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Abstract

Graph Neural Networks (GNNs) exhibit strong potential in node classification
tasks through a message-passing mechanism. However, their performance often
hinges on high-quality node labels, which are challenging to obtain in real-world
scenarios due to unreliable sources or adversarial attacks. Consequently, label
noise is common in real-world graph data, negatively impacting GNNs by prop-
agating incorrect information during training. To address this issue, the study of
Graph Neural Networks under Label Noise (GLN) has recently gained traction.
However, due to variations in dataset selection, data splitting, and preprocessing
techniques, the community currently lacks a comprehensive benchmark, which
impedes deeper understanding and further development of GLN. To fill this gap,
we introduce NoisyGL in this paper, the first comprehensive benchmark for graph
neural networks under label noise. NoisyGL enables fair comparisons and detailed
analyses of GLN methods on noisy labeled graph data across various datasets, with
unified experimental settings and interface. Our benchmark has uncovered several
important insights missed in previous research, and we believe these findings will
be highly beneficial for future studies. We hope our open-source benchmark library
will foster further advancements in this field. The code of the benchmark can be
found in https://github.com/eaglelab-zju/NoisyGL.

1 Introduction

Many complex real-world systems can be represented as graph-structured data, including the citation
network [19], biological networks [7], traffic networks [6], and social networks [9]. Graph Neural
Networks (GNNs) have demonstrated substantial effectiveness in modeling graph data through
a message-passing process that aggregates information from neighboring nodes [5]. Among the
numerous applications of GNNs, node classification is the most thoroughly studied task, where GNNs
are trained with the explicit assistance of semi-supervised node labels [1].

Although GNNs have achieved success, their performance in semi-supervised graph learning tasks
is highly dependent on precise node labels, which are difficult to obtain in real-world scenarios [1].
For instance, in online social networks, the process of manually labeling millions of users is costly,
and the labels often depend on unreliable user input [18]. Furthermore, graph data is vulnerable
to adversarial label-flipping attacks [31]. Consequently, label noise is widespread in graph data.
Research has demonstrated that label noise can significantly reduce the generalizability of machine
learning models on computer vision and natural language processing scenarios [21]. In GNNs, the
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message-passing mechanism can further exacerbate this negative impact by propagating incorrect
supervision from mislabeled nodes throughout the graph, leading to substantial results [18].

To address this challenge, an intuitive solution is to draw on the success of previous Learning with
Label Noise (LLN) strategies and apply them to GNNs. However, these approaches are not always
applicable to graph learning tasks due to the non-i.i.d nature, sparse labeling of graph data, and
message-passing mechanism of GNNs[1]. All these factors make GNNs vulnerable to label noise
and hinder traditional LLN methods from being directly applied to graph learning tasks.

In recent years, researchers have developed a series of Graph Neural Networks under Label Noise
(GLN) methods to achieve robust graph learning in the presence of label noise. These methods
succeeded greatly by adopting Loss regularization [14, 31, 11, 2], Robust training strategy [24], Graph
structure augmentation [1, 18, 32], and contrastive learning [30, 10]. Despite the researcher’s claim
of the robustness of their proposed GLN methods, the comprehensive benchmark for evaluating these
methods remains absent, bringing out the following problems: 1) Existing works utilize different
datasets, noise types, rates, data splitting, and processing strategies, which makes it challenging
to achieve a fair comparison. 2) Existing work lacks an empirical understanding regarding the
impact of the graph structure itself on label noise—a critical distinction between LLN and GLN. 3)
No existing work has thoroughly examined the applicability of traditional LLN methods to graph
learning problems. These problems hinder us from gaining a comprehensive understanding of the
progress in this field.

In this research, we present NoisyGL — the first comprehensive benchmark for graph neural networks
under label noise. Our benchmark includes seventeen representative methods: ten GLN methods to
assess their effectiveness and robustness on graphs with noisy labels, and seven LLN methods to
evaluate their applicability in graph learning tasks. We employ standardized backbones and APIs,
consistent data splitting, and processing strategies to ensure a fair comparison and allow users to
construct their models or datasets with minimal effort easily. Besides performance and robustness
evaluations, our benchmark supports multidimensional analysis, enabling researchers to explore the
time efficiency of different methods and understand the influence of graph structure on the handling
of label noise.

Through extensive experiments, we have the following key findings: 1) Simply applying LLN
methods can’t significantly improve GNNs’ robustness to label noise. 2) Existing GLN methods can
alleviate label noise in their applicable scenarios. 3) Pair noise is the most harmful label noise due
to its misleading impact. 4) Negative effects of label noise can spread through the graph structure,
especially in sparse graphs. 5) GLN methods involving graph structure augmentation effectively
mitigate the spread effect of label noise. Our contributions can be summarized as follows:

• Perform an in-depth review of the current research challenge. In our study, we revisited and
scrutinized the entire progression of GLN. We discovered that the lack of a thorough benchmark in
this domain significantly hinders a deeper understanding.

• Provide a comprehensive and user-friendly benchmark. We present NoisyGL, the first compre-
hensive benchmark for GLN. In this benchmark, we have selected and implemented a variety of
LLN and GLN methods and evaluated them across eight commonly used datasets under uniform
experimental settings. Our benchmark library is available to the public on GitHub, intending to aid
future research efforts.

• Highlight the key findings and future opportunities. Our study has resulted in several crucial
findings that have the potential to greatly advance this field.

2 Formulations and Background

Notations. Consider a graph denoted by G = {V, E}, where V is the set of N nodes and E
is the set of edges. A ∈ RN×N is the adjacency matrix and X = [x1,x2, · · ·xN ] ∈ RN×d

denotes node features matrix with dimension d. Each node has a ground truth label, the set of
which is denoted by Y = {y∗1 , y∗2 , · · · , y∗N}. We focus on the semi-supervised node classification
problem, where only a small set of nodes VL has assigned labels for training procedure, denoted
as YL = {y∗1 , y∗2 , · · · , y∗l }, where l is the number of labeled nodes. The rest of them are unlabeled
nodes, denoted as VU = V − VL. Given X and A, the goal of node classification is to train a
classifier fθ : (X,A) → ŶN×c = {ŷ1, ŷ2, · · · , ŷN} by minimizing L(fθ(X,A),YL), where c is
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the number of classes, L is a loss function that measures the difference between the predicted labels
and the ground truth labels. Typically fθ is a well-designed Graph Neural Network(GNN). In this
way, according to the Empirical Risk Minimization (ERM) principle, the well-trained classifier fθ∗

can generalize on unseen data VU .

However, the accessible labels YL can be corrupted by label noise in the real world, reducing the
generalization ability of fθ∗ . We denote the observed noisy labels as YN = {ỹ1, ỹ2, · · · ỹl} and YL is
their corresponding true labels. Typically, we consider two types of label noise, and here are their
definitions:

Uniform noise [21] or symmetric noise assumes that the true label has a probability of ϵ ∈ (0, 1) to
be uniformly flipped to another class. Formally, for ∀j ̸=i, we have p(ỹ = j|y∗ = i) = ϵ

c−1 , where c
represents the number of classes.

Pair noise [28] or pair flipping. Assumes that the true label can only be flipped to its corresponding
pair class with a probability ϵ. Formally, we have p(ỹ = yp|y∗ = yc) = ϵ and ∀j ̸=yp,ycp(ỹ = j|y∗ =
yc) = 0, where yp is the corresponding pair class of yc.

The transition patterns of pair noise and uniform noise are illustrated in the Appendix. B.1. It is
important to note that these noise types assume that the transition probability depends only on the
observed and true labels, and is independent of instances. In real-world scenarios, label noise can be
much more complex. We focus on the most frequently used noise types, leaving the investigation of
the other noise types for future studies.

3 Benchmark Design

3.1 Datasets and Implementations

Datasets. We selected 8 node classification datasets widely used among different studies on graph
label noise. These selected datasets come from different domains and exhibit different characteristics,
enabling us to evaluate the generalizability of existing methods across a range of scenarios. Specifi-
cally, we use three classic citation datasets [19], namely Cora, Citeseer, Pubmed, and one author
collaboration network DBLP [15], as well as two representative product co-purchase network datasets
Amazon-Computers and Amazon-Photo [20]. Additionally, to analyze the model performance on
heterophilous graphs, we include two representative social media network datasets BlogCatalog and
Flickr [26]. We present detailed introductions to these datasets in Appendix C.1.

The splitting methods for training, validation, and test sets of the same dataset in different tasks are not
always consistent. This necessitates a unified dataset splitting in our work to achieve fair comparisons.
For three citation datasets, i.e. Cora Citeseer and Pubmed, we follow the most commonly used split
in [31, 24, 11, 8]. For the author collaboration network DBLP, we follow the split as [1, 10]. For
two co-purchase datasets Amazon-Computers and Amazon-Photo, we follow the split as [24]. For
the social network datasets BlogCatalog and Flickr, we use the same split as [18]. In this study, we
assume that the labels of both the training set and validation set have been affected by label noise. A
clean test set is used to evaluate the model’s performance.

Label Corruption. In each experiment, we first generate a label transition probability matrix based
on the given noise rate and the definition of noise. Then, for each clean label in the training and
validation set, we draw a noisy label from a categorical distribution according to its corresponding
transition probability. These noisy labels are used in the subsequent training procedure.

Implementations We consider a collection of state-of-the-art GLN algorithms, including NRGNN [1],
RTGNN [18], CP [31], D-GNN [14], RCNGLN [32], CLNode [24], PIGNN [2], UnionNET [11],
CGNN [30], and CRGNN [10]; and a set of well-designed LLN methods, including two loss
correction methods Forward and Backward correction [16], two robust loss functions APL [13]
and SCE [22], two multi-network learning methods Coteaching [4] and JoCoR [23], and one noise
adaptation layer method S-model [3]. We have rigorously reproduced all methods according to their
papers and source code. More details about these algorithms and implementations can be found in
the Appendix C.2.
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3.2 Research Questions

In this study, we aim to answer the following research questions:

RQ1: Can LLN methods be applied directly to graph learning tasks?

Motivation. While recent studies have suggested that applying traditional Learning with Label Noise
(LLN) methods directly to graph learning tasks may not yield the best results [1], a comprehensive
analysis of this issue is still lacking. We aim to investigate the suitability of existing LLN methods for
graph learning and understand the underlying reasons. By tackling this question, we can gain a clearer
insight into the unique challenges posed by graph label noise and identify which LLN techniques
remain effective in graph learning contexts.

Experiment Design. To investigate this question, we select various LLN methods referenced in
the Section 3.1 and implement them on the GCN[8] backbone using unified hyper-parameters. We
then perform node classification experiments on the most frequently used datasets, evaluating their
effectiveness under various types and levels of label noise. For each method and dataset, we record
the mean accuracy metrics and standard deviations over 10 runs. Data splitting is performed randomly
with a consistent ratio. By comparing the performance of these LLN methods with GCN, we
determine whether they enhance the robustness of the backbone.

RQ2: How much progress has been made by existing GLN methods?

Motivation. While numerous GLN methods have been introduced in the literature, previous studies
have used varied datasets, data splits, and preprocessing techniques, complicating the fair comparison
of these methods’ performance. Furthermore, we notice that the majority of existing approaches have
been tested on homophily graphs, leading to concerns about their relevance to heterophily graphs,
which are also commonly encountered in practice. By investigating this issue, we seek to determine
if current GLN methods effectively address graph label noise and to identify their shortcomings.

Experiment Design. To address this question, we select and implement many advanced GLN
methods as described in Section 3.1. We then assess the performance of these methods using uniform
datasets and experimental settings. For each method and dataset, we record the mean test accuracy
and the standard deviation across 10 runs. Since many of these GLN methods use GCN as their
foundation, we compare their performance with GCN to evaluate their robustness to label noise.

RQ3: Are existing GLN methods computationally efficient?

Motivation. The efficiency of GNNs in terms of computation is crucial for their use in real-world
applications, and considering label noise can lead to higher computational expenses. While previous
research has deeply investigated the accuracy, generalization, and robustness of the GLN method, it
has failed to address the computational efficiency of these approaches. Therefore, it is important to
evaluate the computational efficiency of different methods.

Experiment design. To answer this question, we recorded the runtime and test accuracy of various
methods on different datasets under 30% uniform noise. Specifically, for each method, we conducted
10 experiments for each method on each dataset. In each experiment, we measured the time when
the model achieved the best accuracy on the validation set, considering it as the total runtime for
that method. Through these experiments, we can assess whether the GLN methods strike a balance
between computational efficiency and test accuracy.

RQ4: Are existing GLN methods sensitive to noise rate?

Motivation. Previous studies utilize different noise rates, making it difficult to fairly compare
the performance of various methods. Therefore, it is essential to assess different methods using a
consistent set of noise rates and to verify if existing GLN methods maintain stable performance across
different noise levels.

Experiment Design. To investigate this question, we assess the performance of several GLN methods
over varying noise levels using the same datasets and noise types. Specifically, we introduce label
contamination with pair noise and uniform noise at rates of 10%, 20%, 30%, 40%, and 50%, while
using clean labels as a baseline. We then train the GLN methods on these datasets following the
experimental settings described in RQ2 and record the mean test accuracy and standard deviation
from 10 runs. This evaluation allows us to determine the robustness of each method.

RQ5: Are existing GLN methods robust to different types of label noise?
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Figure 1: Test accuracy of LLN and GLN methods on DBLP dataset under 30% pair and uniform
noise, respectively (10 Runs).

Motivation. Existing GLN methods have been developed with a variety of techniques and underlying
assumptions, so they have unique strengths and weaknesses in managing different types of noise. It is
crucial to identify which type of noise is most detrimental to graph learning and to understand the
underlying reasons. Addressing this question will enhance our understanding of the specific scenarios
in which each method excels and the distinct characteristics of different label noise types.

Experiment design. To tackle this question, we maintain a constant noise rate of 30% and apply
both uniform and pair noise to the labels. Subsequently, we train GLN models on these noisy datasets
following the experimental settings specified in RQ2 and record the mean test accuracy and standard
deviation over 10 runs. This analysis enables us to determine the best method for each type of label
noise and to comprehend the characteristics of various label noise types.

RQ6: Good or bad? Revisiting the role of graph structure in label noise.

Motivation. The graph structure plays a key role in distinguishing graph data from other types
of data. The success of graph neural networks has largely relied on the neural message-passing
mechanism, which aggregates information from neighboring nodes. However, in the presence of
label noise, the messages propagated along the edges can have dual effects: on the one hand, label
noise can negatively impact graph learning by spreading incorrect information; on the other hand, it
can be alleviated by aligning with the majority label among the neighbors. Therefore, it is crucial to
investigate whether the additional graph structure amplifies the effects of label noise and whether
existing GLN methods can effectively address this challenge.

Experiment Design. To answer this question, we conducted comprehensive experiments on eighteen
methods, including one GCN baseline, seven LLN methods, and ten GLN methods. Aiming to figure
out how graph structure affects graph learning in the presence of label noise. Specifically, we recorded
several metrics, including the Accuracy of Correctly Labeled Training nodes (ACLT), Accuracy
of Incorrectly Labeled Training nodes (AILT), Accuracy of Unlabeled Correctly Supervised nodes
(AUCS), Accuracy of Unlabeled Unsupervised nodes (AUU), and Accuracy of Unlabeled Incorrectly
Supervised nodes (AUIS) under 30% uniform noise. Here, “correctly supervised,” “incorrectly
supervised,” and “unsupervised” refer to unlabeled nodes that have a correctly labeled training node,
an incorrectly labeled training node, and no labeled node in their neighborhood, respectively.

4 Experiment Results and Analyses

We present the performance of the eight methods, including vanilla GCN as a baseline, seven LLN
methods with GCN backbone, and 10 GLN methods on eight datasets with different types and rates
of label noise in Appendix A. Here are the key findings from the experimental results.

① (RQ1) Most LLN methods do not significantly improve GNN robustness to label noise.
Table A1, A2, Figure 1 and Figure 2 reveal that most of the selected LLN methods do not substantially
improve the performance of the GNN backbone when label noise is present. Mostly, the performance
of these LLN methods remains statistically similar to the baseline. In some cases, the application of
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Figure 2: Test accuracy of GLN and LLN methods on DBLP dataset under different rate of pair and
uniform noise (10 Runs).

Figure 3: Test accuracy of GLN methods on all dataset under 30% uniform noise (10 Runs).

additional LLN methods can lead to a worse result. Three LLN methods incorporate a noise transition
matrix, i.e. S-model, Forward, and Backward correction, demonstrating performance similar to the
baseline in most cases. Typically, these transition matrix-based methods learn a diagonal transition
matrix, indicating their failure to learn the label transition pattern due to the scarcity of annotations.
The multi-network learning methods Coteaching and JoCoR perform similarly to the baseline on
sparse graphs but underperform on dense graphs. Notably, we find that two robust loss functions,
Active Passive Loss (APL) and Symmetric Cross-Entropy (SCE), slightly enhance the robustness of
the baseline model across most datasets. This improvement is likely due to their ability to reduce
over-fitting on mislabeled samples, though it is limited by i.i.d. assumptions. Therefore, we conclude
that merely applying LLN methods to GNNs does not achieve a label noise-robust graph learning
solution. Detailed experimental results are available in Appendix A.

