.30±1.30 64.20±0.10 51.70±1.40

20 0.97% 58.70±1.40 60.90±1.90 55.20±1.60 50.30±1.30 60.90±0.70 52.10±2.20

50 2.43% 61.10±1.20 59.00±1.50 62.70±1.50 50.30±1.30 65.40±0.60 52.40±2.70

DD
Acc. (%)

1 0.21% 49.70±11.30 58.80±6.10 58.80±6.10 46.30±8.50 71.30±1.50 74.00±0.40

70.1±2.2

5 1.06% 40.80±4.30 58.70±5.80 51.30±5.30 57.50±5.60 70.90±1.10 -
10 2.12% 63.10±5.20 64.10±5.80 53.40±3.10 46.30±8.50 71.50±0.50 -
20 4.25% 56.40±4.30 67.00±2.60 58.50±5.70 40.70±0.00 71.20±0.90 -
50 10.62% 58.90±6.30 68.40±4.00 62.30±2.50 44.00±6.70 71.80±1.00 -

ogbg-molbace
ROC-AUC

1 0.17% 0.468±.045 0.486±.035 0.486±.035 0.512±.092 0.706±.000 0.590±.004

0.763±.020

5 0.83% 0.312±.019 0.470±.042 0.553±.024 0.555±.079 0.562±.000 0.419±.010

10 1.65% 0.442±.028 0.532±.031 0.594±.019 0.536±.072 0.594±.000 0.419±.010

20 3.31% 0.510±.023 0.509±.052 0.512±.031 0.484±.080 0.640±.011 0.423±.011

50 8.26% 0.486±.020 0.625±.026 0.595±.026 0.503±.084 0.723±.011 -

ogbg-molbbbp
ROC-AUC

1 0.12% 0.510±.013 0.532±.015 0.532±.015 0.546±.026 0.616±.000 0.592±.004

0.635±.017

5 0.61% 0.522±.014 0.546±.020 0.581±.022 0.519±.041 0.607±.005 0.431±.013

10 1.23% 0.508±.018 0.578±.017 0.619±.027 0.505±.028 0.663±.000 0.465±.036

20 2.45% 0.567±.010 0.533±.009 0.546±.012 0.493±.031 0.677±.001 0.610±.022

50 6.13% 0.595±.014 0.552±.018 0.594±.016 0.509±.015 0.684±.009 0.590±.031

ogbg-molhiv
ROC-AUC

1 0.01% 0.366±.087 0.462±.072 0.462±.072 0.674±.131 0.664±.016 0.710±.009

0.701±.028

5 0.03% 0.501±.051 0.496±.044 0.519±.096 0.369±.175 0.657±.005 0.703±.012

10 0.06% 0.554±.031 0.458±.058 0.471±.054 0.457±.214 0.632±.000 0.513±.055

20 0.12% 0.621±.022 0.582±.027 0.627±.050 0.281±.007 0.648±.025 0.633±.048

50 0.30% 0.625±.062 0.600±.034 0.680±.049 0.455±.214 0.587±.038 0.588±.067

∗Mirage cannot directly generate graphs with the required ratio. Parameter search aligns generated graphs with DosCond disk usage
(see Appendix B.1). ‘-’ denotes results unavailable due to recursive limits reached in MP Tree search.

poorly with GCN. This is because KiDD does not rely on the backbone and depends solely on the
structure. Consequently, the stronger the downstream model’s expressive ability, the better the results.

From both node-level and graph-level results, we observe that as the condensation ratio increases,
traditional core-set methods improve, narrowing the performance gap with deep methods. However,
deep GC methods show a saturation point or even a decline in performance beyond a certain threshold,
suggesting that larger condensed data may introduce noise and biases that degrade performance.

Key Takeaways 1: Current node-level GC methods can achieve nearly lossless condensation
performance. However, there is still a significant gap between graph-level GC and whole dataset
training, indicating there is substantial room for improvement.

Key Takeaways 2: A large condensation ratio does not necessarily lead to better performance with
current methods.

3.2 Structure in Graph Condensation (RQ2)

We analyze the impact of structure in terms of heterogeneity and heterophily. Experimental settings
and additional results can be found in Appendix B.2.

(1) Heterogeneity v.s. Homogeneity. For the heterogeneous datasets ACM and DBLP, we convert the
heterogeneous graphs into homogeneous ones for evaluation. From the results in Table 2, we observe
that GC methods designed for homogeneous graphs preserve most of the semantic information and
perform comparably to models training on the whole dataset.

(2) Heterophily v.s. Homophily. From the results of the heterophilous dataset Flickr (with homophily
ratio H = 0.24) in Table 2, we can observe that current GC methods can achieve almost the same
accuracy as models training on the whole dataset. However, there is still a significant gap compared
to the state-of-the-art results of the model designed for heterophilic graphs.

6

37905https://doi.org/10.52202/079017-1197

(a) NC to LP (b) NC to NClu (c) NC to AD (Structure) (d) NC to AD (Context)

0.90% 1.80% 3.60% Whole Dataset

Figure 2: Cross-task performance on Citeseer. For all downstream tasks, the models are trained
solely using data of graphs condensed by node classification. For anomaly detection (c, d), structural
and contextual anomalies [3] are injected into both the condensed graph and the original graph.

Key Takeaways 3: Existing GC methods primarily address simple graph data. However, the
conversion process to specific data types is non-trivial, leaving significant room for improvement in
preserving complex structural properties.

3.3 Transferability on Different Tasks (RQ3)

To evaluate the transferability of GC methods, we condense the dataset by node classification (NC)
and use the condensed dataset to train models for link prediction (LP), node clustering (NClu), and
anomaly detection (AD) tasks. The results on Citeseer are shown in Figure 2. Settings and additional
results can be found in Appendix B.3.

As shown in Figure 2, performance with condensed datasets was significantly lower compared to
original datasets in all transferred tasks. This decline may be due to the task-specific nature of the
condensation process, which retains only task-relevant information while ignoring other semantically
rich details. For instance, AD task prioritizes high-frequency graph signals more than NC and LP
tasks, leading to poor performance when transferring condensed datasets from NC to AD tasks.
Among the methods, gradient matching methods (GCond, DosCond, and SGDD) demonstrated better
transferability in downstream tasks. In contrast, while structure-free methods (SFGC and GEOM)
perform well in node classification (Section 3.1), they show a significant performance gap in AD
tasks compared to gradient matching methods.

Key Takeaways 4: All condensed datasets struggle to perform well outside the context of the specific
tasks for which they were condensed, leading to limited applicability.

3.4 Transferability of Backbone Model Architectures (RQ4)

We adopt one model (SGC or Graph Transformer) as the backbone for condensation and use the
various models in downstream tasks evaluation. Details and additional results are in Appendix B.4.

As shown in Figure 3(a) and 3(b), each column shows the generalization performance of a condensed
graph generated by different methods for various downstream models. We can observe that datasets
condensed with SGC generally maintain performance when transferred across models. However,
datasets condensed with Graph Transformer (GTrans) consistently underperform across various
methods, and other models also exhibit reduced performance when adapted to Graph Transformer.
Intuitively, SGC’s basic neighbor message-passing strategy may overlook global dependencies critical
to more complex models, and similarly, complex models may not perform well when adapted to
simpler models. As we can observe, DosCond exhibits generally better transferability compared to
other gradient-matching methods. Since it can be regarded as the one-step gradient matching variant
of GCond, we further test the impact of gradient matching steps on transferability (Figure 3(c)).
Increasing the number of matching steps was found to correlate with reduced performance across
architectures, indicating that extensive gradient matching may encode model-specific biases.

7

37906 https://doi.org/10.52202/079017-1197

GCDMDM
DosCond

GCond
SGDD

SFGC
GEOM

SGC

GCN

SAGE

APPNP

Che
by

MLP

GTran
s

70 78 77 73 80 77 78

70 80 78 76 79 78 78

70 79 70 51 77 78 78

67 80 77 74 78 78 77

62 79 72 74 77 76 77

70 70 73 70 72 78 78

55 56 56 60 72 74 74
20

40

60

80

(a) Cross-arch. Acc. from SGC

GCDM DM
DosCond

GCond
SGDD

SGC

GCN

SAGE

APPNP

Che
by

MLP

GTran
s

23 23 21 25 26

31 31 20 21 34

32 32 16 20 35

61 61 74 34 31

65 65 71 32 32

70 70 75 33 34

49 49 57 31 30
20

40

60

80

(b) Cross-arch. Acc. from GTrans

0 5 10 15
Number of Gradient Matching Steps

30

40

50

60

70

80

90

Te
st

in
g

A
cc

ur
ac

y
(%

)

SGC
GCN
SAGE

APPNP
Cheby

GT
MLP

(c) GCond across different steps.

Figure 3: Cross-architecture performance. Using SGC and Graph Transformer (GTrans) to
condense Cora with a 2.6% ratio, we then test the accuracy on various downstream architectures (a,
b). Furthermore, we evaluate the influence of gradient matching steps on GCond (c).

