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Abstract

Graph Neural Networks (GNNSs) exhibit strong potential in node classification
tasks through a message-passing mechanism. However, their performance often
hinges on high-quality node labels, which are challenging to obtain in real-world
scenarios due to unreliable sources or adversarial attacks. Consequently, label
noise is common in real-world graph data, negatively impacting GNNs by prop-
agating incorrect information during training. To address this issue, the study of
Graph Neural Networks under Label Noise (GLN) has recently gained traction.
However, due to variations in dataset selection, data splitting, and preprocessing
techniques, the community currently lacks a comprehensive benchmark, which
impedes deeper understanding and further development of GLN. To fill this gap,
we introduce NoisyGL in this paper, the first comprehensive benchmark for graph
neural networks under label noise. NoisyGL enables fair comparisons and detailed
analyses of GLN methods on noisy labeled graph data across various datasets, with
unified experimental settings and interface. Our benchmark has uncovered several
important insights missed in previous research, and we believe these findings will
be highly beneficial for future studies. We hope our open-source benchmark library
will foster further advancements in this field. The code of the benchmark can be
found in https://github.com/eaglelab-zju/NoisyGL,

1 Introduction

Many complex real-world systems can be represented as graph-structured data, including the citation
network [19]], biological networks [[7], traffic networks [6], and social networks [9]]. Graph Neural
Networks (GNNs) have demonstrated substantial effectiveness in modeling graph data through
a message-passing process that aggregates information from neighboring nodes [5]. Among the
numerous applications of GNNs, node classification is the most thoroughly studied task, where GNNs
are trained with the explicit assistance of semi-supervised node labels [1].

Although GNNs have achieved success, their performance in semi-supervised graph learning tasks
is highly dependent on precise node labels, which are difficult to obtain in real-world scenarios [[1]].
For instance, in online social networks, the process of manually labeling millions of users is costly,
and the labels often depend on unreliable user input [18]. Furthermore, graph data is vulnerable
to adversarial label-flipping attacks [31]. Consequently, label noise is widespread in graph data.
Research has demonstrated that label noise can significantly reduce the generalizability of machine
learning models on computer vision and natural language processing scenarios [21]]. In GNNs, the
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message-passing mechanism can further exacerbate this negative impact by propagating incorrect
supervision from mislabeled nodes throughout the graph, leading to substantial results [18]].

To address this challenge, an intuitive solution is to draw on the success of previous Learning with
Label Noise (LLN) strategies and apply them to GNNs. However, these approaches are not always
applicable to graph learning tasks due to the non-i.i.d nature, sparse labeling of graph data, and
message-passing mechanism of GNNs[1]]. All these factors make GNNs vulnerable to label noise
and hinder traditional LLN methods from being directly applied to graph learning tasks.

In recent years, researchers have developed a series of Graph Neural Networks under Label Noise
(GLN) methods to achieve robust graph learning in the presence of label noise. These methods
succeeded greatly by adopting Loss regularization [14} 31} 11} 2], Robust training strategy [24], Graph
structure augmentation [1} [18}32], and contrastive learning [30,[10]. Despite the researcher’s claim
of the robustness of their proposed GLN methods, the comprehensive benchmark for evaluating these
methods remains absent, bringing out the following problems: 1) Existing works utilize different
datasets, noise types, rates, data splitting, and processing strategies, which makes it challenging
to achieve a fair comparison. 2) Existing work lacks an empirical understanding regarding the
impact of the graph structure itself on label noise—a critical distinction between LLN and GLN. 3)
No existing work has thoroughly examined the applicability of traditional LLN methods to graph
learning problems. These problems hinder us from gaining a comprehensive understanding of the
progress in this field.

In this research, we present NoisyGL — the first comprehensive benchmark for graph neural networks
under label noise. Our benchmark includes seventeen representative methods: ten GLN methods to
assess their effectiveness and robustness on graphs with noisy labels, and seven LLN methods to
evaluate their applicability in graph learning tasks. We employ standardized backbones and APIs,
consistent data splitting, and processing strategies to ensure a fair comparison and allow users to
construct their models or datasets with minimal effort easily. Besides performance and robustness
evaluations, our benchmark supports multidimensional analysis, enabling researchers to explore the
time efficiency of different methods and understand the influence of graph structure on the handling
of label noise.

Through extensive experiments, we have the following key findings: 1) Simply applying LLN
methods can’t significantly improve GNNs’ robustness to label noise. 2) Existing GLN methods can
alleviate label noise in their applicable scenarios. 3) Pair noise is the most harmful label noise due
to its misleading impact. 4) Negative effects of label noise can spread through the graph structure,
especially in sparse graphs. 5) GLN methods involving graph structure augmentation effectively
mitigate the spread effect of label noise. Our contributions can be summarized as follows:

* Perform an in-depth review of the current research challenge. In our study, we revisited and
scrutinized the entire progression of GLN. We discovered that the lack of a thorough benchmark in
this domain significantly hinders a deeper understanding.

* Provide a comprehensive and user-friendly benchmark. We present NoisyGL, the first compre-
hensive benchmark for GLN. In this benchmark, we have selected and implemented a variety of
LLN and GLN methods and evaluated them across eight commonly used datasets under uniform
experimental settings. Our benchmark library is available to the public on GitHub, intending to aid
future research efforts.

* Highlight the key findings and future opportunities. Our study has resulted in several crucial
findings that have the potential to greatly advance this field.

2 Formulations and Background

Notations. Consider a graph denoted by G = {V, £}, where V is the set of N nodes and &
is the set of edges. A € R¥*N is the adjacency matrix and X = [x1,%g,---xy]| € RV*d
denotes node features matrix with dimension d. Each node has a ground truth label, the set of
which is denoted by Y = {y7,v5, -, yx - We focus on the semi-supervised node classification
problem, where only a small set of nodes Vy, has assigned labels for training procedure, denoted
as Vi = {yi,y5, -,y }, where [ is the number of labeled nodes. The rest of them are unlabeled
nodes, denoted as Vy = V — V. Given X and A, the goal of node classification is to train a

classifier fy : (X, A) — YNxe = {¥1,¥2, -, ¥~} by minimizing L(fp(X, A), V), where c is
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the number of classes, L is a loss function that measures the difference between the predicted labels
and the ground truth labels. Typically fy is a well-designed Graph Neural Network(GNN). In this
way, according to the Empirical Risk Minimization (ERM) principle, the well-trained classifier fy-
can generalize on unseen data Vy;.

However, the accessible labels )1, can be corrupted by label noise in the real world, reducing the
generalization ability of fp-. We denote the observed noisy labels as Y = {y1, 92, - -9} and Yy, is
their corresponding true labels. Typically, we consider two types of label noise, and here are their
definitions:

Uniform noise [21] or symmetric noise assumes that the true label has a probability of ¢ € (0, 1) to
be uniformly flipped to another class. Formally, for V;..;, we have p(y = j|ly* = i) = -5, where c
represents the number of classes.

Pair noise [28] or pair flipping. Assumes that the true label can only be flipped to its corresponding
pair class with a probability e. Formally, we have p(y = yp|y* = yc) = eand V2, . p(y = jly* =
ye) = 0, where y,, is the corresponding pair class of y..

The transition patterns of pair noise and uniform noise are illustrated in the Appendix. Itis
important to note that these noise types assume that the transition probability depends only on the
observed and true labels, and is independent of instances. In real-world scenarios, label noise can be
much more complex. We focus on the most frequently used noise types, leaving the investigation of
the other noise types for future studies.

3 Benchmark Design

3.1 Datasets and Implementations

Datasets. We selected 8 node classification datasets widely used among different studies on graph
label noise. These selected datasets come from different domains and exhibit different characteristics,
enabling us to evaluate the generalizability of existing methods across a range of scenarios. Specifi-
cally, we use three classic citation datasets [19], namely Cora, Citeseer, Pubmed, and one author
collaboration network DBLP [[15]], as well as two representative product co-purchase network datasets
Amazon-Computers and Amazon-Photo [20]]. Additionally, to analyze the model performance on
heterophilous graphs, we include two representative social media network datasets BlogCatalog and
Flickr [26]. We present detailed introductions to these datasets in Appendix [C.1}

The splitting methods for training, validation, and test sets of the same dataset in different tasks are not
always consistent. This necessitates a unified dataset splitting in our work to achieve fair comparisons.
For three citation datasets, i.e. Cora Citeseer and Pubmed, we follow the most commonly used split
in [31} 24} 11, 18]]. For the author collaboration network DBLP, we follow the split as [[1,10]. For
two co-purchase datasets Amazon-Computers and Amazon-Photo, we follow the split as [24]]. For
the social network datasets BlogCatalog and Flickr, we use the same split as [[L8]. In this study, we
assume that the labels of both the training set and validation set have been affected by label noise. A
clean test set is used to evaluate the model’s performance.

Label Corruption. In each experiment, we first generate a label transition probability matrix based
on the given noise rate and the definition of noise. Then, for each clean label in the training and
validation set, we draw a noisy label from a categorical distribution according to its corresponding
transition probability. These noisy labels are used in the subsequent training procedure.

Implementations We consider a collection of state-of-the-art GLN algorithms, including NRGNN [[1]],
RTGNN [18], CP [31]], D-GNN [14], RCNGLN [32], CLNode [24], PIGNN [2]], UnionNET [11]],
CGNN [30], and CRGNN [10]; and a set of well-designed LLN methods, including two loss
correction methods Forward and Backward correction [16], two robust loss functions APL [13]]
and SCE [22], two multi-network learning methods Coteaching [4] and JoCoR [23]], and one noise
adaptation layer method S-model [3]]. We have rigorously reproduced all methods according to their
papers and source code. More details about these algorithms and implementations can be found in

the Appendix
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3.2 Research Questions

In this study, we aim to answer the following research questions:
RQ1: Can LLN methods be applied directly to graph learning tasks?

Motivation. While recent studies have suggested that applying traditional Learning with Label Noise
(LLN) methods directly to graph learning tasks may not yield the best results [1], a comprehensive
analysis of this issue is still lacking. We aim to investigate the suitability of existing LLN methods for
graph learning and understand the underlying reasons. By tackling this question, we can gain a clearer
insight into the unique challenges posed by graph label noise and identify which LLN techniques
remain effective in graph learning contexts.

Experiment Design. To investigate this question, we select various LLN methods referenced in
the Section and implement them on the GCNJ[8]] backbone using unified hyper-parameters. We
then perform node classification experiments on the most frequently used datasets, evaluating their
effectiveness under various types and levels of label noise. For each method and dataset, we record
the mean accuracy metrics and standard deviations over 10 runs. Data splitting is performed randomly
with a consistent ratio. By comparing the performance of these LLN methods with GCN, we
determine whether they enhance the robustness of the backbone.

RQ2: How much progress has been made by existing GLN methods?

Motivation. While numerous GLN methods have been introduced in the literature, previous studies
have used varied datasets, data splits, and preprocessing techniques, complicating the fair comparison
of these methods’ performance. Furthermore, we notice that the majority of existing approaches have
been tested on homophily graphs, leading to concerns about their relevance to heterophily graphs,
which are also commonly encountered in practice. By investigating this issue, we seek to determine
if current GLN methods effectively address graph label noise and to identify their shortcomings.

Experiment Design. To address this question, we select and implement many advanced GLN
methods as described in Section[3.1} We then assess the performance of these methods using uniform
datasets and experimental settings. For each method and dataset, we record the mean test accuracy
and the standard deviation across 10 runs. Since many of these GLN methods use GCN as their
foundation, we compare their performance with GCN to evaluate their robustness to label noise.

RQ3: Are existing GLN methods computationally efficient?

Motivation. The efficiency of GNNs in terms of computation is crucial for their use in real-world
applications, and considering label noise can lead to higher computational expenses. While previous
research has deeply investigated the accuracy, generalization, and robustness of the GLN method, it
has failed to address the computational efficiency of these approaches. Therefore, it is important to
evaluate the computational efficiency of different methods.

Experiment design. To answer this question, we recorded the runtime and test accuracy of various
methods on different datasets under 30% uniform noise. Specifically, for each method, we conducted
10 experiments for each method on each dataset. In each experiment, we measured the time when
the model achieved the best accuracy on the validation set, considering it as the total runtime for
that method. Through these experiments, we can assess whether the GLN methods strike a balance
between computational efficiency and test accuracy.

RQ4: Are existing GLN methods sensitive to noise rate?

Motivation. Previous studies utilize different noise rates, making it difficult to fairly compare
the performance of various methods. Therefore, it is essential to assess different methods using a
consistent set of noise rates and to verify if existing GLN methods maintain stable performance across
different noise levels.

Experiment Design. To investigate this question, we assess the performance of several GLN methods
over varying noise levels using the same datasets and noise types. Specifically, we introduce label
contamination with pair noise and uniform noise at rates of 10%, 20%, 30%, 40%, and 50%, while
using clean labels as a baseline. We then train the GLN methods on these datasets following the
experimental settings described in RQ2 and record the mean test accuracy and standard deviation
from 10 runs. This evaluation allows us to determine the robustness of each method.

RQS5: Are existing GLN methods robust to different types of label noise?
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Figure 1: Test accuracy of LLN and GLN methods on DBLP dataset under 30% pair and uniform
noise, respectively (10 Runs).

Motivation. Existing GLN methods have been developed with a variety of techniques and underlying
assumptions, so they have unique strengths and weaknesses in managing different types of noise. It is
crucial to identify which type of noise is most detrimental to graph learning and to understand the
underlying reasons. Addressing this question will enhance our understanding of the specific scenarios
in which each method excels and the distinct characteristics of different label noise types.

Experiment design. To tackle this question, we maintain a constant noise rate of 30% and apply
both uniform and pair noise to the labels. Subsequently, we train GLN models on these noisy datasets
following the experimental settings specified in RQ2 and record the mean test accuracy and standard
deviation over 10 runs. This analysis enables us to determine the best method for each type of label
noise and to comprehend the characteristics of various label noise types.

RQ6: Good or bad? Revisiting the role of graph structure in label noise.

Motivation. The graph structure plays a key role in distinguishing graph data from other types
of data. The success of graph neural networks has largely relied on the neural message-passing
mechanism, which aggregates information from neighboring nodes. However, in the presence of
label noise, the messages propagated along the edges can have dual effects: on the one hand, label
noise can negatively impact graph learning by spreading incorrect information; on the other hand, it
can be alleviated by aligning with the majority label among the neighbors. Therefore, it is crucial to
investigate whether the additional graph structure amplifies the effects of label noise and whether
existing GLN methods can effectively address this challenge.

Experiment Design. To answer this question, we conducted comprehensive experiments on eighteen
methods, including one GCN baseline, seven LLN methods, and ten GLN methods. Aiming to figure
out how graph structure affects graph learning in the presence of label noise. Specifically, we recorded
several metrics, including the Accuracy of Correctly Labeled Training nodes (ACLT), Accuracy
of Incorrectly Labeled Training nodes (AILT), Accuracy of Unlabeled Correctly Supervised nodes
(AUCS), Accuracy of Unlabeled Unsupervised nodes (AUU), and Accuracy of Unlabeled Incorrectly
Supervised nodes (AUIS) under 30% uniform noise. Here, “correctly supervised,” “incorrectly
supervised,” and “unsupervised” refer to unlabeled nodes that have a correctly labeled training node,
an incorrectly labeled training node, and no labeled node in their neighborhood, respectively.

4 Experiment Results and Analyses

We present the performance of the eight methods, including vanilla GCN as a baseline, seven LLN
methods with GCN backbone, and 10 GLN methods on eight datasets with different types and rates
of label noise in Appendix [A] Here are the key findings from the experimental results.