② (RQ2) Existing GLN methods can alleviate label noise in most cases, but this improvement
is limited to specific applicable scenarios. As illustrated in Table A4, A5 and Figure 3, for each
dataset, there is always at least one GLN method that consistently outperforms the baseline GCN
across different types of label noise, indicating that these GLN methods are effective in mitigating
the graph label noise problem. However, none of them consistently perform well across all datasets.
For example, NRGNN significantly outperforms the baseline GCN in Cora, Citeseer, and DBLP,
but not in other datasets. This observation suggests that existing GLN methods cannot generalize
across different types of data. Additionally, we observed that on Flickr, all GLN methods fail to
achieve better performance than the baseline, highlighting their deficiencies in dealing with highly
heterophilous graphs. Detailed experimental results are available in Appendix A.

③ (RQ3) Some GLN methods are computationally inefficient. Table A6 demonstrates that multiple
GLN methods, although effective at reducing label noise, often require substantial computational
resources. Figure 4 indicates that some modern GLN techniques struggle to balance performance
with computational efficiency. For instance, RNCGLN is the slowest, taking 66.8 times longer than
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Figure 4: Time consumption and Test accuracy of different GLN methods on Cora and DBLP under
30% uniform noise (10 Runs).

Table 1: Misleading train accuracy of different methods under pair and uniform noise (10 Runs)

Dataset (Avg. # Degree) Noise type GCN JoCoR APL NRGNN CLNode

Cora (3.90) 50% Uniform noise 78.49± 9.87 70.82± 3.87 77.29± 12.35 16.16± 7.00 68.46± 17.64

50% Pair Noise 94.53± 5.51 84.90± 3.49 92.93± 6.46 64.05± 12.02 88.03± 6.22

Citeseer (2.74) 50% Uniform noise 98.78± 1.15 82.64± 5.51 93.21± 5.13 32.74± 6.88 79.54± 15.19

50% Pair Noise 98.54± 2.46 87.54± 5.49 96.19± 3.85 60.74± 12.91 82.23± 8.78

A-Computers (35.76) 50% Uniform noise 19.68± 6.59 19.02± 5.02 23.49± 6.44 13.36± 2.89 15.27± 5.00

50% Pair Noise 75.30± 7.91 66.85± 5.91 72.42± 9.90 45.17± 8.59 64.34± 11.66

Blogcatalog (66.11) 50% Uniform noise 29.13± 9.95 27.73± 13.31 42.23± 16.14 7.93± 2.97 31.67± 9.33

50% Pair Noise 72.50± 15.54 64.25± 7.95 73.39± 13.65 56.92± 10.29 64.70± 11.64

GCN on the Cora dataset and an astounding 2945.8 times longer on the DBLP dataset. Moreover,
RNCGLN runs out of memory on the PubMed dataset, underscoring its inefficiency in memory usage.
On the other hand, while the NRGNN method also consumes more time than GCN, it achieves a
reasonable trade-off between performance and computational efficiency across both datasets. Detailed
experimental results can be found in Appendix A.

④ (RQ4) Most GLN methods can’t ensure a high performance under severe noise. Figure 2
depicts the performance of different GLN methods on the DBLP dataset under various types and
levels of label noise. We observe that, in general, as the noise level increases, the test accuracy of
each method decreases. This decrease is most pronounced for pair noise, where the test accuracy
of all methods almost halves at 50% pair noise. Additionally, we noticed that RTGNN maintains
relatively stable performance under uniform noise. Moreover, two methods, NRGNN and PIGNN,
show better results than the baseline GNN over different noise levels and types on the DBLP dataset.
Detailed experimental results are provided in Appendix A.

⑤ (RQ5) Pair noise is more harmful to graph learning. In our experiments, we consistently
observed that pair noise poses the most significant threat to the generalization ability of models.
We have an explanation for this finding: Recall the definition provided in Section 2. For uniform
noise, the true label has a chance to flip to any other class, incorrect parameter updates caused by
mislabeled instances can be partially compensated by other mislabeled instances. Pair noise, however,
restricts the flipping class to a specific pair class. For classifiers, this type of pair flipping can be
more misleading. After being fully trained, the classifier is more likely to over-fit the pair class. This
becomes particularly harmful when node features propagate through message-passing mechanisms,
which can lead to a more similar embedding within local neighbors and thus make them have a similar
probability of being misclassified to their corresponding pair class. To validate our hypothesis, we
conducted an empirical study. Specifically, we recorded the misleading train accuracy of five methods
(including 1 GCN baseline, 2 LLN and 2 GLN) on four datasets under 50% pair and uniform noise.
Here the misleading train accuracy represents the model’s accuracy in making incorrect predictions
to the misclassified classes. The experimental results (shown in Table 1) demonstrate that pair noise
has the greatest impact, leading the model to overfit predict the mislabeled classes across different
methods and datasets. Detailed experimental results are available in Appendix A.
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Table 2: AUCS, AUU, AUIS of different methods on Cora and Amazon-Photos under 30% uniform
noise (10 Runs)

Dataset (Avg. # Degree) Records GCN NRGNN RTGNN CP CLNode RNCGLN

Cora (3.90)
AUCS 80.76± 2.95 83.11± 3.16 75.53± 4.80 80.85± 3.46 76.77± 3.30 77.06± 3.30

AUU 71.99± 3.44 81.33± 2.25 73.44± 4.95 72.32± 4.45 67.11± 5.11 75.36± 3.33

AUIS 51.55± 6.53 78.81± 5.94 69.50± 8.06 51.46± 12.99 43.86± 7.48 72.92± 4.66

A-Photos (31.13)
AUCS 92.21± 2.44 85.62± 2.96 89.98± 2.10 90.74± 2.98 93.08± 1.97 75.71± 6.59

AUU 89.76± 2.84 84.29± 2.79 89.19± 2.13 88.85± 3.20 91.15± 2.33 74.40± 6.73

AUIS 87.01± 4.72 82.46± 5.86 88.84± 4.76 86.34± 3.99 88.71± 3.40 71.08± 7.89

⑥ (RQ6) Graph structure can amplify the negative effect of label noise. From the experimental
results in Table 2, we observed that in the sparse graph (Cora), AUIS and AUU exhibit a significant
decrease compared to AUCS. Taking the performance of GCN on the Cora dataset as an example,
this decrease is 36.17% and 10.85%, respectively. These results highlight the importance of proper
supervision of neighboring nodes with correct annotations. Proper supervision of neighboring nodes
with correct annotations significantly improves the classification accuracy of unlabeled nodes, while
incorrect supervision of neighboring nodes severely reduces the classification accuracy of these
nodes, even worse than when no neighborhood supervision is applied. Besides, our investigation also
highlights the effectiveness of graph structure augmentation methods in mitigating the spread effect of
label noise. According to Table 2, three methods, i.e. NRGNN, RTGNN, and RNCGLN, exhibit the
smallest decrease in AUIS compared to AUCS and AUU among all methods. This indicates that they
can effectively mitigate the spread effect of label noise. This phenomenon is even more pronounced
in sparse graphs like Cora. One possible explanation can be easily drawn from the previous findings:
The additional graph structure learning measures they adopted can lead to a denser graph structure
used for predictions during the up-sampling process. Consequently, the classifier can rely on more
references from the neighborhood, reducing its dependence on a small number of incorrectly labeled
samples. Detailed experimental results are available in Appendix A.

⑦ (RQ6) Sparse graphs are more vulnerable to the spread effect of label noise. From Table 2 we
see that the propagation effect of label noise can be very severe on sparse graphs with a relatively low
average degree, like Cora, Citeseer, Pubmed, and DBLP, but not on dense graphs such as Amazon-
Computers, Amazon-Photos, Blogcatalog and Flickr. The explanation for this observation is that
unlabeled nodes on sparse graphs usually have only a limited number of annotated nodes in their
neighborhood available for training. The prediction results of unlabeled nodes rely heavily on the
annotated nodes in their neighborhood. However, if these nodes are incorrectly labeled, it will lead
to erroneous learning of the embedding for the unlabeled nodes. In contrast, for dense graphs, the
neighborhood of unlabeled nodes contains many annotated nodes that can serve as references. As a
result, the classifier model is more likely to find correct supervision from these annotated nodes. This
hypothesis is further supported by empirical evidence from Table 1, where we observe that compared
to sparse graphs (such as Cora, Citeseer, and Pubmed), GCN is less susceptible to misleading on dense
graphs like Blogcatalog and Amazon-Computers with a high average degree. Detailed experimental
results are available in Appendix A.

5 Future directions

Based on the experimental results and analysis, we present several potential directions for the further
development of the GLN.

Designing widely applicable GLN approaches. Our observations in finding ② reveal that most
existing GLN methods cannot ensure consistently high performance across all scenarios. To address
this problem, we need to explore three key questions: 1) What are the common properties of different
graph datasets? 2) How can these common properties be utilized to enhance the robustness of GNNs
against label noise? Our finding ⑥ indicated that enhancing graph structures can reduce the spread of
label noise in graphs with varying densities, leading to the third question: 3) If identifying common
properties is challenging, can we unify these features through data augmentation?

Designing GLN approaches for various graph learning tasks. Previous studies on GLN have
predominantly focused on node classification tasks. However, the field of graph learning includes
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other important tasks such as link prediction, edge property prediction, and graph classification.
However, there is limited work on graph classification [27] and graph transfer learning [29] in the
presence of label noise. Overall, research in other areas of graph learning, beyond node classification,
is still in its early stages, and warrants further attention and exploration.

Considering other types of label noise in graph learning. Previous studies of GLN have mainly
focused on pair noise and uniform noise. These noise types are instance-independent, assuming that
the label corruption process is conditionally independent of node features when the true labels are
given [21]. However, there exists another type of label noise—instance-dependent label noise—that
is more realistic. In this case, the corruption probability depends on both the node features and
the observed labels. However, none of the previous GLN studies have investigated this problem.
Furthermore, unlike traditional machine learning tasks, graph learning involves additional graph
structure, so the label noise model on graphs may also depend on graph topology. These issues are
worth investigating, as they are more likely to occur in real-world scenarios.

6 Conclusions and Future work

In this research, we present NoisyGL, the first comprehensive benchmark designed for Graph Neural
Networks under Label Noise (GLN) conditions. NoisyGL includes 7 prominent LLN and 10 GLN
methods, allowing the community to fairly evaluate their effectiveness and robustness across various
datasets. By using standardized backbones and APIs, consistent data splitting, and processing
strategies, NoisyGL ensures a fair comparison and allows users to easily construct their own models
or datasets with minimal effort. From this benchmark, we extract several key insights that are highly
promising for the progression of this evolving field: Firstly, we point out that simply applying LLN
methods cannot significantly improve the robustness of GNNs to label noise. Secondly, we found that
existing GLN methods can alleviate label noise in their own applicable scenarios. In particular, pair
noise emerges as the most harmful label noise due to its misleading effects. Finally, we discovered
that negative effects of label noise can spread through the graph structure, especially in sparse graphs,
and graph structure augmentation proves to be effective in mitigating the spread effect of label noise.

Border Impacts and Limitations. As NoisyGL provides a comprehensive benchmark for GNNs
under label noise, we aim to attract more attention on the quality of graph data from the graph
learning community, including the topology, node attributes and labels. However, NoisyGL also has
some limitations that we aim to address in future work. Firstly, we aim to include a broader range
of datasets to evaluate methods in different scenarios. While our current datasets are predominantly
homogeneous graphs, we recognize that most GLN methods struggle with heterogeneous graphs,
such as the Flickr network. Secondly, we hope to implement more GLN methods to gain a deeper
understanding of the progress in the field. We will continuously update our repository to keep track
of the latest advances in the field. We are also open to any suggestions and contributions that will
improve the usability and effectiveness of our benchmark.
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A Full experiment results

Table A1: Test accuracy of LLN methods (10 Runs)

Dataset Noise type GCN S-model Coteaching JoCoR APL SCE Forward Backward

Cora

0% clean 80.66± 0.54 80.74± 0.58 75.12± 2.05 80.51± 0.61 80.09± 0.72 82.08± 0.80 80.79± 0.86 80.78± 0.84

10% pair 76.44± 2.48 76.41± 2.49 69.69± 2.01 76.19± 4.77 76.70± 2.61 78.55± 2.39 76.91± 2.94 76.93± 2.93

20% pair 73.07± 2.46 73.04± 2.32 64.58± 2.61 71.53± 6.82 73.55± 2.21 73.68± 1.94 72.80± 3.79 73.12± 3.24

30% pair 65.36± 5.54 65.59± 5.28 56.87± 4.40 64.52± 5.80 65.97± 5.13 66.97± 4.29 65.96± 6.17 65.64± 6.85

40% pair 54.02± 3.48 54.03± 3.81 50.39± 5.38 55.26± 5.43 56.97± 6.77 54.56± 4.44 55.91± 4.65 55.57± 4.29

50% pair 44.15± 8.52 44.01± 9.38 41.15± 6.03 43.66± 9.05 42.84± 8.07 43.06± 6.71 43.32± 8.77 43.51± 9.04

10% uniform 78.58± 2.04 78.72± 1.89 71.06± 2.75 79.13± 2.37 79.10± 1.25 78.94± 1.75 78.29± 1.97 78.34± 2.03

20% uniform 75.92± 1.49 75.93± 1.33 66.68± 4.16 76.25± 1.69 76.00± 1.60 76.07± 1.35 75.91± 1.56 75.90± 1.45

30% uniform 71.06± 4.39 71.05± 4.88 61.22± 5.88 71.16± 6.53 72.37± 4.00 71.15± 5.04 72.47± 4.81 72.06± 5.10

40% uniform 67.88± 3.73 68.13± 3.45 59.19± 2.97 66.29± 3.58 68.24± 3.58 65.90± 4.16 68.01± 3.96 68.21± 3.58

50% uniform 54.42± 4.72 55.15± 4.26 47.28± 6.24 53.42± 5.26 55.13± 4.96 53.76± 3.99 53.82± 5.50 53.82± 5.50

10% random 78.19± 1.98 78.34± 2.03 71.34± 2.99 78.70± 1.03 78.50± 1.65 79.19± 1.49 78.75± 1.36 78.75± 1.36

20% random 74.27± 3.42 74.29± 3.46 67.14± 2.80 73.77± 4.99 74.76± 3.90 74.78± 2.93 74.57± 3.40 74.66± 3.35

30% random 69.72± 3.49 70.04± 3.85 62.09± 4.06 70.84± 4.47 70.67± 4.17 70.17± 4.49 70.01± 5.24 70.05± 5.19

40% random 62.62± 3.25 62.60± 3.35 54.50± 3.64 60.38± 2.75 62.51± 2.75 60.13± 3.52 61.39± 5.90 59.25± 11.14

50% random 55.59± 6.92 54.80± 7.84 46.47± 5.68 53.11± 7.08 55.05± 7.28 51.76± 5.62 54.36± 8.65 53.57± 7.25

Citeseer

0% clean 69.01± 0.72 68.77± 0.97 58.46± 3.95 71.49± 0.36 69.36± 0.91 70.28± 0.68 69.55± 0.86 69.36± 0.90

10% pair 65.08± 1.90 64.74± 2.15 55.45± 3.61 68.24± 2.03 64.78± 1.40 65.43± 2.07 65.15± 1.40 65.06± 1.50

20% pair 58.22± 3.29 57.79± 3.68 50.69± 4.65 61.11± 5.58 56.65± 4.35 58.94± 3.16 58.30± 3.44 58.49± 3.44

30% pair 53.66± 5.03 53.41± 5.26 48.34± 3.48 56.30± 5.14 53.48± 5.51 54.61± 4.53 54.57± 5.59 54.62± 5.19

40% pair 43.47± 4.89 44.09± 4.91 42.05± 3.73 45.86± 6.77 43.85± 4.31 42.78± 6.83 44.26± 5.46 43.96± 5.11

50% pair 35.48± 5.20 36.03± 5.01 35.66± 4.56 36.50± 5.87 35.67± 4.82 35.82± 5.46 35.79± 5.01 35.87± 4.80

10% uniform 65.48± 2.38 65.46± 2.13 57.03± 3.75 69.06± 2.33 65.18± 2.20 66.47± 2.27 66.65± 1.63 66.36± 1.78

20% uniform 61.40± 3.00 61.10± 3.11 50.94± 4.17 65.92± 2.52 60.74± 2.58 62.53± 2.87 62.27± 2.44 62.35± 2.60

30% uniform 55.05± 3.11 54.68± 3.26 46.75± 4.80 57.14± 3.22 54.61± 3.68 57.00± 2.87 56.05± 3.31 55.81± 3.59

40% uniform 48.89± 4.56 49.30± 4.34 43.54± 4.05 53.43± 5.48 49.18± 3.99 49.07± 3.70 50.82± 4.35 50.93± 4.35

50% uniform 43.51± 5.26 43.61± 5.18 39.57± 4.52 45.46± 5.96 42.98± 5.72 42.49± 5.52 44.69± 5.95 44.74± 5.61

10% random 66.01± 2.17 65.92± 2.39 57.92± 3.80 69.54± 2.05 66.01± 2.18 67.03± 1.55 66.92± 2.06 67.02± 2.08

20% random 61.11± 4.66 61.14± 3.92 50.87± 5.92 66.21± 3.84 61.10± 5.42 62.76± 3.73 62.74± 3.16 62.08± 4.16

30% random 56.47± 4.93 56.28± 5.15 47.47± 5.07 59.05± 4.75 56.02± 4.65 57.19± 3.98 56.94± 3.47 56.93± 3.50