K-Center Center K-Means Random Sample Random Noise

0 100 200
Epoch

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

(a) GCond on Cora (2.60%)

0 100 200
Epoch

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

(b) GCond on Cora (0.26%)

0 100 200 300
Epoch

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y
(c) GCond on ogbn-arxiv (0.50%)

Figure 4: The impact of initialization under different condensation ratios (a, b) and the impact
across different datasets Cora (a, b) and ogbn-arxiv (c).

Key Takeaways 5: Current GC methods exhibit significant performance variability when transferred
to different backbone architectures. Involving the entire training process potentially may lead to
encoding backbone-specific details in the condensed datasets.

Key Takeaways 6: Despite their strong performance in general graph learning tasks, transformers
surprisingly yield suboptimal results in graph condensation.

3.5 Initialization Impact (RQ5)

We evaluate 5 distinct initialization strategies, namely: Random Noise, Random Sample, Center,
K-Center, and K-Means. The results of GCond on Cora and ogbn-arxiv are shown in Figure 4.
Detailed settings and additional results can be found in Appendix B.5.

As shown in Figure 4(a) and Figure 4(b), the choice of the initialization method can significantly
influence the efficiency of the condensation process but with little impact on the final accuracy. For
instance, using Center on Cora reduces the average time to reach the same accuracy by approximately
25% compared to Random Sample and 71% compared to Random Noise. However, this speed
advantage diminishes as the scale of the condensed graph increases. Additionally, different datasets
have their preferred initialization methods for optimal performance. For example, Center is generally
faster for Cora condensed by GCond while K-Means performs better on ogbn-arxiv.

Key Takeaways 7: Different datasets have their preferred initialization methods for optimal
performance even for the same GC method.

Key Takeaways 8: The initialization mechanism primarily affects the convergence speed with
little impact on the final performance. The smaller the condensed graph, the greater the influence of
different initialization strategies on the convergence speed.

8

37907https://doi.org/10.52202/079017-1197

3.6 Efficiency and Scalability (RQ6)

0 50 100 150 200 250 300
Time (min)

56

58

60

62

64

66

68

70

A
cc

.(%
)

GCDMDM

DosCond
GCond

SGDD

SFGCGEOM

Distribution
Gradient
Trajectory

Figure 5: Time and memory consumption of
different methods on ogbn-arxiv (0.50%).

In this subsection, we evaluate the condensation
time and memory consumption of GC methods.
The results on ogbn-arxiv are shown in Figure 5,
where the x-axis denotes the overall condensation
time (min) when achieving the best validation per-
formance, the y-axis denotes the test accuracy (%),
the inner size of the marker represents the peak
CPU memory usage (MB), while the outer size
represents the peak GPU memory usage (MB).
As we can observe, the gradient matching meth-
ods have higher time and space consumption com-
pared to other types of methods. However, Ta-
ble 2 shows that current gradient and distribution
matching GC methods may trigger OOM (Out of
Memory) errors on large datasets with high con-
densation ratios, making them unsuitable for large-scale scenarios, which contradicts the goal of
applying graph condensation to extremely large graphs. More detailed results in Appendix B.6.

Key Takeaways 9: GC methods that rely on backbones and full-scale data training have large time
and space consumption.

4 Future Directions
Notwithstanding the promising results, there are some directions worthy to explore in the future:

Theory of optimal condensation. According to our findings, GC methods are striving to achieve
better performance with smaller condensed dataset sizes but it’s not necessarily true that larger
compressed datasets lead to better results. How to trade off between dataset size, information
condensation, and information preservation, and whether there exists a theory of Pareto-optimal
condensation in the graph condensation process, are future research directions.

Condensation for more complex graph data. Current GC methods are predominantly tailored
to the simplest types of graphs, overlooking the diversity of graph structures such as heterogeneous
graphs, directed graphs, hypergraphs, signed graphs, dynamic graphs, text-rich graphs, etc. There is a
pressing need for research on graph condensation methods that cater to more complex graph data.

Task-Agnostic graph condensation. Task-agnostic GC methods could greatly enhance flexibility
and utilization in graph data analysis, promoting versatility across various domains. Current methods
often depend on downstream labels or task-specific training. Future research should focus on
developing task-agnostic, unsupervised, or self-supervised GC methods that preserve crucial structural
and semantic information independently of specific tasks or datasets.

Improving the efficiency and scalability of graph condensation methods. Efficient and scalable
GC methods are crucial yet challenging to design. Most current methods combine condensation
with full training, making them resource-heavy and less scalable. Decoupling these processes could
significantly enhance GC’s efficiency and scalability, broadening its use across various domains.

5 Conclusion and Future Works
This paper introduces a comprehensive graph condensation benchmark, GC-Bench, by integrating and
comparing 12 methods across 12 datasets covering varying types and scopes. We conduct extensive
experiments to reveal the performance of GC methods in terms of effectiveness, transferability,
and efficiency. We implement an library (https://github.com/RingBDStack/GC-Bench) that
incorporates all the aforementioned protocols, baseline methods, datasets, and scripts to reproduce
the results in this paper. The GC-Bench library offers a comprehensive and unbiased platform for
evaluating current methods and facilitating future research. In this study, we mainly evaluate the
performance of GC methods for the node classification and graph classification task, which is widely
adopted in the previous literature. In the future, we plan to extend the GC-Bench with broader
coverage of datasets and tasks, providing further exploration of the generalization ability of GC
methods. We will update the benchmark regularly to reflect the most recent progress in GC methods.

9

37908 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

Acknowledgements

The corresponding author is Jianxin Li. This work is supported by the NSFC through grants
No.62225202 and No.62302023, the Fundamental Research Funds for the Central Universities,
CAAI-MindSpore Open Fund, developed on OpenI Community. This work is also supported in part
by NSF under grants III-2106758, and POSE-2346158.

References
[1] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark. In

NeurIPS, 2022.

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv: Learning,arXiv: Learning, 2016.

[3] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep Anomaly Detection on Attributed Networks,
page 594–602. 2019.

[4] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 2003.

[5] Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang, and Xiangnan
He. Exgc: Bridging efficiency and explainability in graph condensation. arXiv preprint arXiv:2402.05962,
2024.

[6] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[7] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous information
networks for representation learning. In CIKM, pages 1797–1806, 2017.

[8] Jian Gao and Jianshe Wu. Multiple sparse graphs condensation. Knowledge-Based Systems, 278:110904,
2023.

[9] Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen, Kai Zheng, and Hongzhi
Yin. Graph condensation for inductive node representation learning. In ICDE, 2024.

[10] Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin. Graph condensation: A
survey. arXiv preprint arXiv:2401.11720, 2024.

[11] Mridul Gupta, Sahil Manchanda, Sayan Ranu, and Hariprasad Kodamana. Mirage: Model-agnostic graph
distillation for graph classification. In ICLR, 2024.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017.

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020.

[14] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin. Condensing
graphs via one-step gradient matching. In SIGKDD, 2022.

[15] Wei Jin, Lingxiao Zhao, Shi-Chang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In ICLR, 2021.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[17] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2018.

[19] Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and Di Wu. Attend who is weak: Enhancing graph
condensation via cross-free adversarial training. arXiv preprint arXiv:2311.15772, 2023.

10

37909https://doi.org/10.52202/079017-1197

[20] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

[21] Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation via eigenbasis matching. In ICML, 2024.

[22] Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph condensation.
In ICDM, pages 1157–1162. IEEE, 2023.

[23] Yilun Liu, Ruihong Qiu, and Zi Huang. Gcondenser: Benchmarking graph condensation. arXiv preprint
arXiv:2405.14246, 2024.

[24] Yilun Liu, Ruihong Qiu, Yanran Tang, Hongzhi Yin, and Zi Huang. Puma: Efficient continual graph
learning with graph condensation. arXiv preprint arXiv:2312.14439, 2023.

[25] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress?: Revisiting, benchmarking and
refining heterogeneous graph neural networks. In SIGKDD, 2021.

[26] Runze Mao, Wenqi Fan, and Qing Li. Gcare: Mitigating subgroup unfairness in graph condensation
through adversarial regularization. Applied Sciences, 13(16):9166, 2023.

[27] ChristopherJ. Morris, NilsM. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv: Learning,arXiv: Learning,
Jul 2020.

[28] Qiying Pan, Ruofan Wu, Tengfei Liu, Tianyi Zhang, Yifei Zhu, and Weiqiang Wang. Fedgkd: Unleashing
the power of collaboration in federated graph neural networks. arXiv preprint arXiv:2309.09517, 2023.

[29] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In ICLR, 2019.

[30] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
In ICLR, 2018.

[31] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

[32] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 2008.

[33] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed graph
clustering: A deep attentional embedding approach. In IJCAI, 2019.

[34] Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-based
neural tangent kernel. In The Web Conference, 2024.

[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The Web Conference, 2019.

[36] Max Welling. Herding dynamical weights to learn. In ICML, pages 1121–1128, 2009.

[37] Felix Wu, Tianyi Zhang, AmauriH. Souza, Christopher Fifty, Tao Yu, and KilianQ. Weinberger. Simplifying
graph convolutional networks. arXiv: Learning,arXiv: Learning, 2019.