® (RQ1) Most LLN methods do not significantly improve GNN robustness to label noise.
Table Figure[T]and Figure[2]reveal that most of the selected LLN methods do not substantially
improve the performance of the GNN backbone when label noise is present. Mostly, the performance
of these LLN methods remains statistically similar to the baseline. In some cases, the application of
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Figure 2: Test accuracy of GLN and LLN methods on DBLP dataset under different rate of pair and
uniform noise (10 Runs).
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Figure 3: Test accuracy of GLN methods on all dataset under 30% uniform noise (10 Runs).

additional LLN methods can lead to a worse result. Three LLN methods incorporate a noise transition
matrix, i.e. S-model, Forward, and Backward correction, demonstrating performance similar to the
baseline in most cases. Typically, these transition matrix-based methods learn a diagonal transition
matrix, indicating their failure to learn the label transition pattern due to the scarcity of annotations.
The multi-network learning methods Coteaching and JoCoR perform similarly to the baseline on
sparse graphs but underperform on dense graphs. Notably, we find that two robust loss functions,
Active Passive Loss (APL) and Symmetric Cross-Entropy (SCE), slightly enhance the robustness of
the baseline model across most datasets. This improvement is likely due to their ability to reduce
over-fitting on mislabeled samples, though it is limited by i.i.d. assumptions. Therefore, we conclude
that merely applying LLN methods to GNNs does not achieve a label noise-robust graph learning
solution. Detailed experimental results are available in Appendix [A]

@ (RQ2) Existing GLN methods can alleviate label noise in most cases, but this improvement
is limited to specific applicable scenarios. As illustrated in Table [A4] [A5|and Figure 3] for each
dataset, there is always at least one GLN method that consistently outperforms the baseline GCN
across different types of label noise, indicating that these GLN methods are effective in mitigating
the graph label noise problem. However, none of them consistently perform well across all datasets.
For example, NRGNN significantly outperforms the baseline GCN in Cora, Citeseer, and DBLP,
but not in other datasets. This observation suggests that existing GLN methods cannot generalize
across different types of data. Additionally, we observed that on Flickr, all GLN methods fail to
achieve better performance than the baseline, highlighting their deficiencies in dealing with highly
heterophilous graphs. Detailed experimental results are available in Appendix [A]

® (RQ3) Some GLN methods are computationally inefficient. Table@ldemonstrates that multiple
GLN methods, although effective at reducing label noise, often require substantial computational
resources. Figure ] indicates that some modern GLN techniques struggle to balance performance
with computational efficiency. For instance, RNCGLN is the slowest, taking 66.8 times longer than
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Figure 4: Time consumption and Test accuracy of different GLN methods on Cora and DBLP under
30% uniform noise (10 Runs).

Table 1: Misleading train accuracy of different methods under pair and uniform noise (10 Runs)

Dataset (Avg. # Degree) Noise type GCN JoCoR APL NRGNN CLNode

50% Uniform noise ~ 78.49 +9.87  70.82+3.87 77.29+12.35 16.16+7.00 68.46+17.64
50% Pair Noise 94.53 £5.51  84.90+3.49 9293+£6.46 64.05+12.02 88.03 £6.22
50% Uniform noise ~ 98.78 £1.15  82.64+5.51 93.21+5.13  32.74+6.88 79.54+15.19
50% Pair Noise 98.54£246  87.54+549 96.19+£3.85 60.74+12.91 82.23£8.78
50% Uniform noise ~ 19.68 +£6.59  19.02+5.02  23.49+6.44  13.36 +2.89 15.27 £ 5.00
50% Pair Noise 75.30£7.91  66.85+591 7242+£9.90 45.17+859 64.34 £11.66
50% Uniform noise ~ 29.13+9.95 27.73+13.31 42.23+16.14 7.93+297 31.67 £9.33
50% Pair Noise 7250+ 15.54 64.25+£7.95 73.39+£13.65 56.924+10.29 64.70 £11.64

Cora (3.90)

Citeseer (2.74)

A-Computers (35.76)

Blogcatalog (66.11)

GCN on the Cora dataset and an astounding 2945.8 times longer on the DBLP dataset. Moreover,
RNCGLN runs out of memory on the PubMed dataset, underscoring its inefficiency in memory usage.
On the other hand, while the NRGNN method also consumes more time than GCN, it achieves a
reasonable trade-off between performance and computational efficiency across both datasets. Detailed
experimental results can be found in Appendix [A]

@ (RQ4) Most GLN methods can’t ensure a high performance under severe noise. Figure
depicts the performance of different GLN methods on the DBLP dataset under various types and
levels of label noise. We observe that, in general, as the noise level increases, the test accuracy of
each method decreases. This decrease is most pronounced for pair noise, where the test accuracy
of all methods almost halves at 50% pair noise. Additionally, we noticed that RTGNN maintains
relatively stable performance under uniform noise. Moreover, two methods, NRGNN and PIGNN,
show better results than the baseline GNN over different noise levels and types on the DBLP dataset.
Detailed experimental results are provided in Appendix [Al

® (RQS5) Pair noise is more harmful to graph learning. In our experiments, we consistently
observed that pair noise poses the most significant threat to the generalization ability of models.
We have an explanation for this finding: Recall the definition provided in Section[2} For uniform
noise, the true label has a chance to flip to any other class, incorrect parameter updates caused by
mislabeled instances can be partially compensated by other mislabeled instances. Pair noise, however,
restricts the flipping class to a specific pair class. For classifiers, this type of pair flipping can be
more misleading. After being fully trained, the classifier is more likely to over-fit the pair class. This
becomes particularly harmful when node features propagate through message-passing mechanisms,
which can lead to a more similar embedding within local neighbors and thus make them have a similar
probability of being misclassified to their corresponding pair class. To validate our hypothesis, we
conducted an empirical study. Specifically, we recorded the misleading train accuracy of five methods
(including 1 GCN baseline, 2 LLN and 2 GLN) on four datasets under 50% pair and uniform noise.
Here the misleading train accuracy represents the model’s accuracy in making incorrect predictions
to the misclassified classes. The experimental results (shown in Table|l)) demonstrate that pair noise
has the greatest impact, leading the model to overfit predict the mislabeled classes across different
methods and datasets. Detailed experimental results are available in Appendix
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Table 2: AUCS, AUU, AUIS of different methods on Cora and Amazon-Photos under 30% uniform
noise (10 Runs)

Dataset (Avg. # Degree) Records GCN NRGNN RTGNN CP CLNode RNCGLN

AUCS 80.76 +£2.95 83.11+3.16 75.53+4.80 80.85+3.46 76.77+3.30 77.06=+3.30

Cora (3.90) AUU 71.99+£3.44 81.33+£2.25 73.44+£495 72324445 6711£5.11 75.36£3.33
AUIS  51.55£6.53 7881+£5.94 69.50+8.06 51.46+12.99 43.86+7.48 72.9244.66

AUCS 92.21+244 85.62+£296 89.98+2.10 90.744+298 93.08+1.97 75.71+6.59

A-Photos (31.13) AUU  89.76 £2.84 84.29+2.79 89.19+2.13 88.85+£3.20 91.154+2.33 74.40+6.73
AUIS 87.01+4.72 82464586 88.84+4.76 86.34+399 88714340 71.08+7.89

® (RQ6) Graph structure can amplify the negative effect of label noise. From the experimental
results in Table 2] we observed that in the sparse graph (Cora), AUIS and AUU exhibit a significant
decrease compared to AUCS. Taking the performance of GCN on the Cora dataset as an example,
this decrease is 36.17% and 10.85%, respectively. These results highlight the importance of proper
supervision of neighboring nodes with correct annotations. Proper supervision of neighboring nodes
with correct annotations significantly improves the classification accuracy of unlabeled nodes, while
incorrect supervision of neighboring nodes severely reduces the classification accuracy of these
nodes, even worse than when no neighborhood supervision is applied. Besides, our investigation also
highlights the effectiveness of graph structure augmentation methods in mitigating the spread effect of
label noise. According to Table@], three methods, i.e. NRGNN, RTGNN, and RNCGLN, exhibit the
smallest decrease in AUIS compared to AUCS and AUU among all methods. This indicates that they
can effectively mitigate the spread effect of label noise. This phenomenon is even more pronounced
in sparse graphs like Cora. One possible explanation can be easily drawn from the previous findings:
The additional graph structure learning measures they adopted can lead to a denser graph structure
used for predictions during the up-sampling process. Consequently, the classifier can rely on more
references from the neighborhood, reducing its dependence on a small number of incorrectly labeled
samples. Detailed experimental results are available in Appendix [A]

@ (RQ6) Sparse graphs are more vulnerable to the spread effect of label noise. From Table [2| we
see that the propagation effect of label noise can be very severe on sparse graphs with a relatively low
average degree, like Cora, Citeseer, Pubmed, and DBLP, but not on dense graphs such as Amazon-
Computers, Amazon-Photos, Blogcatalog and Flickr. The explanation for this observation is that
unlabeled nodes on sparse graphs usually have only a limited number of annotated nodes in their
neighborhood available for training. The prediction results of unlabeled nodes rely heavily on the
annotated nodes in their neighborhood. However, if these nodes are incorrectly labeled, it will lead
to erroneous learning of the embedding for the unlabeled nodes. In contrast, for dense graphs, the
neighborhood of unlabeled nodes contains many annotated nodes that can serve as references. As a
result, the classifier model is more likely to find correct supervision from these annotated nodes. This
hypothesis is further supported by empirical evidence from Table[T] where we observe that compared
to sparse graphs (such as Cora, Citeseer, and Pubmed), GCN is less susceptible to misleading on dense
graphs like Blogcatalog and Amazon-Computers with a high average degree. Detailed experimental
results are available in Appendix [A]

5 Future directions

Based on the experimental results and analysis, we present several potential directions for the further
development of the GLN.

Designing widely applicable GLN approaches. Our observations in finding @ reveal that most
existing GLN methods cannot ensure consistently high performance across all scenarios. To address
this problem, we need to explore three key questions: 1) What are the common properties of different
graph datasets? 2) How can these common properties be utilized to enhance the robustness of GNNs
against label noise? Our finding ® indicated that enhancing graph structures can reduce the spread of
label noise in graphs with varying densities, leading to the third question: 3) If identifying common
properties is challenging, can we unify these features through data augmentation?

Designing GLN approaches for various graph learning tasks. Previous studies on GLN have
predominantly focused on node classification tasks. However, the field of graph learning includes
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other important tasks such as link prediction, edge property prediction, and graph classification.
However, there is limited work on graph classification [27] and graph transfer learning [29]] in the
presence of label noise. Overall, research in other areas of graph learning, beyond node classification,
is still in its early stages, and warrants further attention and exploration.

Considering other types of label noise in graph learning. Previous studies of GLN have mainly
focused on pair noise and uniform noise. These noise types are instance-independent, assuming that
the label corruption process is conditionally independent of node features when the true labels are
given [21]. However, there exists another type of label noise—instance-dependent label noise—that
is more realistic. In this case, the corruption probability depends on both the node features and
the observed labels. However, none of the previous GLN studies have investigated this problem.
Furthermore, unlike traditional machine learning tasks, graph learning involves additional graph
structure, so the label noise model on graphs may also depend on graph topology. These issues are
worth investigating, as they are more likely to occur in real-world scenarios.

6 Conclusions and Future work

In this research, we present NoisyGL, the first comprehensive benchmark designed for Graph Neural
Networks under Label Noise (GLN) conditions. NoisyGL includes 7 prominent LLLN and 10 GLN
methods, allowing the community to fairly evaluate their effectiveness and robustness across various
datasets. By using standardized backbones and APIs, consistent data splitting, and processing
strategies, NoisyGL ensures a fair comparison and allows users to easily construct their own models
or datasets with minimal effort. From this benchmark, we extract several key insights that are highly
promising for the progression of this evolving field: Firstly, we point out that simply applying LLN
methods cannot significantly improve the robustness of GNNs to label noise. Secondly, we found that
existing GLN methods can alleviate label noise in their own applicable scenarios. In particular, pair
noise emerges as the most harmful label noise due to its misleading effects. Finally, we discovered
that negative effects of label noise can spread through the graph structure, especially in sparse graphs,
and graph structure augmentation proves to be effective in mitigating the spread effect of label noise.

Border Impacts and Limitations. As NoisyGL provides a comprehensive benchmark for GNN's
under label noise, we aim to attract more attention on the quality of graph data from the graph
learning community, including the topology, node attributes and labels. However, NoisyGL also has
some limitations that we aim to address in future work. Firstly, we aim to include a broader range
of datasets to evaluate methods in different scenarios. While our current datasets are predominantly
homogeneous graphs, we recognize that most GLN methods struggle with heterogeneous graphs,
such as the Flickr network. Secondly, we hope to implement more GLN methods to gain a deeper
understanding of the progress in the field. We will continuously update our repository to keep track
of the latest advances in the field. We are also open to any suggestions and contributions that will
improve the usability and effectiveness of our benchmark.
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A Full experiment results

Table Al: Test accuracy of LLN methods (10 Runs)

Dataset Noise type GCN S-model Coteaching JoCoR APL SCE Forward Backward

0% clean 80.66 £0.54 80.744+0.58  75.124+2.05 80.51£0.61 80.09+0.72 82.08+0.80 80.79+0.86  80.78 +0.84
10% pair 76.44 £2.48 76414249  69.694+2.01 76194477 76.704£2.61 78554239 76.91+£294 76.93£293
20% pair 73.07£246 73.044+232 64.58+2.61 T71.53+£6.82 73.55+221 73.68+1.94 T7280+3.79 T73.12+3.24
30% pair 65.36 £5.54 65594528  56.87+4.40 64.52+5.80 65.97+5.13 66.97+4.29 65.96+6.17  65.64+6.85
40% pair 54.02£3.48 54.034+3.81 50.3945.38 55264543  56.97£6.77  54.56 =4.44 5591 £4.65  55.57 £4.29
50% pair 44.15+8.52  44.01+£9.38  41.154+6.03  43.66 £9.05  42.84+8.07 43.06+£6.71  43.32+8.77  43.514+9.04
10% uniform 78.58 £2.04 78.72+1.89 71.06+2.75 79.13+£237 79.10+1.25 78.94+1.75 7829+1.97  78.34+2.03
20% uniform  75.92+1.49 75.93+1.33  66.68+4.16 76.25+1.69 76.00+1.60 76.07+1.35 75.91+1.56  75.90+1.45

Cora 30% uniform  71.06 +£4.39 71.05+4.88 61.22+588 71.16+6.53 72.37+£4.00 71.15+£5.04 7247+481  72.06+5.10
40% uniform  67.88 +3.73  68.13+3.45  59.19+297  66.29+3.58 68.24+3.58 6590+4.16 68.01+3.96 68.21 +3.58
50% uniform 5442 +4.72 55154426 47.284+6.24  5342+5.26 55.13+4.96  53.76 +3.99  53.82+5.50  53.82+5.50
10% random 7819+ 1.98 78.34+£2.03 71.34+299 78.70+1.03 7850+1.65 79.19+1.49 78.75+1.36 78.75+1.36
20% random  74.27 +3.42 74.29+346 67.14+2.80 73.77+£4.99 7476+3.90 T74.78+293  74.57+3.40  74.66 +3.35
30% random  69.72+3.49  70.04£3.85 62.09+£4.06 70.84+£4.47 70.67+£4.17 70.17+449 70.01+524 70.05+5.19
40% random  62.62 +3.25 62.60 £3.35 54.50+£3.64 60.38+£2.75 62.51+2.75 60.13+3.52 61.39+5.90 59.25+11.14
50% random  55.59 £6.92 54.80+7.84 46.47+5.68 53.11+£7.08 55.06+7.28 51.76+562 54.36+8.65 53.57+7.25

