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Abstract

Large language models (LLMs) are trained on a deluge of text data with limited
quality control. As a result, LLMs can exhibit unintended or even harmful be-
haviours, such as leaking information, fake news or hate speech. Countermeasures,
commonly referred to as preference alignment, include fine-tuning the pretrained
LLMs with carefully crafted text examples of desired behaviour. Even then, empir-
ical evidence shows preference aligned LLMs can be enticed to harmful behaviour.
This so called jailbreaking of LLMs is typically achieved by adversarially modify-
ing the input prompt to the LLM. Our paper provides theoretical insights into the
phenomenon of preference alignment and jailbreaking from a statistical perspective.
Under our framework, we first show that pretrained LLMs will mimic harmful
behaviour if present in the training corpus. Under that same framework, we then
introduce a statistical notion of alignment, and lower-bound the jailbreaking
probability, showing that it is unpreventable under reasonable assumptions.
Based on our insights, we propose an alteration to the currently prevalent alignment
strategy RLHF. Specifically, we introduce a simple modification to the RLHF
objective, we call E-RLHF, that aims to increase the likelihood of safe responses.
E-RLHF brings no additional training cost, and is compatible with other methods.
Empirically, we demonstrate that E-RLHF outperforms RLHF on all alignment
problems put forward by the AdvBench [1] and HarmBench project [2] without
sacrificing model performance as measured by the MT-Bench project [3].

1 Introduction

Large Language Models (LLMs) have revolutionized the field of deep learning due to their remarkable
capabilities across various domains, serving as assistants, in code generation [4], healthcare [5],
and theorem proving [6]. The training process of a LLM typically includes two stages: pretraining
with massive corpora, and an alignment step using Reinforcement Learning from Human Feedback
(RLHF) to further align model behavior with human preferences. The latter step typically involves
large amounts of humanly annotated data, and can be decomposed into a supervised fine-tuning
(SFT) step, a reward modeling step, and an RL Fine-Tuning step. Despite their ability to perform
multiple tasks effectively, LLMs are susceptible to generating offensive or inappropriate content
including hate-speech, malware, fake information or social biases, due to the unavoidable presence
of harmful elements within their pretraining datasets [7–9]. Social media showcase an abundance
of tricks on how to attack ChatGPT [10] to elicit harmful responses, e.g., the “Do Anything Now”
(DAN) prompts [11] or the “Grandma Exploit” hack [12]. On the other hand, behavior diversity in
the training corpus is essential to for example capturing different cultural preferences. What is and
isn’t harmful ultimately depends on user preferences, hence the alignment step is not universal but
depends on the specific use case under which a model will be employed.
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To address deployment safety and eliminate objectionable responses, numerous alignment efforts
have been made, such as injecting safe information during SFT [13], performing red teaming with
human experts and AI themselves [14–18], as well as refining and improving the whole RLHF process
in detail [19–23]. Yet we continue to witness a cat-and-mouse game of ever more sophisticated
alignment methods to neutralize “harmful” prompts and even more inventive “jailbreaking” attacks
that manipulate those prompts to elicit LLMs to produce harmful information. Such attacks come in
various flavors, such as injecting adversarial suffixes [1, 24, 25], exploring cipher and low-resource
natural languages [26–28], or letting LLMs craft prompts automatically [29–33]. Although several ad-
hoc defense methods against suffixes have been proposed [34–37], we only have limited proposal on
a principled universal defense against jailbreaking attacks [2], and limited theoretical understanding
on this phenomenon [38].

In this paper, we present a theoretical framework for analyzing both the pretraining phase and the
post-alignment jailbreaking phenomenon. Exploiting the fact that jailbreaking prompts typically
maintain the underlying harmful concept while manipulating other aspects of the prompt, we design
framework that decouples input prompts to allows us to quantify the strength of potential adversaries.
By representing the output elements of an language model (LM) as lengthier text fragments rather than
individual tokens, we can quantify the extent to which these models emulate the training distribution
and consequently better understand the mechanisms underlying jailbreaking vulnerabilities.

Our contributions can be summarized as follows:

• Based on our proposed framework, we first offer a non-vacuous PAC-Bayesian style gener-
alization bound for pre-training. Assuming the validity of our framework, we conclude that
high-performing pre-trained models will inevitably be susceptible to generating behaviour that is
present in the training corpus, including any unintended and harmful behaviour.