[38] Yifan Wu, Jiawei Du, Ping Liu, Yuewei Lin, Wenqing Cheng, and Wei Xu. Dd-robustbench: An adversarial
robustness benchmark for dataset distillation. arXiv preprint arXiv:2403.13322, 2024.

[39] Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu Jiajun. A survey on graph
condensation. arXiv preprint arXiv:2402.02000, 2024.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In ICLR, 2018.

[41] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hanghang Tong.
Kernel ridge regression-based graph dataset distillation. In SIGKDD, pages 2850–2861, 2023.

[42] Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin Li.
Does graph distillation see like vision dataset counterpart? In NeurIPS, 2023.

11

37910 https://doi.org/10.52202/079017-1197

[43] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graphsaint:
Graph sampling based inductive learning method. In ICLR, 2020.

[44] Tianle Zhang, Yuchen Zhang, Kun Wang, Kai Wang, Beining Yang, Kaipeng Zhang, Wenqi Shao, Ping
Liu, Joey Tianyi Zhou, and Yang You. Two trades is not baffled: Condense graph via crafting rational
gradient matching. arXiv preprint arXiv:2402.04924, 2024.

[45] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and Yang
You. Navigating complexity: Toward lossless graph condensation via expanding window matching. CoRR,
abs/2402.05011, 2024.

[46] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. Network schema preserving heteroge-
neous information network embedding. In IJCAI, 2020.

[47] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.
Structure-free graph condensation: From large-scale graphs to condensed graph-free data. In NeurIPS,
2023.

12

37911https://doi.org/10.52202/079017-1197

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix C.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix A.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Section 3.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.4.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2.1 and
Appendix A.2.

(b) Did you mention the license of the assets? [Yes] See Appendix C.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix C.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix C.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

37912 https://doi.org/10.52202/079017-1197

A Details of GC-Bench

A.1 Datasets

The evaluation node-level datasets include 5 homogeneous datasets (3 transductive datasets, i.e.,
Cora, Citeseer [16] and ogbn-arxiv [13], and 2 inductive datasets, i.e., Flickr [43] and Reddit [12])
and 2 heterogeneous datasets (ACM [46] and DBLP [7]). The evaluation graph-level datasets include
5 datasets (NCI1 [32], DD [4], ogbg-molbace [13], ogbg-molhiv [13], ogbg-molbbbp [13]).

We utilize the standard data splits provided by PyTorch Geometric [6] and the Open Graph Benchmark
(OGB) [13] for our experiments. For datasets in TUDataset [27], we split the data into 10% for
testing, 10% for validation, and 80% for training. For ACM and DBLP datasets, we follow the settings
outlined in [25]. Dataset statistics are shown in Table A1.

Table A1: Dataset statistics. For heterogeneous datasets, the features are from the target nodes (papers
in ACM and authors in DBLP).

Dataset #Nodes /
#Avg. Nodes

#Edges /
#Avg. Edges #Classes #Features /

Graphs

N
od

e-
le

ve
l

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
ogbn-arxiv 169,343 1,166,243 40 128
Flickr 89,250 899,756 7 500
Reddit 232,965 57,307,946 210 602
ACM 10,942 547,872 3 1,902
DBLP 37,791 170,794 4 334

G
ra

ph
-le

ve
l ogbg-molhiv 25.5 54.9 2 41,127

ogbg-molbace 34.1 36.9 2 1,513
ogbg-molbbbp 24.1 26.0 2 2,039
NCI1 29.8 32.3 2 4,110
DD 284.3 715.7 2 1,178

A.2 Algorithms

We summarize the current GC algorithms in Table A2. We choose 12 representative ones for
evaluation in this paper including Random, K-Center [30], Herding [36], GCond [15], DosCond [14],
SGDD [42], GCDM [20], DM [24], SFGC [47], GEOM [45], KiDD [41], Mirage [11]. We will
continue to update and improve the benchmark to include more algorithms. Here we introduce
the GC algorithms in detail:

• Traditional Core-set Methods
− Random: For node classification tasks, nodes are randomly selected to form a new subgraph.

For graph classification, the graphs are randomly selected to create a new subset.
− Herding [36]: The nodes or graphs are selected samples that are closest to the cluster center.
− K-Center [30]: Nodes or graphs are chosen such that they have the minimal distance to the

nearest cluster center, which is generated using the K-Means Clustering method.

• Gradient Matching Methods
− GCond [15]: In GCond, the optimization of the synthetic dataset is framed as a bi-level

problem. It adapts a gradient matching scheme to match the gradients of GNN parameters
between the condensed and original graphs, while optimizing the model’s performance on
the datasets. For generating the synthetic adjacency matrix, GCond employs a Multi-Layer
Perceptron (MLP) to model the edges by using node features as input, maintaining the
correlations between node features and graph structures.

− DosCond [14]: In DosCond, the gradient matching scheme only matches the network
gradients for model initialization θ0 while discarding the training trajectory of θt, which
accelerated the entire condensation process by only informing the direction to update the

14

37913https://doi.org/10.52202/079017-1197

Table A2: Summary of Graph Condensation (GC) algorithms. We also provide public access to
the official algorithm implementations. “KRR” is short for Kernel Ridge Regression and “CTC”
is short for computation tree compression. “GNN” is short for Graph, “GNTK” is short for graph
neural tangent kernel, “SD” is short for spectral decomposition. “NC” is short for node classification,
“LP” is short for link prediction, “AD” is short for anomaly detection, and “GC” is short for graph
classification.

Taxonomy Method Initialization Backbone
Model

Downstream
Task Code Venue

Random — — — — —
Herding [36] — — — link ICML, 2009
K-Center [30] — — — link ICLR, 2018

Traditional
Methods

GCond [15] Random Sample GNN NC link ICLR, 2021
DosCond [14] Random Sample GNN NC, GC link SIGKDD, 2022

MSGC [8] Zero Matrix GNN NC — KBS, 2023
SGDD [42] Random Sample GNN NC, LP, AD link NeurIPS, 2023

GCARe [26] — GNN NC — Appl. Sci. 2023
CTRL [44] K-Means GNN NC, GC link arXiv, 2024
GroC [19] Random Sample GNN NC, GC — arXiv, 2023
EXGC [5] Random Sample GNN NC link1 WWW 2024

Gradient
Matching

MCond [9] Random Sample GNN NC — ICDE, 2024
GCDM [20] Random Sample GNN NC — arXiv, 2022
DM [22, 24] Random Sample GNN NC — ICDM, 2023
GDEM [21] Eigenbasis Approximation SD NC link ICML, 2024

Distribution
Matching

FedGKD [28] Random Noise GNN NC — arXiv, 2023
SFGC [47] K-Center GNN NC link NeurIPS, 2023Trajectory

Matching GEOM [45] K-Center GNN NC link ICML, 2024
GC-SNTK [34] Random Noise GNTK NC link WWW, 2024KRR KiDD [41] Random Sample GNTK GC link SIGKDD, 2023

CTC Mirage [11] — GNN GC link ICLR, 2024
1 The code repository for EXGC is not fully developed.

synthetic dataset. DosCond also modeled the discrete graph structure as a probabilistic
model and each element in the adjacency matrix follows a Bernoulli distribution.

− MSGC [8]: MSGC condenses a large-scale graph into multiple small-scale sparse graphs,
leveraging neighborhood patterns as substructures to enable the construction of various
connection schemes. This process enriches the diversity of embeddings generated by GNNs,
enhances the representation power of GNNs con complex graphs.

− SGDD [42]: SGDD uses graphon approximation to ensure that the structural information
of the original graph is retained in the synthetic, condensed graph. The condensed graph
structure is optimized by minimizing the optimal transport (OT) distance between the original
structure and the condensed structure.

− GCARe [26]: GCARe addresses biases in condensed graphs by regularizing the condensa-
tion process, ensuring that the knowledge of different subgroups is distilled fairly into the
resulting graphs.

− CTRL [44]: CTRL clusters each class of the original graph into sub-clusters and uses these
as initial value for the synthetic graph. By considering both the direction and magnitude
of gradients during gradient matching, it effectively minimizes matching errors during the
condensation phase.

− GroC [19]: GroC uses an adversarial training (bi-level optimization) framework to explore
the most impactful parameter spaces and employs a Shock Absorber operator to apply
targeted adversarial perturbation.

− EXGC [5]: EXGC leverages Mean-Field variational approximation to address inefficiency
in the current gradient matching schemes and uses the Gradient Information Bottleneck
objective to tackle node redundancy.

− MCond [9]: MCond addresses the limitations of traditional condensed graphs in handling
unseen data by learning a one-to-many node mapping from original nodes to synthetic nodes
and uses an alternating optimization scheme to enhance the learning of synthetic graph and
mapping matrix.