0% clean 69.01 £0.72 68.77+0.97 58464395 71.49+0.36 69.36+0.91 70.28+0.68  69.55+0.86  69.36 + 0.90
10% pair 65.08£1.90 64.744+2.15 554543.61 682442.03 64784140 6543£2.07 65.15£1.40  65.06 £ 1.50
20% pair 5822+£3.29 57.794+3.68  50.69+4.65 61.11+£5.58 56.65+4.35 58.94+3.16 58.30+3.44  58.49+3.44
30% pair 53.66 £5.03 53414526 48344348  56.304£5.14 5348 4+5.51  54.61+4.53 5457559  54.62£5.19
40% pair 43.47+4.89  44.09 £4.91 42.05£3.73 4586 £6.77  43.85+4.31 4278 £6.83  44.26 £5.46  43.96 £5.11
50% pair 3548 £5.20  36.03+5.01  35.66+£4.56  36.50 £5.87  35.67+4.82 35824546 35.79+501  35.87+4.80
10% uniform  65.48 +£2.38  65.46 £2.13  57.03+3.75  69.06+£2.33  65.18 £2.20  66.47+227  66.65+1.63  66.36 +1.78
Citeseer 20% uniform  61.40 £3.00 61.10+3.11  50.94+4.17  65.92+2.52  60.74 £2.58 6253 +2.87  62.27+244  62.35+2.60
30% uniform  55.05+3.11 54.68 £3.26  46.75+4.80 57.14+3.22 54.61+3.68 57.00£2.87  56.05+3.31  55.81 +3.59
40% uniform  48.89 +£4.56 49.30 £4.34  43.54+4.05 53.43+548 49.184+3.99 49.07+£3.70  50.82+4.35  50.93 +4.35
50% uniform  43.51+5.26  43.61 £5.18  39.57+4.52  45.46+5.96 4298 +5.72 4249+£552  44.69 £5.95  44.74 +5.61
10% random  66.01 £2.17 65.92+2.39 57.92+3.80 69.54+2.05 66.01+2.18 67.03+1.55 66.92+2.06 67.02+2.08
20% random  61.11 +£4.66 61.14+3.92 50.87+5.92 66.21+£3.84 61.10+5.42 62.76+3.73 62.74+3.16 62.08+4.16
30% random  56.47 £4.93  56.28 £5.15  47.47+£5.07  59.05+£4.75 56.02+£4.65 57.19+3.98  56.94+3.47  56.93 +3.50
40% random  47.80 £5.64 48.05+5.72 43.8246.04 51.35+£5.92  47.01+£551  47.66+5.61 4849+6.32  49.31 +5.69
50% random  41.76 £6.67 42.50+6.10 38.62+5.01 43.29+6.33 4230+£590 39.16+6.33 43.35+6.65  41.56 +6.33
0% clean 78.68£049 78.7240.59 74484133 70.584+2.65 781140.36 79.11£0.38  79.09£0.58  79.08 £0.57
10% pair 74.49£3.06 T74.644+3.03 70.734£586 66.124+7.92 74204283  75.63+£2.57 T7490£3.51  T74.95£3.45
20% pair 7061 £6.79 70.84+6.68 68.55+3.81 61.84+7.35 71.10+£595 72.13+524 T70.76+6.57  70.96 +6.44
30% pair 6291 £549 63.164+546 60454+7.23 55884+ 7.20 64.284+3.84 63.78+4.86  62.68 553  62.35£5.39
40% pair 55.67£9.59  55.614+9.77  55.93+8.67 49.76+7.44 56.19+10.55 51.44+6.89  55.69+9.15  55.73+9.13
50% pair 42.99+9.12  43.07£9.09 43.16 £7.39  42.55+£8.55 42.88+£8.34 46.24+8.61 43.494+8.03  43.5047.98
10% uniform  74.61 £2.04 74.53+1.90 71.36+2.58 6559841 7416+227 7581+1.59 75.57+1.85  75.58+1.83
Pubmed 20% uniform  70.26 £3.66 70.46 +£3.56  68.90+2.89 61.16+6.87 70.94+3.40 71.25+3.18 69.75£3.90  69.71 £3.91

30% uniform  66.53 +£6.23  66.52+6.88  64.38+7.27 59.44+5.23 67.56+4.96 67.38+6.86 65.62+6.41  65.61 +6.39
40% uniform  57.86 £4.98 57.89 +£4.53  57.50+5.89  50.82+5.58 58594547  55.54+£9.06 56.52+5.21 56.17 £5.28
50% uniform  52.73£6.42 52.52+7.38  50.54+6.79  47.41+6.43 50.46+8.97 48.99+£7.74 52.38+£7.22 5218 +6.97
10% random 73.79+2.37 73.90+2.34 69.83+3.08 65.18+822 73.74+242 T470+2.58 T73.96+£2.65 T73.82+2.67
20% random 7249 +1.69 72.69+1.89 69.13+£3.04 6351 +7.46 7246+1.98 73.23+203 71.61+216 71.83+2.19
30% random 66.53 £2.29 66.89+2.10 61.76+3.43 57.27+£6.96 67.27+£252  69.02+2.85  65.97+2.92  65.84+2.84
40% random  56.98 +£8.35  57.97+8.96 56.89 £10.81 50.06 £11.37 57.57+£7.85 52.59+10.13 55.98+8.76  56.06 & 8.89
50% random  46.24 £9.08 44.11+12.57 47.90+£8.05 40.92+11.99 43.91+11.86 39.90+15.18 46.05+8.32 43.65 +12.55

0% clean 84.73£0.82 84.934+0.99 80.9543.52 754049.28 84.9740.93 82.83+£0.64 75.95+15.16 69.07 £ 23.49

10% pair 83.01+£1.46 83.55+1.95 81.82+1.75 79.03+4.64 84.02+1.57 81.80+1.07 70.93+12.60 60.89+ 26.81

20% pair 77.62+£447 80.054+280 77214579  77.014+4.63 79384441 78914235 T74.34+£941 55.80+26.88

30% pair 70.95£421 73814591 67.8949.09 66824470 74.01£8.62 72.85£2.19 60.11£14.24 32.31+£24.74

40% pair 61.26 £9.47 62.404+9.18 51.04 £15.23 55.454+9.82 64.82+£11.10 62.27+9.50 43.61 £15.94 40.38 +22.82

50% pair 39.44+£9.16 43414877 36.41£10.09 41.91£11.75 39.8249.94 4220£867 36.98+£9.31 21.85+11.29
10% uniform  83.06 +1.50 84.10+1.14  80.88+3.28 78.41+5.14 84.63+1.10 80.64+2.14 72.00+12.13 53.29 + 33.87
20% uniform  79.79 +£2.68 81.24 +£2.04 80.29+2.56  77.414+4.01 82.38+1.73 78.41+254 64.01 £16.21 56.35 &+ 26.87
30% uniform  77.26 +£3.34  79.42+3.17  76.25+5.65 70.01+11.03 79.274+3.49  77.01+£2.82 48.98+15.91 30.23 +28.75
40% uniform  73.35+3.37 77.54+324 72534452 69.83+£7.72 7841+235 7491+3.70 56.24+14.91 61.63 +£25.12
50% uniform  68.31+5.59 74.38 £4.56  66.69+10.34  64.38+8.34  65.62+£18.69 74.81+£2.61 49.00 +21.72 38.33 +£29.75
10% random 82.02+1.82 81.58+1.30  80.82+1.41 78.22+£253 8243+1.06 80.54+1.57 66.21 £15.28 46.55 £ 35.77
20% random  78.39 £2.62 80.00+2.00 79.34+£2.11  76.64+£5.23 81.08+1.62 7810+2.74 60.95+17.20 44.63 +28.51
30% random  75.47 £3.88 77.06+4.00 67.65+12.86 68.36+10.66 75.86+9.33  75.99+2.40 55.91+11.57 21.62+21.24
40% random  73.19 +£4.83  74.33+3.73  72.56+£3.47 70.86+£5.47  7252+545 74.34+3.03 46.11+£18.26 43.28 £ 32.59
50% random  64.62+5.56 66.63+4.56 65.62+£5.74 57.20+11.97 63.70+£9.83 6549+7.97 46.10+17.67 43.24 4 28.48
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Table A2: Test accuracy of LLN methods (10 Runs)

Dataset Noise type GCN S-model Coteaching JoCoR APL SCE Forward Backward
0% clean 91.82+0.69  92.05+£0.51 89.66+221 77.14+£7.63 89.92+1.74 91.04+1.24 69.14+£12.01 68.34 + 34.69
10% pair 89.83+1.42 89.71+£1.50 89.47+180 74.03+£7.45 88.08+2.07 89.78+1.41 68.64+14.55 50.42 + 39.364
20% pair 85.74+2.86  8547+£291 86.73+325 76.04+£812 87.07+£230 86.74+3.11 69.64+£16.08 61.26 + 23.32
30% pair 79.26£4.79  80.06+£5.25 T4.56+7.56 68.48+8.62 8239+6.09 81.57+4.96 67.29+11.43 51.90+25.85
40% pair 64.83+6.28 63.05+580 62.22+11.82 57.33+835 65.89+11.32 64.30+569 54.24+10.74 44.17+19.25
50% pair 44.87+£14.90 44.214+14.45 41.36+15.48 42.11£13.98 4528 £14.30 44.26 +13.12 42.07+12.50 27.34 +18.84

10% uniform  89.42+1.61  90.64+1.48 89.91+1.32 75.82+7.95 89.52+1.51 90.24+£0.91 77.44+14.22 70.45+ 34.88
A-Photos 20% uniform  88.02 + 1.99 89.53 +£2.39 88.61 £ 2.08 76.59 +9.10 88.40 £1.17 89.11 £1.64 64.41+15.05 62.42 £ 31.57
30% uniform  84.86 +£3.27  85.32+4.17 8278 +5.75  75.22+£8.24 86.17+3.17 85.85+4.42 65.13+11.73  55.97 £32.95
40% uniform  80.02+4.79  81.37+6.43  80.47+8.00 71.60+£855 80.38+6.35 83.03+5.76 65.63+14.04 46.17 +26.38
50% uniform 7518 £5.60  76.354+5.90 73.10£7.06 64.04+10.51 76.17+6.26 79.18 £4.67 53.02+12.74 24.97+15.83
10% random  88.05+1.46  87.42+£3.45 88.20+1.14 77.66+4.26 83.88+1.11 87.42+207 72.67+£12.38 74.74+22.32
20% random  86.82+1.58 85.46+£5.68 86.72+1.53 80.27+7.36 88.24+£0.90 86.19+£2.79 61.02+1540 55.67 +33.49
30% random  82.23+4.37  84.2243.38 77.84+24.47 79.51+7.69 85.27+251 82.83+531 63.60414.20 54.90 + 33.14
40% random  76.32+6.09  78.89+£3.95 76.05+12.73 67.104+10.96 80.74+522 80.12+4.00 61.81+£13.70 4552+ 25.57
50% random  70.69 +£6.24  74.924+6.32 66.85+11.26 63.54+£8.04 69.74+11.71 7570+£523  59.77+8.19  27.13+15.82
0% clean 77.03+0.35  77.11+£0.29  71.62+247  76.15+£0.22 77.06+0.44 78.03+0.30 77.33+£0.21 77.30£0.24
10% pair 74.04+£158 74334148  69.18+£4.03 73.22+1.84 7440+ 1.70 74.89+143 7445+1.74 74.53 £1.66
20% pair 70.11+1.40 70.25+£1.45 65.89+242 70.57+£2.89 70.69+1.84 T1.15+1.68 70.83+1.61 70.84 £1.61
30% pair 62.56 £2.39  62.60+£2.48  56.98+3.27 62.39+£4.59 64.25+£2.77 63.86+3.44  63.59+£2.58 63.59 £ 2.58
40% pair 5216 +7.86  52.50+7.88 48.01+6.58 51.78£9.27 5236+ 7.61  53.61+8.89  53.12+7.25 53.65 £6.73
50% pair 39.99+794  3959+£7.79  39.28+580 39.55+£9.60 42.19+7.29 43.724+7.67 41.30+£8.69 41.22+8.73
10% uniform 7524 +£1.04  75254+1.01  70.31+£250 75.22+1.38 74.69+1.16 75.62+1.18 75.65+1.41 75.64 £1.44
DBLP 20% uniform  72.37+£3.11  724043.09  66.59+4.19 7218 +£4.09 71.84+3.56 72.53+248  73.20+3.07 73.20 £3.07
30% uniform  69.66 £2.72  69.68 £2.79  64.60 £3.27  68.60 £3.46  69.37+3.12  70.184+3.39  70.27 £ 2.81 70.26 +2.80
40% uniform  64.53 £5.58  64.71+5.56  59.76 £6.66  63.95+£5.66 64.76 £5.37 64.86+£5.02  65.33+5.20 65.34 £5.19
50% uniform  57.05+7.88  57.01+7.65 51.69+4.37 5597+9.33 57.04+7.68 5843+8.09 56.50 +7.72 56.43 £ 7.77
10% random 7540 £0.88  75.54+0.86  69.46+2.05 70.67+£1.83 75.95+0.91 T7459+1.34  75.33+1.00 75.34 £1.00
20% random 72,50 £2.27  72.68+£2.23  67.23+2.62 71.18+£3.03 72.92+1.76 72.68£255 73.07+2.11 73.07 £2.11
30% random  66.60 +£3.99  66.37+4.40 61.99+4.28 66.33+4.99 66.81+3.97 67.86£4.05 67.03+4.37 66.72 £ 5.02
40% random  62.76 £4.23  62.81+4.27 55.37+£5.83  63.17+290 63.61+3.50 62.53+£4.66 63.82+4.59 63.84 +4.61
50% random  54.26 £6.94  54.444+7.00 50.77+£7.39 53.69+6.44 5487+6.57 55.75+£7.07 55.69+7.16 55.72£7.18
0% clean 76.52+0.58  76.56+0.73 61.89+23.45 6521+0.81  75.894+0.55 6457 +£7.43  75.58 +0.56 75.69 £ 0.57
10% pair 72.81+1.53 T74.08+0.86 22.62+17.94 65.08+2.50 73.73+£1.04 61.31+812 70.04£572  62.96+18.48
20% pair 67.09£2.88  68.29+3.32 274342284 62104£331 T71.92+£1.66 55.05+£540  65.06+2.51 64.27 £6.36
30% pair 60.69 +£1.76  60.51 +£2.42 381142291 57.13+£4.70 62.74+4.94 48914864 54.59+9.00 47.02+11.71
40% pair 46.74+4.63  47.41+£5.01 30.88+18.19 48.92+3.37 46.75+7.19  42.66 +4.86  40.25+5.40 39.36 £5.21
50% pair 36.14+£6.74  3542+6.98 22.35+835 3596+£9.24 3412+582 33.99+598  33.56£7.55 33.77T£7.25
10% uniform  74.40£1.03  75.22+0.55 21.91+17.32 65.694+1.90 74.39+£0.60 6228+£7.07  70.19 +5.59 71.09 £5.50
Blogeatalog 20% uniform  71.30+1.23  71.69+£0.79 38.04+27.78 63.16£1.67 72.21+1.46 5810+5.86 69.23+4.88 67.95+7.29
30% uniform  69.36 £2.99  70.06 £2.15 32.55+23.26 63.16 £3.57  69.04 £4.20 54.59+10.30 67.87£3.95 68.17 £4.32
40% uniform  64.724+2.36  65.72+2.11 29.47420.66 59.76 £2.61  63.00 +£2.48 5587+6.76  63.15+2.43 61.57 +£8.16
50% uniform  60.07+3.59  60.83+2.42 3893+19.36 56.83+3.34 59.38+4.03 53.67+841 5536579 52.94+14.74
10% random 7248 +1.44  73.53+1.30 23.32+1840 66.04+1.23 7413+£0.76  63.80 £6.67  73.04+0.92 68.40 £ 7.58
20% random  70.56 +£1.26  71.834+1.04 44.35+2847 64.90+2.70 73.09+1.08 61.47+6.36 69.86+5.03  64.19+12.93
30% random  65.81 £2.07  66.02+2.40 46.30 £25.23 61.22+2.84  67.69+3.15 56.70+£5.25  64.99 +4.10 62.65 £+ 3.79
40% random  61.87 £3.95  61.92+3.99 35.93+24.68 56.84+281 60.24+7.00 51.42+7.63 57.98+7.47 50.33+17.11
50% random  57.61 +£3.48  56.82+4.34 34.82+17.99 52754296 53.12+859 51.51+446 51.26+7.86 46.39+13.09
0% clean 58.02+0.59 58.32+0.59  49.29+0.82 3887+18.39 5852+0.54 31.514+221  28.76 +£2.56 27.33 £6.41
10% pair 54.34+1.21  54.48+1.09 48.13+1.54 50.95+£2.20 50.69+1.24 24844370 25.37+£2.84 26.79 £3.53
20% pair 51.50 £1.63  51.51+1.43 4571+1.26 4555+£1.26 46.97+219 26.33+4.68 23.88+3.21 24.39 £4.15
30% pair 45.86 £3.45  4547+3.25  41.55+2.67 41.20+£2.67 40.71+£2.69 23.36+3.12 2298 +1.52 25.40 £2.71
40% pair 3895+1.98  39.29+200 35.64+1.93 3616220 36.39+237 20874413 20.75+£4.17 19.44 +4.38
50% pair 28.64+£3.09 28.77+3.00 29.21+262 27.91£3.50 27.26+2.55 19.75+5.01 1824 +£3.94 17.17+£4.89
10% uniform  55.54 +£0.48 5595+ 1.21  48.04+1.36 50.96+1.76  50.87+2.77  25.65+3.26  26.41+1.93 28.18 £2.04
Flickr 20% uniform  53.30 £ 1.98 53.15+1.88 46.75 £ 2.65 47.44 £ 2.44 48.38 £+ 2.64 24.10 £ 3.65 23.31 £3.42 21.64 £5.87
30% uniform  49.77+0.94  49.42+1.28 4353+2.32 43.61+£1.35 45.64+2.09 22.69+3.92 21.49+3.20 23.93 £2.76
40% uniform  47.27 +2.44 47.09 +2.16 41.33 £1.23 41.39 £ 2.65 42.89 +4.28 22.11£3.11 20.07 £ 1.70 21.68 £1.87
50% uniform  43.17+2.01  43.084+1.97 3516856 38.39+£229 37.59+3.63 20.30+£4.37 16.784+4.43 18.37 £ 3.87
10% random  55.22+1.06  55.46+£0.95 48.06+1.57 50.854+2.18 51.28+£234 2527+1.79  28.12+2.00 29.64 £2.68
20% random  53.59 £0.94 5326+ 1.21 47.86+0.68 48.02+1.24 47.71+1.88 29.14+4.11  27.11 +3.00 25.10 £6.27
30% random  49.54 +£1.28 49274+ 1.78  44.19+255 44.17+1.77 43444255 24.32+£6.64 19.88+5.00 22.74£6.21
40% random  47.04+£1.62 46.53+1.80 37.60+9.78  41.68+2.15 36.99+£580 19.59+£4.38  17.97+3.25 18.86 + 3.51
50% random  40.72+2.87  40.40+2.86 31.50+£8.09 36.17+3.53  30.52+4.94 19.01+4.48  17.95+2.61 19.00 + 2.63
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Table A3: Additional experiment results for LLN under 30% Uniform noise (10 Runs). ACLT denotes
Accuracy of Correct Labeled Training nodes, AILT denotes Accuracy of Incorrect Labeled Training
nodes, AUCS denotes Accuracy of Unlabeled Correct Supervised nodes, AUU denotes Accuracy of
Unlabeled Unsupervised nodes, AUIS denotes Accuracy of Unlabeled Incorrect Supervised nodes.