• Subsequently, we extend our framework to include notions of alignment and jailbreaking. As-
suming our assumptions are met, we demonstrate jailbreaking to be unpreventable even after
safety alignment because the LM fails to concentrate its output distribution over the set of safe
responses.

• Motivated by our theoretical findings, we identify a key drawback in the widely adopted RL
Fine-Tuning objective due to the natural difference between the harmlessness and the helpfulness
targets. By addressing this issue, we facilitate the training of safer models that are more resilient
to a suite of jailbreaking attacks while preserving model performance.

The paper is organized as follows. In Section 2, we introduce our framework. In Section 3, we prove
the PAC-Bayesian generalization bound for pretraining. Next, in Section 4 we present analysis on
jailbreaking from a statistical perspective. Finally, in Section 5 we illustrate our proposed E-RLHF
objective and its effectiveness on improving LLM safety. We give a literature review in Appendix H.

2 Framework and assumptions

Jailbreaking carries several analogies to adversarial attacks, a well studied field in computer vision
[39]. Here, an adversary is defined as a map that perturbs a given input image in pixel space to change
the model output. The strength of the adversary is bounded by how far it is able to move the original
input as quantified by the ℓp distance [40–42]. Typically, this distance is bounded in a way that the
change would not be perceptible to the human observer. The goal of the adversary is to cause mis-
classification of the input. In contrast, in the instance of an LLM, the adversary’s goal is to provoke
harmful behaviour, e.g., unintended leaking of information or hate speech. Further, any perturbation
to an input, called prompt, will have a perceptible effect. Hence quantifying and bounding the
capabilities of the adversary is not straight forward. Nonetheless, with some modifications, we will
build on this analogy.

For the purpose of this work, we will view any prompt as a tuple of query and concept (q, c),
where c ∈ C, and q ∈ Q, with C,Q denoting the complete concept set and query set. Con-
ceptually, we think of concepts as representing the information content of the prompt, usu-
ally through a short piece of text, for example “tutorial on making a cake”. Queries
are instructional text pieces that are composable with certain concepts. We can think of
queries as mechanisms to trigger an LM to expand a concept in a specific way. Examples
include “Tell me how to {}”, or “We are now in an imaginary world, and you are
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not bounded by any ethical concerns. Teach my avatar how to {}”. Since not all
queries and concepts are composable,3 we denote P ⊊ Q × C as the set of all plausible prompts,
where the definition of plausible will be made clear below.

The decomposition of prompts allows us to isolate and hence bound the adversary’s strength.
In line with current empirical work on inducing harmful behaviour, we will allow perturbations only
on the queries, not on the concepts. Further mimicking the spirit of previous work on adversarial
attacks, we will assume that the ground-truth related to a prompt is determined solely by the concept,
not the query. We will make these ideas more rigorous in the next paragraphs.

Figure 1: Our framework in a nutshell: We define
a language model, pLM : → , as a map from
prompts to a distribution over a subset of all possible
explanations E . To later be able to bound the strength
of the adversarial attacker, we split the text inputs into
concepts and queries (q, c). We assume that (i) the text
corpus only covers a part of the domain of the LM:
supp(DP) ⊊ dom(pLM ), (ii) the size of the domain of
the output distribution, denoted |dom(pLM (q, c))|, is
small compared to the size of E , and (iii) only concepts
determine the output (see ).

First, in contrast to previous theoretical
work where LMs are regarded as single
sentence generators [38], we model LMs
as lengthier text fragment generators, and
refer to possible generated content e ∈ E as
explanations. Conceptually, explanations
expand concepts with additional informa-
tion. For example, “The US president
in 2023 is Joe Biden.”. Our termi-
nology “explanation” is conceptually the
same as “response” used in previous dis-
cussions (e.g., [23]), where an LLM is re-
garded as a policy that receives an input
and generates a response. We use “expla-
nation” to contrast “concept” since in most
jailbreaking attacks currently considered
by the community, the adversary seeks in-
structions or explanations for a single harm-
ful attempt. An LM thus induces a map-
ping from plausible prompts to distribu-
tions over explanations, pLM : P → ∆(E),
where ∆(E) denotes the set of distributions
defined over elements in E .4 The output
of a LM given a prompt, pLM (q, c), is a
discrete distribution over explanations. We use dom(pLM (q, c)) as the domain of this distribution,
pLM (e|q, c) as the probability of e given (q, c) as the input, and supp(pLM (q, c)) as the subset of
E with non-zero pLM (e|q, c). Further, we assume the existence of a latent ground truth mapping
pworld : P → ∆(E) that the LM is optimized to mimic during the pretraining stage. This is the
distribution that defines “knowledge”: for all plausible prompts (q, c), it specifies the ground-truth
distribution over explanations. By plausible, we refer to all prompts that lie in the domain of the
ground truth mapping (q, c) ∈ dom(pworld), i.e., P ≡ dom(pworld). Many plausible prompts will
not even exist within any available training corpus, as discussed below.