• Distribution Matching Methods

15

37914 https://doi.org/10.52202/079017-1197

https://github.com/ozansener/active_learning_coreset
https://github.com/ozansener/active_learning_coreset
https://github.com/ChandlerBang/GCond
https://github.com/amazon-science/doscond
https://github.com/RingBDStack/SGDD
https://github.com/NUS-HPC-AI-Lab/CTRL
https://github.com/MangoKiller/EXGC
https://github.com/liuyang-tian/GDEM
https://github.com/Amanda-Zheng/SFGC
https://github.com/NUS-HPC-AI-Lab/GEOM
https://github.com/WANGLin0126/GCSNTK
https://github.com/pricexu/KIDD
https://github.com/idea-iitd/Mirage

− GCDM [20]: GCDM synthesizes small graphs with receptive fields that share a similar
distribution to the original graph, achieved through a distribution matching loss quantified
by maximum mean discrepancy (MMD).

− DM [22, 24]: DM can be regarded as a one-step variant of GCDM. In DM, the optimization
is centered on the initial parameters. Notably, in [22] and [24], DM does not learn any
structures for efficiency. However, for better comparison in our experiments, we continue to
learn the adjacency matrix.

− FedGKD [28]: FedGKD trains models on condensed local graphs within each client to
mitigate the potential leakage of the training set membership. FedGKD features a Federated
Graph Neural Network framework that enhances client collaboration using a task feature
extractor for graph data distillation and a task relator for globally-aware model aggregation.

• Trajectory Matching Methods

− SFGC [47]: SFGC uses trajectory matching instead of a gradient matching scheme. It first
trains a set of GNNs on original graphs to acquire and store an expert parameter distribution
offline. The expert trajectory guides the optimization of the condensed graph-free data. The
generated graphs are evaluated using closed-form solutions of GNNs under the graph neural
tangent kernel (GNTK) ridge regression, avoiding iterative GNN training.

− GEOM [45]: GEOM makes the first attempt toward lossless graph condensation using
curriculum-based trajectory matching. A homophily-based difficulty score is assigned to
each node and the easy nodes are learned in the early stages while more difficult ones are
learned in the later stages. On top of that, GEOM incorporated a Knowledge Embedding
Extraction (KEE) loss into a matching loss.

• Kernel Ridge Regression Methods

− GC-SNTK [34]: GC-SNTK introduces a Structure-based Neural Tangent Kernel(SNTK)
to capture graph topology, replacing the inner GNNs training in traditional GC paradigm,
avoiding multiple iterations.

− KiDD [41]: KiDD uses kernel ridge regression (KRR) with a graph neural tangent kernel
(GNTK) for graph-level tasks. To enhance efficiency, KiDD introduces LiteGNTK, a
simplified GNTK, and proposes KiDD-LR for faster low-rank approximation and KiDD-D
for handling discrete graph topology using the Gumbel-Max reparameterization trick. We
use KiDD-LR for experiments as it has generally demonstrated better performance compared
to KiDD-D.

• Computation Tree Compression Methods

− Mirage [11]: Mirage decomposes graphs in datasets into a collection of computation trees
and then mines frequently co-occurring trees from this set. Mirage then uses aggregation
functions (MEANPOOL, SUMPOOL, etc.) on the embeddings of the root node of each tree
to approximate the graph embedding.

A.3 Hyper-Parameter Setting

For the implementation of various graph condensation methods, we adhere to the default parameters
as specified by the authors in their respective original implementations. This approach ensures that
our results are comparable to those reported in the foundational studies. For condensation ratios
that were not explored in the original publications, we employ a grid search strategy to identify
the optimal hyperparameters within the predefined search space. This includes experimenting with
various combinations, such as differing learning rates for the feature optimizer and the adjacency
matrix optimizer. The corresponding hyperparameter space are shown in Table A3.

A.4 Computation resources

All experiments were conducted on a high-performance GPU cluster to ensure a fair comparison.
The cluster consists of 32 identical dell-GPU nodes, each featuring 256GB of memory, 2 Intel Xeon
processors, and 4 NVIDIA Tesla V100 GPUs, with each GPU having 64 GB of GPU memory. If any
experiment setting exceeds the GPU memory limit, it is reported as out-of-memory (OOM).

16

37915https://doi.org/10.52202/079017-1197

Table A3: Hyperparameter search space of different methods
Method Hyperparameter Values

General
Settings

Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001
Epochs 300, 400, 500, 800, 1000, 2000, 3000, 4000, 5000
Layers 2, 3
Dropout Rate 0, 0.05, 0.1, 0.5, 0.6, 0.7, 0.8
Weight Decay 0, 0.0005
Hidden Units 128, 256
Pooling sum, mean
Activation LeakyReLU, ReLU, Sigmoid, Softmax
Batch Size (16,6000)

SGDD mx_size 50, 100
opt_scale 5, 10

GCond, DosCond, SGDD, GCDM, DM outer loop 1, 2, 5, 10, 15, 20

GCond, SGDD, GCDM inner loop 1, 5, 10, 15, 20

SFGC,
GEOM

expert_epochs 50, 70, 100, 350, 600, 800, 1000, 1500, 1600, 1900
start_epoch 10, 20, 50, 100, 200, 300
teacher_epochs 800, 1000, 1200, 2400, 3000

GEOM
lam 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
T 250, 500, 600, 800, 1000, 1200
scheduler linear, geom, root

KiDD
scale uniform, degree
rank 8, 16, 32
orth_reg 0.01, 0.001, 0.0001

A.5 Discussion on Existing Benchmarks

To the best of our knowledge, the only concurrent work is GCondenser [23]. The comparison
of GCondser and our GC-Bench are list in Table A4. GCondenser [23] focus the node-level GC
methods for node classification on homogeneous graphs with limited evaluation dimensions in terms
of performance and time efficiency. Our GC-Bench analyzes more GC methods on a wider variety of
datasets (both homogeneous and heterogeneous) and tasks (node classification, graph classification),
encompassing both node-level and graph-level methods. In addition to performance and efficiency
analysis, we further explore the transferability across different tasks (link prediction, node clustering,
anomaly detection) and backbones (GNN models and the popular Graph Transformer). With GC-
Bench covering more in-depth investigation over a wider scope, we believe it will provide valuable
insights into existing works and future directions.

B Settings and Additional Results

In this section, we provide more details of the experimental settings and the additional results for the
proposed 6 research questions, respectively.

B.1 Settings and Additional Results of Performance Comparison (RQ1)

B.1.1 Comparison Setting

Node Classification Graph Dataset Setting. We compared ten state-of-the-art GC methods. The
selection of the condensation ratio r is based on the labeling rates of different datasets. For datasets
like Cora and Citeseer, the labeling rates are less than 50%, we select r as a proportion of the labeling
rate, specifically at {5%, 10%, 25%, 50%, 75%, 100%}. For datasets like ogbn-arxiv, and inductive
datasets where all nodes in the training graphs are labeled, with a relatively higher labeling rate, r
is chosen to be {5%, 10%, 25%, 50%, 75%, 100%}. Corresponding condensation rates are shown in
Table B2.

Graph Classification Graph Dataset Setting. We compared three state-of-the-art GC algorithms
on graph classification datasets: DosCond [14], KiDD [41], and Mirage [11]. Mirage [11] does not
condense datasets into unified graphs measurable by Ǵraphs per Class(́GPC) as DosCond [14] and

17

37916 https://doi.org/10.52202/079017-1197

Table A4: Comparison of GCondenser and GC-Bench
Benchmark Coverage GCondenser GC-Bench

Traditional Core-set Methods Random, K-Center Random, K-Center, Herding
Gradient Matching GCond, DosCond, SGDD GCond, DosCond, SGDD
Distribution Matching GCDM, DM GCDM, DM
Trajectory Matching SFGC SFGC, GEOM
KRR — KiDDA

lg
or

ith
m

s

CTC — Mirage

Node-level Homogenerous Cora, Citeseer, ogbn-arxiv
Flickr, Reddit, PubMed

Cora, Citeseer, ogbn-arxiv
Flickr, Reddit

Node-level Heterogenerous — ACM, DBLP

D
at

as
et

s

Graph-level — NCI1, DD, ogbg-molbace
ogbg-molbbbp, ogbg-molhiv

Nodel-level node classification

node classification
link prediction
node clustering
anomaly detectionTa

sk
s

Graph-level — graph classification
Condensation
Ratios ✓ ✓

Impact of
Struture structure v.s. structure-free

structure v.s. structure-free
structure properties
(Heterogeneity, Heterophily)Perf. Impact of

Initialization ✓ ✓

Backbone
Trans. .

SGC and GCN transfer to
SGC, GCN, GraphSAGE,
APPNP, CHebyNet, MLP

SGC, GCN and Graph Transformer
transfer to
SGC, GCN, GraphSAGE, APPNP,
ChebyNet, MLP, Graph TransformerTrans.

Task Trans. —

node classification
link prediction
node clustering
anomaly detection

Time ✓ ✓

E
va

lu
at

io
n

D
im

en
si

on
s

Efficiency Space — ✓

KiDD [41] do. Therefore, we measure the condensed dataset size by storing its elements in .pt format,
similar to DosCond [14] and KiDD [41]. We select the Mirage-condensed dataset size closest to
DosCond’s as the corresponding GPC. KiDD [41] generally occupies more disk space than DosCond
under the same GPC. The size of Mirage datasets is determined by two parameters: the number of
GNN layers (L) and the frequency threshold Θ. We fix L = 2, consistent with the 2-layer model used
for validation, and employ a grid search strategy to identify the threshold combination that yields a
dataset size closest to the targeted GPC. The corresponding disk space, GPC, and threshold choices
are presented in Table B1. Note that for small thresholds, the MP Tree search algorithms used in
Mirage [11] may reach recursive limits. Consequently, in DD and ogbg-molbace, certain GPCs lack
corresponding threshold values.