40% random 47.80± 5.64 48.05± 5.72 43.82± 6.04 51.35± 5.92 47.01± 5.51 47.66± 5.61 48.49± 6.32 49.31± 5.69

50% random 41.76± 6.67 42.50± 6.10 38.62± 5.01 43.29± 6.33 42.30± 5.90 39.16± 6.33 43.35± 6.65 41.56± 6.33

Pubmed

0% clean 78.68± 0.49 78.72± 0.59 74.48± 1.33 70.58± 2.65 78.11± 0.36 79.11± 0.38 79.09± 0.58 79.08± 0.57

10% pair 74.49± 3.06 74.64± 3.03 70.73± 5.86 66.12± 7.92 74.20± 2.83 75.63± 2.57 74.90± 3.51 74.95± 3.45

20% pair 70.61± 6.79 70.84± 6.68 68.55± 3.81 61.84± 7.35 71.10± 5.95 72.13± 5.24 70.76± 6.57 70.96± 6.44

30% pair 62.91± 5.49 63.16± 5.46 60.45± 7.23 55.88± 7.20 64.28± 3.84 63.78± 4.86 62.68± 5.53 62.35± 5.39

40% pair 55.67± 9.59 55.61± 9.77 55.93± 8.67 49.76± 7.44 56.19± 10.55 51.44± 6.89 55.69± 9.15 55.73± 9.13

50% pair 42.99± 9.12 43.07± 9.09 43.16± 7.39 42.55± 8.55 42.88± 8.34 46.24± 8.61 43.49± 8.03 43.50± 7.98

10% uniform 74.61± 2.04 74.53± 1.90 71.36± 2.58 65.59± 8.41 74.16± 2.27 75.81± 1.59 75.57± 1.85 75.58± 1.83

20% uniform 70.26± 3.66 70.46± 3.56 68.90± 2.89 61.16± 6.87 70.94± 3.40 71.25± 3.18 69.75± 3.90 69.71± 3.91

30% uniform 66.53± 6.23 66.52± 6.88 64.38± 7.27 59.44± 5.23 67.56± 4.96 67.38± 6.86 65.62± 6.41 65.61± 6.39

40% uniform 57.86± 4.98 57.89± 4.53 57.50± 5.89 50.82± 5.58 58.59± 5.47 55.54± 9.06 56.52± 5.21 56.17± 5.28

50% uniform 52.73± 6.42 52.52± 7.38 50.54± 6.79 47.41± 6.43 50.46± 8.97 48.99± 7.74 52.38± 7.22 52.18± 6.97

10% random 73.79± 2.37 73.90± 2.34 69.83± 3.08 65.18± 8.22 73.74± 2.42 74.70± 2.58 73.96± 2.65 73.82± 2.67

20% random 72.49± 1.69 72.69± 1.89 69.13± 3.04 63.51± 7.46 72.46± 1.98 73.23± 2.03 71.61± 2.16 71.83± 2.19

30% random 66.53± 2.29 66.89± 2.10 61.76± 3.43 57.27± 6.96 67.27± 2.52 69.02± 2.85 65.97± 2.92 65.84± 2.84

40% random 56.98± 8.35 57.97± 8.96 56.89± 10.81 50.06± 11.37 57.57± 7.85 52.59± 10.13 55.98± 8.76 56.06± 8.89

50% random 46.24± 9.08 44.11± 12.57 47.90± 8.05 40.92± 11.99 43.91± 11.86 39.90± 15.18 46.05± 8.32 43.65± 12.55

A-Computers

0% clean 84.73± 0.82 84.93± 0.99 80.95± 3.52 75.40± 9.28 84.97± 0.93 82.83± 0.64 75.95± 15.16 69.07± 23.49

10% pair 83.01± 1.46 83.55± 1.95 81.82± 1.75 79.03± 4.64 84.02± 1.57 81.80± 1.07 70.93± 12.60 60.89± 26.81

20% pair 77.62± 4.47 80.05± 2.80 77.21± 5.79 77.01± 4.63 79.38± 4.41 78.91± 2.35 74.34± 9.41 55.80± 26.88

30% pair 70.95± 4.21 73.81± 5.91 67.89± 9.09 66.82± 4.70 74.01± 8.62 72.85± 2.19 60.11± 14.24 32.31± 24.74

40% pair 61.26± 9.47 62.40± 9.18 51.04± 15.23 55.45± 9.82 64.82± 11.10 62.27± 9.50 43.61± 15.94 40.38± 22.82

50% pair 39.44± 9.16 43.41± 8.77 36.41± 10.09 41.91± 11.75 39.82± 9.94 42.20± 8.67 36.98± 9.31 21.85± 11.29

10% uniform 83.06± 1.50 84.10± 1.14 80.88± 3.28 78.41± 5.14 84.63± 1.10 80.64± 2.14 72.00± 12.13 53.29± 33.87

20% uniform 79.79± 2.68 81.24± 2.04 80.29± 2.56 77.41± 4.01 82.38± 1.73 78.41± 2.54 64.01± 16.21 56.35± 26.87

30% uniform 77.26± 3.34 79.42± 3.17 76.25± 5.65 70.01± 11.03 79.27± 3.49 77.01± 2.82 48.98± 15.91 30.23± 28.75

40% uniform 73.35± 3.37 77.54± 3.24 72.53± 4.52 69.83± 7.72 78.41± 2.35 74.91± 3.70 56.24± 14.91 61.63± 25.12

50% uniform 68.31± 5.59 74.38± 4.56 66.69± 10.34 64.38± 8.34 65.62± 18.69 74.81± 2.61 49.00± 21.72 38.33± 29.75

10% random 82.02± 1.82 81.58± 1.30 80.82± 1.41 78.22± 2.53 82.43± 1.06 80.54± 1.57 66.21± 15.28 46.55± 35.77

20% random 78.39± 2.62 80.00± 2.00 79.34± 2.11 76.64± 5.23 81.08± 1.62 78.10± 2.74 60.95± 17.20 44.63± 28.51

30% random 75.47± 3.88 77.06± 4.00 67.65± 12.86 68.36± 10.66 75.86± 9.33 75.99± 2.40 55.91± 11.57 21.62± 21.24

40% random 73.19± 4.83 74.33± 3.73 72.56± 3.47 70.86± 5.47 72.52± 5.45 74.34± 3.03 46.11± 18.26 43.28± 32.59

50% random 64.62± 5.56 66.63± 4.56 65.62± 5.74 57.20± 11.97 63.70± 9.83 65.49± 7.97 46.10± 17.67 43.24± 28.48
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Table A2: Test accuracy of LLN methods (10 Runs)

Dataset Noise type GCN S-model Coteaching JoCoR APL SCE Forward Backward

A-Photos

0% clean 91.82± 0.69 92.05± 0.51 89.66± 2.21 77.14± 7.63 89.92± 1.74 91.04± 1.24 69.14± 12.01 68.34± 34.69

10% pair 89.83± 1.42 89.71± 1.50 89.47± 1.80 74.03± 7.45 88.08± 2.07 89.78± 1.41 68.64± 14.55 50.42± 39.364

20% pair 85.74± 2.86 85.47± 2.91 86.73± 3.25 76.04± 8.12 87.07± 2.30 86.74± 3.11 69.64± 16.08 61.26± 23.32

30% pair 79.26± 4.79 80.06± 5.25 74.56± 7.56 68.48± 8.62 82.39± 6.09 81.57± 4.96 67.29± 11.43 51.90± 25.85

40% pair 64.83± 6.28 63.05± 5.80 62.22± 11.82 57.33± 8.35 65.89± 11.32 64.30± 5.69 54.24± 10.74 44.17± 19.25

50% pair 44.87± 14.90 44.21± 14.45 41.36± 15.48 42.11± 13.98 45.28± 14.30 44.26± 13.12 42.07± 12.50 27.34± 18.84

10% uniform 89.42± 1.61 90.64± 1.48 89.91± 1.32 75.82± 7.95 89.52± 1.51 90.24± 0.91 77.44± 14.22 70.45± 34.88

20% uniform 88.02± 1.99 89.53± 2.39 88.61± 2.08 76.59± 9.10 88.40± 1.17 89.11± 1.64 64.41± 15.05 62.42± 31.57

30% uniform 84.86± 3.27 85.32± 4.17 82.78± 5.75 75.22± 8.24 86.17± 3.17 85.85± 4.42 65.13± 11.73 55.97± 32.95

40% uniform 80.02± 4.79 81.37± 6.43 80.47± 8.00 71.60± 8.55 80.38± 6.35 83.03± 5.76 65.63± 14.04 46.17± 26.38

50% uniform 75.18± 5.60 76.35± 5.90 73.10± 7.06 64.04± 10.51 76.17± 6.26 79.18± 4.67 53.02± 12.74 24.97± 15.83

10% random 88.05± 1.46 87.42± 3.45 88.20± 1.14 77.66± 4.26 88.88± 1.11 87.42± 2.07 72.67± 12.38 74.74± 22.32

20% random 86.82± 1.58 85.46± 5.68 86.72± 1.53 80.27± 7.36 88.24± 0.90 86.19± 2.79 61.02± 15.40 55.67± 33.49

30% random 82.23± 4.37 84.22± 3.38 77.84± 24.47 79.51± 7.69 85.27± 2.51 82.83± 5.31 63.60± 14.20 54.90± 33.14

40% random 76.32± 6.09 78.89± 3.95 76.05± 12.73 67.10± 10.96 80.74± 5.22 80.12± 4.00 61.81± 13.70 45.52± 25.57

50% random 70.69± 6.24 74.92± 6.32 66.85± 11.26 63.54± 8.04 69.74± 11.71 75.70± 5.23 59.77± 8.19 27.13± 15.82

DBLP

0% clean 77.03± 0.35 77.11± 0.29 71.62± 2.47 76.15± 0.22 77.06± 0.44 78.03± 0.30 77.33± 0.21 77.30± 0.24

10% pair 74.04± 1.58 74.33± 1.48 69.18± 4.03 73.22± 1.84 74.40± 1.70 74.89± 1.43 74.45± 1.74 74.53± 1.66

20% pair 70.11± 1.40 70.25± 1.45 65.89± 2.42 70.57± 2.89 70.69± 1.84 71.15± 1.68 70.83± 1.61 70.84± 1.61

30% pair 62.56± 2.39 62.60± 2.48 56.98± 3.27 62.39± 4.59 64.25± 2.77 63.86± 3.44 63.59± 2.58 63.59± 2.58

40% pair 52.16± 7.86 52.50± 7.88 48.01± 6.58 51.78± 9.27 52.36± 7.61 53.61± 8.89 53.12± 7.25 53.65± 6.73

50% pair 39.99± 7.94 39.59± 7.79 39.28± 5.80 39.55± 9.60 42.19± 7.29 43.72± 7.67 41.30± 8.69 41.22± 8.73

10% uniform 75.24± 1.04 75.25± 1.01 70.31± 2.50 75.22± 1.38 74.69± 1.16 75.62± 1.18 75.65± 1.41 75.64± 1.44

20% uniform 72.37± 3.11 72.40± 3.09 66.59± 4.19 72.18± 4.09 71.84± 3.56 72.53± 2.48 73.20± 3.07 73.20± 3.07

30% uniform 69.66± 2.72 69.68± 2.79 64.60± 3.27 68.60± 3.46 69.37± 3.12 70.18± 3.39 70.27± 2.81 70.26± 2.80

40% uniform 64.53± 5.58 64.71± 5.56 59.76± 6.66 63.95± 5.66 64.76± 5.37 64.86± 5.02 65.33± 5.20 65.34± 5.19

50% uniform 57.05± 7.88 57.01± 7.65 51.69± 4.37 55.97± 9.33 57.04± 7.68 58.43± 8.09 56.50± 7.72 56.43± 7.77

10% random 75.40± 0.88 75.54± 0.86 69.46± 2.05 70.67± 1.83 75.95± 0.91 74.59± 1.34 75.33± 1.00 75.34± 1.00

20% random 72.50± 2.27 72.68± 2.23 67.23± 2.62 71.18± 3.03 72.92± 1.76 72.68± 2.55 73.07± 2.11 73.07± 2.11

30% random 66.60± 3.99 66.37± 4.40 61.99± 4.28 66.33± 4.99 66.81± 3.97 67.86± 4.05 67.03± 4.37 66.72± 5.02

40% random 62.76± 4.23 62.81± 4.27 55.37± 5.83 63.17± 2.90 63.61± 3.50 62.53± 4.66 63.82± 4.59 63.84± 4.61

50% random 54.26± 6.94 54.44± 7.00 50.77± 7.39 53.69± 6.44 54.87± 6.57 55.75± 7.07 55.69± 7.16 55.72± 7.18

Blogcatalog

0% clean 76.52± 0.58 76.56± 0.73 61.89± 23.45 65.21± 0.81 75.89± 0.55 64.57± 7.43 75.58± 0.56 75.69± 0.57

10% pair 72.81± 1.53 74.08± 0.86 22.62± 17.94 65.08± 2.50 73.73± 1.04 61.31± 8.12 70.04± 5.72 62.96± 18.48

20% pair 67.09± 2.88 68.29± 3.32 27.43± 22.84 62.10± 3.31 71.92± 1.66 55.05± 5.40 65.06± 2.51 64.27± 6.36

30% pair 60.69± 1.76 60.51± 2.42 38.11± 22.91 57.13± 4.70 62.74± 4.94 48.91± 8.64 54.59± 9.00 47.02± 11.71

40% pair 46.74± 4.63 47.41± 5.01 30.88± 18.19 48.92± 3.37 46.75± 7.19 42.66± 4.86 40.25± 5.40 39.36± 5.21

50% pair 36.14± 6.74 35.42± 6.98 22.35± 8.35 35.96± 9.24 34.12± 5.82 33.99± 5.98 33.56± 7.55 33.77± 7.25

10% uniform 74.40± 1.03 75.22± 0.55 21.91± 17.32 65.69± 1.90 74.39± 0.60 62.28± 7.07 70.19± 5.59 71.09± 5.50

20% uniform 71.30± 1.23 71.69± 0.79 38.04± 27.78 63.16± 1.67 72.21± 1.46 58.10± 5.86 69.23± 4.88 67.95± 7.29

30% uniform 69.36± 2.99 70.06± 2.15 32.55± 23.26 63.16± 3.57 69.04± 4.20 54.59± 10.30 67.87± 3.95 68.17± 4.32

40% uniform 64.72± 2.36 65.72± 2.11 29.47± 20.66 59.76± 2.61 63.00± 2.48 55.87± 6.76 63.15± 2.43 61.57± 8.16

50% uniform 60.07± 3.59 60.83± 2.42 38.93± 19.36 56.83± 3.34 59.38± 4.03 53.67± 8.41 55.36± 5.79 52.94± 14.74

10% random 72.48± 1.44 73.53± 1.30 23.32± 18.40 66.04± 1.23 74.13± 0.76 63.80± 6.67 73.04± 0.92 68.40± 7.58

20% random 70.56± 1.26 71.83± 1.04 44.35± 28.47 64.90± 2.70 73.09± 1.08 61.47± 6.36 69.86± 5.03 64.19± 12.93

30% random 65.81± 2.07 66.02± 2.40 46.30± 25.23 61.22± 2.84 67.69± 3.15 56.70± 5.25 64.99± 4.10 62.65± 3.79

40% random 61.87± 3.95 61.92± 3.99 35.93± 24.68 56.84± 2.81 60.24± 7.00 51.42± 7.63 57.98± 7.47 50.33± 17.11

50% random 57.61± 3.48 56.82± 4.34 34.82± 17.99 52.75± 2.96 53.12± 8.59 51.51± 4.46 51.26± 7.86 46.39± 13.09

Flickr

0% clean 58.02± 0.59 58.32± 0.59 49.29± 0.82 38.87± 18.39 58.52± 0.54 31.51± 2.21 28.76± 2.56 27.33± 6.41

10% pair 54.34± 1.21 54.48± 1.09 48.13± 1.54 50.95± 2.20 50.69± 1.24 24.84± 3.70 25.37± 2.84 26.79± 3.53

20% pair 51.50± 1.63 51.51± 1.43 45.71± 1.26 45.55± 1.26 46.97± 2.19 26.33± 4.68 23.88± 3.21 24.39± 4.15

30% pair 45.86± 3.45 45.47± 3.25 41.55± 2.67 41.20± 2.67 40.71± 2.69 23.36± 3.12 22.98± 1.52 25.40± 2.71

40% pair 38.95± 1.98 39.29± 2.00 35.64± 1.93 36.16± 2.20 36.39± 2.37 20.87± 4.13 20.75± 4.17 19.44± 4.38

50% pair 28.64± 3.09 28.77± 3.00 29.21± 2.62 27.91± 3.50 27.26± 2.55 19.75± 5.01 18.24± 3.94 17.17± 4.89

10% uniform 55.54± 0.48 55.95± 1.21 48.04± 1.36 50.96± 1.76 50.87± 2.77 25.65± 3.26 26.41± 1.93 28.18± 2.04

20% uniform 53.30± 1.98 53.15± 1.88 46.75± 2.65 47.44± 2.44 48.38± 2.64 24.10± 3.65 23.31± 3.42 21.64± 5.87

30% uniform 49.77± 0.94 49.42± 1.28 43.53± 2.32 43.61± 1.35 45.64± 2.09 22.69± 3.92 21.49± 3.20 23.93± 2.76

40% uniform 47.27± 2.44 47.09± 2.16 41.33± 1.23 41.39± 2.65 42.89± 4.28 22.11± 3.11 20.07± 1.70 21.68± 1.87

50% uniform 43.17± 2.01 43.08± 1.97 35.16± 8.56 38.39± 2.29 37.59± 3.63 20.30± 4.37 16.78± 4.43 18.37± 3.87

10% random 55.22± 1.06 55.46± 0.95 48.06± 1.57 50.85± 2.18 51.28± 2.34 25.27± 1.79 28.12± 2.00 29.64± 2.68

20% random 53.59± 0.94 53.26± 1.21 47.86± 0.68 48.02± 1.24 47.71± 1.88 29.14± 4.11 27.11± 3.00 25.10± 6.27

30% random 49.54± 1.28 49.27± 1.78 44.19± 2.55 44.17± 1.77 43.44± 2.55 24.32± 6.64 19.88± 5.00 22.74± 6.21

40% random 47.04± 1.62 46.53± 1.80 37.60± 9.78 41.68± 2.15 36.99± 5.80 19.59± 4.38 17.97± 3.25 18.86± 3.51

50% random 40.72± 2.87 40.40± 2.86 31.50± 8.09 36.17± 3.53 30.52± 4.94 19.01± 4.48 17.95± 2.61 19.00± 2.63
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Table A3: Additional experiment results for LLN under 30% Uniform noise (10 Runs). ACLT denotes
Accuracy of Correct Labeled Training nodes, AILT denotes Accuracy of Incorrect Labeled Training
nodes, AUCS denotes Accuracy of Unlabeled Correct Supervised nodes, AUU denotes Accuracy of
Unlabeled Unsupervised nodes, AUIS denotes Accuracy of Unlabeled Incorrect Supervised nodes.