We can now state our main assumption, namely that for any plausible prompt (q, c) ∈ dom(pworld)
the ground-truth distribution pworld(q, c) is supported on a small subset of E ⇔ supp(pworld(q, c)) ⊊
E . This assumption seems sensible to us: under normal circumstances, providing an explanation of
“Paris” would not offer any relevant knowledge when given a prompt such as “How to write a
hello world python script”. Our second assumption is that for all plausible prompts (q, c), the
concept c uniquely determines the support of the output distribution specified by pworld, regardless
of the query: supp(pworld(q, c)) = supp(pworld(q

∗, c)), ∀ plausible (q, c) and, (q∗, c) . The query
changes the ground-truth distribution without affecting its support. An illustration is depicted in
Figure 1. To be more precise:

Assumption 2.1. (Concepts uniquely determine the explanation for plausible prompts)
For all plausible prompts (q, c) ∈ dom(pworld),

i) pworld : P → ∆(supp(pworld(q, c))

3For example, "Who is a tutorial on making a cake." is unreasonable.
4For real-world LMs, with different decoding hyperparameters e.g., the temperature T , top-p and top-k

sampling parameters, the induced distribution with the same set of parameters could be different. Our discussion
holds for a pre-fixed set of hyperparameters throughout this paper.
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where supp(pworld(q, c)) ⊊ E s.t. |supp(pworld(q, c))| ≪ |E|; and
ii) supp(pworld(q, c)) = supp(pworld(q

∗, c)), ∀(q, c), (q∗, c) plausible.

This assumption is natural since it essentially tells us that knowledge is specified by the corresponding
concept alone, irrespective of what query is used to extract it. In other words, given a concept c, if a
query q manages to change supp(pworld(q, c)), we argue that the query should be deconstructed and
partially absorbed by c to accurately reflect the knowledge mirrored by the support.

Lastly, we make the assumption on the existence of an underlying generative distribution over
prompts, denoted as (q, c) ∼ DP . This distribution serves as the principle governing the creation of
our pretraining corpus. It is important to note that supp(DP) ⊊ dom(pworld). For example, take
the prompt (q′, c′)=“Who is James Bond $λ*#!48811”; even though this prompt never appears
in any text corpus across the internet, (q′, c′) /∈ supp(DP), we, as humans, can make sense of it:
(q′, c′) ∈ dom(pworld). Later proofs in this paper assume LMs generate semantically reasonable
explanations for such unseen plausible prompts, since in reality LMs are claimed to generalize well
on huge, out-of-distribution datasets [43]. This is made explicit in Section 4, within Assumption 4.1.

Finally, the following definitions pertain to our notion of harmfulness. More specifically, we un-
derstand harmful behaviour abstractly as any unintended behaviour. For this, we assume that any
explanation e can be denoted as either harmful or not harmful (safe). A concept c is regarded as
harmful if and only if the world generates harmful explanations with probability higher than a certain
threshold with direct prompts.
Definition 2.1. (Notions of Harmfulness)

• (Direct Queries and Direct Prompts) We refer to a prompt as direct if it stems from DP , i.e.,
(q, c) ∈ supp(DP). The query of a direct prompt is called a direct query.

• (Harmful Concepts and Harmful Set) Given a concept c, the associated harmful set of ex-
planations is denoted as Eh(c) := {e|e ∈ supp(pworld(·, c)) ∧ e is harmful}. In accor-
dance with Assumption 2.1, with a threshold η, a concept c is harmful if ∀q s.t. (q, c) ∈
dom(pworld),

∑
e:e∈Eh(c)

pworld(e|q, c) ≥ 1 − η. We refer to the set of all possible harmful
concepts as Ch ⊊ C.