Heterogeneous Graph Dataset Setting. Due to the absence of condensation methods specifically
for heterogeneous graphs, we convert heterogeneous datasets into homogeneous graphs for conden-
sation, focusing on target nodes. We uniformly summed the adjacency matrices corresponding to
various meta-paths as in [25], and applied zero-padding to match the maximum feature dimension as
well as one-hot encoding for nodes without features. Specifically, in GEOM [45], when calculating
heterophily, all nodes without labels (non-target nodes) are assigned the same distinct label, ensuring
a consistent heterophily calculation.

B.1.2 Additional Results

The graph classification performance on GCN is shown in Table B3. DosCond [14] with GCN
demonstrates significant advantages in 12 out of 25 cases, while KiDD [41] underperforms in most
scenarios. Notably, DosCond [14] and Mirage [11] even outperform the results of the whole dataset

18

37917https://doi.org/10.52202/079017-1197

Table B1: Comparison of Disk Size and Graph per Class (GPC) for condensed datasets between
Mirage and DosCond.

Dataset Graph/
Cls

Mirage
Disk Size (Bytes)

DosCond
Disk Size (Bytes)

Class 0
Threshold

Class 1
Threshold

NCI1 [32]
1 14,455 18,425 451 441
5 81,622 82,745 351 381

10 142,228 162,301 301 291
20 195,609 324,035 251 231
50 995,277 806,403 201 171

DD [4]
1 38,352 855,077 15 9
5 — 4,265,957 — —

10 — 8,529,583 — —
20 — 17,056,751 — —
50 — 42,638,383 — —

ogbg-molbace [13]
1 13,836 14143 120 90
5 60,047 60,927 230 80

10 106,077 119,497 120 80
20 232,191 236,489 140 70
50 — 587,337 — —

ogbg-molbbbp [13]
1 8,817 8,831 29 198
5 34,699 34,175 49 109

10 66,433 65,929 30 90
20 104,091 129,289 20 80
50 324,425 319,369 17 87

ogbg-molhiv [13]
1 9,606 9,717 8,000 250
5 54,669 38,837 1,760 170

10 74,524 75,263 1,680 130
20 148,028 148,095 1,420 110
50 330,498 366,463 800 110

Table B2: Different condensation ratios of transductive datasets. For heterogeneous datasets, the
number of nodes in the original graph is the sum of all types of nodes.

Ratio (r) Cora Citeseer ACM DBLP

5% 0.26% 0.18% 0.003% 0.002%
10% 0.52% 0.36% 0.007% 0.004%
25% 1.30% 0.90% 0.013% 0.007%
50% 2.60% 1.80% 0.033% 0.019%
75% 3.90% 2.70% 0.066% 0.037%

100% 5.20% 3.60% 0.332% 0.186%

on ogbg-molbace. For Mirage [11], due to the algorithm’s recursive depth under low threshold
parameters, we have only one result corresponding to GPC 1 on DD. However, this single result
already surpasses all datasets condensed by KiDD [41] and the dataset with GPC 1 condensed by
DosCond.

B.2 Settings and Additional Results of Structure in Graph Condensation (RQ2)

B.2.1 Experimental Settings

The homophily ratio we use is the edge homophily ratio, which represents the fraction of edges that
connect nodes with the same labels. It can be calculated as:

H(G) =
1

|E|
∑

(j,k)∈E

1(yj = yk), i ∈ V, (A.1)

where V is the node set, E is the edge set, |E| is the number of edges in the graph, yi is the label of
node i and 1(·) is the indicator function. A graph is typically considered to be highly homophilous
when H is large (typically, 0.5 ≤ H ≤ 1), such as Cora and Reddit. Conversely, a graph with a low
edge homophily ratio is considered to be heterophilous, such as Flickr.

19

37918 https://doi.org/10.52202/079017-1197

Table B3: Graph classification performance on GCN (mean±std) across datasets with varying con-
densation ratios r. The best results are shown in bold and the runner-ups are shown in underlined .
Red color highlights entries that exceed the whole dataset values.

Dataset Graph
/Cls Ratio(r) Traditional Core-set methods Gradient KRR CTC Whole

DatasetRandom Herding K-Center DosCond KiDD Mirage

NCI1
Acc. (%)

1 0.06% 53.30±0.6 55.20±2.6 55.20±2.6 57.30±0.9 49.30±1.1 49.10±0.9

71.1±0.8

5 0.24% 55.00±1.4 56.50±0.9 53.20±0.6 58.40±1.4 56.10±1.0 49.60±2.2

10 0.49% 58.10±2.2 58.60±0.8 57.00±2.6 57.80±1.6 57.50±1.1 48.60±0.1

20 0.97% 54.40±0.8 59.10±1.1 60.10±1.3 60.10±3.2 56.40±0.6 48.70±0.0

50 2.43% 56.80±1.1 58.70±1.1 64.40±0.9 58.20±2.8 59.90±0.6 48.60±0.1

DD
Acc. (%)

1 0.21% 59.70±1.5 66.90±2.8 66.90±2.8 68.30±6.6 58.60±2.4 71.20±6.6

78.4±1.7

5 1.06% 61.90±1.1 66.20±2.5 62.00±1.7 73.10±2.2 58.60±1.1 -
10 2.12% 63.70±2.8 68.00±3.6 62.50±2.3 71.30±8.3 61.60±3.8 -
20 4.25% 64.70±5.3 69.70±0.8 63.10±1.9 73.00±5.8 62.60±1.4 -
50 10.62% 66.60±2.1 68.50±1.4 68.90±1.8 74.20±3.6 59.30±0.0 -

ogbg-molbace
ROC-AUC

1 0.17% 0.510±.083 0.515±.040 0.517±.044 0.658±.064 0.568±.047 0.733±.012

0.711±.019

5 0.83% 0.612±.036 0.653±.043 0.508±.087 0.691±.06 0.356±.022 0.760±.002

10 1.65% 0.620±.054 0.658±.046 0.646±.047 0.702±.045 0.542±.027 0.759±.002

20 3.31% 0.642±.053 0.631±.051 0.575±.03 0.659±.049 0.526±.014 0.761±.003

50 8.26% 0.677±.015 0.629±.053 0.576±.087 0.714±.032 0.446±.042 -

ogbg-molbbbp
ROC-AUC

1 0.12% 0.534±.041 0.560±.017 0.560±.017 0.600±.023 0.504±.042 0.600±.002

0.646±.013

5 0.61% 0.561±.014 0.574±.022 0.585±.005 0.579±.056 0.561±.004 0.609±.061

10 1.23% 0.566±.011 0.590±.024 0.598±.025 0.556±.063 0.550±.005 0.517±.028

20 2.45% 0.593±.023 0.568±.019 0.545±.009 0.590±.057 0.594±.022 0.626±.032

50 6.13% 0.587±.007 0.579±.022 0.621±.011 0.598±.024 0.603±.01 0.602±.018

ogbg-molhiv
ROC-AUC

1 0.01% 0.733±.008 0.727±.012 0.727±.012 0.734±.002 0.725±.007 0.728±.012

0.750±.010

5 0.03% 0.729±.006 0.720±.018 0.739±.01 0.736±.008 0.738±.003 0.717±.003

10 0.06% 0.724±.011 0.726±.014 0.723±.012 0.736±.007 0.731±.008 0.735±.028

20 0.12% 0.723±.015 0.726±.015 0.724±.01 0.733±.007 0.703±.097 0.710±.016

50 0.30% 0.712±.014 0.723±.019 0.721±.012 0.731±.011 0.723±.011 0.718±.022

∗Mirage cannot directly generate graphs with the required ratio. Thus, we search the parameter space and aligned the generated graph
to match DosCond’s disk usage as substitution (see Appendix B.1).

We also calculate the homophily ratio of condensed datasets. Since the condensed datasets have
weighted edges, we first sparsify the graph by removing all edges with weights less than 0.05,
then calculate the homophily ratio by adjusting the fraction to a weighted fraction, which can be
represented as:

H(G) =

∑
(j,k)∈E wjk1(yj = yk)∑

(j,k)∈E wjk
, i ∈ V, (A.2)

where wjk is the weight of the edge between nodes j and k.

B.2.2 Additional Results

The results of homophily ratios of condensed datasets are shown in Table B4. It appears that
condensed datasets often struggle to preserve the homophily properties of the original datasets. For
instance, in the case of the heterophilous dataset Flickr, an increase in the homophily rate is observed
under most methods and ratios.