Dataset Records GCN S-model Coteaching JoCoR APL SCE Forward Backward

Cora

ACLT 98.53± 0.93 98.79± 1.34 98.81± 1.13 95.00± 3.52 97.50± 2.09 98.33± 1.65 98.70± 0.96 98.70± 0.96

AILT 33.77± 9.40 30.92± 6.95 11.87± 5.23 41.59± 10.40 38.66± 12.00 22.90± 13.41 31.19± 9.71 31.19± 9.71

AUCS 80.76± 2.95 81.12± 3.10 77.33± 4.31 80.02± 3.30 81.11± 3.16 79.75± 3.35 81.46± 3.10 81.46± 3.10

AUU 71.99± 3.44 72.04± 3.97 64.88± 6.03 72.51± 5.82 73.41± 3.98 69.34± 4.94 72.89± 3.95 72.94± 4.07

AUIS 51.55± 6.53 51.12± 7.11 34.72± 8.61 55.40± 11.08 56.25± 7.93 44.72± 8.07 53.56± 6.87 53.70± 7.44

Time 0.18± 0.29 0.10± 0.03 2.58± 1.02 2.36± 1.46 0.13± 0.03 1.16± 1.03 1.75± 0.16 1.71± 0.13

Citeseer

ACLT 99.18± 0.96 99.42± 0.83 98.95± 1.02 90.11± 2.50 98.23± 2.02 99.88± 0.37 99.05± 1.48 98.93± 1.44

AILT 1.39± 2.65 1.68± 2.64 1.98± 1.87 12.05± 7.35 3.10± 3.39 1.75± 1.51 2.48± 2.70 2.48± 2.70

AUCS 74.70± 3.49 74.55± 3.03 72.39± 3.22 73.15± 3.06 75.44± 3.33 74.12± 3.32 75.00± 2.56 75.02± 3.09

AUU 57.50± 3.60 57.19± 3.42 56.25± 4.86 57.08± 2.90 57.81± 3.87 57.19± 3.49 58.75± 3.11 58.96± 3.19

AUIS 16.45± 5.60 15.37± 5.67 19.02± 6.67 18.53± 7.35 16.30± 4.76 16.80± 5.65 20.57± 6.05 20.91± 5.57

Time 0.55± 0.44 0.74± 0.69 2.26± 1.23 1.54± 1.25 0.94± 1.59 3.79± 1.47 2.19± 0.77 2.40± 0.86

Pubmed

ACLT 97.08± 2.61 96.79± 2.89 97.67± 2.50 84.79± 4.05 96.41± 2.41 89.38± 12.10 97.55± 3.24 97.55± 3.24

AILT 30.01± 15.38 25.21± 18.01 18.08± 12.42 30.72± 10.11 28.59± 15.11 35.51± 15.07 12.98± 14.48 12.46± 13.81

AUCS 69.49± 7.41 70.11± 7.61 73.03± 8.80 60.31± 11.59 71.10± 8.60 68.16± 5.19 71.72± 5.73 71.72± 5.73

AUU 59.47± 7.87 59.47± 8.61 60.53± 9.37 52.63± 10.23 61.05± 7.53 59.47± 7.46 59.47± 7.87 59.47± 7.87

AUIS 27.06± 21.05 25.95± 20.31 34.80± 28.88 27.82± 20.72 28.97± 18.29 41.27± 24.98 22.86± 15.84 22.86± 15.84

Time 0.21± 0.06 0.35± 0.30 2.25± 1.33 2.22± 1.51 0.35± 0.13 4.13± 1.97 2.12± 0.74 2.05± 0.65

A-Computers

ACLT 91.05± 3.19 92.33± 2.22 86.33± 3.46 84.85± 3.60 92.49± 4.26 91.04± 4.03 51.54± 15.75 37.62± 39.19

AILT 68.90± 9.98 74.61± 4.68 67.96± 6.57 64.28± 8.40 72.38± 9.26 72.56± 5.99 45.95± 14.45 31.87± 27.46

AUCS 83.43± 2.44 83.97± 2.99 80.30± 4.47 74.94± 8.12 84.59± 2.65 84.00± 3.22 47.10± 11.71 33.83± 33.61

AUU 81.40± 3.76 82.77± 3.19 78.96± 4.28 72.77± 8.48 82.95± 3.02 82.37± 3.29 47.34± 12.53 33.87± 32.51

AUIS 77.33± 7.57 81.24± 5.33 74.86± 4.86 69.32± 9.02 80.01± 5.06 79.58± 5.87 48.72± 15.15 31.86± 29.47

Time 1.38± 0.48 1.25± 0.40 3.70± 0.95 3.47± 1.04 3.16± 1.27 3.12± 1.09 3.11± 0.75 4.97± 2.37

A-Photos

ACLT 91.74± 2.96 93.33± 3.53 89.70± 4.48 86.91± 6.75 92.50± 7.11 91.48± 1.91 71.55± 15.92 51.17± 34.26

AILT 80.78± 5.59 81.99± 7.92 77.28± 9.37 72.73± 9.64 79.08± 11.03 83.32± 6.83 60.99± 15.49 47.84± 29.61

AUCS 92.18± 2.42 91.67± 3.15 87.03± 8.64 83.16± 7.40 90.99± 6.20 92.92± 1.09 69.80± 15.91 50.49± 36.54

AUU 89.73± 2.81 89.84± 3.62 85.44± 7.99 80.69± 6.92 88.91± 6.24 90.91± 2.47 67.41± 15.81 49.68± 35.63

AUIS 87.01± 4.72 86.12± 5.98 82.50± 7.82 77.67± 8.44 85.82± 8.87 87.61± 4.86 63.56± 15.53 49.36± 33.39

Time 0.90± 0.32 0.83± 0.39 3.40± 0.81 2.51± 1.42 2.91± 1.18 1.82± 0.59 2.68± 0.46 2.92± 1.14

DBLP

ACLT 98.34± 1.71 97.93± 1.88 98.60± 2.26 94.53± 3.17 97.59± 3.28 96.69± 3.50 97.58± 1.24 97.58± 1.24

AILT 21.13± 8.02 22.55± 8.58 12.27± 7.26 35.82± 7.49 25.92± 9.42 28.77± 8.09 26.37± 10.39 26.37± 10.39

AUCS 83.15± 1.43 83.28± 1.30 81.90± 1.54 82.52± 2.03 83.12± 1.26 83.11± 1.51 83.35± 1.64 83.38± 1.61

AUU 74.10± 2.64 74.60± 2.59 70.47± 5.51 75.60± 3.29 74.85± 2.70 76.80± 3.02 75.58± 2.40 75.62± 2.35

AUIS 55.65± 9.47 57.08± 8.88 48.87± 11.69 62.24± 6.59 57.99± 9.69 64.64± 7.72 59.80± 8.13 59.87± 8.04

Time 0.13± 0.03 0.14± 0.04 2.41± 1.32 1.71± 1.46 0.19± 0.07 1.32± 1.02 1.65± 0.14 1.62± 0.08

Blogcatalog

ACLT 87.78± 3.14 88.25± 4.84 58.38± 35.27 81.27± 5.43 94.92± 3.48 63.98± 8.80 78.50± 6.35 78.11± 6.82

AILT 58.52± 6.32 59.95± 7.53 37.31± 16.42 53.17± 4.94 46.59± 10.66 55.37± 6.46 65.54± 5.15 64.26± 4.67

AUCS 71.37± 3.05 71.96± 2.63 44.65± 25.60 65.42± 3.40 71.06± 4.20 59.45± 8.76 68.73± 4.84 68.63± 6.14

AUU 70.64± 2.99 71.23± 2.50 43.95± 25.74 64.57± 3.45 70.21± 4.29 58.64± 8.74 68.13± 4.73 68.10± 5.96

AUIS 72.32± 3.60 72.92± 3.15 45.86± 24.99 66.18± 3.41 71.63± 4.87 60.15± 8.94 69.36± 5.60 69.75± 5.52

Time 0.94± 0.26 1.05± 0.35 3.87± 4.26 3.32± 1.03 3.86± 1.66 5.95± 0.23 3.47± 0.47 2.80± 0.45

Flickr

ACLT 93.22± 3.98 89.85± 6.21 77.80± 22.21 76.89± 1.79 81.19± 8.35 35.80± 6.44 31.01± 4.21 30.41± 7.36

AILT 20.27± 5.10 25.32± 9.39 21.54± 7.61 24.37± 3.79 22.35± 5.49 22.27± 6.43 25.70± 4.85 25.02± 5.29

AILMT 68.88± 10.70 57.16± 16.09 58.87± 18.91 55.92± 5.74 58.79± 11.60 17.57± 4.30 15.95± 1.97 16.15± 2.16

AUCS 51.31± 2.98 50.55± 2.72 42.35± 10.53 45.96± 3.58 45.69± 4.07 25.86± 4.90 27.27± 3.34 26.77± 4.94

AUU 50.72± 2.80 50.09± 2.60 41.95± 10.40 45.45± 3.43 45.28± 3.81 25.30± 5.00 27.02± 3.22 26.63± 4.73

AUIS 50.92± 3.67 49.94± 2.87 42.63± 10.01 45.23± 3.69 45.09± 3.99 24.81± 4.58 27.67± 2.46 27.09± 4.25

Time 1.83± 0.72 1.40± 0.67 6.48± 2.78 4.21± 1.01 3.76± 2.29 1.13± 1.84 3.05± 0.74 2.79± 0.65
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Table A4: Test accuracy of GLN methods (10 Runs). N/A indicates time or memory exceeded.

Dataset Noise type GCN NRGNN RTGNN CP CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

Cora

Clean data 80.66± 0.54 79.16± 0.74 72.31± 1.94 80.49± 1.02 80.90± 0.73 77.46± 1.28 72.41± 2.77 78.72± 1.02 81.61± 0.73 80.18± 1.28 81.23± 1.09

10% pair 76.44± 2.48 77.72± 1.03 70.28± 3.75 76.93± 2.50 75.84± 2.77 75.00± 1.89 68.27± 3.11 77.10± 1.94 77.26± 2.59 76.09± 2.47 76.49± 2.36

20% pair 73.07± 2.46 75.38± 1.78 68.47± 3.91 72.70± 3.30 71.84± 1.46 70.66± 1.38 64.55± 3.13 75.32± 2.78 72.96± 2.95 71.27± 2.69 73.03± 2.28

30% pair 65.36± 5.54 69.73± 4.82 63.44± 5.93 66.12± 5.63 64.55± 5.04 65.04± 5.83 58.49± 4.41 68.48± 6.37 66.29± 5.23 63.27± 5.71 65.37± 5.48

40% pair 54.02± 3.48 59.03± 4.36 54.86± 3.81 56.43± 5.19 55.03± 4.09 55.77± 4.10 48.71± 7.23 59.10± 6.28 56.20± 4.38 54.64± 6.17 55.67± 3.49

50% pair 44.15± 8.52 43.42± 6.99 43.69± 7.46 43.36± 7.24 44.16± 5.78 41.81± 7.92 42.41± 6.80 46.31± 12.67 43.74± 8.51 43.37± 7.78 44.53± 6.74

10% uniform 78.58± 2.04 78.28± 1.42 70.24± 4.59 78.16± 2.56 77.17± 2.17 76.07± 1.66 69.35± 4.00 78.01± 1.12 79.04± 2.09 77.89± 2.10 77.60± 2.04

20% uniform 75.92± 1.49 76.67± 2.30 69.27± 3.24 76.65± 1.54 73.47± 1.89 74.05± 1.99 64.67± 4.01 76.90± 1.21 76.08± 1.74 75.07± 1.81 75.77± 3.38

30% uniform 71.06± 4.39 74.86± 2.82 66.33± 3.72 71.76± 5.85 68.24± 3.95 70.43± 4.19 56.15± 6.40 73.29± 5.17 72.83± 4.74 69.57± 3.47 72.03± 4.48

40% uniform 67.88± 3.73 73.98± 2.53 66.02± 4.00 69.19± 3.31 63.82± 3.45 66.07± 4.48 52.06± 4.64 74.08± 3.90 68.92± 3.24 64.38± 5.45 67.98± 4.62

50% uniform 54.42± 4.72 64.90± 5.32 57.67± 5.68 55.03± 7.13 51.14± 5.97 55.28± 7.40 41.48± 5.81 67.32± 6.56 55.60± 4.13 54.08± 5.48 56.09± 4.53

10% random 78.19± 1.98 77.94± 1.48 71.12± 2.70 78.55± 2.17 77.01± 1.64 75.83± 1.71 69.83± 2.43 77.90± 1.32 79.09± 1.52 77.82± 1.59 78.22± 1.70

20% random 74.27± 3.42 75.58± 1.82 67.60± 3.50 75.51± 2.54 73.71± 3.38 73.05± 3.19 66.06± 4.18 75.43± 3.51 74.71± 3.68 72.63± 4.84 75.12± 3.65

30% random 69.72± 3.49 74.48± 2.86 66.84± 5.09 71.09± 4.08 67.61± 3.57 69.03± 3.46 57.16± 3.48 74.35± 5.29 71.02± 4.09 69.01± 4.11 70.40± 4.92

40% random 62.59± 3.24 70.93± 1.97 60.83± 4.12 64.05± 3.02 62.92± 3.60 62.03± 2.44 51.65± 3.80 69.15± 5.45 63.45± 2.87 59.47± 3.10 62.30± 3.87

50% random 55.59± 6.92 64.02± 6.68 55.24± 6.77 55.45± 4.93 50.56± 6.44 55.47± 6.12 40.27± 13.10 63.45± 8.03 56.51± 7.37 53.11± 6.73 54.12± 7.13

Citeseer

Clean data 69.01± 0.72 69.26± 1.49 61.61± 2.39 68.75± 1.34 68.38± 0.99 67.63± 1.55 64.18± 1.37 66.08± 3.72 71.97± 0.65 66.19± 1.51 67.40± 1.84

10% pair 65.08± 1.90 67.86± 1.29 58.00± 1.96 64.86± 1.83 63.98± 1.58 64.52± 3.35 56.37± 6.90 62.22± 4.37 68.36± 1.35 61.50± 2.16 63.73± 2.41

20% pair 58.22± 3.29 61.67± 4.73 52.07± 4.79 57.33± 3.00 58.43± 4.27 61.28± 4.03 51.53± 3.40 61.10± 7.20 61.50± 4.99 54.81± 4.04 55.58± 2.49

30% pair 53.66± 5.03 59.28± 6.21 48.39± 5.15 54.15± 5.44 53.19± 3.19 55.97± 4.79 46.76± 6.57 54.16± 4.56 58.15± 6.09 51.38± 4.19 52.45± 5.07

40% pair 43.47± 4.89 45.27± 6.66 37.36± 4.27 43.43± 5.31 42.51± 6.03 46.97± 5.87 40.69± 6.46 46.06± 8.13 44.72± 5.42 41.58± 4.27 43.55± 5.04

50% pair 35.48± 5.20 36.90± 5.35 33.67± 4.58 35.41± 5.92 34.41± 3.86 34.63± 5.49 34.48± 5.23 38.74± 10.06 37.18± 6.65 33.02± 5.12 35.90± 3.29

10% uniform 65.48± 2.38 67.52± 1.36 58.27± 3.26 65.65± 1.58 64.03± 2.64 66.61± 1.32 58.95± 2.15 64.76± 3.91 68.97± 1.79 61.48± 3.31 64.01± 2.41

20% uniform 61.40± 3.00 66.11± 1.75 55.98± 4.39 61.43± 2.96 59.62± 3.17 64.09± 1.69 52.24± 3.61 65.32± 4.39 66.50± 3.64 57.80± 3.30 59.86± 3.52

30% uniform 55.05± 3.11 61.87± 3.44 51.38± 4.11 56.72± 3.42 55.48± 2.92 60.71± 2.98 48.99± 2.57 58.56± 7.25 58.87± 3.25 52.31± 3.22 55.87± 3.38