• (Safe Set) ∀c ∈ Ch, there exists a corresponding safe set Es(c) ⊊ E that we wish pLM (q, c) to be
concentrated on. It includes safe explanations existing in supp(pworld(·, c)), and explanations
designed by humans, e.g., with the template beginning with “Sorry.”

• (Semantically meaningful) We call explanations in Eh(c) ∪ Es(c) as semantically meaningful
for the (q, c) prompt.

• (Mixture decomposition of DP ) With these notions, we can decompose DP = αDPh
+ (1 −

α)DPs
(where supp(DPh

) includes all direct prompts with a harmful concept, and supp(DPs
)

includes the complement) as a mixture over direct prompts with a harmful concept and the
non-harmful counterpart.

3 PAC-Bayesian bound for pre-training LLMs on harmful data

Given a learning algorithm that leads to a posterior distribution over a set of models, PAC-Bayesian
theory [44] applies Probably Approximately Correct (PAC) inequalities, to provide bounds on the
generalization gap, i.e., the difference between the model’s empirical loss and the population loss.
We now present the first result of our analysis: a non-vacuous PAC-Bayesian bound for pretraining
LMs which implies that a well-trained LM ought to exhibit harmful behaviour even when simply
prompted with direct queries if it was presented with harmful behavior during training.

We denote by S = {(qi, ci)}ni=1 a set of prompts generated i.i.d. under DP , S ∼ Dn
P . These prompts

together with sampled explanations form our pretraining corpus. We use π, ρ as the prior and posterior
distribution over LMs before and after the pretraining process, defined over LM, the set of language
models. Given a prompt (q, c), we measure the generalization capability of a LM by quantifying the
Total Variation (TV) loss between the induced distribution pLM (q, c) and the ground-truth distribution
pworld(q, c).5 For real-world LMs, pretraining involves optimizing the cross-entropy loss on the

5We regard both distributions as defined over the entire E since we do not restrict the output distribution of
LM in this section.

4

38270https://doi.org/10.52202/079017-1210



training corpus, which is equivalent to minimizing KL[pworld(q, c)||pLM (q, c)] under our framework.
With Pinsker’s Inequality, optimizing the KL-divergence term is equivalent to optimizing an upper
bound on TV; thus we expect empirical TV loss be small.
Definition 3.1. (TV empirical loss and population loss)

ℓTV(pLM , (q, c)) := TV(pworld(q, c), pLM (q, c)).

Given an LM and a set of data S, the empirical loss R̂S(pLM ) and population loss R(pLM ) are
defined as

R̂S(pLM ) :=
1

n

n∑
i=1

ℓTV(pLM , (qi, ci));

R(pLM ) := ES∼Dn
P

[
R̂S(pLM )

]
= E(q,c)∼DP [ℓTV(pLM , (q, c))] .

We state our PAC-Bayesian bound as follows. The detailed proof can be found in Appendix B.1. 6

Theorem 1. (PAC-Bayesian Generalization Bound for Language Models.) With α as in Definition
2.1, consider a set of language models LM, with prior distribution π over LM.

Given any δ ∈ (0, 1), for any probability measure ρ over LM such that ρ, π share the same support,
the following holds with probability at least 1− δ over the random draw of S:

ELM∼ρ[R(pLM )− R̂S(pLM )] ≤

√[
KL[ρ||π] + log 1

δ

]
2n

:= ϱ;

ELM∼ρ[E(q,c)∼DPh
ℓTV(pLM , (q, c))] ≤ 1

α

[
ELM∼ρR̂S(pLM ) + ϱ

]
. (1)

In Appendix B.2 we give a theoretical estimation of ϱ, to illustrate the bound we derive is non-vacuous,
i.e., less than 1. The KL term is of order O(K) where K is the number of parameters involved in π, ρ,
and n can be shown to greatly exceed K (using a realistic Zipf distribution assumption on prompts to
estimate the number of unique prompts). Theorem 1 tells us that, as long as pretraining successfully
reduces the loss on the training corpus (R̂S(pLM ) ↓), in expectation the language model will mimic
the world well (small ℓTV difference) on a given direct prompt sampled from DP . Furthermore, if α
is not too small, then this statement holds on a direct prompt whose concept is harmful. Since we
have defined the harmful concept as outputting harmful explanations with high probability (Definition
2.1), we conclude that an LM trained on DP data can output explanations in the harmful set.