Dataset Records GCN S-model Coteaching JoCoR APL SCE Forward Backward

ACLT 98.53+£0.93  98.794+1.34 98.81+1.13 95.00+£3.52 97.50+£2.09 98.33+£1.65 98.70+0.96 98.70 £ 0.96
AILT 33.77+£9.40  30.924+6.95 11.87+£523 41.594+10.40 38.66 £12.00 22.90+13.41 31.194+9.71 31.19+9.71
AUCS 80.76 £2.95  81.1243.10 77.33+£4.31 80.02+3.30 81.11%£3.16 79.75+£3.35 81.46+3.10 81.46£3.10

Cora AUU 71.99+3.44 72044397 64.88+£6.03 72.51+582 7341+398 69.34+494 7289+3.95 T72.94+4.07
AUIS 51.55+£6.53 51124711  34.72+£861 55404+11.08 56.25+7.93  44.72+8.07  53.56+6.87  53.70 £7.44
Time 0.18 +£0.29 0.10 4+ 0.03 2.58 +£1.02 2.36 £ 1.46 0.13£0.03 1.16 £ 1.03 1.75 £ 0.16 1.714+0.13
ACLT 99.18 £0.96  99.424+0.83  98.95+1.02 90.11+£2.50 98.23+2.02 99.88+£0.37 99.05+1.48  98.93+1.44
AILT 1.39 £ 2.65 1.68 +2.64 1.98 £1.87 12.05 £ 7.35 3.10£3.39 1.75+1.51 2.48 £2.70 248 +2.70
Citeseer AUCS 7470 £3.49  74554+3.03  7239+£322 73.15+3.06 75444333 74124332 75.00+2.56  75.02 £ 3.09
AUU 57.50+£3.60 57.194+3.42  56.25+486 57.084+290 57.81+3.87 57.19+£3.49 58.75+3.11  58.96 £+ 3.19
AUIS 16.45+5.60  15.37+£5.67 19.02+6.67 18.53+7.35 16.30+£4.76 16.80+5.65 20.57+£6.05 20.91 +5.57
Time 0.55 £ 0.44 0.74 4 0.69 2.26+1.23 1.54+1.25 0.94 £+ 1.59 3.79 4 1.47 2.19£0.77 2.40 4 0.86
ACLT 97.08 £2.61  96.794+2.89  97.67+£2.50 84.79+4.05 96.41+241 89.38+12.10 97.55+3.24  97.55+£3.24
AILT  30.01+15.38 25.21+18.01 18.08+12.42 30.724+10.11 28.59+15.11 35.51+15.07 12.98+14.48 12.46+13.81
Pubmed AUCS 69.49+£7.41 70.114+£7.61 73.03+£880 60.31+11.59 T71.10£8.60 68.16+£5.19 71.72+5.73 TL72£5.73

AUU 59.47£7.87  59.47+8.61 60.53 +£9.37 52.63+£10.23 61.05+£7.53  59.47+7.46 59.47+7.87  59.47+7.87
AUIS  27.06 £21.05 25.95+20.31 34.80+28.88 27.82420.72 28.97+£18.29 41.274+24.98 22.86+15.84 22.86+15.84
Time 0.21 £0.06 0.35 £ 0.30 2.25+£1.33 2.22+1.51 0.35£0.13 4.13£1.97 2.12+0.74 2.0540.65

ACLT 91.05+£3.19 92334222 86.33+£3.46 84.85+3.60 92494426 91.04+£4.03 51.54+15.75 37.62+39.19
AILT 68.90£9.98  74.614+4.68 67.96+£6.57 64.28+8.40 72.38+9.26 7256599 4595+ 14.45 31.87+27.46
AUCS 83.43+£2.44 83974299 80.30+£447 T74.94+8.12 84.59+2.65 84.00£3.22 47.10+£11.71 33.83 £33.61
AUU 81.40 £3.76  82.77+3.19  78.96+4.28  T72.77+£848  8295+£3.02 8237+£329 47.34£12.53 33.87+£32.51
AUIS T7.33+£7.57 81244533 T7486+486 69.32+9.02 80.01+£506 79.58+£5.87 48.72+15.15 31.86+29.47
Time 1.38 £0.48 1.25+0.40 3.70 £0.95 3.4741.04 3.16 +£1.27 3.124+1.09 3.11£0.75 4.97£2.37

ACLT 91.74£2.96  93.334+3.53 89.70+£448 86.91+6.75 9250+7.11 91.48+£1.91 T1.55+15.92 51.17+34.26
AILT 80.78 £5.59  81.994+7.92 77.28+9.37 72.73+9.64 79.08+£11.03 83.32+£6.83 60.99+ 1549 47.84 +29.61
AUCS 9218 £2.42  91.67+3.15 87.03+£864 83.16+7.40 90.99+6.20 92.92+1.09 69.80+15.91 50.49 + 36.54

A-Computers

A-Photos AUU 89.73+£2.81  89.844+3.62 8544+£799 80.69+6.92 8891+6.24 90.91+£247 67.41+15.81 49.68+35.63
AUIS 87.01 +£4.72  86.124+5.98 8250+ 7.82 77.67+8.44 85824887 87.61+4.86 63.56+15.53 49.36 + 33.39

Time 0.90 £0.32 0.83 £0.39 3.40 £0.81 2.51 £1.42 291+£1.18 1.82 4 0.59 2.68 £0.46 2.92+1.14

ACLT 98.34 £ 1.71  97.934+1.88  98.60 £2.26  94.53+3.17  97.59+3.28  96.69 £3.50 9758 +1.24  97.58 £1.24
AILT 21.13+£8.02 22554858  12.27+£726 35824749  2592+942 28.77+£8.09 26.37+10.39 26.37 £10.39

DBLP AUCS 83.15+1.43 83284130 81.90+1.54 82.52+2.03 83.12+1.26 83.11£1.51 83.35+1.64 83.38+1.61
AUU 74.10+£2.64 74604259 7047+£551  75.60+3.29 7485+270 76.80+£3.02 75584240  75.62+2.35

AUIS 55.65 £9.47  57.084+£8.88 4887 +£11.69 62.24+£6.59 57.99+£9.69 6464772 59.80£8.13  59.87 £8.04

Time 0.134+0.03 0.14 4 0.04 2.41+1.32 1.714+1.46 0.19£0.07 1.324+1.02 1.65+£0.14 1.6240.08

ACLT 87.78 £3.14  88.254+4.84 583843527 81.27+543 94.92+348 63.98+£880 7850+6.35 78.11+6.82

AILT 58.52+£6.32  59.954+7.53 37.31+£16.42 53.17+4.94 46.59+£10.66 55.37+£6.46 65.54+5.15  64.26 £4.67

Blogeatalog AUCS 71.37+£3.05 7196 +2.63 44.65+25.60 6542+3.40 71.06+4.20 59.45+8.76 68.73+4.84 68.63+£6.14

AUU 70.64+£2.99 71234250 43.95+£25.74 64.57+3.45 70.21+4.29 58.64+8.74 68.13+4.73  68.10+5.96

AUIS 72.32+£3.60 72.924+3.15 45.86+24.99 66.18+3.41 71.63+4.87 60.15+£894  69.36 £5.60  69.75 £ 5.52

Time 0.94 +0.26 1.0540.35 3.87+4.26 3.324+1.03 3.86 £+ 1.66 5.954+0.23 3.47£0.47 2.8040.45

ACLT 93.22+£398 89854+6.21 77.80+2221 76.89+1.79 81.19+835 3580+6.44 31.01+4.21 30.41£7.36

AILT 20.27+£5.10 253249.39 21.54+£7.61 24.37+3.79 22354549 2227+6.43  25.704+4.85  25.02+5.29

AILMT 6888+ 10.70 57.16 £16.09 58.87+18.91 55.924+5.74 58.794+11.60 17.57+4.30 1595+1.97 16.15+2.16

Flickr AUCS 51.31£2.98  50.554+2.72 42.35+10.53 45.96 £3.58  45.69+4.07 25.86£4.90 27.27+3.34  26.77 £4.94
AUU 50.72+£2.80  50.094+2.60 41.95+10.40 4545+3.43 4528+3.81 25.30£5.00 27.024+3.22  26.63+4.73

AUIS 50.92£3.67 49944287 42.63£10.01 4523+£3.69 45.09+£3.99 2481+£458 27.674+246  27.094.25

Time 1.83 £0.72 1.40 +0.67 6.48 +2.78 4214+1.01 3.76 £2.29 1134+ 1.84 3.05+£0.74 2.79 4+ 0.65

38156 https://doi.org/10.52202/079017-1206



Table A4: Test accuracy of GLN methods (10 Runs). N/A indicates time or memory exceeded.

Dataset Noise type GCN NRGNN RTGNN cp CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