Table B4: Homophily ratio comparison of different condensed datasets
Whole

Dataset Ratio (r) GCDM DM DosCond GCond SGDD

1.30% 0.76 ↓ 0.88 ↑ 0.20 ↓ 0.64 ↓ 0.19 ↓
2.60% 0.11 ↓ 0.74 ↓ 0.16 ↓ 0.55 ↓ 0.19 ↓Cora 0.81
5.20% 1.00 ↑ 0.21 ↓ 0.15 ↓ 0.62 ↓ 0.15 ↓
0.90% 0.16 ↓ 0.75 ↑ 0.19 ↓ 0.57 ↓ 0.14 ↓
1.80% 0.08 ↓ 0.30 ↓ 0.20 ↓ 0.36 ↓ 0.19 ↓Citeseer 0.74
3.60% 1.00 ↑ 0.34 ↓ 0.15 ↓ 0.22 ↓ 0.15 ↓
0.05% 0.28 ↑ 0.29 ↑ 0.25 ↑ 0.28 ↑ 0.32 ↑
0.50% 0.29 ↑ 0.22↓ 0.08 ↓ 0.28 ↑ 0.30 ↑Flickr 0.24
1.00% 0.36 ↑ 0.18 ↓ 0.06 ↓ 0.28 ↑ 0.26 ↑

20

37919https://doi.org/10.52202/079017-1197

We visualize the condensed datasets using force-directed graph visualization, as shown in Figure B.1,
Figure B.2, and Figure B.3. Since SFGC [47] and GEOM [45] synthesize edge-free datasets, we
do not visualize the datasets they condensed. As shown in the visualization, graphs condensed
by different methods exhibit distinct structural characteristics. For example, distribution matching
methods often result in less pronounced community structures compared to other methods.

We also visualize the node degree distribution of the original graph and the condesed graphs in
Figure B.4. Note that the graphs condensed by GCDM [20] and DM [24] are dense and each edge has
an extremely small weight under most situations, the degree of each node is also small. We observe
that the degree distributions of most condensed datasets deviate significantly from the original graph.
Among them, SGDD [42] demonstrates a relatively similar degree distribution to that of the original
graph.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.1: Visualization of the Condensed Citeseer (1.80%) Dataset. Only the top 20% of edges
ranked by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.2: Visualization of the Condensed Cora (2.60%) Dataset. Only the top 20% of edges ranked
by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.3: Visualization of the Condensed Flickr (0.50%) Dataset. Only the top 1% of edges ranked
by weight are visualized.

B.3 Settings and Additional Results of Transferability in Different Tasks (RQ3)

B.3.1 Link Prediction

For the link prediction task, we utilize a graph autoencoder (GAE)[17] based on Graph Convolutional
Networks (GCN[16]). The GAE consists of a two-layer GCN encoder that creates node embeddings.
During training, we enhance the dataset by randomly adding negative links and use a decoder to
perform binary classification on edges. During evaluation, we test the model using the test set of the

21

37920 https://doi.org/10.52202/079017-1197

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

Original

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

Original

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

Original

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCDM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCDM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCDM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

DM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

DM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

DM

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

DosCond

0 20 40
Degree

0

1
Fr

eq
ue

nc
y

DosCond

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

DosCond

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCond

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCond

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

GCond

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

SGDD

0 20 40
Degree

0

1

Fr
eq

ue
nc

y

SGDD

0 20 40
Degree

0

1
Fr

eq
ue

nc
y

SGDD

Figure B.4: Degree distribution in the condensed graphs for Citeseer (1.80%), Cora (2.60%), and
Flickr (0.05%). The first, second, and third columns correspond to Citeseer, Cora, and Flickr,
respectively.

original graph. Since trajectory matching methods do not generate any edges, we do not use them
for link prediction tasks. The results of condensed datasets on the link prediction task are shown in
Table B5. We observe that most condensed datasets underperform in link prediction tasks, especially
on ogbn-arxiv and Flickr. Most methods’ condensed datasets consistently underperform compared to
traditional core-set methods, indicating room for improvement.

B.3.2 Node Clustering

For the node clustering tasks on condensed datasets, we utilize DAEGC [33] to train on synthetic
datasets condensed using the node classification task. We then test the trained model on the original
large-scale datasets and include the results of other methods on the original graph for comprehensive
comparison. Due to the performance degradation of GAT with large neighborhood sizes, we use
GCN as the encoder.Performance metrics include Accuracy (Acc.), Normalized Mutual Information
(NMI), F-score, and Adjusted Rand Index (ARI).

To fully leverage the condensed datasets, we include the results of node clustering with pertaining. In
this experiment, the GCN encoder is first trained on the synthetic datasets with a node classification
task, which incorporates the synthetic labels’ information. Using the pre-trained GCN as an encoder,
we then perform node clustering on the synthetic datasets and the original graph. Results of node
clustering tasks, both without and with pertaining are shown in Table B6 and Table B7 respectively.

22

37921https://doi.org/10.52202/079017-1197

Table B5: Link Prediction Accuracy (%) of different condensed datasets. The best results are shown
in bold.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD Whole

Dataset
0.90% 0.52 0.52 0.55 0.53 0.53 0.50 0.65 0.69
1.80% 0.52 0.52 0.54 0.51 0.52 0.51 0.51 0.67Citeseer
3.60% 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.61

0.82

1.30% 0.58 0.54 0.58 0.72 0.71 0.67 0.61 0.51
2.60% 0.55 0.55 0.56 0.69 0.67 0.58 0.77 0.62Cora
5.20% 0.57 0.56 0.58 0.70 0.71 0.59 0.65 0.56

0.78

0.05% 0.76 0.68 0.67 0.66 0.68 0.63 0.60 0.70
0.20% 0.72 0.72 0.73 0.72 0.72 0.69 0.71 0.51ogbn-arxiv
0.50% 0.74 0.73 0.74 0.71 0.73 0.72 0.72 0.70

0.75

0.05% 0.55 0.54 0.53 0.60 0.53 0.52 0.54 0.51
0.20% 0.63 0.63 0.63 0.63 0.51 0.53 0.57 0.70Flickr
0.50% 0.70 0.68 0.70 0.56 0.65 0.62 0.67 0.61

0.75

We observe that most condensed datasets perform worse in the node clustering task compared to the
original dataset. However, when additional information from the pretraining of the node classification
task on condensed dataset is utilized, the results of node clustering significantly improve. Notably,
some datasets in Table B6 exhibit identical results with the Adjusted Rand Index (ARI) being 0 or
even negative. This occurs because the clustering results do not match the number of classes in
the labels, requiring manual splitting of clusters in such scenarios. An ARI of 0 indicates that the
clustering result is as good as random, while a negative ARI suggests it is worse than random.

B.3.3 Anomaly Detection

For the anomaly detection tasks, we generate two types of anomalies, Contextual Anomalies and
Structural Anomalies, following the method described in [3]. We set the anomaly rate to 0.05; if the
condensed dataset is too small, we inject one contextual anomaly and two structural anomalies.

Contextual Anomalies: Each outlier is generated by randomly selecting a node and substituting its
attributes with those from another node with the maximum Euclidean distance in attribute space.

Structural Anomalies: Outliers are generated by randomly selecting a small group of nodes and
making them fully connected, forming a clique. The nodes in this clique are then regarded as structural
outliers. This process is repeated iteratively until a predefined number of cliques are generated.

We conduct anomaly detection by training a DOMINANT model [3], which features a shared graph
convolutional encoder, a structure reconstruction decoder, and an attribute reconstruction decoder.
Initially, we inject predefined anomalies into the test set of the original graph and use it for evaluation
across different condensed datasets derived from this graph. The model is then trained on these
condensed datasets, which were injected with specific types of anomalies before training. The
DOMINANT model measures reconstruction errors as anomaly scores for both the graph structure
and node attributes, combining these scores to detect anomalies. The results are evaluated using the
ROC-AUC metric, as shown in Table B8 and B9.

B.4 Settings and Additional Results of Transferability across Backbone Model Architectures
(RQ4)

B.4.1 Experimental Settings

For transferability evaluation, we use different models as backbones to test the condensation methods.
For distribution matching methods, two backbone models with shared parameters are used to generate
embeddings that are matched. For trajectory matching methods, two backbone models are used
to generate expert trajectories and student trajectories, respectively, to match the corresponding
parameters. For gradient matching methods, two backbone models with shared parameters are
used to generate gradients for real and synthetic data. Models are selected using grid-searched
hyperparameters. The details of the backbone architecture are as follows:

23

37922 https://doi.org/10.52202/079017-1197

Table B6: Node Clustering without Pretraining Results on Cora and Citeseer with varying
condensation ratios (r). The best results are highlighted in bold, the runner-ups are underlined, and
the best results of condensed datasets are shaded in gray .