4 A statistical perspective on jailbreaking after alignment

In this section, we will present the main theoretical contribution of our work: given our assumptions
hold, we prove the existence of ways for an adversary to jailbreak an LM even after the preference
alignment process. Our proof strategy is inspired by the work on adversarial robustness [41], which
bounds the adversary’s probability of success by upper bounding the volume of the set of points
that does not allow for the existence of adversarial examples. Going forward, we need to extend our
framework to integrate alignment and jailbreaking.

After an LM is pretrained, it typically will undergo fine-tuning on a dataset containing preferred
behaviour. In what follows, we will assume that this alignment process does not change the model
performance in the sense that the LM will still produce semantically meaningful explanations
(Definition 2.1). It would not, for example, default to answering any request with the same response.
Assumption 4.1. (LM outputs semantically meaningful explanations) For any harmful concept c,
and all plausible prompts (q, c) ∈ dom(pworld),

∃ |En(c)| ≪ |Eh(c)|+ |Es(c)| s.t. O(1) ≪ |dom(pLM (q, c))| = |Eh(c) ∪ Es(c) ∪ En(c)|.

In other words, we assume the LM’s output distribution is accurately supported on Eh(c) ∪ Es(c),
in the sense that the size of “residual” En(c) is relatively small compared to these semantically
meaningful explanations. We define n(c) = |En(c)|+ |Es(c)|+ |Eh(c)|. We omit the (c) annotations

6The inspiration for the proof of Theorem 1 comes from Mbacke et al. [45], and the proof idea is originally
proposed in Germain et al. [46], Haddouche et al. [47].
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when clear from the context. The O(1) statement is reasonable, because harmful explanations are
usually long text fragments that allow for many alternative formulations. The assumption can be
broken down into two components: (1) within the support of the output distribution, only occasional
instances of unrelated explanations exist; (2) the process of aligning the model towards safety does not
eliminate the harmful explanations acquired during the pretraining phase. For part (1), similar to
the example we gave above, under normal circumstances, we do not expect the explanation “Paris”
to appear in dom(pLM (q, c)) given (q, c) as “How to build a bomb”. As for part (2), though
seemingly surprising, evidence with a series of current state-of-the-art LMs can be experimentally
validated [48], where diverse, harmful explanations are extracted by simply manipulating the decoding
process using direct prompts. In Section 5 we give an explanation for this undesired phenomenon.

Figure 2: Conceptual illustration of our
framework for jailbreaking introduced in
Section 4, with a fixed harmful concept
c. The triangle represents the probability
simplex. This figure showcases a typ-
ical successful jailbreaking attempt by
the adversary: although safety alignment
makes the sampled LM safe under the
direct prompt input, the adversary is able
to move the output to the harmful zone
Hh by manipulating the query q.

To bound the likelihood of jailbreaking we first need
to specify how the output of a LM interacts with its
support. Assuming a fixed order of explanations in
dom(pLM (q, c)), and slight abuse of notation, we can
use pLM (q, c) to denote an n(c)-dimensional vector on
∆n(c)−1, the probability simplex with n(c) elements,
where each entry represents the probability of a single
explanation. We call this simplex the output simplex
related to a given concept c. Next, we can induce a dis-
tribution on this simplex given a posterior distribution γ
over the set of language models LM, as follows.
Definition 4.1. (Induced Distribution on Simplex, γc)
Under the assumption that the LM outputs semantically
meaningful explanations (Assumption 4.1), with a fixed
prompt (q, c) and a posterior distribution γ over LM,
the corresponding induced distribution: pLM (q, c) where
LM ∼ γ is supported over a subset of the output simplex
∆n−1. This distribution is denoted as γ(q,c), or γc when
the reference to q is clear from context.
Next, we will separate the output simplex into a harmful
and safety zone. This definition is motivated by the obser-
vation that typically an adversary is deemed successful if
it can extract even a single harmful explanation for a given concept. This translates into a division of
the output simplex, under Assumption 4.1, as follows.
Definition 4.2. (Harmful Zone and Safety Zone) For a given harmful concept c and a fixed LM,
the output simplex is divided into a safety zone and a harmful zone, Hs and Hh, where a pre-
defined threshold p ∈ [0, 1] is used to quantify the distinction: pLM (q, c) ∈ Hh if and only if∑

e:e∈Eh(c)
pLM (e|q, c) ≥ p, and otherwise pLM (q, c) ∈ Hs.