40% uniform 48.89± 4.56 60.22± 3.64 51.14± 4.39 51.55± 5.27 49.08± 5.48 54.65± 4.29 40.53± 6.10 61.23± 8.80 55.78± 5.18 45.33± 4.28 47.63± 3.94

50% uniform 43.51± 5.26 54.57± 4.99 43.19± 3.19 44.93± 6.30 43.82± 6.02 50.09± 6.06 35.22± 6.90 55.43± 6.34 46.18± 5.54 40.72± 6.12 42.03± 5.10

10% random 66.01± 2.17 68.32± 2.40 59.59± 3.25 65.61± 2.62 64.86± 2.89 65.96± 1.56 58.35± 3.34 70.49± 1.05 69.37± 2.32 63.12± 2.22 64.68± 2.08

20% random 61.11± 4.66 67.02± 2.84 57.50± 3.69 61.44± 4.25 60.06± 3.06 63.39± 2.38 51.72± 6.41 68.99± 1.29 66.96± 4.28 56.33± 5.24 59.20± 5.01

30% random 56.44± 4.94 63.33± 2.19 52.57± 5.02 57.71± 4.44 55.24± 3.41 59.43± 4.42 49.39± 3.29 66.12± 3.72 60.85± 4.54 51.09± 4.89 53.92± 4.99

40% random 47.80± 5.64 59.98± 4.11 47.70± 3.11 48.55± 5.95 47.01± 6.10 54.88± 4.87 41.63± 5.58 62.23± 8.47 53.42± 6.23 44.54± 4.87 48.62± 6.48

50% random 41.76± 6.67 52.43± 8.79 43.05± 5.49 42.39± 7.26 41.90± 4.25 49.81± 5.27 36.49± 4.11 53.72± 8.85 45.76± 7.98 37.18± 5.37 41.36± 5.21

Pubmed

Clean data 78.68± 0.49 75.93± 1.16 75.73± 2.98 76.91± 1.04 78.31± 0.69 77.23± 0.49 76.14± 0.93 N/A 78.94± 0.37 70.55± 18.48 77.73± 0.59

10% pair 74.49± 3.06 68.92± 6.19 73.47± 3.41 73.21± 2.41 73.43± 3.99 74.51± 2.19 71.36± 3.22 N/A 74.62± 3.05 66.60± 17.41 74.42± 2.51

20% pair 70.61± 6.79 64.52± 6.90 68.42± 8.95 70.26± 5.21 69.59± 7.12 72.13± 5.03 67.23± 3.97 N/A 71.39± 6.57 62.96± 17.13 70.53± 4.88

30% pair 62.91± 5.49 57.22± 5.93 59.04± 6.65 62.67± 4.62 62.25± 5.23 66.75± 3.88 58.36± 4.87 N/A 62.77± 4.97 56.01± 14.88 62.91± 5.47

40% pair 55.67± 9.59 53.03± 7.33 52.44± 10.05 55.52± 8.86 55.67± 9.31 59.81± 8.60 54.71± 6.29 N/A 56.30± 8.13 51.31± 13.87 58.92± 6.61

50% pair 42.99± 9.12 39.40± 10.32 45.24± 8.91 45.67± 8.32 42.24± 8.27 42.70± 9.55 43.51± 6.93 N/A 42.98± 8.58 41.81± 11.41 43.89± 6.26

10% uniform 74.61± 2.04 69.54± 5.72 71.45± 4.12 73.67± 1.74 73.28± 2.13 74.55± 1.29 71.75± 1.34 N/A 75.56± 1.65 64.92± 18.30 74.58± 2.10

20% uniform 70.26± 3.66 68.67± 6.74 68.55± 4.38 70.73± 3.02 67.67± 3.80 71.80± 2.38 65.19± 4.38 N/A 70.24± 3.87 59.76± 17.22 70.50± 3.65

30% uniform 66.53± 6.23 62.37± 6.79 68.30± 4.31 68.11± 4.27 64.56± 6.50 69.02± 3.34 63.29± 7.74 N/A 65.93± 6.56 57.73± 16.75 66.42± 6.35

40% uniform 57.86± 4.98 57.10± 4.79 62.22± 5.34 59.84± 4.94 57.02± 7.49 62.72± 5.45 58.03± 5.13 N/A 57.45± 4.49 47.69± 12.59 58.28± 6.60

50% uniform 52.73± 6.42 53.40± 7.20 53.47± 9.12 53.84± 8.70 49.56± 8.32 55.16± 7.33 53.93± 5.55 N/A 52.04± 7.06 44.69± 11.83 53.73± 6.08

10% random 73.79± 2.37 65.99± 9.76 70.62± 5.67 72.70± 2.19 72.84± 3.37 73.93± 1.74 71.14± 2.55 N/A 74.06± 2.79 63.09± 18.92 73.45± 1.79

20% random 72.49± 1.69 68.43± 8.09 70.77± 2.13 71.86± 2.69 70.53± 2.49 71.93± 1.68 67.68± 3.26 N/A 73.12± 1.68 63.19± 17.14 72.12± 1.48

30% random 66.52± 2.29 62.38± 6.99 66.72± 7.14 68.17± 2.64 66.20± 2.74 70.50± 2.26 63.42± 5.39 N/A 65.60± 2.35 59.76± 15.18 69.48± 3.39

40% random 56.98± 8.35 51.32± 6.43 57.27± 14.75 59.18± 8.14 55.27± 15.68 64.81± 7.37 54.89± 11.11 N/A 56.36± 9.10 48.42± 15.98 61.51± 7.83

50% random 46.24± 9.08 42.60± 10.42 45.96± 10.76 47.35± 11.26 44.11± 14.08 48.59± 14.18 45.64± 8.83 N/A 43.20± 11.41 43.27± 10.73 49.01± 8.70

A-Computers

Clean data 84.73± 0.82 74.40± 2.22 66.68± 3.33 83.86± 0.86 84.28± 0.85 81.50± 1.06 60.23± 5.71 73.65± 1.64 37.71± 1.97 47.48± 25.39 50.49± 40.36

10% pair 83.01± 1.46 73.88± 3.77 70.83± 2.94 81.70± 1.19 82.20± 1.37 82.38± 1.55 56.80± 7.62 72.59± 2.12 37.90± 2.14 43.40± 16.71 55.85± 36.29

20% pair 77.62± 4.47 70.10± 5.98 64.89± 7.35 76.92± 4.64 77.77± 4.59 77.77± 6.35 55.38± 5.16 67.93± 3.20 38.05± 2.26 41.01± 19.36 48.03± 31.61

30% pair 70.95± 4.21 67.00± 2.65 61.40± 10.02 70.49± 4.59 73.96± 4.61 72.22± 5.80 48.11± 7.24 63.62± 3.93 37.33± 2.18 40.55± 21.80 39.18± 31.03

40% pair 60.92± 10.03 56.43± 14.29 50.20± 16.45 61.08± 10.15 60.01± 12.62 60.01± 11.62 40.71± 8.98 48.07± 14.57 31.39± 12.72 37.31± 18.55 36.62± 24.52

50% pair 39.23± 9.60 38.35± 10.68 36.66± 13.49 38.34± 6.33 38.69± 11.58 38.84± 8.31 26.84± 13.37 33.65± 12.41 22.61± 17.74 28.54± 13.79 26.44± 18.60

10% uniform 83.06± 1.50 73.77± 2.40 56.93± 23.29 81.30± 2.06 83.74± 1.29 83.28± 1.29 57.40± 7.00 71.62± 1.77 37.53± 1.81 45.72± 24.90 51.85± 33.73

20% uniform 79.79± 2.68 70.32± 4.95 62.58± 20.17 79.34± 3.35 81.55± 2.48 81.45± 2.44 52.25± 7.38 67.59± 5.16 37.92± 2.76 43.56± 20.07 48.38± 31.49

30% uniform 77.26± 3.34 70.47± 3.45 69.04± 4.96 77.74± 3.13 80.31± 2.41 79.04± 2.28 50.53± 4.26 62.22± 3.97 37.34± 2.94 46.07± 22.63 48.29± 31.43

40% uniform 73.78± 3.27 65.82± 7.04 60.52± 18.90 73.81± 3.08 76.85± 3.45 76.23± 3.48 48.98± 6.32 62.25± 5.59 30.89± 10.88 46.03± 21.39 46.49± 30.39

50% uniform 67.94± 5.05 61.69± 8.57 62.48± 4.20 69.01± 3.90 75.79± 2.01 72.22± 2.85 42.59± 12.96 54.84± 8.30 31.20± 11.16 43.40± 16.86 38.63± 25.90

10% random 82.90± 0.84 74.43± 2.85 68.79± 4.22 82.52± 1.81 83.48± 1.26 81.75± 1.77 55.92± 8.31 68.97± 2.82 30.62± 12.21 49.72± 25.80 56.34± 36.10

20% random 80.19± 3.79 71.52± 4.48 72.04± 3.23 78.78± 2.00 81.14± 2.15 80.28± 2.29 54.64± 5.05 67.49± 3.26 32.99± 10.65 53.33± 22.68 53.45± 34.11

30% random 75.79± 4.22 68.32± 7.22 70.07± 7.28 74.75± 5.27 75.79± 8.24 75.17± 5.59 50.73± 6.15 62.74± 7.95 30.76± 12.31 52.05± 20.16 49.17± 31.79

40% random 72.87± 3.86 63.84± 9.49 66.39± 6.75 72.35± 2.63 74.03± 7.41 75.14± 6.00 46.33± 5.40 56.25± 8.75 30.17± 12.85 47.62± 20.01 42.84± 28.15

50% random 64.73± 7.97 54.25± 7.00 53.52± 20.06 65.02± 8.34 65.64± 8.76 69.58± 5.98 45.59± 6.60 51.87± 11.60 31.11± 11.67 34.05± 22.38 39.78± 25.67

A-Ratings

0% clean 39.61± 0.15 37.99± 0.34 37.45± 0.69 40.11± 0.16 38.58± 1.00 39.22± 0.06 39.57± 0.44 35.76± 0.28 36.71± 0.03 35.31± 4.24 33.08± 4.99

10% pair 39.27± 0.54 37.34± 0.56 37.65± 0.63 39.65± 0.30 38.14± 1.04 38.82± 0.31 37.38± 0.61 34.68± 0.93 36.63± 0.66 35.32± 4.23 36.64± 0.36

20% pair 39.07± 0.45 37.89± 0.65 37.36± 0.78 38.82± 1.05 38.33± 0.94 38.72± 0.46 36.33± 1.37 33.74± 1.04 36.50± 1.03 37.03± 0.36 36.01± 1.60

30% pair 38.41± 0.67 37.36± 0.48 36.53± 0.78 38.59± 0.71 37.83± 0.52 37.88± 0.57 33.79± 2.36 31.34± 1.75 35.78± 1.82 36.11± 2.53 35.67± 3.19

40% pair 36.73± 1.42 36.65± 1.36 35.12± 1.37 36.82± 1.54 36.26± 3.54 36.86± 1.51 32.96± 1.09 30.55± 1.45 32.91± 4.25 33.36± 4.20 33.57± 3.88

50% pair 34.41± 2.09 32.54± 3.69 33.56± 1.27 34.41± 2.07 31.36± 4.14 34.00± 2.94 31.72± 2.38 29.27± 1.71 27.52± 1.20 27.00± 7.63 28.70± 3.59

10% uniform 39.01± 0.59 37.32± 0.30 37.43± 0.58 38.99± 0.93 38.21± 0.52 38.90± 0.28 36.30± 1.86 33.98± 0.78 36.84± 0.08 35.42± 4.27 36.76± 0.10

20% uniform 38.53± 0.53 37.04± 0.30 37.18± 0.72 38.76± 0.36 37.84± 0.75 38.46± 0.37 35.62± 0.56 32.29± 0.80 36.82± 0.09 35.41± 4.27 36.81± 0.00

30% uniform 37.73± 0.91 36.91± 0.35 36.74± 0.35 37.59± 0.98 37.30± 0.58 37.55± 0.78 34.34± 1.13 31.00± 0.61 36.84± 0.07 35.37± 4.26 36.80± 0.02

40% uniform 36.90± 1.35 36.41± 0.62 36.12± 1.23 37.06± 1.03 36.72± 0.81 36.98± 0.72 32.89± 1.64 28.40± 1.32 36.52± 0.74 34.44± 5.07 36.81± 0.00

50% uniform 36.75± 0.84 36.82± 0.21 36.11± 0.91 36.82± 0.73 36.79± 0.52 36.87± 0.59 30.54± 1.26 26.15± 0.95 36.61± 0.62 33.40± 5.50 36.81± 0.00

10% random 38.85± 0.54 37.89± 0.45 37.61± 0.47 39.19± 0.48 37.86± 1.13 38.27± 0.26 37.32± 0.82 33.68± 0.44 36.54± 0.08 35.16± 4.13 36.51± 0.00

20% random 38.31± 0.29 37.23± 0.48 37.02± 0.57 38.58± 0.75 38.26± 0.66 38.08± 0.51 35.08± 0.70 31.92± 0.89 36.65± 0.24 35.51± 4.28 36.76± 0.00

30% random 37.69± 0.86 35.31± 2.67 36.50± 1.53 37.64± 1.05 37.03± 0.71 36.76± 1.48 34.45± 0.68 31.01± 1.26 35.75± 3.14 34.20± 5.02 34.57± 4.55

40% random 36.18± 2.43 34.94± 2.87 35.18± 2.96 35.81± 3.15 35.79± 3.39 35.94± 3.33 31.77± 1.91 28.50± 1.64 35.02± 3.38 33.02± 5.29 34.76± 3.52

50% random 32.61± 4.52 31.83± 5.21 31.40± 5.35 33.07± 4.87 32.40± 4.31 32.22± 4.63 29.46± 2.94 26.41± 1.74 31.55± 5.38 29.34± 5.86 31.39± 5.75
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Table A5: Test accuracy of GLN methods (10 Runs). N/A indicates time or memory exceeded.

Dataset Noise type GCN NRGNN RTGNN CP CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

A-Photos

Clean data 91.82± 0.69 82.53± 1.37 82.31± 1.31 91.28± 0.72 90.84± 0.69 88.84± 0.55 76.60± 9.02 80.11± 4.75 33.16± 4.03 57.29± 27.33 62.09± 39.92

10% pair 89.83± 1.42 80.91± 1.68 82.15± 1.53 88.47± 2.03 89.18± 1.53 86.87± 2.12 70.58± 5.88 78.70± 4.12 33.34± 4.41 58.28± 24.31 60.35± 38.82

20% pair 85.74± 2.86 78.04± 2.29 82.31± 2.61 85.39± 2.47 84.76± 2.56 82.86± 3.73 61.95± 3.77 71.39± 6.39 33.16± 4.03 50.90± 30.22 43.59± 35.13

30% pair 79.26± 4.79 71.92± 6.84 70.33± 8.11 77.45± 5.26 79.12± 4.90 79.43± 4.63 51.09± 13.97 64.79± 9.92 30.89± 7.39 45.70± 25.46 37.53± 35.25

40% pair 64.90± 5.56 56.86± 10.90 61.67± 8.26 62.77± 6.27 63.67± 5.85 64.04± 5.48 47.22± 5.86 50.06± 9.59 22.80± 8.77 37.52± 16.62 40.27± 25.85

50% pair 44.96± 15.14 37.20± 13.45 41.39± 16.90 41.61± 14.76 42.52± 12.84 43.37± 11.65 32.95± 7.72 34.80± 9.47 21.10± 9.65 25.19± 16.12 20.85± 21.01

10% uniform 89.42± 1.61 81.42± 3.06 82.32± 1.68 89.53± 1.28 89.56± 1.88 87.85± 1.34 66.22± 17.13 75.31± 3.78 33.66± 3.87 55.16± 28.60 28.67± 39.10

20% uniform 88.02± 1.99 81.18± 3.14 83.00± 2.41 87.20± 2.35 87.76± 1.48 87.70± 2.42 62.00± 5.65 77.28± 5.43 33.61± 3.59 55.92± 26.11 33.93± 38.56

30% uniform 84.86± 3.27 78.30± 3.31 82.08± 6.02 83.52± 3.00 85.46± 2.70 84.90± 4.59 54.28± 8.37 72.80± 6.60 32.29± 4.47 47.26± 25.51 35.24± 32.66

40% uniform 79.33± 5.96 69.73± 10.22 77.42± 5.38 78.80± 5.91 81.17± 6.59 79.26± 7.16 49.35± 4.40 64.81± 4.72 27.91± 8.75 43.28± 23.00 34.55± 28.13

50% uniform 74.39± 5.08 64.94± 7.34 74.03± 10.33 72.11± 7.05 74.58± 4.91 76.51± 3.84 42.48± 5.84 59.78± 8.76 25.74± 9.98 38.23± 21.83 22.50± 25.64

10% random 88.05± 1.46 76.41± 3.22 83.83± 1.10 87.50± 1.68 87.42± 1.56 87.92± 0.83 63.42± 13.10 82.06± 2.76 28.18± 6.24 50.11± 29.55 43.39± 41.37

20% random 86.79± 1.58 77.31± 2.56 85.09± 2.25 85.05± 2.29 86.49± 1.61 86.79± 1.47 55.21± 15.74 76.70± 4.16 29.66± 6.36 53.08± 29.02 32.42± 37.39