Citeseer Cora
Methods Ratio (r) Acc. NMI ARI F1 Ratio(r) Acc. NMI ARI F1

K-means 54.4 31.2 28.5 41.3 50.0 31.7 37.6 23.9
DAEGC [33] Full 67.2 39.7 41.0 63.6 Full 70.4 52.8 68.2 49.6

0.90% 40.6 19.1 17.5 36.0 1.30% 36.6 13.5 9.0 34.3
1.80% 38.3 14.8 13.6 34.5 2.60% 33.5 13.9 7.1 33.4Random
3.60% 41.8 18.1 16.9 39.4 5.20% 30.2 0.4 0.0 6.8
0.90% 41.9 16.9 15.3 40.0 1.30% 37.4 18.2 11.7 35.0
1.80% 44.9 18.7 16.0 41.1 2.60% 36.6 16.4 11.9 34.0Herding
3.60% 58.1 27.8 29.2 52.3 5.20% 26.7 13.7 2.9 20.6
0.90% 37.9 13.4 11.1 35.2 1.30% 34.3 13.5 7.8 32.4
1.80% 50.0 23.5 22.9 46.5 2.60% 42.5 22.3 15.0 42.3K-Center
3.60% 31.9 14.0 10.2 31.0 5.20% 30.2 0.4 0.0 6.8
0.90% 41.4 16.9 16.2 38.6 1.30% 30.2 0.4 0.0 6.8
1.80% 44.1 18.1 18.1 38.8 2.60% 30.2 0.4 0.0 6.8GCDM
3.60% 22.8 1.8 1.2 20.9 5.20% 30.2 0.4 0.0 6.8
0.90% 23.5 2.1 1.1 17.7 1.30% 30.2 0.4 0.0 6.8
1.80% 45.3 19.1 17.7 42.9 2.60% 29.2 2.0 0.0 9.5DM
3.60% 25.9 4.5 3.5 20.0 5.20% 30.2 0.4 0.0 6.8
0.90% 28.6 10.2 6.3 25.1 1.30% 30.2 0.4 0.0 6.8
1.80% 57.1 31.4 26.2 49.5 2.60% 30.2 0.4 0.0 6.8DosCond
3.60% 44.3 20.6 17.0 38.6 5.20% 29.6 16.2 7.7 23.4
0.90% 61.8 34.0 34.7 55.9 1.30% 46.6 36.7 27.3 41.2
1.80% 59.6 33.0 32.6 50.3 2.60% 49.9 39.3 27.9 44.3GCond
3.60% 57.8 32.0 30.2 54.8 5.20% 44.6 40.9 25.1 37.3
0.90% 56.5 27.3 26.8 50.6 1.30% 30.2 0.4 0.0 6.8
1.80% 45.4 24.0 20.0 43.9 2.60% 30.2 0.4 0.0 6.8SGDD
3.60% 42.5 23.6 20.8 38.2 5.20% 33.2 17.9 8.8 25.5
0.90% 46.7 19.9 18.8 43.4 1.30% 42.1 23.5 17.7 39.2
1.80% 56.8 27.4 27.6 52.8 2.60% 54.4 31.8 26.4 50.2SFGC
3.60% 47.7 19.0 16.9 45.3 5.20% 30.1 0.4 -0.1 6.8
0.90% 41.4 16.9 16.2 38.6 1.30% 40.7 16.9 11.6 37.3
1.80% 44.1 18.1 18.1 38.8 2.60% 30.8 12.9 9.3 29.2GEOM
3.60% 22.8 1.8 1.2 20.9 5.20% 35.6 16.0 11.5 33.6

• MLP: MLP is a simple neural network consisting of fully connected layers. The MLP we use
is structured similarly to a GCN but without the adjacency matrix input, effectively functioning
as a standard multi-layer perceptron (MLP). The MLP we adopted consists of 2 layers with 256
hidden units in each layer.

• GCN [16]: GCN is the most common architecture for evaluating condensed datasets in main-
stream GC methods. GCN defines a localized, first-order approximation of spectral graph
convolutions, effectively aggregating and combining features from a node’s local neighborhood,
leveraging the graph’s adjacency matrix to update node representations through multiple layers.
We adhere to the setting in previous work [15] and use 2 graph convolutional layers for node
classification, each followed by ReLu activation and batch normalization depending on the config-
uration. For graph classification, we use a 3-layer GCN with a sum pooling function. The hidden
unit size is set to 256.

• SGC [37]: SGC is the standardized model used for condensation in previous works. It can be
regarded as a simplified version of GCN, which ignores the nonlinear activation function but still
keeps two Graph Convolution layers, thereby preserving similar graph filtering behaviors. In the
experiments, we use 2-layer SGC with no bias.

24

37923https://doi.org/10.52202/079017-1197

Table B7: Node Clustering with Pretraining Results on Cora and Citeseer with varying condensa-
tion ratios (r). The best results are highlighted in bold and the runner-ups are underlined.

Citeseer Cora
Methods Ratio (r) Acc. NMI ARI F1 Ratio (r) Acc. NMI ARI F1

0.90% 27.3 5.5 4.7 24.6 1.30% 41.7 15.8 13.5 37.3
1.80% 32.7 9.7 7.8 31.4 2.60% 36.5 14.6 9.1 35.4Random
3.60% 44.6 16.0 14.1 43.0 5.20% 44.4 23.5 14.9 45.7
0.90% 36.7 12.8 11.1 34.4 1.30% 40.7 18.3 12.9 40.0
1.80% 36.8 13.1 10.2 36.2 2.60% 36.1 14.6 8.7 34.9Herding
3.60% 39.4 16.9 14.1 38.1 5.20% 35.0 16.6 10.9 32.0
0.90% 33.7 9.7 8.3 29.5 1.30% 41.8 19.3 14.5 39.2
1.80% 37.6 15.6 13.9 34.9 2.60% 38.5 20.8 14.8 38.3K-Center
3.60% 41.7 17.1 14.3 40.5 5.20% 38.5 17.4 10.9 36.3
0.90% 31.1 9.6 6.6 27.3 1.30% 21.3 3.7 1.7 20.1
1.80% 33.1 11.9 11.1 30.4 2.60% 27.0 10.9 5.7 26.7GCDM
3.60% 39.7 18.0 15.2 34.4 5.20% 30.0 12.4 7.0 29.6
0.90% 36.5 15.7 12.9 30.0 1.30% 27.3 9.3 4.5 25.7
1.80% 37.1 10.6 8.6 31.4 2.60% 20.8 3.3 0.9 19.0DM
3.60% 29.2 6.0 4.0 23.6 5.20% 23.5 4.8 1.6 16.3
0.90% 62.7 35.9 35.1 60.6 1.30% 60.2 42.5 29.4 61.2
1.80% 45.2 17.9 15.4 40.8 2.60% 44.5 30.1 16.6 46.5DosCond
3.60% 58.6 29.6 28.5 55.8 5.20% 25.4 9.8 5.0 25.0
0.90% 44.0 22.5 18.7 40.3 1.30% 67.4 45.1 40.4 65.8
1.80% 58.5 30.9 29.6 54.9 2.60% 63.7 44.5 36.2 61.8GCond
3.60% 52.0 26.8 22.5 46.6 5.20% 60.9 47.1 37.1 56.0
0.90% 46.7 23.5 19.1 42.3 1.30% 65.1 44.6 37.1 64.6
1.80% 55.4 28.0 25.8 50.9 2.60% 35.7 19.2 11.7 34.8SGDD
3.60% 40.5 18.3 14.3 34.8 5.20% 74.8 51.9 53.1 72.8
0.90% 34.2 9.8 8.4 32.2 1.30% 41.2 21.2 13.9 40.2
1.80% 47.1 21.7 20.6 43.5 2.60% 38.7 20.7 13.5 36.2SFGC
3.60% 48.5 23.3 21.5 44.8 5.20% 37.3 21.1 14.4 34.1
0.90% 32.7 10.5 8.6 31.7 1.30% 39.1 20.1 11.4 40.0
1.80% 48.2 23.6 22.7 45.2 2.60% 32.2 14.5 8.9 29.4GEOM
3.60% 54.2 25.7 24.9 52.1 5.20% 38.1 22.0 12.7 34.7

Table B8: Structural Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM

Citeseer
0.90% 0.44 0.38 0.44 0.76 0.76 0.73 0.77 0.67 0.62 0.59
1.80% 0.46 0.45 0.46 0.78 0.78 0.66 0.75 0.68 0.60 0.56
3.60% 0.44 0.40 0.44 0.76 0.76 0.70 0.74 0.75 0.59 0.57

Cora
1.30% 0.56 0.59 0.62 0.80 0.80 0.79 0.81 0.75 0.54 0.51
2.60% 0.50 0.65 0.67 0.80 0.80 0.82 0.79 0.81 0.53 0.53
5.20% 0.65 0.55 0.67 0.82 0.82 0.82 0.81 0.71 0.54 0.55

• Cheby [2]: Cheby utilizes Chebyshev polynomials to approximate the graph convolution op-
erations, which retains the essential graph filtering properties of GCN while reducing the com-
putational complexity. We use a 2-layer Cheby with 256 hidden units and ReLU activation
function.

• GraphSAGE [12]: GraphSAGE is a spatial-based graph neural network that directly samples
and aggregates features from a node’s local neighborhood. In the experiments, We use a two-layer
architecture and a hidden dimension size of 256 while using a mean aggregator.