Clean data 80.66 £ 0.54 79.16 £0.74 7231 £1.94 80.49+1.02 80.90+0.73 7746+128 72414277 78724102 81.61+0.73 80.18+128 81.23+1.09
10% pair 76.44 £ 2.48 T7.72+£1.03 70.28 £3.75 76.93£250 7584+277 T75.00+1.89  68.27+3.11 77.10 £ 1.94 77.26 £2.59 76.09 £2.47  76.49 £2.36
20% pair T3.07+£246  T5.38£1.78  6847+£391 T7270+330 TI84+146 70.66+1.38 64.55+£3.13  T532+£278  T7296+295 TL2T+£269 T73.03+£2.28
30% pair 65.36 £5.54  69.73£4.82 63.44+593 66.12+£563 64.55+504 65.04+£583 5849+441  6848+£6.37 66.29+523 6327+£571  65.37£548
40% pair 54.02 +3.48 59.03 £ 4.36 54.86 £+ 3.81 56.43£5.19  55.03+4.09  55.77+4.10 48714723 59.104+6.28  56.20 £4.38  54.64 £6.17  55.67 = 3.49
50% pair 4415 £8.52  4342+6.99  43.69+746 43.36+£7.24 4416+578 41814792  4241+6.80 4631 £12.67 43.74+£851 4337778  4453+6.74
10% uniform  78.58 + 2.04 T8.28 £1.42 7024 £4.59  78.16+256  TTAT£217  76.07+1.66 69.35+£4.00 78.01+1.12 79.04 £ 2.09 T7.89 £2.10 T7.60 £ 2.04
Cora 20% uniform  75.92 + 1.49 76.67 £2.30 69.27+3.24  76.65+1.54 T73.47+1.89 T4.05+1.99 64.67+4.01 76.90 4+ 1.21 76.08 +£1.74 75.07 £ 1.81 75.77 £3.38
30% uniform  71.06 + 4.39 T4.86 £ 2.82 66.33 £ 3.72 71.76 £ 5.85 6824395 7043+4.19 56.15£6.40 73.29+5.17 T7283+£4.74 69.57+£347 7203 +4.48
40% uniform  67.88 +£3.73  73.98+253  66.02+4.00 69.19 +3.31 63.82+3.45 66.07+4.48  52.06+4.64 T4.08+3.90 68924324 64.38+£545 67.98+4.62
50% uniform 5442+ 4.72  64.90 +5.32 57.67+£568  55.03+7.13  51.14+£597 5528 +7.40 4148 +581 67.324+6.56  55.60 £ 4. 54.08 £5.48 56.09 £ 4.53
10% random  78.19 +1.98 T7.94+1.48 T112+£270  7855+217 77.01+1.64 7583+ 1.71 69.83+243  77.90+1.32  79.09 £+ 1.52 77.82+£1.59 78.22 £ 1.70
20% random  74.27+£342 7558182 67.60£3.50 7551£254  T371£338 T73.05+£319  66.06+£4.18 7543+3.51 TATI£3.68  72.63+£4.84 7512+ 3.65
30% random  69.72 + 3.49 T448£286  66.84+£5.09 T7L09+4.08 67.61 +£3.57 69.03+3.46 57.16+3.48  74.35+5.29 71.02+£4.09  69.01 +£4.11 70.40 £ 4.92
40% random  62.59 + 3.24 70.93£1.97  60.83 £4.12 64.05+3.02  62.92+3.60 62.03+244 51.65+3.80 69.15+£545 63.45+2.87 5947+3.10  62.30 £ 3.87
50% random 5559 £6.92  64.02£6.68 5524 £6.77 5545+£4.93  5056+6.44 55474612 4027£13.10 63.45+8.03 56.51+7.37 53.11+6.73  5412+7.13
Clean data 69.01£0.72 6926 £1.49 61.61+239 68.75+134 6838+099 67.63+£1.55 64184137 66.08+£3.72 7197 +£0.65  66.19+1.51 67.40 £ 1.84
10% pair 65.08+1.90  67.86 +1.29 58.00+1.96 64.86+1.83 63.98+158 64.52+3.35 56.37+6.90 62.22+437 6836+135 61.50+2.16 63.73+241
20% pair 58224329  6L67+473  5207+479 57.33+£3.00 5843+4.27 61.2844.03 51.53+340 61.10+£7.20  61.50£4.99  54.81£4.04 5558 +2.49
30% p 53.66 £5.03 5928 +£6.21 48.39+5.15 54.15+£544  53.19+3.19  5597+£4.79 46.76+£6.57 54.16+£4.56 58.15+6.09 51.38+£4.19 5245+ 5.07
40% pair 7T+4.89 4527 £6.66 43.43 £5.31 4251 4+6.03  46.97+587  40.69+6.46  46.06 £8.13  44.724+542 4158 £4.27  43.55 £ 5.04
50% pair 3548 £520  36.90+535 33.67+458 3541£592 3441+£3.86 34.63+549 34484523 3874+10.06 37.18+6.65 33.02£5.12 3590+ 3.29
10% uniform  65.48 £2.38  67.52 4 1.36 58.27T+£3.26  65.65+1.58  64.03 +2.64 66.61+£1.32  58.95+2.15  64.76 £ 3.91 68.97+1.79  61.48 £3.31 64.01 £2.41
Citeseer 20% uniform  61.40 £3.00  66.11 +1.75 5598 £4.39  61.43+296  59.62+3.17 64.09+1.69 5224 +3.61 65.324+4.39  66.50 +3.64  57.80 & 3.30 59.86 + 3.52
30% uniform  55.05 + 3.11 61.87+344  51.38+4.11 56.72 £ 3.42 5548 £2.92  60.714+298  4899+257 5856+7.25 58.87+3.25  52.31+3.22 55.87 £ 3.38
40% uniform  48.89 £4.56  60.22 + 3.64 51.14£4.39  51.55+527  49.08+£548 54.65+4.29 40.53+£6.10 61.23+880 5578 £5.18  45.33+4.28  47.63£3.94
50% uniform  43.51 + 5.26 54.57+£4.99  43.19+3.19 4493+£6.30 43.82+6.02 50.09+£6.06 3522+6.90 55.43+6.34 46.18+£5.54  40.72+£6.12  42.03 +£5.10
10% random  66.01 £2.17  68.32+2.40  59.59 +3.25 65.61 £2.62 64.86+289 6596+ 156 5835+3.34 T0.49+1.05 69.37£2 63.12£222  64.68£2.08
20% random  61.11 £4.66  67.02+2.84 5750 £3.69  61.44+4.25  60.06+3.06 63.39+238 51.72+46.41 68994129  66.96 +4.28  56.33 +5.24 59.20 £ 5.01
30% random  56.44 +4.94  63.33 £2.19 52.57 £5.02 57.71+4.44  55.24 +£3.41 59.43+4.42  49.39+3.29  66.12+3.72  60.85£4.54  51.09 +4.89 53.92 £4.99
40% random  47.80 + 5.64 59.98 £4.11 47.70+£3.11  48.55+5.95 47.01£6.10  54.88+4.87  41.63+£5.58  62.23+847  53.42+6.23 4454 £ 487  48.62+6.48
50% random 4176 £6.67 5243 £879  43.05+£549 4239+726 41.90+£425 49814527 3649+4.11 53.724+885  45.76+7.98  37.18+537  41.36 £5.21
Clean data 78.68 +£0.49 75.93 £ 1.16 75.73+£298  76.91+1.04 78314069 77.23+049  76.14+0.93 N/A 78.94+0.37 70.55+18.48 T7.73+0.59
10% pair 7449 £3.06  68.92+6.19 7347 £3.41 .21 £2.41 7343+3.99  T7451+£219 7L N/A 74.62 £ 3. 66.60 £ 17.41  74.42+2.51
20% pair T0.61+£6.79  64.52+£6.90 6842+£895 7026+521  69.59+7.12 7213+£503  67.23+3.97 N/A TL39+6.57  62.96+17.13  70.53 +4.88
30% pair 62.91 +5.49 57.22+£5.93 59.04 £ 6.65 62.67+£4.62 62.25+523  66.75+3.88 5836+ 4.87 N/A 62.77+4.97  56.01 +14.88 6291 £547
40% pair 55.67 +9.59 53.03+£7.33 5244410.05 55.52+8.86  55.67 +9.31 59.81 +£8.60 54.71+6.29 N/A 56.30 £8.13  51.31 +£13.87 58.92 +6.61
50% pair 42.99£9.12 394041032 4524891  45.67+8.32  42.24£827 4270+9.55 43.514+6.93 N/A 4298 £8.58  41.81+11.41  43.89 +6.26
10% uniform ~ 74.61 £2.04  69.54 £ 5.72 7145 £ 4.12 T3.67+1.74 73284213 74554129  TL7541.34 N/A 75.56 £1.65 64.924+18.30 T74.58 £2.10
Pubmed 20% uniform  70.26 +£3.66  68.67+6.74  68.55+4.38  70.73+3.02 67.67+3.80 71.80+2.38 65.19+4.38 N/A 7024 £3.87 59.76 £17.22  70.50 £ 3.65
30% uniform  66.53 +£6.23  62.37+6.79  68.30£4.31  68.11+4.27 6456 +£6.50  69.02+3.34  63.29+7.74 N/A 65.93£6.56 57.73+16.75  66.42 +6.35
40% uniform  57.86 + 4.98 5710 £4.79  62.22+5.34 59.84 £ 4.94 57.024£749 62724545 5803 £5.13 N/A 57.454+4.49  47.69 +£12.59  58.28 £ 6.60
50% uniform  52.73 +6.42 5340 £7.20  53.47+9.12 53.84£8.70  49.56+8.32  55.16+7.33  53.93+£5.55 N/A 52.04+7.06 44.69+11.83 53.73 = 6.08
10% random  73.79 +£2.37  65.99+£9.76  70.62+5.67 72.70+£219 7284+337 73934174 TLI4+£255 N/A 7406 £2.79  63.09+1892 7345+ 1.79
20% random  72.49+£1.69  68.43 £8.09 T0.77£213  T1.86+2.69 T70.53+£249 T1.93+1.68 67.68+3.26 N/A 73.12+£1.68 63.19£17.14 7212+ 1.48
30% random  66.52+2.29  62.38+6.99 66.72+7.14  68.17+2.64 66.20+2.74  70.50+£2.26  63.42+5.39 N/A 65.60 +2.35  59.76 + 15.18  69.48 + 3.39
40% random  56.98 £ 8.35 51.32+£6.43 57.27+£14.75 59.18+8.14 5527 +15.68 6481 +£7.37 54.89+11.11 N/A 56.36 £9.10 48.42+1598 61.51 =7.83
50% random  46.24 £9.08  42.60 +10.42 4596+ 10.76 47.354+11.26 44.11+14.08 48.59 +14.18  45.64 £ 8.83 N/A 4320 £11.41 43.27+10.73  49.01 £8.70
Clean data 84.73 +£0.82 7440 £2.22  66.68+3.33 83.86+0.86 84.28+0.85 81504106 60.23 +5.71 73.65+1.64 37.71+£1.97 474842539 50.49 + 40.36
10% pair 83.01 + 1.46 T388£3.77 T70.83+294 8L70+1.19 8220+ 137 8238+155 56.80+7.62 7259+212 37.90+2.14 4340+16.71 55.85+ 36.29
20% pair TT.62+£447  70.10£5.98  64.89£735  76.92+4.64 TTO7+459  T7.O7+£6.35  55.38£5.16  67.93+£3.20 3805+226 41.01+19.36 48.03 +31.61
30% pair 70.95 £ 4.21 67.00£265 61.40+£10.02 70.49+4.59  73.96 +4.61 72224580 48.11+7.24  63.62+3.93 37.33+£2.18 40.55+21.80 39.18+31.03
40% pair 60.92+10.03 56.43 +14.29 50.20+16.45 61.08+10.15 60.01 +£12.62 60.01 £11.62 40.71+8.98 48.07+14.57 31.39+12.72 3731 £18.55 36.62 + 24.52
50% pair 39.234£9.60 3835+10.68 36.66+13.49 38.34+£6.33 38.60+£11.58 38844831 26.84+13.37 33.65+1241 2261+17.74 28.54£13.79 26.44 +18.60
10% uniform  83.06 + 1.50 T3.77T£240  56.934+23.29 81.30+206 83.74+1.29 83284129 5740+7.00 71624177 37.53+1.81 457242490 51.85+33.73
A-Computers 20% uniform  79.79 + 2.68 70.32+£4.95 62.58+20.17 79.34+3.35 81.55+248 81.45+244  52.25+738 67.59+5.16 37.92+2.76 43.56 +£20.07 48.38 +31.49
30% uniform  77.26 £3.34  7047+3.45  69.04+4.96 77.74+3.13  80.31+241  79.04+228  50.53+4.26  62.22+397  37.34+294 46.07+£2263 4829+31.43
40% uniform  73.78 £3.27  65.82+7.04 605241890 73.81+3.08 T76.85+3.45 76.23+3.48 48.9846.32 62254559 30.89+10.88 46.03+21.39 46.49 + 30.39
50% uniform  67.94+5.05  61.69 £8.57 6248 +£4.20  69.01 £3.90  75.79 +2.01 72224285 4259+12.96 54.844+830 31.20+11.16 43.40+16.86 38.63 4 25.90
10% random  82.90 £0.84 7443 +2.85 68.79+4.22 8252+1.81 8348+1.26 8L.75+177 5592+831 6897+282 30.62+1221 49.72+2580 56.34 + 36.10
20% random  80.19 + 3.79 T1.52 £ 4.48 72.04£323 78.78+200 81.14£215 80.28+229 54.64£505 6749+3.26 32.99+10.65 53.33+22.68 53.45+34.11
30% random  75.79 +£4.22  68.32+7.22 T0.07T+£7.28 TAT5+£527 75794824  T7517+559  50.73+6.15  62.74+7.95 30.76 +12.31 52.05+20.16 49.17+31.79
40% random  72.87 £3.86  63.84+9.49  66.39+£6.75  72.35+2.63 7403+741 7514+6.00 46.33+540 56.25+875 30.17+£1285 47.62+20.01 42.84+28.15
50% random  64.73+£7.97  54.25+£7.00 5352420.06 65.02+834 6564+£876 69.58+£598 455946.60 51.87+11.60 31.11+11.67 34.05+22.38 39.78+25.67
0% clean 39.61+0.15 37.99+£034 3745+0.69 40.11+£0.16 3858+ 1.00 39.22+£0.06 39.57+044 3576+0.28 36.71+0.03 3531 +£4.24 33.08 £4.99
10% pair 39.27+0.54 37.65+£0.63  39.65+0.30 38144104 38824031 37.38 £0.61 34.68£0.93  36.63+£0.66 35.32+£4.23  36.64+0.36
20% pair 39.07 £ 0.45 37.36 £0.78  38.82+£1.05 38334094 38724046 36.33+1.37  33.74+£1.04 36.50+£1.03  37.03+£0.36  36.01 +1.60
30% pair 3841 £0.67 36.53 £0.78  38.59 +£0.71 37.83+£0.52  37.88+0.57 33.79+236 3134+ 1.75 35784182  36.11+£253  35.67+3.19
40% pair 3 +1.42 2+1.37 2+ 1.54 3626 +3.54  36.86 + 1.51 3296 +1.09 3055+ 1.45  3291+4. 33.36 £4.20  33.57 £ 3.88
50% pair 3441£2.09  3254+£3.69 3356+ 127  3441£2.07 31.36+4.14 34004294 31724238 2027+ 171 27.52+£1.20  27.00£7.63  28.70 = 3.59
10% uniform ~ 39.01£0.59  37.324+0.30  37.43+0.58 38.9940.93  38.2140.52 38.90+0.28 36.30£1.86 33.9840.78 36.84+0.08 35424427  36.76 +0.10
A-Ratings 20% uniform  38.53+0.53  37.04+0.30 37.18+0.72 38.76 £0.36  37.84+0.75 3846+0.37 3562+056 3229+0.80 36.82+0.09 3541+427  36.81 +£0.00
30% uniform  37.73+£0.91  36.91+035 36.74+035 37.59+098 3730058 37554078  3434+£113  31.00+£0.61  36.84+£0.07 3537+£426  36.80£0.02
40% uniform  36.90 +1.35  36.41 + 0.62 36.12+1.23  37.06+1.03  36.72+0.81 36.98+0.72  32.89+1.64 28404132 36.52+0.74 34.44+£507  36.81 £0.00
50% uniform  36.75£0.84  36.82+£0.21 36.11 £0.91 36.82+0.73  36.79+0.52 3687+0.59 3054+1.26 26.15+0.95 36.61+£0.62 33.40+£550  36.81 +£0.00
10% random  38.85+0.54  37.89+045 37.61+£047 39.19+048 3786+1.13 3827+026 37.32+£082 33.68+044 3654+£008 3516+413  36.51 £0.00
20% random 3831 +0.29 37.23+0.48 37.02+0.57 38.58+0.75 382640.66 38.08+0.51 35.08+0.70 31.92+0.89  36.65+0.24 3551 +£4.28  36.76 + 0.00
30% random  37.69+£0.86 3531 +2.67 36.50+1.53 37.64+1.05 37.03+0.71 36.76 £ 1.48 34454 0.68 31.014+1.26 35.75+3.14 3420+5.02 3457 £ 4.55
40% random  36.18 £2.43  34.94+£287  3518+2.96 3581+3.15 3579+3.39 3594+3.33 31.77+1.91 2850+1.64 35.02+338  33.02+529  34.76 +3.52
50% random  32.61 £4.52  31.83 +5.21 31.40 £ 5.35 33.07£4.87 3240 +£4.31 32224463 2946+£2.94  2641+£1.74 31.55+£538  29.34£586 31.39£5.75
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Table A5: Test accuracy of GLN methods (10 Runs). N/A indicates time or memory exceeded.

Dataset Noise type GCN NRGNN RTGNN CpP CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

Clean data 91.824+0.69 8253+ 1.37 8231+ 1.31 91.2840.72  90.84 £ 0.69  88.84 £0.55 76.60 £9.02  80.114+4.75 33.16£4.03 57.29 +27.33 62.09 + 39.92
10% pair 89.83 +1.42 80.91 +£1.68 8215+ 1.53 88.47+2.03 89.18+1.53 86.87 +2.12 70.58 +5.88 T8T0+£4.12  33.34+441 5828 +2431 60.35+ 38.82
20% pair 85.74£2.86  78.04+229  82.31+261 85394247  84.76+£2.56 8286+3.73 61.95£3.77 T1.39+6.39 3316 £4.03 50.90 £30.22 43.59 £ 35.13
30% pair 7926 £4.79  T1.92+6.84 70.33 £8.11 T745+£526 79.12+4.90 79.43+4.63 51.09+13.97 64.79+9.92 30.89+7.39 45.70+2546 37.53+35.25
40% pair 64.90£5.56  56.86£10.90 61.67£8.26  62.77+£6.27 63.67+585 6404548 47.22+£586 50.06+9.59 2280877 37.52+16.62 40.27+25.85
50% pair 4496 £15.14  37.20 £ 1345 41.39+£16.90 41.61 +£14.76 42.52+12.84 43.37+11.65 32.95+£7.72 3480+£947 21.10£9.65 25.19+16.12 20.85+21.01

10% uniform ~ 89.42 + 1.61 81.42+3.06 8232+1.68 89.53+1.28 89.56+1.88 87.85+1.34 66.22+17.13 75.31+3.78 33.66 £ 3.87 55.16 £ 28.60 28.67 +39.10
20% uniform  88.02+1.99  81.18£3.14  83.00+£241 87.204£235 87.76+£148 87.70+£242  62.00+5.65 77.284+543  33.61 £3.59 5592+ 26.11 33.93 £+ 38.56

AcPhotos 30% uniform  84.86 +3.27  78.30 +3.31 8208 +6.02 83.52+3.00 8546+270 84.90+459 5428+£8.37 T280+6.60 32.29+447 47.26+25.51 35.24 + 32.66
40% uniform  79.33+5.96  69.73+10.22  77.42+538 78804591 8LIT£6.59 T9.26+£7.16 4935+£440 64.81+£472 2791+875 43.28+23.00 34.55+28.13
50% uniform 74394+ 5.08  64.94+7.34 740341033 72114705 7458 £4.91 76.51 £3.84 4248 +584  59.78+£8.76 2574 +£9.98 38.23+21.83 22.50 4 25.64
10% random  88.05+1.46 7641322 8383+£1.10 87.50+£1.68 87424156 87.92+0.83 63.42+13.10 82.06+2.76 28.18+6.24 50.11+29.55 43.39 £41.37
20% random  86.79+1.58  77.31£256 85.09+£225 85054229 8649+161 86.79+147 5521+1574 76.70+4.16  29.66 =6.36 53.08+29.02 32.42+37.39
30% random 82244439 7238+£861 83.68+£194 82024314 82574390 83.75+2.97  56.66 +5.02 TA37T+£8.86 27.53+£6.83 49.43+27.36 31.77 + 35.66
40% random  76.94 544 70.85+9.39 78.66+£8.15 76.52+542  78.61+£4.14 81.20£2.93  48.07£9.46 7155+ 7.76 2850 £8.17 48.97+£28.32 25.67+28.29
50% random  69.85+7.07  62.36 +8.28 72.54 £8.95 70.68 £4.97 7103 +£7.34 7468 £507  42.65+8.63 61.20+£5.19 27.25+£6.40 38.75+£25.24 24.68 4+22.94