30% random 82.24± 4.39 72.38± 8.61 83.68± 1.94 82.02± 3.14 82.57± 3.90 83.75± 2.97 56.66± 5.02 74.37± 8.86 27.53± 6.83 49.43± 27.36 31.77± 35.66

40% random 76.94± 5.44 70.85± 9.39 78.66± 8.15 76.52± 5.42 78.61± 4.14 81.20± 2.93 48.07± 9.46 71.55± 7.76 28.50± 8.17 48.97± 28.32 25.67± 28.29

50% random 69.85± 7.07 62.36± 8.28 72.54± 8.95 70.68± 4.97 71.03± 7.34 74.68± 5.07 42.65± 8.63 61.20± 5.19 27.25± 6.40 38.75± 25.24 24.68± 22.94

DBLP

Clean data 77.03± 0.35 81.35± 0.45 68.13± 2.16 78.19± 1.26 78.85± 0.33 78.37± 2.02 76.14± 1.03 73.00± 1.52 77.13± 0.24 67.23± 13.37 77.20± 1.00

10% pair 74.04± 1.58 79.58± 1.14 66.08± 1.99 75.85± 1.92 75.35± 1.65 76.90± 2.37 72.53± 2.17 70.17± 1.23 74.38± 1.53 63.26± 11.22 74.73± 2.17

20% pair 70.11± 1.40 74.90± 2.76 63.72± 3.82 71.35± 3.02 69.78± 1.87 74.85± 2.03 68.68± 2.75 67.46± 2.57 70.47± 1.56 63.05± 5.47 70.92± 2.01

30% pair 62.56± 2.39 69.82± 3.20 59.26± 6.03 65.80± 2.68 62.59± 1.50 69.31± 2.55 61.99± 2.79 64.35± 2.40 62.92± 2.86 58.06± 5.73 63.79± 3.39

40% pair 52.16± 7.86 61.01± 8.12 50.27± 7.46 54.76± 6.94 51.96± 7.01 59.45± 8.84 57.41± 4.63 51.76± 5.31 52.82± 7.67 49.49± 6.41 55.89± 10.76

50% pair 39.99± 7.94 47.50± 5.29 36.53± 8.64 40.44± 7.24 43.67± 7.20 46.66± 11.83 45.39± 8.74 42.75± 6.77 40.71± 8.01 41.54± 6.57 44.86± 9.65

10% uniform 75.24± 1.04 79.38± 1.68 66.81± 3.05 76.67± 1.62 75.40± 1.65 76.29± 2.31 72.79± 2.26 70.65± 2.65 75.57± 1.07 67.01± 6.27 75.88± 1.54

20% uniform 72.37± 3.11 77.38± 2.75 67.14± 2.95 72.98± 3.93 70.09± 3.66 74.21± 4.32 66.36± 3.45 69.06± 3.50 72.77± 3.11 60.02± 11.62 72.96± 2.57

30% uniform 69.66± 2.72 76.21± 1.79 66.89± 6.43 70.49± 3.71 65.31± 2.41 71.98± 2.19 63.47± 3.00 63.65± 3.44 70.33± 2.82 63.26± 5.73 70.23± 2.03

40% uniform 64.53± 5.58 70.36± 5.56 65.35± 5.54 65.74± 4.48 59.78± 4.32 67.83± 3.06 56.94± 6.30 61.03± 4.17 65.17± 5.64 56.51± 6.56 63.93± 5.99

50% uniform 57.05± 7.88 65.23± 6.91 60.56± 6.79 58.89± 6.91 52.34± 6.30 58.92± 7.79 53.47± 6.33 54.17± 5.30 57.92± 7.84 51.86± 7.91 57.42± 6.78

10% random 75.40± 0.88 80.01± 0.58 66.52± 2.01 75.33± 1.53 73.87± 1.39 77.08± 1.94 71.22± 2.14 72.38± 2.12 75.32± 1.01 65.57± 7.25 70.04± 8.89

20% random 72.50± 2.27 77.87± 2.03 64.52± 2.73 72.80± 1.99 70.71± 1.67 75.45± 2.44 68.85± 1.79 70.45± 1.66 72.72± 2.45 63.90± 7.54 71.74± 2.00

30% random 66.60± 3.99 73.83± 3.74 65.59± 3.50 68.30± 3.63 62.45± 3.15 70.76± 3.68 61.45± 1.60 65.54± 3.69 66.97± 4.03 58.70± 9.03 66.94± 3.11

40% random 62.76± 4.23 69.41± 3.04 62.10± 5.19 64.28± 2.67 56.62± 3.03 67.23± 4.10 58.28± 3.95 61.25± 5.42 63.30± 4.24 54.87± 9.01 64.35± 2.42

50% random 54.26± 6.94 65.10± 4.86 57.80± 8.88 56.75± 6.97 51.48± 7.06 61.17± 6.78 50.59± 5.01 54.78± 7.42 54.77± 7.22 51.81± 8.24 54.65± 6.99

Blogcatalog

Clean data 76.52± 0.58 78.46± 0.85 75.49± 0.37 75.70± 0.74 75.72± 0.92 63.13± 9.60 59.45± 12.70 56.59± 0.67 75.30± 0.94 23.26± 6.65 71.57± 1.07

10% pair 72.81± 1.53 76.73± 1.42 76.03± 0.71 71.82± 1.51 72.08± 1.09 61.10± 9.84 54.20± 11.46 54.71± 1.35 71.29± 1.03 26.77± 5.01 67.36± 2.20

20% pair 67.09± 2.88 73.76± 1.77 75.12± 2.37 65.53± 2.62 66.82± 2.26 55.00± 9.66 44.15± 11.46 62.53± 14.47 65.74± 3.29 26.11± 8.32 61.84± 3.59

30% pair 60.69± 1.76 69.55± 2.13 69.94± 3.25 59.52± 2.96 59.41± 2.50 53.04± 6.92 41.08± 12.47 47.48± 2.61 57.49± 3.23 25.86± 4.42 52.43± 5.01

40% pair 46.75± 4.37 53.59± 4.95 52.21± 7.91 46.48± 3.92 47.39± 6.44 40.62± 8.24 40.40± 6.53 39.02± 6.96 47.21± 3.24 20.54± 4.34 44.06± 3.28

50% pair 35.36± 5.71 36.95± 8.57 35.47± 6.85 35.92± 5.90 34.57± 7.27 33.90± 5.81 27.53± 6.93 31.90± 9.03 35.59± 4.51 20.53± 3.13 33.41± 5.06

10% uniform 74.40± 1.03 77.33± 2.01 76.41± 0.77 73.17± 1.40 74.02± 1.09 58.20± 8.23 53.92± 13.38 58.23± 9.32 73.38± 0.71 23.90± 6.39 70.37± 1.17

20% uniform 71.30± 1.23 76.21± 1.94 77.68± 0.93 70.54± 1.25 70.28± 1.32 59.68± 7.42 41.84± 10.65 52.78± 0.93 69.36± 1.37 31.22± 9.44 66.30± 3.31

30% uniform 69.36± 2.99 75.37± 1.88 76.34± 1.13 67.79± 2.01 68.18± 2.72 56.30± 9.27 37.26± 16.11 58.43± 15.32 67.36± 3.18 26.45± 7.98 63.32± 2.64

40% uniform 64.73± 2.36 73.18± 3.45 73.20± 2.17 63.04± 1.57 63.00± 3.75 49.31± 8.45 30.95± 12.83 68.15± 15.31 62.37± 2.65 18.72± 2.72 61.27± 4.73

50% uniform 60.08± 3.58 71.72± 3.53 69.56± 2.34 60.18± 2.63 57.85± 2.73 49.30± 9.73 32.47± 11.46 63.63± 13.45 59.56± 3.27 21.91± 5.18 52.90± 4.96

10% random 72.63± 1.36 75.98± 1.96 74.73± 1.08 71.72± 1.12 72.11± 1.76 59.90± 11.53 55.78± 12.89 52.63± 1.02 24.37± 3.36 33.94± 7.71 69.11± 1.81

20% random 70.70± 1.28 74.47± 2.51 76.07± 1.29 69.45± 2.13 70.47± 1.52 58.83± 7.93 46.83± 14.20 58.87± 14.45 22.75± 4.21 27.60± 8.19 67.86± 2.05

30% random 65.81± 2.07 72.24± 1.82 72.67± 3.25 64.86± 3.17 64.88± 2.94 53.74± 5.12 42.24± 13.18 54.80± 13.27 21.90± 2.88 21.63± 7.64 61.84± 4.50

40% random 61.75± 4.23 69.90± 4.74 69.63± 4.19 60.25± 4.69 61.20± 4.64 49.55± 11.35 32.52± 9.61 70.72± 9.31 20.01± 3.39 20.21± 5.05 55.99± 5.15

50% random 57.61± 3.48 66.08± 3.92 65.12± 3.75 56.03± 3.56 55.67± 3.99 44.43± 12.37 40.12± 6.37 61.65± 13.14 20.12± 3.92 17.78± 1.70 52.04± 3.54

Flickr

0% clean 56.75± 0.44 46.04± 1.10 41.93± 3.77 52.92± 0.87 54.85± 1.08 55.41± 1.04 17.68± 5.87 31.81± 0.37 30.88± 0.22 13.53± 2.40 48.97± 1.37

10% pair 54.43± 1.22 46.77± 4.45 37.44± 4.04 49.53± 0.78 52.60± 1.59 54.79± 1.22 19.10± 5.04 27.12± 0.73 21.78± 2.87 11.34± 1.55 25.50± 18.51

20% pair 51.55± 1.59 45.01± 4.49 37.35± 3.93 46.50± 1.30 49.98± 2.10 51.20± 1.75 19.33± 3.00 25.51± 0.96 23.06± 3.76 12.47± 1.88 31.07± 17.16

30% pair 45.68± 3.02 38.79± 4.60 36.50± 5.36 40.74± 2.88 45.06± 2.77 44.61± 3.11 15.64± 4.02 22.95± 0.82 20.75± 3.80 11.33± 1.50 29.38± 12.67

40% pair 38.82± 1.82 31.31± 3.55 34.79± 3.85 35.05± 2.35 37.89± 2.52 39.35± 2.95 19.33± 4.71 20.94± 0.97 16.60± 3.27 10.85± 1.28 26.57± 10.67

50% pair 28.91± 2.87 28.41± 4.70 29.81± 3.90 28.42± 1.43 28.96± 2.93 28.71± 2.38 13.62± 3.24 18.36± 0.89 16.97± 2.96 11.42± 1.63 25.38± 5.58

10% uniform 55.44± 0.82 48.35± 4.38 39.50± 3.16 49.66± 1.03 53.54± 1.04 55.20± 1.43 16.85± 6.45 27.45± 1.03 21.84± 2.01 12.59± 2.70 40.03± 15.28

20% uniform 53.06± 1.88 45.50± 5.08 42.85± 2.06 46.72± 1.29 51.38± 1.43 52.41± 2.48 17.81± 4.04 25.30± 0.75 21.22± 3.69 11.76± 2.24 30.66± 16.81

30% uniform 49.77± 0.96 42.76± 5.18 43.72± 3.28 43.13± 1.41 48.06± 1.50 49.38± 1.40 19.24± 5.02 23.99± 1.51 21.19± 3.89 11.71± 1.72 31.09± 13.98

40% uniform 47.29± 2.44 40.46± 5.09 40.63± 4.48 40.74± 2.19 45.56± 2.43 47.35± 1.48 17.53± 4.37 22.22± 1.18 19.85± 3.98 12.00± 2.14 29.95± 13.03

50% uniform 42.95± 1.99 36.47± 5.39 40.70± 3.35 37.58± 2.04 40.80± 2.14 43.15± 1.82 15.09± 3.36 19.51± 0.75 17.57± 3.30 10.85± 1.37 29.24± 9.87

10% random 55.17± 1.09 46.89± 2.42 39.02± 5.28 49.93± 1.25 53.92± 0.90 54.08± 1.43 19.25± 4.82 27.13± 0.91 23.27± 3.11 11.48± 1.66 39.96± 15.25

20% random 53.72± 0.98 47.13± 4.11 41.10± 2.94 46.46± 2.01 51.19± 1.45 52.14± 1.03 17.34± 4.98 27.60± 1.03 27.58± 3.78 11.97± 1.48 38.67± 10.05

30% random 49.57± 1.31 44.52± 6.94 40.85± 5.70 42.54± 1.52 47.45± 1.37 49.06± 2.28 15.80± 3.41 24.38± 1.18 22.41± 4.58 11.73± 1.15 30.19± 13.35

40% random 47.16± 1.51 36.38± 5.53 41.73± 3.50 39.96± 2.65 46.19± 1.91 46.67± 2.31 17.19± 4.82 21.74± 2.01 17.30± 4.10 11.26± 1.02 34.01± 12.29

50% random 40.66± 2.78 31.50± 7.18 37.42± 4.48 34.18± 3.25 38.76± 3.69 40.81± 2.90 13.88± 4.46 19.26± 1.73 14.87± 3.03 11.95± 1.25 23.60± 10.92

Roman Empire

0% clean 36.97± 0.28 48.89± 0.44 48.94± 0.32 36.71± 0.41 35.74± 0.24 33.23± 0.48 24.04± 0.48 53.16± 4.25 16.00± 1.18 20.88± 0.81 28.78± 0.68

10% pair 34.89± 0.65 49.80± 0.30 49.45± 0.62 33.71± 0.78 34.12± 0.76 33.52± 0.71 22.67± 0.53 52.58± 5.47 15.50± 1.26 20.69± 0.86 27.04± 1.15

20% pair 32.91± 0.59 48.66± 0.80 47.25± 0.98 31.49± 1.06 31.83± 0.97 32.15± 0.93 22.00± 0.64 48.34± 6.98 15.44± 1.25 19.61± 0.90 26.19± 1.59

30% pair 30.31± 0.99 45.26± 1.32 44.39± 1.10 29.65± 0.74 28.23± 4.86 28.38± 1.32 21.37± 0.49 41.78± 6.19 14.53± 1.16 18.07± 1.05 24.01± 1.72

40% pair 26.36± 1.23 39.31± 2.08 37.22± 2.59 25.23± 1.12 25.78± 1.30 25.77± 1.04 19.24± 0.60 39.56± 8.16 14.26± 0.43 17.48± 1.11 22.39± 1.23

50% pair 21.70± 1.32 29.53± 1.97 29.24± 1.88 21.62± 1.04 21.73± 1.28 21.57± 1.87 17.00± 0.75 28.30± 4.38 14.38± 0.92 16.45± 1.27 20.00± 1.90

10% uniform 34.97± 0.37 49.06± 0.68 49.78± 0.48 33.91± 0.38 34.32± 0.59 33.49± 0.62 22.80± 0.51 52.74± 3.82 16.45± 1.30 20.33± 0.93 26.29± 1.59

20% uniform 33.73± 0.37 47.99± 0.76 49.15± 0.82 32.34± 0.73 33.05± 0.94 32.87± 0.80 22.07± 0.53 53.16± 2.91 15.55± 1.39 19.37± 0.26 25.22± 1.17

30% uniform 32.58± 0.80 47.07± 0.47 48.14± 1.07 31.36± 0.71 32.34± 0.82 31.37± 0.86 21.39± 0.67 51.79± 2.52 15.78± 1.26 18.96± 0.81 23.70± 1.33

40% uniform 30.33± 0.90 45.63± 0.67 46.74± 1.14 28.84± 0.87 30.24± 0.96 29.62± 1.19 19.88± 1.04 49.72± 2.67 15.02± 0.95 17.19± 1.85 17.76± 2.65

50% uniform 27.56± 1.22 43.91± 0.92 45.05± 1.05 26.72± 1.19 27.73± 1.15 27.26± 1.13 18.29± 0.92 45.58± 2.34 15.24± 1.31 16.29± 1.68 16.43± 1.70

10% random 35.59± 0.42 48.25± 0.58 49.24± 0.50 35.27± 0.55 34.54± 0.48 33.31± 0.62 23.59± 0.58 52.91± 3.51 15.10± 1.06 21.16± 1.19 27.76± 1.20

20% random 33.94± 0.55 47.75± 0.56 48.62± 0.58 32.92± 0.63 33.45± 1.20 32.17± 0.82 23.29± 0.38 50.75± 3.67 16.21± 1.10 22.55± 1.50 25.84± 1.85

30% random 31.09± 0.77 45.63± 0.67 46.48± 0.65 30.57± 0.93 29.37± 4.38 30.92± 0.87 20.95± 0.82 50.49± 2.13 14.53± 1.09 17.26± 1.61 23.81± 1.51

40% random 30.63± 0.58 45.66± 0.79 46.26± 0.92 29.71± 0.41 30.34± 0.85 29.68± 1.07 21.49± 0.59 48.73± 3.86 14.50± 0.85 18.43± 2.51 21.21± 3.03

50% random 28.22± 0.99 43.43± 1.38 44.57± 1.17 27.49± 0.81 27.90± 0.89 28.10± 1.33 19.81± 1.05 47.47± 1.21 14.84± 0.74 16.55± 2.07 17.52± 1.28
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Table A6: Additional Results For GLN under 30% Uniform noise (10 Runs), N/A indicates time
or memory exceeded. ACLT denotes Accuracy of Correct Labeled Training nodes, AILT denotes
Accuracy of Incorrect Labeled Training nodes, AUCS denotes Accuracy of Unlabeled Correct
Supervised nodes, AUU denotes Accuracy of Unlabeled Unsupervised nodes, AUIS denotes Accuracy
of Unlabeled Incorrect Supervised nodes