• APPNP [18]: APPNP leverages personalized PageRank to propagate information throughout
the graph. This method decouples the neural network used for prediction from the propagation
mechanism, enabling the use of personalized PageRank for message passing. In the experiments,

25

37924 https://doi.org/10.52202/079017-1197

Table B9: Contextual Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM

Citeseer
0.90% 0.62 0.60 0.62 0.65 0.65 0.55 0.70 0.74 0.62 0.59
1.80% 0.60 0.54 0.60 0.64 0.65 0.58 0.68 0.67 0.60 0.56
3.60% 0.57 0.56 0.57 0.68 0.68 0.59 0.68 0.52 0.59 0.57

Cora
1.30% 0.52 0.48 0.53 0.52 0.52 0.45 0.54 0.41 0.54 0.51
2.60% 0.50 0.45 0.54 0.54 0.54 0.56 0.55 0.57 0.53 0.53
5.20% 0.56 0.58 0.59 0.55 0.55 0.55 0.57 0.62 0.54 0.55

we use a 2-layer model implemented with ReLU activation and sparse dropout to condense and
evaluate.

• GIN [40]: GIN aggregates features by linearly combining the node features with those of their
neighbors, achieving classification power as strong as the Weisfeiler-Lehman graph isomorphism
test. We specifically applied a 3-layer GIN with a mean pooling function to compress and evaluate
graph classification datasets. For the datasets DD and NCI1, we use negative log-likelihood loss
function for training and softmax activation in the final layer. For ogbg-molhiv, ogbg-molbbbp
and ogbg-molbace, we use binary cross-entropy with logits and sigmoid activation in the final
layer.

• Graph Transformer [31]: The Graph Transformer leverages the self-attention mechanism of the
Transformer to capture long-range dependencies between nodes in a graph. It employs multi-head
self-attention to dynamically weigh the importance of different nodes, effectively modeling
complex relationships within the graph. We use a two-layer model with layer normalization and
gated residual connections, following the settings outlined in [31].

B.4.2 Additional Results

Table B10 shows the node classification accuracy of datasets condensed by traditional core-set
methods, which is backbone-free, evaluated across different backbone architectures on Cora.

Table B10: Node Classification Accuracy (%) of core-set datasets across different backbone
architectures on Cora (2.6%).

Methods SGC GCN GraphSage APPNP Cheby GTrans. MLP
Full Dataset 80.8 80.8 80.8 80.3 78.8 69.6 81.0
Herding 74.8 74.0 74.1 73.3 69.6 65.4 74.1
K-Center 72.5 72.4 71.8 71.5 63.0 64.3 72.2
Random 71.7 72.4 71.6 71.3 65.3 62.7 71.6

B.5 Settings and Additional Results of Initialization Impacts (RQ5)

B.5.1 Experimental Settings

The details of evaluated initialization mechanism are as follows:

• Random Sample. We randomly select features from nodes in the original graph that correspond
to the same label, using these features to initialize the synthetic nodes.

• Random Noise. Consistent with prevalent dataset condensation methods, we initialize node
features by sampling from a Gaussian distribution.

• Center. This method involves extracting features from nodes within the same label, applying the
K-Means clustering algorithm to these features while treating the graph as a singular cluster and
utilizing the centroid of this cluster as the initialization point for all synthetic nodes bearing the
same label.

• K-Center. Similar to the Center initialization method, but employ the K-Means Clustering
method on original nodes by dividing each class of the original graph nodes into n clusters,

26

37925https://doi.org/10.52202/079017-1197

where n is the number of synthetic nodes per class. We select the center of these clusters as the
initialization of synthetic nodes in this class.

• K-Means. Similar to the K-Center initialization method, but instead of using the centroids of
clusters to initialize the synthetic dataset, randomly select one node from each cluster to serve as
the initial state for the synthetic node.

B.5.2 Additional Results

The performance of different initialization mechanism on Cora (2.6%) and Cora (0.26%) are shown
in Table B11 and Table B12, respectively. It is evident that distribution matching methods are highly
sensitive to the choice of initialization, especially when the dataset is condensed to a smaller scale.
Additionally, trajectory matching methods perform poorly with random noise initialization and often
fail to converge.

Table B11: Performance comparison of differ-
ent initialization on various methods for Cora
(2.60%).The best results are shown in bold .

Methods Random
Noise

Random
Sample Center K-Center K-Means

GCDM 34.5 73.3 77.4 78.7 75.9
DM 34.5 73.7 77.7 78.1 75.9

DosCond 78.8 81.9 81.8 82.5 81.8
GCond 74.8 75.1 76.3 76.2 75.1
SGDD 81.7 81.8 82.6 82.7 82.5
SFGC 52.5 80.7 79.7 81.5 81.8
GEOM - 77.9 48.3 78.8 78.9

Table B12: Performance comparison of differ-
ent initialization on various methods for Cora
(0.26%). The best results are shown in bold .

Methods Random
Noise

Random
Sample Center K-Center K-Means

GCDM 32.3 37.8 78.7 78.7 34.3
DM 32.2 38.4 77.9 77.9 34.2

DosCond 78.7 82.4 80.5 82.0 81.9
GCond 80.2 81.6 80.1 81.2 80.7
SGDD 82.2 82.2 82.7 82.7 81.5
SFGC 79.7 79.7 79.8 79.8 72.0
GEOM - 49.6 51.3 51.3 65.0

B.6 Settings and Additional Results of Efficiency and Scalability (RQ6)

B.6.1 Experimental Settings

For a fair comparison, all the experiments are conducted on a single NVIDIA A100 GPU. Then we
report the overall condensation time (min) when achieving the best validation performance, the peak
CPU memory usage (MB) and the peak GPU memory usage (MB).

B.6.2 Additional Results

The detailed time and space consumption of the node-level GC methods on ogbn-arxiv (0.50%) and
graph-level GC methods on ogbg-molhiv (1 Graph/Cls) are shown in Table B13 and Table B14
respectively. For node-level methods, although trajectory matching methods (SFGC [47], GEOM [45])
may consume less time and memory due to their offline matching mechanism, the expert trajectories
generated before matching can occupy up to 764 GB of space as shown in Table B15, significantly
impacting storage requirements. Among all the graph-level GC methods, Mirage [11] stands out by
not relying on any GPU resources for calculation and can condense data extremely quickly, taking
only 1% of the time required by other methods.

Table B13: Time and memory consumption of different methods on ogbn-arxiv (0.50%).
Consumption GCDM DM DosCond GCond SGDD SFGC GEOM

Time (min) 212.90 57.70 117.38 266.57 226.62 245.65 148.37
Acc. (%) 58.09 58.09 60.73 61.28 61.51 67.13 67.29

CPU Memory (MB) 2720.88 2708.70 5372.60 5270.70 5426.30 3075.30 3335.10
GPU Memory (MB) 2719.74 2552.63 3850.24 3850.24 8326.35 4050.12 5308.42

C Reproducibility and Limitations

Accessibility and license. All the datasets, algorithm implementations, and experimental settings
are publicly available in our open project (https://github.com/RingBDStack/GC-Bench). Our

27

37926 https://doi.org/10.52202/079017-1197

https://github.com/RingBDStack/GC-Bench

Table B14: Time and memory consumption of
different methods on ogbg-molhiv (1 Graph/Cls).

Consumption DosCond KiDD Mirage
Time (min) 218.11 202.38 2.91
Acc. (%) 67.41 66.44 71.09

CPU Memory (MB) 2666.29 3660.79 752.22
GPU Memory (MB) 1005.98 6776.42 0.00

Table B15: Expert trajectory size (GB) for
trajectory matching methods.
Citeseer Cora ogbn-arxiv

129 152 15
Flickr Reddit ACM DBLP

21 42 312 764

package (codes and datasets) is licensed under the MIT License. This license permits users to freely
use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the software, provided
that the original copyright notice and permission notice are included in all copies or or substantial
portions of the software. The MIT License is widely accepted for its simplicity and permissive terms,
ensuring ease of use and contribution to the codes and datasets. We bear all responsibility in case of
violation of rights, etc, and confirmation of the data license.

Datasets. Cora, Citeseer, Flickr, Reddit and DBLP are publicly available online3 with the MIT
license. ogbn-arxiv, ogbg-molbace, ogbg-molbbbp and ogbg-molhiv are released by OGB [13]
with the MIT license. ACM [46] is the subset hosted in [35] with the MIT license. NCI1 [32] and
DD [4] are available in TU Datasets [27] with the MIT license. All the datasets are consented to by
the authors for academic usage. All the datasets do not contain personally identifiable information or
offensive content.

Limitations. GC-Bench has some limitations that we aim to address in future work. Our current
benchmark is limited to a specific set of graph types and graph tasks and might not reflect the full
potential and versatility of GC methods. We hope to implement more GC algorithms for various tasks
(e.g. subgraph classification, community detection) on more types of graphs (e.g., dynamic graph,
directed graph). Besides, due to resource constraints and the availability of implementations, we
could not include some of the latest GC algorithms in our benchmark. We will continuously update
our repository to keep track of the latest advances in the field. We are also open to any suggestions
and contributions that will improve the usability and effectiveness of our benchmark, ensuring it
remains a valuable resource for the IGL research community.

3https://github.com/pyg-team/pytorch_geometric

28

37927https://doi.org/10.52202/079017-1197

https://github.com/pyg-team/pytorch_geometric