Clean data 77.03 4+ 0.35 81.35£0.45 68.13+£2.16 78194126 7885+0.33 78374202 76.14 £ 1.03 73.00£1.52  T7.13+024 67.23+£13.37 77.20 £ 1.00
10% pair 74.04£1.58  79.58+£1.14  66.08+£1.99 75854192 7535+1.65 76.90+237 T7253+217 70.17+123 T438+1.53 63.26+11.22 T473+2.17
20% pair 70.11+£1.40  7490+276  63.72+3.82 71.35+£3.02  69.78+1.87 T74.85+2.03 68.68+£2.75 67.46+257 T047+1.56 63.05+547  70.92+2.01
30% pair 62.56 £2.39  69.82+3.20 59.26 £6.03  65.80+£2.68 62.59+1.50 69.31+2.55 61.99£2.79 64.35+£240 62.92+286 58.06+£573  63.79£3.39
40% pair 5216 £7.86  61.01 £8.12 5027 £ 746  54.76 £6.94  51.96 £ 7.01 59.45 £ 8.84 5741 £4.63 5176 £531 52.82+7.67 4949+6.41 55.89 £ 10.76
50% pair 39.99+£794  47.50+529 3653 +£8.64 40444724  43.67+7.20 46.66+11.83 4539+8.74 42.75+6.77 40.71 £8.01 4154 +6.57  44.86 +9.65

10% uniform 7524 £1.04  79.38+£1.68  66.81+3.05 76.67+1.62 75404+1.65 76294231 7279£226 T70.65+£265 7557107 67.01+£627 T588+1.54
DBLP 20% uniform  72.37 4+ 3.11 TT38£2.75  67.14+2.95 7298 +£3.93  70.09+3.66 74.21 +4.32 66.36 £3.45  69.06+3.50 7277 +3.11 60.02+11.62 72.96 £ 2.57
30% uniform  69.66 + 2.72 76.21£1.79  66.80+6.43  70.49 +3.71 65.31 +£2.41 TLO8£2.19  6347+£3.00 63.65+344 T70.33+282 63.26+573 70.23+2.03
40% uniform  64.53 +5.58  70.36 £5.56  65.35 +5.54  65.74+4.48 59.78+4.32  67.83+3.06 56.94+6.30 61.03+4.17 65.17+5.64 56.51 £6.56  63.93 +5.99
50% uniform  57.05+£7.88 6523 +6.91 60.56 £6.79  58.89 +6.91 52.34+£6.30  58.92+7.79 5347 +6.33 54.17+£5.30 57.92+7.84 51.86+7.91 57.42+6.78
10% random 7540+ 0.88  80.01£0.58 6652201 7533+£153 T73.87+139 TT.08+£194 71.22+214 7238+212 7532+1.01 6557+7.25  70.04+8.89
20% random  72.50 +2.27  77.874£2.03  64.52+2.73 7280 +£1.99  T0.71+£1.67  7545+2.44 68.85 £ 1.79 7045+ 1.66 72724245 63.90+754  T1.74+2.00
30% random  66.60£3.99 7383374 6559+£350 6830+£3.63 62454315 70.76+£3.68 61.45+1.60 65.54+3.69 66.97+4.03 5870+9.03 66.94+3.11
40% random 6276 £4.23  69.41£3.04  6210£519  64.28+267 56.62+3.03 67.23+4.10 5828 +3.95 61.25+£542 63.30+£4.24  54.87+9.01 64.35 £ 2.42
50% random 5426 +6.94  65.10 £+ 4.86 57.80 £8.88  56.75+6.97 51.48+7.06 61.17+£6.78  50.59 +5.01 54.78 £ 742  54.77+722 51.814824  54.65+6.99

Clean data 76.52+0.58 7846085 7549+0.37 75.70+0.74 75724092  63.13+9.60 594541270 5659 £0.67 7530+0.94 2326+6.65 TL57+1.07
10% pair 72814153  T76.73 + 1.42 76.03 +£0.71 71.82 + 1.51 72084109 61.10+9.84 542041146 54.714+135 T71.29+1.03 26.77+5.01 67.36 + 2.20
20% pair 67.09+288 7376+ 1.77 7512+237 65.53+262 66.82+226 55.00+£9.66 44.15+11.46 62.53+14.47 65.74+3.29 26.11+832 61.84+3.59
30% pair 60.69+1.76  69.55£2.13  69.94£3.25 59524296 59414250 53.04£6.92 410841247 4748+£261 5749+3.23 2586+4.42 5243 +5.01
40% pair 46.75 £ 4.37  53.59 £4.95 52.21 £7.91 4648 £3.92  47.39+6.44  40.62+£824  4040£6.53 39.02+£6.96 47.21+£3.24 20.54+4.34  44.06 +3.28
50% pair 35.36 £5.71 36.95£8.57  3547+£6.85  3592+590 34.57+£7.27  33.90+581 27.53+£6.93  31.90£9.03 3559+451 2053+3.13  33.41£5.06

10% uniform 7440 £ 1.03  77.33 +2.01 76.41 £0.77 73.17+£1.40 74024109 58.20+8.23 53.92+1338 58234932 T73.38+0.71 23.90+6.39 7037+ 1.17

Blogeatalog 20% uniform  71.30+1.23  76.21 £ 1.94 T7.68 £0.93 70.54+£1.25 70284132 59.68+7.42 41.84+10.65 52.78+0.93 69.36+1.37 31.22+9.44  66.30 £ 3.31
30% uniform 6936 £2.99  7537+188 7634+113 67.79+£201 6818+272 56.30+9.27 37.26+16.11 58.43+1532 67.36+3.18 2645+ 798  63.32+2.64

40% uniform  64.73+2.36  73.18 £3.45 73.20+£2.17  63.04+£157  63.00+£3.75 49.31+£845 30.95+12.83 68.15+1531 62.37+£2.65 18724272 61.27+4.73

50% uniform  60.08+£3.58 71.72£3.53 69.56+£234 60.18+£263 57.85+£273 49.30+9.73 3247+11.46 63.63+13.45 59.56£3.27 21914518  52.90 £4.96

10% random 72,63+ 1.36  75.98 + 1.96 73+ 1.08 71724112 72114176 59.904+11.53 5578 £12.89 5263+ 1.02 24.37+3.36 33.94+7.71 69.11 £ 1.81

20% random  70.70 4 1.28 7447 £2.51 76.07+£1.29 69454213  7047+1.52 5883+£7.93 46.83+14.20 58.87+ 1445 22.75+4.21 27.60+8.19  67.86 +2.05

30% random 6581 £2.07 7224182 7267+325 6486+3.17 64.88+£294 53.74+512 422441318 5480+13.27 21.90£288 21.63+£7.64 61.84 £4.50

40% random 61754423  69.90£4.74  69.63+£4.19 60.25+4.69 61.204£4.64 49.55+11.35 32.52+9.61 70.72+£9.31 2001 £3.39 20214505 5599 +5.15

50% random  57.61£3.48  66.08+£392 65124375 56.03+£356 55.67+£399 4443+1237 40.12+6. 61.65+13.14 20.12£3.92 17.78 £1.70  52.04 £3.54

0% clean 56.75+0.44  46.04+£1.10 41.93+3.77 52924087 54.85+1.08 5541 +1.04 17.68 £5.87  31.81+£0.37 30.88+022 13534240 48.97+1.37

10% pair 5443 +1.22  46.77+445 3744+£4.04  4953+0.78 5260+ 1.59  54.79 £1.22 19.10 +£5.04 27.12+£0.73  21.78+287 11.344+1.55 25.50 £ 18.51

20% pair 51.55+£1.59  45.01£4.49  37.35£3.93 46.50+£1.30 49984210 51.20+1.75 1933+£3.00 2551+096 23.06+3.76 1247+1.88 31.07+17.16

30% pair 45.68 + 3.02 38.79£4.60  36.50+£536  40.74+2.88  45.06£2.77  44.61 £3.11 15.64+£4.02  2295+082 20.75£380 11.334+1.50 29.38 +12.67

40% pair 38.82+1.82 3131 +£3.55  34.79+3.85  3505+235 37.80+252  39.35+2.95 19.33 £4.71 20.94+£0.97 16.60 =327 10.85+1.28  26.57 £ 10.67

50% pair 28.91£2.87  2841£4.70  29.81£3.90 28424143 28964293  28.71+£238 13.62+3.24 1836+0.89 1697+296 11.42+1.63 2538 +5.58

10% uniform  55.44 +0.82  48.35+4.38  39.50+3.16  49.66+1.03 53.5441.04 55204 1.43 16.85 + 6.45 27454103  21.84+201 12594270 40.03 £15.28

Flickr 20% uniform  53.06+1.88 4550 +£5.08 42854206 46724129 51.38+143 5241 +248 17.81+£4.04  2530+£0.75 21.22+£3.69 11.76+224  30.66 + 16.81

30% uniform  49.77+0.96 4276 +5.18  43.7243.28  43.13 4 1.41 48.06 +1.50  49.38 + 1.40 1924 +£5.02  23.99+1.51 21194389 11.714+1.72 31.09 + 13.98
40% uniform  47.29 +2.44 4046 £5.09  40.63 448  40.74£219 4 +243 4735+ 148 1753 £4.37 22224118 19.85£3.98 12.00+£2.14 29.95+13.03
50% uniform  42.95+1.99  3647£539  40.70+£335 37.58+204 40.80+214 43.15+1.82  15.09+3.36  19.51+0.75 17.57£3.30 1085+ 1.37  20.24 £9.87
10% random 5517 +£1.09  46.89 £2.42  39.02+5.28  49.934+1.25  53.9240.90 54.08+1.43 19.25 +4.82 27.13+£091  2327+£3.11 11484166 39.96 + 15.25
20% random  53.72+£0.98  47.013+4.11 4110+£294 4646 +£2.01 51194145  52.14+1.03 17.34 £ 4.98 27.60£1.03 2758 £3.78 11974148 38.67+10.05
30% random  49.57 4 1.31 44.52+6.94  40.85+£5.70 42544152 4745+ 1.37  49.06 £2.28 15.80 + 3.41 24.384+1.18 2241+458 11.73+£1.15 30.19+13.35
40% random  47.16 & 1.51 36.38£5.53  41.73+£3.50  39.96+2.65 46.19+1.91 46.67 +2.31 17.19 £ 4.82 21.74+£201 17.30+4.10 11.26+1.02  34.01 £12.29
50% random  40.66+2.78 3150718 37424448 3418+325 3876+3.69 40.81+£290 13.88+446 19.26+1.73 14.87+3.03 11.954+1.25 23.60 +10.92

0% clean 36.97+0.28 48.89+0.44  48.94+0.32  36.71+0.41 35.74 4+ 0.24 23+£0.48  24.04+048 5316 +4.25 16.00+1.18 20884081 28.78 £ 0.68
10% pair 34.89 £0.65 4980 £0.30  49.45+0.62  33.71+0.78  34.12+0.76  33.52+0.71 22.67 +£0.53 5258 £547 1550 +£1.26  20.69+0.86  27.04 £ 1.15
20% pair 3291+£0.59 48.66+0.80 47.25+£098 31.49+1.06 31.83+0.97 3215+£093  22.00£0.64 48.34£6.98 1544 +1.25 19.61+£0.90  26.19 £ 1.59
30% pair 30.31+£0.99  4526+132 4439+ 1.10 29.65+0.74 28.23+4.86 28.38+1.32 21.37£0.49 4178 +£6.19 1453+ 1.16 18.07+1.05 24.01+1.72
40% pair 2636 £1.23 3931 £2.08 37.22+£2.59  2523+£1.12 25784130 25.77+1.04 1924£0.60 3956 +8.16 14.26+043 1748+ 111  22.39+1.23
50% pair 21.70 £ 1.32 29.53+£1.97  29.24+188 21.62+1.04 21.73+128 21.57+187 17.00£0.75 2830 +£4.38 14.38+£092 16454127  20.00 £ 1.90
10% uniform 3497 +£0.37  49.06+£0.68 49.78+048  33.91+0.38 34324059  33.49 +0.62 22.80 £0.51 52.74+£3.82 16.45+1.30 20.33+£0.93  26.29 £ 1.59
20% uniform  33.73 +0.37  47.99+0.76  49.15+0.82  32.34+0.73  33.05+0.94 32.87+£0.80 2207053 53.16+£291 1555139 19374026 2522+ 1.17
30% uniform  32.58 +£0.80  47.07+047 48.14+1.07 31.36+£0.71 32344082  31.37+086 21.39+£0.67 51.79+252 15.78+1.26 18.96+0.81 23.70 + 1.33
40% uniform  30.33+0.90  45.63 +£0.67 46.74+1.14 2884+ 087  30.24+0.96  29.62+1.19 19.88 £ 1.04  49.72+2.67 15.02£095 17.19£1.85 17.76 + 2.65
50% uniform 2756 +1.22  43.91+0.92 4505+ 1.05 26.72+1.19 27.73+1.15 27.26+ 1.13 18.29+0.92 4558 +2.34 1524+£1.31 1629+ 1.68 16.43 £ 1.70
10% random 3559 +0.42  48.25+0.58  49.24+0.50  35.27+0.55 34544048  33.31£0.62 23.59 £0.58 5291 +£351  1510+1.06 2116+ 1.19  27.76 £ 1.20
20% random  33.94£0.55 47.75+0.56  48.62+058  3292+0.63  3345+1.20  3217+0.82  23.29+0.38  50.75+£3.67 1621110 2255+1.50 2584185
30% random  31.09+0.77  45.63+0.67 4648+0.65 30.57+0.93 29.37+4.38  30.92+0.87  20.95+0.82 5049 £2.13 1453 £1.09 17.26 + 1.61 23.81 £ 1.51
40% random  30.63£0.58 4566 +£0.79  46.26+092  29.71+0.41 30.34£0.85  29.68+1.07 21.49+059 48.73£3.86 14.50+0.85 18.43+2.51 21.21 £3.03
50% random  28.2240.99 4343+ 1.38 4457+ 1.17 27494 0.81 27.90+0.89 2810+ 1.33 19.81+£1.05 4747+1.21  1484+£0.74  16.55 4 2.07 17.52 +1.28
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Table A6: Additional Results For GLN under 30% Uniform noise (10 Runs), N/A indicates time
or memory exceeded. ACLT denotes Accuracy of Correct Labeled Training nodes, AILT denotes
Accuracy of Incorrect Labeled Training nodes, AUCS denotes Accuracy of Unlabeled Correct
Supervised nodes, AUU denotes Accuracy of Unlabeled Unsupervised nodes, AUIS denotes Accuracy
of Unlabeled Incorrect Supervised nodes

Dataset Records GCN NRGNN RTGNN cp CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

ACLT 98.53 £ 0.93 84.53 £4.07 82.29 +3.33 98.77+£1.49  94.14£3.44 98.43+£1.55 81.06 1080  99.00 £ 1.18 98.60 £ 1.18 97.16 = 2.79 96.39 + 1.92
AILT 33.77 £ 9.40 75.64 £ 6.68 TLST£8.33 3204+ 1417 3488996  29.19+20.67 37.58 £ 1548 13.44 £8.24 33.89 £15.53 3137T+10.72  34.93+8.11
AILMT  62.14 £ 10.37 9.84 £ 7.64 11.04 £4.65 65.25+£15.24 56.09£10.07 68.10£22.30 41.82+£19.00 84.10+9.49 62.01 £17.07 63.61 £12.09  58.93 £ 8.69

Cora AUCS 80.76 £ 2.95 83.11 £ 3.16 75.53 £ 4.80 80.85+£3.46  76.77 + 3.30 80.30 + 4.69 70.89 £ 7.28 77.06 + 3.30 82.45 +2.69 80.41 + 3.62 80.09 + 2.90
AUU 71.99 + 3.44 81.33 £2.25 73.44 £ 4.95 72324445  67.11+5.11 70.28 + 8.69 63.60 + 6.94 75.36 £ 3.33 73.46 £ 3.70 70.38 + 4.04 TL75+£4.73
AUIS 51.55 + 6.53 78.81 +5.94 69.50 £8.06  51.46+12.99 4386+ 748 492541624 45724+ 10.64 7292 + 4.66 52.59 + 9.00 46.81 £10.04  51.8846.64

Time 0.26 +0.47 9.39+221 12,03 +1.33 16.26 + 0.85 546 +0.18 3.16 +4.52 3.184+0.71 17.34 4+ 3.47 15.90 4+ 13.85 108 +0.25 0.28 +0.04
ACLT 99.18 £ 0.96 75.93 £3.79 79.36 + 5.55 98.2T+1.83  92.63 £5.08 99.54 £ 0.81 96.49 + 4.40 99.88 +0.37 96.96 + 1.82 97.51 + 1.98 97.63 +2.10