Dataset Records GCN NRGNN RTGNN CP CLNode PIGNN DGNN RNCGLN UnionNET CGNN CR-GNN

Cora

ACLT 98.53± 0.93 84.53± 4.07 82.29± 3.33 98.77± 1.49 94.14± 3.44 98.43± 1.55 81.06± 10.80 99.00± 1.18 98.60± 1.18 97.16± 2.79 96.39± 1.92

AILT 33.77± 9.40 75.64± 6.68 71.57± 8.33 32.04± 14.17 34.88± 9.96 29.19± 20.67 37.58± 15.48 13.44± 8.24 33.89± 15.53 31.37± 10.72 34.93± 8.11

AILMT 62.14± 10.37 9.84± 7.64 11.04± 4.65 65.25± 15.24 56.09± 10.07 68.10± 22.30 41.82± 19.00 84.10± 9.49 62.01± 17.07 63.61± 12.09 58.93± 8.69

AUCS 80.76± 2.95 83.11± 3.16 75.53± 4.80 80.85± 3.46 76.77± 3.30 80.30± 4.69 70.89± 7.28 77.06± 3.30 82.45± 2.69 80.41± 3.62 80.09± 2.90

AUU 71.99± 3.44 81.33± 2.25 73.44± 4.95 72.32± 4.45 67.11± 5.11 70.28± 8.69 63.60± 6.94 75.36± 3.33 73.46± 3.70 70.38± 4.04 71.75± 4.73

AUIS 51.55± 6.53 78.81± 5.94 69.50± 8.06 51.46± 12.99 43.86± 7.48 49.25± 16.24 45.72± 10.64 72.92± 4.66 52.59± 9.00 46.81± 10.04 51.88± 6.64

Time 0.26± 0.47 9.39± 2.21 12.03± 1.33 16.26± 0.85 5.46± 0.18 3.16± 4.52 3.18± 0.71 17.34± 3.47 15.90± 13.85 1.08± 0.25 0.28± 0.04

Citeseer

ACLT 99.18± 0.96 75.93± 3.79 79.36± 5.55 98.27± 1.83 92.63± 5.08 99.54± 0.81 96.49± 4.40 99.88± 0.37 96.96± 1.82 97.51± 1.98 97.63± 2.10

AILT 1.39± 2.65 43.78± 8.23 35.36± 7.72 1.73± 3.01 8.88± 6.91 1.17± 2.84 6.83± 6.77 3.39± 4.21 5.37± 3.32 3.09± 2.21 2.31± 1.77

AILMT 97.77± 4.20 30.20± 7.94 41.27± 11.34 97.43± 4.78 81.70± 13.29 98.54± 3.73 91.28± 8.18 96.61± 4.21 90.69± 5.27 94.65± 2.53 96.06± 3.42

AUCS 74.70± 3.49 72.69± 3.35 68.45± 4.52 74.16± 2.86 74.23± 3.31 75.02± 3.53 69.51± 3.47 72.77± 4.05 74.60± 4.58 75.26± 3.72 74.88± 3.88

AUU 57.50± 3.60 66.67± 4.22 62.19± 3.25 57.40± 3.08 58.85± 4.43 57.92± 3.84 54.90± 4.11 67.08± 4.66 59.48± 3.82 58.54± 4.01 58.02± 3.99

AUIS 16.45± 5.60 51.37± 17.86 46.72± 15.10 18.15± 6.69 21.92± 5.69 17.26± 6.85 20.80± 9.17 53.44± 14.21 23.41± 7.92 19.82± 7.47 18.61± 5.69

Time 0.57± 0.43 7.02± 1.32 38.50± 25.07 20.23± 0.46 5.90± 0.26 13.80± 5.01 3.26± 0.73 7.76± 3.93 91.13± 55.45 7.79± 12.90 0.92± 0.87

pubmed

ACLT 97.08± 2.61 74.37± 15.52 92.21± 3.85 96.99± 2.48 97.38± 3.31 98.77± 2.10 92.27± 12.38 N/A 96.85± 3.44 87.66± 22.82 96.76± 2.72

AILT 30.01± 15.38 61.79± 14.74 57.26± 9.83 33.22± 17.78 19.79± 19.87 18.18± 17.78 20.04± 16.47 N/A 17.85± 15.85 16.77± 15.34 25.29± 14.37

AILMT 66.93± 16.47 25.11± 12.47 35.58± 8.01 64.81± 18.64 78.16± 19.66 80.85± 17.99 76.56± 19.22 N/A 79.02± 20.17 77.93± 24.69 71.15± 15.53

AUCS 69.49± 7.41 59.98± 13.05 68.50± 11.06 71.10± 8.60 72.16± 5.99 73.42± 9.21 69.09± 7.99 N/A 70.95± 6.55 62.57± 14.01 72.93± 7.06

AUU 59.47± 7.87 58.42± 8.75 64.74± 7.36 60.00± 9.67 58.42± 8.02 62.11± 7.77 58.95± 13.31 N/A 59.47± 8.61 52.11± 14.35 62.11± 9.54

AUIS 27.06± 21.05 52.10± 29.07 49.64± 22.84 35.95± 26.69 19.48± 16.76 27.66± 18.07 37.54± 29.11 N/A 25.08± 17.63 22.86± 15.84 41.15± 31.33

Time 0.31± 0.35 119.30± 44.57 99.15± 23.67 95.65± 1.74 5.72± 0.23 37.37± 10.76 3.09± 1.34 N/A 7.66± 3.09 48.74± 78.02 2.44± 3.53

A-Computers

ACLT 90.81± 3.10 61.82± 5.95 73.58± 7.57 88.51± 4.38 92.01± 2.61 93.43± 2.98 37.44± 10.38 84.67± 10.92 13.17± 4.37 44.71± 32.57 53.11± 30.63

AILT 68.95± 10.52 52.34± 7.43 65.89± 6.97 70.81± 4.68 75.59± 4.39 70.94± 7.66 37.92± 9.60 26.18± 13.75 13.20± 5.35 38.55± 29.40 43.38± 24.06

AILMT 13.27± 6.96 9.41± 4.94 6.75± 4.86 13.87± 6.04 11.40± 3.23 17.77± 7.85 7.61± 3.72 53.33± 24.40 11.02± 1.87 10.19± 4.64 10.96± 4.16

AUCS 83.38± 2.39 72.48± 5.35 72.57± 5.67 82.29± 3.76 84.09± 2.50 83.08± 2.38 50.31± 8.42 58.66± 4.12 26.42± 5.21 47.06± 24.61 52.15± 30.77

AUU 81.58± 3.70 71.15± 5.00 71.37± 5.33 80.65± 4.00 82.77± 2.99 81.69± 3.08 49.28± 7.37 57.63± 3.75 26.26± 5.46 46.04± 24.70 51.12± 30.06

AUIS 78.02± 7.47 69.03± 6.67 67.42± 6.79 77.52± 4.44 80.19± 5.43 79.78± 5.93 46.11± 7.94 54.96± 6.97 21.99± 7.48 42.20± 26.69 48.21± 29.15

Time 1.28± 0.41 120.63± 28.31 304.07± 56.41 82.97± 2.11 7.82± 0.27 117.10± 27.10 6.49± 1.42 120.78± 64.12 130.79± 115.06 53.97± 68.57 5.71± 3.92

A-Photos

ACLT 91.74± 2.96 70.74± 6.42 88.81± 1.92 89.85± 5.02 93.21± 2.31 92.58± 2.35 61.43± 16.39 90.61± 7.73 17.57± 3.35 45.89± 31.92 46.76± 36.50

AILT 80.78± 5.59 64.16± 8.28 87.14± 4.78 78.46± 6.17 84.82± 5.38 81.95± 7.74 49.46± 10.26 44.18± 15.75 17.33± 6.44 38.54± 24.55 40.67± 29.28

AILMT 11.01± 5.49 8.46± 3.45 3.64± 2.57 11.86± 6.11 7.90± 4.54 11.69± 7.82 16.23± 7.15 43.90± 20.70 9.88± 4.15 12.58± 6.89 11.40± 3.17

AUCS 92.21± 2.44 85.62± 2.96 89.98± 2.10 90.74± 2.98 93.08± 1.97 92.04± 4.62 61.05± 15.59 75.71± 6.59 21.70± 7.80 47.20± 30.80 44.70± 38.10

AUU 89.76± 2.84 84.29± 2.79 89.19± 2.13 88.85± 3.20 91.15± 2.33 89.68± 5.00 57.84± 13.94 74.40± 6.73 22.05± 7.18 46.53± 29.54 42.32± 36.11

AUIS 87.01± 4.72 82.46± 5.86 88.84± 4.76 86.34± 3.99 88.71± 3.40 86.29± 6.30 52.75± 9.63 71.08± 7.89 18.81± 6.56 43.12± 28.41 41.11± 30.97

Time 0.87± 0.29 69.88± 18.58 171.43± 15.79 42.46± 2.46 6.35± 0.21 25.60± 10.09 4.28± 1.26 46.69± 19.13 84.42± 63.51 19.21± 30.75 1.92± 1.94

DBLP

ACLT 98.34± 1.71 77.39± 3.28 81.42± 3.61 94.75± 5.81 91.51± 4.99 95.77± 3.37 84.85± 8.72 99.91± 0.27 97.68± 1.87 89.25± 13.11 97.83± 1.29

AILT 21.13± 8.02 65.65± 7.34 64.47± 11.16 25.14± 12.36 18.56± 7.63 32.41± 9.67 29.66± 20.08 0.35± 0.74 23.42± 9.24 25.90± 17.84 20.36± 6.45

AILMT 75.33± 9.66 19.50± 6.18 21.84± 10.51 69.94± 15.57 71.48± 9.17 61.76± 11.53 57.28± 25.14 99.65± 0.74 73.04± 11.00 65.68± 24.20 74.00± 6.77

AUCS 83.15± 1.43 82.14± 1.29 77.00± 3.16 82.77± 1.69 81.08± 1.49 83.16± 2.32 77.32± 3.08 71.17± 4.42 83.31± 1.58 79.18± 4.77 83.03± 1.01

AUU 74.10± 2.64 79.51± 2.22 75.81± 3.95 74.42± 2.84 66.41± 4.95 76.30± 2.74 65.52± 4.56 67.94± 5.00 75.13± 2.52 70.24± 4.15 73.31± 3.48

AUIS 55.65± 9.47 74.46± 5.69 73.98± 8.53 57.55± 9.84 37.50± 6.55 62.98± 6.53 42.95± 12.85 61.48± 6.60 58.56± 9.00 53.80± 14.58 54.13± 8.60

Time 0.13± 0.04 40.36± 3.96 79.03± 11.68 94.58± 0.76 5.25± 0.43 9.18± 2.04 3.36± 0.42 382.95± 99.05 20.22± 4.44 9.73± 6.18 0.76± 0.13

Blogcatalog

ACLT 87.77± 4.37 86.65± 4.06 87.76± 1.94 89.31± 4.93 89.04± 3.32 74.12± 12.13 32.02± 15.23 100.00± 0.00 86.94± 5.68 23.93± 7.31 79.57± 4.99

AILT 55.16± 11.35 80.93± 6.00 81.74± 4.27 51.32± 10.19 55.96± 7.26 51.53± 9.62 30.42± 12.37 0.00± 0.00 58.00± 9.93 21.26± 6.69 58.42± 5.52

AILMT 23.31± 15.15 5.27± 2.94 5.31± 2.81 27.56± 12.78 24.04± 9.24 23.57± 7.21 14.46± 4.97 100.00± 0.00 22.48± 11.43 18.68± 5.00 17.04± 5.83

AUCS 70.78± 3.83 76.74± 1.78 78.57± 0.97 69.66± 2.40 69.89± 2.97 57.70± 9.10 29.69± 13.23 58.45± 15.30 69.67± 3.21 22.06± 7.07 66.30± 2.76

AUU 70.07± 3.86 76.16± 1.85 77.83± 0.95 68.88± 2.21 69.11± 2.92 57.10± 9.16 29.35± 12.93 58.45± 15.33 68.75± 3.24 21.53± 6.59 65.70± 2.77

AUIS 71.71± 4.40 76.95± 2.52 79.49± 1.49 69.84± 2.53 70.41± 3.21 57.68± 8.90 29.74± 13.14 57.51± 15.99 70.37± 3.76 21.65± 7.70 66.71± 2.53

Time 0.99± 0.47 60.40± 12.65 115.91± 27.74 32.03± 0.81 7.42± 0.80 20.30± 4.93 5.71± 2.75 7.75± 5.92 230.91± 79.49 6.11± 7.66 3.40± 1.19

Flickr

ACLT 95.45± 1.89 68.78± 7.09 66.96± 5.37 92.14± 8.13 91.20± 4.01 91.54± 3.13 16.61± 3.97 100.00± 0.00 30.89± 5.99 13.19± 4.12 51.54± 35.03

AILT 18.91± 5.75 54.56± 5.12 55.47± 6.18 11.09± 8.43 22.33± 6.63 24.37± 5.78 16.01± 6.84 0.00± 0.00 19.05± 7.03 12.25± 3.89 16.05± 5.82

AILMT 69.51± 6.85 10.91± 2.84 8.02± 2.08 75.50± 20.23 61.10± 12.00 59.36± 7.47 10.69± 3.00 100.00± 0.00 17.50± 3.14 12.71± 4.29 34.00± 25.64

AUCS 50.84± 1.32 43.94± 5.70 42.07± 5.04 44.45± 1.33 49.32± 2.36 50.02± 2.44 18.03± 4.40 19.22± 1.85 19.74± 3.91 11.84± 2.42 29.45± 13.64

AUU 50.72± 1.10 43.39± 5.72 42.28± 5.04 44.20± 1.30 49.12± 2.23 50.09± 2.11 17.84± 3.91 20.46± 1.64 20.11± 3.87 11.71± 2.31 28.91± 13.84

AUIS 50.17± 0.86 42.86± 5.57 40.50± 5.28 43.13± 1.90 48.25± 2.47 49.39± 2.66 18.13± 3.64 18.19± 1.81 18.48± 3.69 11.26± 2.66 26.79± 12.93

Time 1.74± 0.50 70.22± 20.06 78.78± 41.05 41.99± 0.79 9.00± 0.85 38.00± 4.57 7.67± 1.19 2.27± 0.64 187.40± 202.26 6.89± 6.41 1.98± 1.34

A-Ratings

ACLT 46.76± 4.04 41.32± 2.96 44.54± 1.60 48.01± 6.13 42.83± 1.63 40.98± 1.01 64.51± 14.29 87.64± 1.34 37.40± 0.50 36.19± 4.32 37.46± 0.43

AILT 34.53± 2.29 36.17± 0.89 35.23± 2.40 35.13± 2.45 35.49± 1.04 37.00± 0.88 23.78± 8.55 12.54± 2.19 36.95± 1.06 35.24± 4.24 36.79± 1.05

AILMT 21.13± 3.33 18.29± 2.85 19.79± 2.09 21.45± 3.94 19.15± 2.24 18.25± 2.24 44.55± 19.71 67.97± 5.40 16.63± 2.51 17.17± 2.79 16.69± 2.47

AUCS 39.19± 0.70 37.45± 0.98 38.28± 0.65 39.05± 0.85 38.32± 1.17 38.23± 0.53 36.68± 1.17 32.26± 1.22 37.91± 0.49 36.47± 4.70 37.93± 0.41

AUU 38.47± 0.59 37.03± 0.64 37.69± 0.47 38.46± 0.65 37.78± 0.84 37.75± 0.35 34.51± 1.35 31.74± 0.97 37.44± 0.18 35.99± 4.65 37.47± 0.00

AUIS 38.02± 1.00 37.10± 0.62 37.24± 1.00 38.07± 0.98 37.72± 1.27 37.89± 0.98 30.19± 3.46 31.11± 1.28 37.92± 1.12 36.41± 5.05 37.89± 1.22

Time 0.38± 0.70 119.00± 79.45 369.63± 87.64 80.26± 0.36 4.37± 0.27 130.84± 93.01 2.16± 0.59 16.09± 12.09 285.42± 140.46 4.48± 4.53 0.36± 0.25

Roman Empire

ACLT 54.23± 5.13 55.75± 2.31 60.58± 1.12 51.12± 4.83 55.34± 3.09 39.46± 1.19 44.71± 9.48 67.67± 6.59 15.82± 2.06 22.20± 1.75 27.42± 2.94

AILT 27.20± 1.93 47.50± 3.24 50.12± 2.92 27.62± 2.09 27.91± 1.95 29.56± 2.52 18.71± 1.96 46.65± 2.53 15.01± 1.90 19.48± 2.91 24.45± 2.87

AILMT 13.80± 3.46 4.88± 1.41 5.78± 1.69 12.98± 3.37 13.89± 2.40 6.48± 1.64 16.41± 3.90 15.54± 4.88 5.70± 0.97 5.05± 1.01 5.62± 1.37

AUCS 27.01± 1.34 41.09± 1.93 43.82± 1.43 27.05± 1.31 26.88± 0.61 28.77± 1.68 18.58± 1.36 48.63± 1.15 14.98± 1.18 18.52± 1.09 22.75± 1.65

AUU 28.49± 1.27 41.63± 1.68 44.37± 1.16 28.19± 0.98 28.34± 0.78 29.59± 1.27 19.91± 1.04 48.70± 0.86 14.81± 0.94 18.87± 1.00 22.99± 1.65

AUIS 31.38± 1.58 42.21± 2.28 44.81± 2.11 30.59± 1.38 31.18± 1.63 31.15± 1.37 22.65± 1.06 48.33± 0.99 14.30± 1.29 19.25± 1.09 23.29± 2.05

Time 0.53± 0.65 151.39± 19.51 340.92± 68.92 73.48± 0.59 6.54± 0.30 233.25± 27.18 1.77± 0.08 159.07± 69.94 921.33± 832.73 188.38± 93.65 9.82± 0.83
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B Additional experiment result figures

B.1 Transition patterns

In this work, we primarily consider two types of label noise: pair noise and uniform noise, as
defined in Section 2. Additionally, our code implementation supports random noise. Unlike the fixed
transition patterns of the first two types, the label transition pattern for random noise is generated
randomly. Below are examples of their label transition probabilities.