AILT 1.39 +£2.65 43.78 £8.23 35.36 £ 7.72 1.73£3.01 8.88 +6.91 117+£2.84 6.83 £6.77 3.39+4.21 5.37+3.32 3.09+2.21 2.31 £ 1.77
AILMT  97.77 £4.20 30.20 £7.94 41271134 9743+4.78  81.70+13.29 9854 £3.73 91.28 £ 8.18 96.61 +4.21 90.69 = 5.27 94.65 = 2.53 96.06 = 3.42
Citeseer AUCS 74.70 £ 3.49 72.69 £ 3.35 68.45 £ 4.52 7416 £2.86  74.23 £3.31 75.02 £ 3.53 69.51 £ 3.47 T2.77 £4.05 T74.60 £ 4.58 75.26 + 3.72 T4.88 + 3.88

AUU 57.50 £ 3.60 66.67 £ 4.22 62.19 £ 3.25 5740 £3.08 5885 +4.43 57.92 +£3.84 54.90 £4.11 67.08 £ 4.66 59.48 £ 3.82 58.54 £4.01 58.02 £ 3.99
AUIS 16.45+5.60  51.37+17.86  46.72 + 15.10 18.15+6.69  21.92 £5.69 17.26 £ 6.85 2080 +£9.17  53.44 +14.21 23.41+£7.92 19.82 £ 7.47 18.61 £ 5.69

Time 0.57+0.43 7.02+1.32 38.50 £25.07  20.23 4+ 0.46 5.90 4 0.26 13.80 £+ 5.01 3.26+0.73 7.76 +3.93 91.13 £ 55.45 7.79 +£12.90 0.92 4 0.87

ACLT 97.08 £ 2.61 T74.37 £ 15.52 92.21 + 3.85 96.99 +£2.48  97.38 £3.31 98.77+2.10 9227 +12.38 N/A 96.85 + 3.44 87.66 £22.82  96.76 +2.72
AILT  30.01 +£15.38 61.79+ 14.74 57.26 +9.83 .22 £ 17.78  19.79+£19.87 1818 £ 17.78  20.04 £16.47 N/A 17.85 4+ 15.85 16.774+15.34 2529 +14.37
AILMT  66.93 +£16.47  25.11 4+12.47 3558 £8.01 6481 +£1864 78.16+19.66 80.85+17.99 76.56 £ 19.22 N/A 79.02 +20.17 T7.93424.69 7115+ 1553

pubmed AUCS 69.49 £ 7.41 59.98 £13.05  68.50£11.06  71.10£8.60  72.16 £5.99 73.42+9.21 69.09 = 7.99 N/A 70.95 + 6.55 62.57 £ 14.01 72.93 £ 7.06
AUU 59.47 £ 7.87 58.42 +£8.75 64.74 +7.36 60.00 +£9.67  58.42 +8.02 6211 £7.77  58.95+13.31 N/A 59.47 £ 8.61 52.11+£14.35  62.11 £9.54
AUIS  27.06+21.05 52.10+29.07 49.64+£2284 3595+26.69 1948+£16.76 27.66+18.07 37.54+29.11 N/A 25.08 +17.63 22,86 +15.84 41.15+£31.33

Time 0.31 +0.35 119.30 £44.57  99.15 £ 23.67  95.65 + 1.74 5.7240.23 37.37 £ 10.76 3.09+ 1.34 N/A 7.66 + 3.09 48.74 £ 78.02 244 +3.53

ACLT 90.81 £ 3.10 61.82 £ 5.95 73.58 £ 7.57 88.51 £4.38 92,01 +£2.61 93.43£298 3744 +£10.38 84.67£10.92 13.17 £4.37 44.71 £32.57  53.11 £30.63
AILT 6895+ 10.52 52344+ 7.43 65.80 + 6.97 70.81 £4.68  75.59 +4.39 70.94 = 7.66 37.92+9.60  26.18 +13.75 13.20 £5.35 38.55 £20.40  43.38 £ 24.06
AILMT  13.27 £ 6.96 9.41 4+4.94 6.75 4+ 4.86 13.874+6.04  11.40£3.23 17.77£7.85 7.6143.72 53.33 £ 24.40 11.02 4+ 1.87 10.19 + 4.64 10.96 +4.16
A-Computers AUCS 83.38 + 2.39 7248 £ 5.35 7257 +£5.67 8229+ 3.76  84.09 + 2.50 83.08 + 2.38 50.31 £ 8.42 58.66 + 4.12 26.42 +£5.21 47.06 £24.61  52.15 4 30.77
AUU 81.58 + 3.70 71.15 4 5.00 T1.37 +£5.33 80.65+4.00  82.77 £2.99 81.69 + 3.08 49.28 £ 7.37 57.63 +£3.75 26.26 + 5.46 46.04 +£24.70  51.12 + 30.06
AUIS 78.02+ 747 69.03 + 6.67 67.42+6.79 77.52+4.44  80.19+5.43 79.78 £5.93 46.11 + 54.96 + 6.97 21.99 +7.48 42.20 £26.69 4821 £29.15
Time 1.28 +£0.41 120.63 £28.31  304.07 £56.41  82.97+2.11 7.824+027 117.10£27.10 649+ 1.42 120.78 £64.12  130.79 £ 115.06  53.97 + 68.57 5.71+3.92
ACLT 91.74 £ 2.96 70.74 £ 6.42 88.81 £ 1.92 89.85+£5.02 9321 £2.31 9258 £2.35  61.43 £ 16.: 90.61 £ 7.73 17.57 £3.35 45.89 £31.92  46.76 £ 36.50
AILT 80.78 £ 5.59 64.16 £ 8.28 87.14 £4.78 7846 £6.17  84.82£5.38 8195 7.74 4946 £10.26 4418 £ 15.75 17.33 £ 6.44 38.54 £24.55  40.67 £29.28
AILMT  11.01£5.49 8.46 £ 3.45 3.64 £2.57 11.86 £ 6.11 7.90 + 4.54 11.69 £ 7.82 16.23£7.15  43.90 £20.70 9.88 +£4.15 12.58 £ 6.89 11.40 £3.17
A-Photos AUCS 92.21 £2.44 85.62 £ 2.96 89.98 + 2.10 90.74 £2.98  93.08 = 1.97 92.04 £4.62  61.05£15.59  75.71 £ 6.59 21.70 + 7.80 4720 £30.80  44.70 £+ 38.10
AUU 89.76 + 2.84 84.29 +2.79 89.19 +2.13 88.85+3.20  91.15+2.33 89.68 £5.00 57.84+13.94  T4.40+6.73 22,05+ 7.18 46.53 £29.54  42.32+ 36.11
AUIS 87.01 +£4.72 82.46 + 5.86 88.84 + 4.76 86.34 £3.99  88.71 +3.40 86.29 + 6.30 52.75 +9.63 71.08 + 7.89 18.81 + 6.56 43.12+£28.41  41.11 £ 30.97
Time 0.87+0.29 69.88 £ 18.58  171.43+15.79 4246 + 2.46 6.354+0.21 25.60 + 10.09 4.28 +£1.26 46.69 +19.13 84.42 +63.51 19.21 4+ 30.75 1.92+1.94
ACLT 98.34 £ 1.71 77.39+£3.28 81.42 + 3.61 94.75+£ 581 91.51 £4.99 95.77 £ 3.37 84.85+8.72 99.91 +0.27 97.68 + 1.87 89.25 + 13.11 97.83 +1.29
AILT 21.13 £ 8.02 65.65 £ 7.34 6447 £11.16 2514 £12.36  18.56 £ 7.63 41 +£9.67  29.66 + 20.08 0.35+0.74 23.42+9.24 2590 £17.84  20.36 =
AILMT  75.33 £ 9.66 19.50 £ 6.18 21.84£ 1051 69.94£1557 T7148+9.17  61.76 £11.53 57.28 £25.14  99.65+0.74 73.04 £ 11.00 65.68 £24.20  74.00 £ 6.77
DBLP AUCS 83.15 + 1.43 82,14 £1.29 77.00 £ 3.16 82.77+£1.69  81.08 = 1.49 83.16 = 77.32£3.08 TLAT £4.42 83.31 + 1.58 79.18 £4.77 83.03 + 1.01
AUU 74.10 £ 2.64 79.51 £2.22 75.81 £ 3.95 7442 +£284  66.41 £4.95 76.30 £ 2.74 65.52 + 4.56 4 £ 5.00 75.13 £ 2.52 70.24 £ 4.15 73.31 £3.48
AUIS 55.65 +9.47 74.46 +5.69 73.98 £ 8.53 57.55 £ 9.84  37.50 +6.55 62.98 £6.53  42.95+12.85 61.48+6.60 58.56 + 9.00 53.80 £14.58  54.13 £ 8.60
Time 0.13 £0.04 40.36 + 3.96 79.03 £ 11.68  94.58 £ 0.76 5.2540.43 9.18 4+ 2.04 3.36+£0.42 382,95+ 99.05 20.22 +4.44 9.73 +6.18 0.76 +£0.13
ACLT 87.77+4.37 86.65 + 4.06 87.76 + 1.94 80.31£4.93 89.04+3.32 741241213 3202415 100.00 + 0.00 86.94 + 5.68 23.93 £ 7.31 79.57 £ 4.99
AILT 5516 £11.35  80.93 £6.00 81.74+£4.27  51.324£10.19  55.96 + 7.26 51.53 £9.62  30.42+12.37 0.00 £ 0.00 58.00 £ 9.93 21.26 + 6.69 58.42 £ 5.52
AILMT  23.31 +15.15 5274294 5.31+£281 27.56 £12.78  24.04£9.24 23.57+£7.21 14.46 £4.97  100.00 + 0.00 2248 £11.43 18.68 £ 5.00 17.04 £ 5.83
Blogcatalog AUCS  70.78 +3.83 76.74 £ 1.78 T8.57 £ 0.97 69.66 £2.40  69.89 £2.97 57.70+£9.10  29.69 +£13.23  58.45 £ 15.30 69.67 +3.21 22.06 = 7.07 66.30 = 2.76
AUU 70.07 + 3.86 76.16 + 1.85 77.83 +0.95 68.88 +2.21 69.11 £ 2.92 57.10+9.16  29.35+12.93 5845+ 15.33 68.75 +3.24 21.53 + 6.59 65.70 +2.77
AUIS TLT1 +4.40 76.95 + 2.52 79.49 £ 1.49 69.84 £2.53  70.41£3.21 57.68 =890  29.74+13.14  57.51 £15.99 70.37 +3.76 21.65 = 7.70 66.71 +2.53
Time 0.99 +£0.47 60.40 £12.65 11591 £27.74  32.03 £ 0.81 7.42£0.80 20.30 = 4.93 5.71£2.75 7.75£5.92 230.91 £ 79.49 6.11 +7.66 340+ 1.19
ACLT 95.45 + 1.89 68.78 £ 7.09 66.96 + 5.37 92,14 £8.13  91.20 £4.01 91.54 £3.13 16.61 £ 3.97 100.00 £ 0.00 30.80 £ 5.99 13.19£4.12  51.54 £35.03
AILT 18.91 £5.75 54.56 £ 5.12 55.47 £ 6.18 11.09 £ 843 2233 £6.63 16.01 £ 6.84 0.00 £ 0.00 19.05 £ 7.03 12.25 £ 3.89 16.05 £ 5.82
AILMT  69.51 + 6.85 10.91 4 2.84 8.02 4+ 2.08 75.50+£20.23 61.104+12.00  59.36 + 7.47 10.69 £3.00  100.00 4 0.00 17.50 £ 3.14 12714429 34.00 £ 25.64
Flickr AUCS 50.84 +1.32 43.94 £ 5.70 42.07 4 5.04 44454133 49.32+2.36 50.02 + 2.4 18.03 4+ 4.40 19.22 4+ 1.85 19.74 £+ 3.91 11.84£242  29.454+13.64
AUU 50.72 + 1.10 28 +5.04 4420+ 130  49.12+2.23 50.09 +£2.11 17.84 +3.91 20.46 + 1.64 20.11 + 3.87 1171 + 2.3 28.91+13.84
AUIS 50.17 + 0.86 40.50 + 5.28 43.13+£1.90 4825 +£2.47 49.39 + 2.66 18.13 + 3.64 18.19 + 1.81 18.48 + 3.69 11.26 £2.66  26.79 +12.93
Time 1.74 £ 0.50 70.22+£20.06 7878 £41.05  41.99+£0.79 9.00 +0.85 38.00 +4.57 7.67+1.19 2.27+0.64 187.40 £ 202.26 6.89 & 6.41 1.98£1.34
ACLT 46.76 + 4.04 41.32 £ 2.96 44.54 = 1.60 48.01 £6.13 4283 £1.63 40.98 £ 1.01 64.51 £14.29  87.64 = 1.34 37.40 = 0.50 36.19 = 4.32 37.46 = 0.43
AILT 34.53 £2.29 36.17 £ 0.89 35.23 £ 2.40 35.13+£2.45 3549+ 1.04 37.00 £ 0.88 23.78 £ 8.55 12.54 £2.19 36.95 £ 1.06 35.24 £4.24 36.79 £ 1.05
AILMT  21.13+£3.33 18.29 +2.85 19.79 £2.09 21.45 £ 3.94 19.15 £2.24 18.25£224 4455 +£19.71 67.97 £ 5.40 16.63 £2.51 1717 £2.79 16.69 £+ 2.47
A-Ratings AUCS 39.19 £ 0.70 37.45 £ 0.98 38.28 £ 0.65 39.05+£0.85 3832+ 1.17 38.23 +£0.53 36.68 £ 1.17 32.26 +1.22 37.91 +0.49 36.47 £ 4.70 37.93 +£0.41
AUU 38.47 £ 0.59 37.03 +0.64 37.69 +0.47 3846 +0.65  37.78 +0.84 37.75 +0.35 34.51 +1.35 3174+ 0.97 37.44+0.18 35.99 + 4.65 37.47 £ 0.00
AUIS 38.02 + 1.00 37.10 £ 0.62 37.24 +1.00 38.07 +0.98 37.890 +0.98 30.19 + 3.46 31.11+1.28 37.92+1.12 36.41 +5.05 37.80+1.22
Time 0.38+£0.70  119.00£79.45 369.63 £ 87.64  80.26 + 0.36 4.374+0.27 130.84 £93.01  2.16 +0.59 16.09 £12.09  285.42 + 140.46 4.48 £4.53 0.36 +£0.25
ACLT 54.23 £5.13 55.75 £ 2.31 60.58 + 1.12 51.12+4.83  55.34£3.09 39.46 = 1.19 4471 £9.48 67.67 + 6.59 15.82 £ 2.06 22.20 + 1.75 27.42+£2.94
AILT 27.20 £ 1.93 47.50 +3.24 50.12 +2.92 27.62+£2.09  27.91£1.95 29.56 + 2.52 18.71 £ 1.96 46.65 + 2.53 15.01 £ 1.90 19.48 £2.91 24.45 £ 2.87
AILMT 1380 £ 3.46 4.88 +1.41 5.78 £ 1.69 12,98 £ 3.37 13.89 £ 2.40 6.48 +1.64 16.41 £ 3.90 15.54 £+ 4.88 5.70 £0.97 5.0541.01 5.62 +1.37
Roman Empire  AUCS 27.01 +£1.34 41.09 £ 1.93 43.82+1.43 27.05 +1.31 26.88 = 0.61 2877+ 1.68 18.58 £ 1.36 48.63 £ 1.15 14.98 +£1.18 18.52 +1.09 22.75 + 1.65
AUU 28.49+1.27 41.63 £ 1.68 44.37 £ 1.16 2819+ 098  2834+0.78 29.59 +1.27 19.91 £ 1.04 48.70 £ 0.86 14.81 £0.94 18.87 £ 1.00 22,99 + 1.65
AUIS 31.38 £ 1.58 42.21+£2.28 44.81 £2.11 30.59+1.38  31.18 £ 1.63 3115+ 1.37 22,65 + 1.06 48.33 £ 0.99 14.30 £ 1.29 19.25 £ 1.09 23.29 + 2.05
Time 0.53+0.65 151.39 £19.51 340.92+68.92 73.48 4+ 0.59 6.544+0.30  233.25+27.18 177 +0.08 159.07 £69.94 921.33 £832.73 188.38 £93.65 9.824+0.83
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B Additional experiment result figures

B.1 Transition patterns

In this work, we primarily consider two types of label noise: pair noise and uniform noise, as
defined in Section[2] Additionally, our code implementation supports random noise. Unlike the fixed
transition patterns of the first two types, the label transition pattern for random noise is generated
randomly. Below are examples of their label transition probabilities.

Uniform noise Pair noise Random noise

Figure Al: Label transition probability under 30% uniform noise, pair noise and random noise,
respectively.

B.2 Test accuracy of different methods under different noise rate

In Section[d] we investigated the performance of different LLN and GLN methods, here are additional
experimental results.
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Figure A2: Test accuracy of LLN and GLN methods on Cora dataset under different rate of pair and
uniform noise, respectively (10 Runs).
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Figure A3: Test accuracy of LLN and GLN methods on Citeseer dataset under different rate of pair
and uniform noise, respectively (10 Runs).
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Figure A4: Test accuracy of LLN and GLN methods on Pubmed dataset under different rate of pair
and uniform noise, respectively (10 Runs).
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Figure AS5: Test accuracy of LLN and GLN methods on Amazon-Computers dataset under different

rate of pair and uniform noise, respectively (10 Runs).
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Figure A6: Test accuracy of LLN and GLN methods on Amazon-Photos dataset under different rate

of pair and uniform noise, respectively (10 Runs).
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Figure A7: Test accuracy of LLN and GLN methods on Blogcatalog dataset under different rate of
pair and uniform noise, respectively (10 Runs).
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Figure A8: Test accuracy of LLN and GLN methods on Flickr dataset under different rate of pair and
uniform noise, respectively (10 Runs).
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B.3 Additional results of time efficiency
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Figure A9: Time consumption and Test accuracy of different GLN methods on different datasets
under 30% uniform noise (10 Runs).
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C Additional details of the Benchmark

C.1 Datasets

Table A7: Overview of the datasets used in this study.

Dataset #Nodes #Edges #Feat. #Classes #Homophily Avg. # degree
Cora 2,708 5,278 1,433 7 0.81 3.90
Citeseer 3,327 4,552 3,703 6 0.74 2.74
Pubmed 19,717 44,324 500 3 0.80 4.50
Amazon-Computers 13,752 491,722 767 10 0.78 35.76
Amazon-Photos 7,650 238,162 745 8 0.83 31.13
DBLP 17,716 105,734 1,639 4 0.83 5.97
BlogCatalog 5,196 343,486 8,189 6 0.40 66.11
Flickr 7575 239738 12047 9 0.24 63.30
Amazon-Ratings 24,492 93,050 300 5 0.38 7.60
Roman-Empire 22,662 32,927 300 18 0.05 2.90

Cora, Citeseer and Pubmed [19] are citation networks that most commonly used in previous graph
learning under label noise studies [} 31} 24, [11}[18]. Each node represents a paper and each edge
represents citation relationship between papers. Node features are 0/1-valued word vector indicating
the absence/presence of the corresponding word from the dictionary. The label of each node is its
category of research topic.

Amazon-Computers and Amazon-Photo [20] are co-purchase graphs extracted from Amazon,
where each node represents a product, edges represent the co-purchased relationships between
products. Features are bag-of-words vectors extracted from product reviews, labels of each node is its
corresponding product category. These datasets were frequently used in robust graph learning under
label noise studies [24} [12].

Amazon-Ratings [17] is derived from the Amazon product co-purchasing network metadata from
SNAP Datasets. In this dataset, nodes represent products, while edges indicate products frequently
bought together. Node features are calculated as the average of FastText embeddings for words in the
product descriptions. The product ratings are categorized into five distinct classes as labels.

Roman-Empire [17]] is derived from the Roman Empire article on English Wikipedia. The text
was obtained from the English Wikipedia dump dated 2022.03.01. Each node in the dataset’s graph
represents a (non-unique) word in the text. Node features are calculated by FastText embeddings.
Two words are connected if they follow each other in the text or are linked in the dependency tree of
a sentence. Nodes are labeled based on their syntactic roles and identified using spaCy. The 17 most
frequent roles are considered unique classes, while others are grouped into the 18th class.

DBLP [15] is an author collaboration network in computer science, each node represents a document
and edges represent their citation links. Features are word vectors and labels are category of research
topic. This dataset was used in study [1].

Blogcatalog [26] is a social network formed by an online community, each node is a blogger and
edges represent their relationships. The features of each node are derived from the keywords present
in their blog descriptions, and the labels are selected from a collection of established categories that
reflect the bloggers’ interests. This dataset was used in study [18].

Flickr [26] is a platform where users can share videos and images. User can follow each others thus
form a social network. The feature of each node are generated from the user-specified tags, and labels
represent the groups they have joined.
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Figure A10: Timeline of GLN research. Existing GLN methods can be categorized into Loss
regularization, Robust training strategy, Graph structure augmentation and Contrastive learning.

C.2 Algorithms

C.2.1 Graph Neural Networks with Label Noise

NRGNN [1]] believe that since the labels on the graph are sparse, the falsely labeled nodes may
affect the unlabeled nodes in its neighborhood, which make it difficult to receive supervision from
correctly labeled nodes. To address these issues, NRGNN first connects nodes with similar features
to create a refined graph. Based on this refined graph, precise pseudo-labels are generated, allowing
unlabeled samples to receive more supervision from correctly labeled samples, thereby reducing the
impact of noisy labels.

RTGNN [18]] followed the work of NRGNN. The authors point out that although NRGNN em-
phasizes providing additional supervision for unlabeled nodes through link prediction, it does not
distinguish between incorrectly labeled and correctly labeled nodes. Instead, it merely connects nodes
with similar features indiscriminately, which may lead to the spread of influence from incorrectly la-
beled nodes. To solve this problem, the authors propose RTGNN, which, building based on NRGNN,
uses the small-loss criterion from Co-teaching [4] to further distinguish between trustworthy and
untrustworthy nodes, and corrects the labels of some untrustworthy nodes, mitigates some of the
shortcomings of NRGNN.

CP [31] studied the impact of adversarial label-flipping attacks on the generalization ability of
Graph Convolutional Networks (GCNs). To counteract label-flipping attacks, the authors proposed a
defense framework named CP, which uses community labels as high-level signals to guide the node
classification task. The CP framework includes a constraint with community information to prevent
overfitting to the flipped noisy labels. The use of community labels is motivated by their similarity to
the output of GCNGs.

D-GNN [14]] obtains a label noise robust Graph Neural Network by adopting backward loss correction
[16]] on GIN [235]] backbone, which estimates the unbiased loss on clean labels.

RNCGLN [32] aim to simultaneously mitigate graph and label noise issues. To achieve this, it
first use graph contrastive loss to conduct local graph learning, and adopt multi-head self-attention
mechanism to learn node representation from a global perspective. Then utilize pseudo graphs and
pseudo labels to deal with graph noise and label noise, respectively.

CLNode [_24] adopt a curriculum learning strategy to mitigate the impact of label noise. To be
specific, it first utilize a multi-perspective difficulty measurer to accurately measure the quality of
training nodes. Then employ a training scheduler that selects appropriate training nodes to train GNN
in each epoch based on the measured qualities. The authors demonstrated this method enhances the
robustness of backbone GNN to label noise.

PIGNN [2] enhances the GNN’s resistance to label noise by introducing additional pair-wise labels.
The motivation is pair-wise labels are more robust than node-wise labels. In authors’ definition, a
pair interaction label is 1 if the nodes have the same label, and 0 otherwise, and they designed a PI
label estimation method based on the similarity of node embeddings. During training, the estimated
PI label serves as the confidence level for the node classifier’s predictions, thereby constraining the
training process of the node classifier. This method performs well on homophilic graphs but poorly
on heterophilic graphs.

38166 https://doi.org/10.52202/079017-1206



Union-NET [11]] tries to limit the gradient passing process of mislabeled samples through neighbor-
hood labeling, like a kind of neighborhood voting with node representation similarity weighting. A
GNNes first generates node representations and predicted labels. Context nodes are then aggregated
using random walks, and an attention mechanism calculates class probability distributions. This
guides a reweighting scheme to minimize the impact of noisy labels. Labels are corrected by aligning
them with the most consistent context labels, and a KL-divergence loss maintains alignment with the
prior distribution. The training involves pre-training the GNN and updating model parameters with a
combined loss function, ensuring robust training and effective label correction.

CGNN [30]] addresses label noise in GNNs by combining neighborhood-based label correction and
contrastive learning. It utilizes message passing neural networks to update node representations,
integrating graph contrastive learning for consistent representations across augmented graph views.
Finally, CGNN employs an MLP for prediction distributions and iteratively corrects noisy labels by
comparing them with their neighbors and choosing the most labels.

CR-GNN [10] introduces contrastive learning to enhance GNNSs robustness in the face of sparse
and noisy node labels. Through techniques like feature masking and edge dropping, CR-GNN
preserves node semantics while generating augmented views. Contrastive loss captures local structural
information and mitigates noisy label effects, while dynamic cross-entropy loss addresses overfitting
and adversarial vulnerabilities. Also, cross-space consistency ensures semantic alignment between
embeddings.

C.2.2 Learning with Label Noise methods

S-model [3] adds a noise adaptation layer that models the transition pattern of noisy labels on true
labels. In the training procedure, this layer is parameterized by bias terms and allows the network to
learn both the classifier and noise model simultaneously. In the test procedure, the noise adaptation
layer is removed, which enables the network to predict true labels more effectively.

Co-teaching [4] works by simultaneously training two deep neural networks (DNNs), each of which
selects a certain number of small-loss samples from them and passes these samples to the other for
further training. It assume that mislabeling typically leads to larger losses and thus is less likely to
be selected, and then each network selects the samples that perform best on its own with lower loss.
This peer-to-peer training mechanism helps to reduce the effect of noisy labels, as both networks
focus on more reliable data.

JoCoR [23] utilizes consistency maximization to deal with the noisy labels. Instead of using
hard sampling, two different classifiers are made to converge in their predictions through explicit
regularization. Specifically, the two classifiers are trained by a joint loss function to minimize the
differences between them. During the training process, these two classifiers update their parameters at
the same time and are jointly trained by means of a pseudo-twin network. The loss function consists
of a supervised learning loss and a contrast loss, where the contrast loss is used to maximize the
agreement between the two classifiers.

SCE [22] enhances the robustness of a model in the presence of noisy labels by combining a noise
tolerance term with the standard cross entropy (CCE) loss. Inspired by the Kullback-Leibler scattering
symmetry, SCE incorporates the reverse cross entropy loss, a noise tolerance term, and combines
it with the standard CCE loss to improve the model’s ability to tolerate noisy data. This approach
not only retains the advantages of the CCE loss, but also significantly improves the generalization
performance in noisy environments through symmetry processing and noise tolerance.

Forward correction [16] corrects the sample loss by linearly combining the softmax output of the
DNN before applying the loss function. During the forward propagation process, the estimated label
transfer probability is multiplied with the softmax output to obtain the corrected loss value. In this
way, the softmax output of each sample is first combined with the corresponding transfer probability,
and then the loss function is applied, which improves the robustness of the model in noisy labeling
environments.

Backward correction [16]] adjusts the loss for each sample by multiplying the estimated label transfer
probability with the output of the specified DNN. The learning of the label transfer probability is
decoupled from the learning of the model, and the label transfer matrix is first approximated using the
softmax output of the DNN in the uncorrected loss case. Then, when retraining the DNN, the original
loss is corrected based on the estimated matrix. The correction loss is computed by linearly combining
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the loss values for each observable label, where the coefficients are the transfer probabilities from
each observable label to the target label.

D Package

We have developed an open-source software package NoisyGL,

which provides a comprehensive and unbiased platform for eval-

uating GLN algorithms and advancing future research. The code '

structure of NoisyGL is well-designed to ensure fair experimental .

setups for differer)llt algorithms, eas% reproducibility of exll))erimental N O I S\/G L
results, and support for flexible assembly of models for experiments.

NoisyGL includes the following key modules. The Config module

consists of the files that define the necessary hyperparameters and

settings. The Dataset module is used to load datasets, and the label Contaminator modifies the
raw data to create a contaminated graph. The Base-predictor serves as the base class for various
reproduced LLN/GLN predictors, and the LLN/GLN Predictor evaluates the contaminated graph to
predict performance.

As shown in the Figure [ATI] the code structure is well-organized to ensure fair experimental
settings across algorithms, easy reproduction of experimental results, and convenient trials on flexibly
assembled models. Given a specific dataset and config file, a solver will return the learned structure
and the task performance. For more details and updated features, please refer to our GitHub repository.

General Experimental Settings. We endeavor to follow the original implementations of the various
GLN methods in their associated papers or source code. To this end, we integrate the different
options into a standardized framework as shown in Figure. In this way, we can ensure consistency
and comparability of experiments, allowing the performance of different GLN methods to be fairly
evaluated on the same platform. We run most experiments on NVIDIA Geforce RTX 3090 GPU with
24 GB memory, the out-of-memory error during the training is reported as N/A in Appendix [A] For
the two large datasets, Amazon Ratings and Roman Empire, we run these experiments on NVIDIA
A100 with 80GB memory.

Hyperparameter. We performed manual hyperparameter tuning to ensure an unbiased evaluation
of these GLN methods. The hyperparameter search space for all methods is shown in Table [A§]
For details on the meaning of these hyperparameters, please refer to their original papers. Through
exhaustive tuning and setup, we strive for the best performance of each method under different
configurations, thus ensuring the accuracy and fairness of the evaluation.

1
Contaminator g g
/ Contaminated Graph

. III

Performance

A
s | LLN/ GLN Predictor

Method config

Figure A11: The structure of NoisyGL. The Raw data is processed by the Label Contaminator to
introduce label noise, resulting in a Contaminated Graph. This contaminated graph, along with the
Method config, is then input to the LLN/GLN Predictor, which evaluates performance metrics based
on the specified method configuration.
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Table AS:

Hyper-parameter search space of all implemented GLN methods.

Algorithm

Hyper-parameter

Search Space

General Settings

learning rate
weight decay
layer number

le-1, 5e-2, 1e-2, 5e-3, 1e-3, S5e-4, 1e-4, 5e-5

Se-2, 5e-3, 5e-4, 5e-5
2,3,4,5

hidden size 16,32, 64, 128
NRGNN ] p 0.01,0.02, 0.03
B 0.01,0.1, 1, 10
- 0,0.05,0.1,02
RTGNN [I8] A 0.05,0.1,0.2
o 0.03,0.1,0.3, 1
LAFAK/CP 311 | A 0.1,02,03
CLNode [ 2 025,05, 0.75
T 50, 100, 150
PIGNN [2] N/A N/A
DGNN [14] N/A N/A
RNCGLN[32] | a 102,102, .., 10°
p 0.1,05,1.0
UnionNET [T1 » 0.2,
monNET LI 0.1,0.5,1.0
~ 0.6,0.7,0.8, 009, 0.95
CGNN [30
150 w 0.6,0.7,0.8,0.9, 0.95
CRGNN [0 p 01,0203, ... .1
3 0.1,02,03,... ,1
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E Reproducibility

All of NoisyGL'’s experimental results are highly reproducible. We provide more detailed information
on the following aspects to ensure the reproducibility of the experiments.

Accessibility. You can access all datasets, algorithm implementations, and experimental config-
urations in our open source project https://github.com/eaglelab-zju/NoisyGL without a
personal request.

Dataset. The datasets used are publicly available. The Cora, Citeseer, and Pubmed datasets are
accessible online and are used under the Creative Commons 4.0 license. The BlogCatalog and Flickr
datasets were originally published by [26] and further processed in subsequent studies. To the best of
our knowledge, these datasets do not have a specific license. The DBLP dataset can be found in [[15]]
and is released under the MIT license. All of these datasets are licensed by the authors for academic
research and do not contain any personally identifiable information or offensive content.

Documentation and uses. We’ve dedicated ourselves to providing users with comprehensive docu-
mentation, guaranteeing a smooth experience with our library. Our code includes ample comments to
enhance readability. Furthermore, we furnish all essential files to replicate experimental outcomes,
which also serve as illustrative guides on library utilization. Running the code is straightforward;
users need only execute the ’.py’ files with specified arguments like data, method, and GPU.

License. We use an MIT license for our open-sourced project.

Code maintenance. We are dedicated to maintaining our code through continuous updates, actively
engaging with user feedback, and addressing any issues promptly. Additionally, we are eager
to receive contributions from the community to improve our library and benchmark algorithms.
However, we will uphold rigorous version control measures to uphold reproducibility standards
during maintenance procedures.
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