Figure A1: Label transition probability under 30% uniform noise, pair noise and random noise,
respectively.

B.2 Test accuracy of different methods under different noise rate

In Section 4, we investigated the performance of different LLN and GLN methods, here are additional
experimental results.

Figure A2: Test accuracy of LLN and GLN methods on Cora dataset under different rate of pair and
uniform noise, respectively (10 Runs).
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Figure A3: Test accuracy of LLN and GLN methods on Citeseer dataset under different rate of pair
and uniform noise, respectively (10 Runs).

Figure A4: Test accuracy of LLN and GLN methods on Pubmed dataset under different rate of pair
and uniform noise, respectively (10 Runs).
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Figure A5: Test accuracy of LLN and GLN methods on Amazon-Computers dataset under different
rate of pair and uniform noise, respectively (10 Runs).

Figure A6: Test accuracy of LLN and GLN methods on Amazon-Photos dataset under different rate
of pair and uniform noise, respectively (10 Runs).
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Figure A7: Test accuracy of LLN and GLN methods on Blogcatalog dataset under different rate of
pair and uniform noise, respectively (10 Runs).

Figure A8: Test accuracy of LLN and GLN methods on Flickr dataset under different rate of pair and
uniform noise, respectively (10 Runs).
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B.3 Additional results of time efficiency

Figure A9: Time consumption and Test accuracy of different GLN methods on different datasets
under 30% uniform noise (10 Runs).
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C Additional details of the Benchmark

C.1 Datasets

Table A7: Overview of the datasets used in this study.

Dataset # Nodes # Edges # Feat. # Classes # Homophily Avg. # degree

Cora 2,708 5,278 1,433 7 0.81 3.90
Citeseer 3,327 4,552 3,703 6 0.74 2.74
Pubmed 19,717 44,324 500 3 0.80 4.50

Amazon-Computers 13,752 491,722 767 10 0.78 35.76
Amazon-Photos 7,650 238,162 745 8 0.83 31.13

DBLP 17,716 105,734 1,639 4 0.83 5.97
BlogCatalog 5,196 343,486 8,189 6 0.40 66.11

Flickr 7575 239738 12047 9 0.24 63.30
Amazon-Ratings 24,492 93,050 300 5 0.38 7.60
Roman-Empire 22,662 32,927 300 18 0.05 2.90

Cora, Citeseer and Pubmed [19] are citation networks that most commonly used in previous graph
learning under label noise studies [1, 31, 24, 11, 18]. Each node represents a paper and each edge
represents citation relationship between papers. Node features are 0/1-valued word vector indicating
the absence/presence of the corresponding word from the dictionary. The label of each node is its
category of research topic.

Amazon-Computers and Amazon-Photo [20] are co-purchase graphs extracted from Amazon,
where each node represents a product, edges represent the co-purchased relationships between
products. Features are bag-of-words vectors extracted from product reviews, labels of each node is its
corresponding product category. These datasets were frequently used in robust graph learning under
label noise studies [24, 12].

Amazon-Ratings [17] is derived from the Amazon product co-purchasing network metadata from
SNAP Datasets. In this dataset, nodes represent products, while edges indicate products frequently
bought together. Node features are calculated as the average of FastText embeddings for words in the
product descriptions. The product ratings are categorized into five distinct classes as labels.

Roman-Empire [17] is derived from the Roman Empire article on English Wikipedia. The text
was obtained from the English Wikipedia dump dated 2022.03.01. Each node in the dataset’s graph
represents a (non-unique) word in the text. Node features are calculated by FastText embeddings.
Two words are connected if they follow each other in the text or are linked in the dependency tree of
a sentence. Nodes are labeled based on their syntactic roles and identified using spaCy. The 17 most
frequent roles are considered unique classes, while others are grouped into the 18th class.

DBLP [15] is an author collaboration network in computer science, each node represents a document
and edges represent their citation links. Features are word vectors and labels are category of research
topic. This dataset was used in study [1].

Blogcatalog [26] is a social network formed by an online community, each node is a blogger and
edges represent their relationships. The features of each node are derived from the keywords present
in their blog descriptions, and the labels are selected from a collection of established categories that
reflect the bloggers’ interests. This dataset was used in study [18].

Flickr [26] is a platform where users can share videos and images. User can follow each others thus
form a social network. The feature of each node are generated from the user-specified tags, and labels
represent the groups they have joined.
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GLN 2019 2020 2021 2023 2024

Loss Regularization

D-GNN
Hoang et al.

LafAK/CP
Zhang et al.

Union-Net
Li et al.

PIGNN
Du et al.

Contrastive Learning

CGCN
Yuan et al.

CRGNN
Wei et al.

Robust Learning Strategy

CLNode
Wei et al.

Graph Structure Augmentation

NRGNN
Dai et al.

RTGNN
Qian et al.

RNCGLN
Zhu et al.

Figure A10: Timeline of GLN research. Existing GLN methods can be categorized into Loss
regularization, Robust training strategy, Graph structure augmentation and Contrastive learning.

C.2 Algorithms

C.2.1 Graph Neural Networks with Label Noise

NRGNN [1] believe that since the labels on the graph are sparse, the falsely labeled nodes may
affect the unlabeled nodes in its neighborhood, which make it difficult to receive supervision from
correctly labeled nodes. To address these issues, NRGNN first connects nodes with similar features
to create a refined graph. Based on this refined graph, precise pseudo-labels are generated, allowing
unlabeled samples to receive more supervision from correctly labeled samples, thereby reducing the
impact of noisy labels.

RTGNN [18] followed the work of NRGNN. The authors point out that although NRGNN em-
phasizes providing additional supervision for unlabeled nodes through link prediction, it does not
distinguish between incorrectly labeled and correctly labeled nodes. Instead, it merely connects nodes
with similar features indiscriminately, which may lead to the spread of influence from incorrectly la-
beled nodes. To solve this problem, the authors propose RTGNN, which, building based on NRGNN,
uses the small-loss criterion from Co-teaching [4] to further distinguish between trustworthy and
untrustworthy nodes, and corrects the labels of some untrustworthy nodes, mitigates some of the
shortcomings of NRGNN.

CP [31] studied the impact of adversarial label-flipping attacks on the generalization ability of
Graph Convolutional Networks (GCNs). To counteract label-flipping attacks, the authors proposed a
defense framework named CP, which uses community labels as high-level signals to guide the node
classification task. The CP framework includes a constraint with community information to prevent
overfitting to the flipped noisy labels. The use of community labels is motivated by their similarity to
the output of GCNs.

D-GNN [14] obtains a label noise robust Graph Neural Network by adopting backward loss correction
[16] on GIN [25] backbone, which estimates the unbiased loss on clean labels.

RNCGLN [32] aim to simultaneously mitigate graph and label noise issues. To achieve this, it
first use graph contrastive loss to conduct local graph learning, and adopt multi-head self-attention
mechanism to learn node representation from a global perspective. Then utilize pseudo graphs and
pseudo labels to deal with graph noise and label noise, respectively.

CLNode [24] adopt a curriculum learning strategy to mitigate the impact of label noise. To be
specific, it first utilize a multi-perspective difficulty measurer to accurately measure the quality of
training nodes. Then employ a training scheduler that selects appropriate training nodes to train GNN
in each epoch based on the measured qualities. The authors demonstrated this method enhances the
robustness of backbone GNN to label noise.

PIGNN [2] enhances the GNN’s resistance to label noise by introducing additional pair-wise labels.
The motivation is pair-wise labels are more robust than node-wise labels. In authors’ definition, a
pair interaction label is 1 if the nodes have the same label, and 0 otherwise, and they designed a PI
label estimation method based on the similarity of node embeddings. During training, the estimated
PI label serves as the confidence level for the node classifier’s predictions, thereby constraining the
training process of the node classifier. This method performs well on homophilic graphs but poorly
on heterophilic graphs.
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Union-NET [11] tries to limit the gradient passing process of mislabeled samples through neighbor-
hood labeling, like a kind of neighborhood voting with node representation similarity weighting. A
GNNs first generates node representations and predicted labels. Context nodes are then aggregated
using random walks, and an attention mechanism calculates class probability distributions. This
guides a reweighting scheme to minimize the impact of noisy labels. Labels are corrected by aligning
them with the most consistent context labels, and a KL-divergence loss maintains alignment with the
prior distribution. The training involves pre-training the GNN and updating model parameters with a
combined loss function, ensuring robust training and effective label correction.

CGNN [30] addresses label noise in GNNs by combining neighborhood-based label correction and
contrastive learning. It utilizes message passing neural networks to update node representations,
integrating graph contrastive learning for consistent representations across augmented graph views.
Finally, CGNN employs an MLP for prediction distributions and iteratively corrects noisy labels by
comparing them with their neighbors and choosing the most labels.

CR-GNN [10] introduces contrastive learning to enhance GNNs robustness in the face of sparse
and noisy node labels. Through techniques like feature masking and edge dropping, CR-GNN
preserves node semantics while generating augmented views. Contrastive loss captures local structural
information and mitigates noisy label effects, while dynamic cross-entropy loss addresses overfitting
and adversarial vulnerabilities. Also, cross-space consistency ensures semantic alignment between
embeddings.

C.2.2 Learning with Label Noise methods

S-model [3] adds a noise adaptation layer that models the transition pattern of noisy labels on true
labels. In the training procedure, this layer is parameterized by bias terms and allows the network to
learn both the classifier and noise model simultaneously. In the test procedure, the noise adaptation
layer is removed, which enables the network to predict true labels more effectively.

Co-teaching [4] works by simultaneously training two deep neural networks (DNNs), each of which
selects a certain number of small-loss samples from them and passes these samples to the other for
further training. It assume that mislabeling typically leads to larger losses and thus is less likely to
be selected, and then each network selects the samples that perform best on its own with lower loss.
This peer-to-peer training mechanism helps to reduce the effect of noisy labels, as both networks
focus on more reliable data.

JoCoR [23] utilizes consistency maximization to deal with the noisy labels. Instead of using
hard sampling, two different classifiers are made to converge in their predictions through explicit
regularization. Specifically, the two classifiers are trained by a joint loss function to minimize the
differences between them. During the training process, these two classifiers update their parameters at
the same time and are jointly trained by means of a pseudo-twin network. The loss function consists
of a supervised learning loss and a contrast loss, where the contrast loss is used to maximize the
agreement between the two classifiers.

SCE [22] enhances the robustness of a model in the presence of noisy labels by combining a noise
tolerance term with the standard cross entropy (CCE) loss. Inspired by the Kullback-Leibler scattering
symmetry, SCE incorporates the reverse cross entropy loss, a noise tolerance term, and combines
it with the standard CCE loss to improve the model’s ability to tolerate noisy data. This approach
not only retains the advantages of the CCE loss, but also significantly improves the generalization
performance in noisy environments through symmetry processing and noise tolerance.

Forward correction [16] corrects the sample loss by linearly combining the softmax output of the
DNN before applying the loss function. During the forward propagation process, the estimated label
transfer probability is multiplied with the softmax output to obtain the corrected loss value. In this
way, the softmax output of each sample is first combined with the corresponding transfer probability,
and then the loss function is applied, which improves the robustness of the model in noisy labeling
environments.

Backward correction [16] adjusts the loss for each sample by multiplying the estimated label transfer
probability with the output of the specified DNN. The learning of the label transfer probability is
decoupled from the learning of the model, and the label transfer matrix is first approximated using the
softmax output of the DNN in the uncorrected loss case. Then, when retraining the DNN, the original
loss is corrected based on the estimated matrix. The correction loss is computed by linearly combining
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the loss values for each observable label, where the coefficients are the transfer probabilities from
each observable label to the target label.

D Package

We have developed an open-source software package NoisyGL,
which provides a comprehensive and unbiased platform for eval-
uating GLN algorithms and advancing future research. The code
structure of NoisyGL is well-designed to ensure fair experimental
setups for different algorithms, easy reproducibility of experimental
results, and support for flexible assembly of models for experiments.
NoisyGL includes the following key modules. The Config module
consists of the files that define the necessary hyperparameters and
settings. The Dataset module is used to load datasets, and the label Contaminator modifies the
raw data to create a contaminated graph. The Base-predictor serves as the base class for various
reproduced LLN/GLN predictors, and the LLN/GLN Predictor evaluates the contaminated graph to
predict performance.

As shown in the Figure A11, the code structure is well-organized to ensure fair experimental
settings across algorithms, easy reproduction of experimental results, and convenient trials on flexibly
assembled models. Given a specific dataset and config file, a solver will return the learned structure
and the task performance. For more details and updated features, please refer to our GitHub repository.

General Experimental Settings. We endeavor to follow the original implementations of the various
GLN methods in their associated papers or source code. To this end, we integrate the different
options into a standardized framework as shown in Figure. In this way, we can ensure consistency
and comparability of experiments, allowing the performance of different GLN methods to be fairly
evaluated on the same platform. We run most experiments on NVIDIA Geforce RTX 3090 GPU with
24 GB memory, the out-of-memory error during the training is reported as N/A in Appendix A. For
the two large datasets, Amazon Ratings and Roman Empire, we run these experiments on NVIDIA
A100 with 80GB memory.

Hyperparameter. We performed manual hyperparameter tuning to ensure an unbiased evaluation
of these GLN methods. The hyperparameter search space for all methods is shown in Table A8.
For details on the meaning of these hyperparameters, please refer to their original papers. Through
exhaustive tuning and setup, we strive for the best performance of each method under different
configurations, thus ensuring the accuracy and fairness of the evaluation.

Figure A11: The structure of NoisyGL. The Raw data is processed by the Label Contaminator to
introduce label noise, resulting in a Contaminated Graph. This contaminated graph, along with the
Method config, is then input to the LLN/GLN Predictor, which evaluates performance metrics based
on the specified method configuration.
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Table A8: Hyper-parameter search space of all implemented GLN methods.

Algorithm Hyper-parameter Search Space

General Settings

learning rate 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5
weight decay 5e-2, 5e-3, 5e-4, 5e-5
layer number 2, 3, 4, 5
hidden size 16, 32, 64, 128

NRGNN [1]
α 0.01, 0.02, 0.03
β 0.01, 0.1, 1, 10

RTGNN [18]
τ 0, 0.05, 0.1, 0.2
λ 0.05, 0.1, 0.2
α 0.03, 0.1, 0.3, 1

LAFAK/CP [31] λ 0.1, 0.2, 0.3

CLNode [24]
λ0 0.25, 0.5, 0.75
T 50, 100, 150

PIGNN [2] N/A N/A
DGNN [14] N/A N/A
RNCGLN [32] α 10−3, 10−2, ..., 103

UnionNET [11]
α 0.1, 0.5, 1.0
β 0.1, 0.5, 1.0

CGNN [30]
γ 0.6, 0.7, 0.8, 0.9, 0.95
ω 0.6, 0.7, 0.8, 0.9, 0.95

CRGNN [10]
α 0.1, 0.2, 0.3, . . . , 1
β 0.1, 0.2, 0.3, . . . , 1

28

38169https://doi.org/10.52202/079017-1206



E Reproducibility

All of NoisyGL’s experimental results are highly reproducible. We provide more detailed information
on the following aspects to ensure the reproducibility of the experiments.

Accessibility. You can access all datasets, algorithm implementations, and experimental config-
urations in our open source project https://github.com/eaglelab-zju/NoisyGL without a
personal request.

Dataset. The datasets used are publicly available. The Cora, Citeseer, and Pubmed datasets are
accessible online and are used under the Creative Commons 4.0 license. The BlogCatalog and Flickr
datasets were originally published by [26] and further processed in subsequent studies. To the best of
our knowledge, these datasets do not have a specific license. The DBLP dataset can be found in [15]
and is released under the MIT license. All of these datasets are licensed by the authors for academic
research and do not contain any personally identifiable information or offensive content.

Documentation and uses. We’ve dedicated ourselves to providing users with comprehensive docu-
mentation, guaranteeing a smooth experience with our library. Our code includes ample comments to
enhance readability. Furthermore, we furnish all essential files to replicate experimental outcomes,
which also serve as illustrative guides on library utilization. Running the code is straightforward;
users need only execute the ’.py’ files with specified arguments like data, method, and GPU.

License. We use an MIT license for our open-sourced project.

Code maintenance. We are dedicated to maintaining our code through continuous updates, actively
engaging with user feedback, and addressing any issues promptly. Additionally, we are eager
to receive contributions from the community to improve our library and benchmark algorithms.
However, we will uphold rigorous version control measures to uphold reproducibility standards
during maintenance procedures.
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