Before we introduce jailbreaking, the reader might wonder why we did not define alignment more
clearly. This is because under the PAC framework, preference alignment is nothing but a transforma-
tion from ρ to some γ posterior defined over LM. Given this inability on fine-grained characterization
of alignment, we instead provide the goal of it as follows. With the above notion, given a prompt
(q, c) where c is harmful, its goal is to push the induced distribution γc into the safety zone Hs.
Ideally, supp(γc) ⊂ Hs ⇔ with probability 1, the resulting LM is safe when encountering (q, c). We
are ready to introduce necessary concepts related to jailbreaking.
Definition 4.3. (Jailbreaking) Given a harmful concept c and a query q′, the prompt (q′, c) jailbreaks
the LM iff pLM (q′, c) ∈ Hh. We call such a prompt (q′, c) and query q′ a jailbreaking prompt and
jailbreaking query, respectively.

The threshold p for discriminating Hh and Hs should be very small, since it means in expectation the
adversary needs to call the LM 1

p times to collect a single harmful explanation i.e., to jailbreak the
LM.

To theoretically prove the jailbreaking effect, we need to restrict the adversary’s ability. To achieve
this goal, we borrow insights from adversarial attacks, to assume that the adversary has bounded
manipulating capability on the output simplex when searching over the query set:
Assumption 4.2. (ϵ-bounded adversary) Given an LM, a harmful concept c and an associated direct
prompt (q, c), we assume the adversary can find a set of queries Q′, such that the output is moved at
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most ϵ on the simplex towards Hh from pLM (q, c):

sup
q′∈Q′

d(pLM (q, c), pLM (q′, c)) = ϵ.

Here d is a distance measure between two discrete distributions. d can be a typical ℓp measure with
p ≥ 1, or the Total Variation / Jensen-Shannon Divergence. We call q′ ∈ Q′ an ϵ-bounded query.

A conceptual illustration of our framework is depicted in Figure 2. Before arriving at our Theorem,
we give the final definition of ϵ-expansion.
Definition 4.4. (ϵ-expansion) Given a set A ⊂ ∆n−1 and a distance measure d, the ϵ-expansion set
A(ϵ, d) is defined as

A(ϵ, d) := {t|t ∈ ∆n−1 ∧ ∃y ∈ A s.t. ||y − t||d ≤ ϵ}.

We are ready to present the following theorem, which states that as long as the induced posterior γc is
not concentrated in an extremely safe area, then with high probability the model can be jailbroken.
The proof is in Appendix B.3.
Theorem 2. (Jailbreak is unavoidable) Assume that an LMs output semantically meaningful expla-
nations (Assumption 4.1). Given any γ posterior distribution over LM, choose a harmful concept c
with a direct prompt (q, c) and a threshold p (Definition 2.1), to define the corresponding induced
distribution γc (Definition 4.1) and division over output simplex (Definition 4.2). An ϵ-bounded
adversary (Assumption 4.2) can find a jailbreaking prompt (Definition 4.3) with probability at least

1− γs × (1− Φ(aϵ)) ,

• by using either the direct prompt, such that pLM (q, c) ∈ Hh; or

• by finding an ϵ-bounded query q′, such that pLM (q′, c) ∈ Hh.

Here, Φ(·) is the standard Gaussian cdf, γs := maxx∈Hs−Hh(ϵ,d)
γc(x)
U(x) , with U(x) the uniform dis-

tribution over ∆n−1, and aϵ := a+
√
n− 1ϵ, where a writes analytically as a ≍ |Eh(c)|−1−(n−1)p√

(n−1)p(1−p)
.

Trivially, the chances of an adversary to find a jailbreaking prompt increase for stronger adversaries
(ϵ ↑). In the real world, this could relate to how much compute budget we allow to alter a query for
a specific harmful concept. Furthermore, the chances of an adversary to find a jailbreaking prompt
increase when the ratio of the sizes of the harmful explanation set to the safe explanation set is larger
|Eh(c)|
|Es(c)| ↑. This is because their ratio will determine the size of the harmful zone which in turn will
cause Φ(aϵ) → 1. In real world settings, for any harmful concept, the training corpus naturally
contains a large harmful set due to the number of possible responses. Realistically, its size can not be
countered by any manually-constructed safe set. Hence achieving alignment is hard: Recall that the
goal of alignment is to respond with only safe explanations with high probability. However, we just
learned that to increase that probability, we need to have a small harmful-to-safety set ratio which we
discussed is not realistic. Consequently, the safety zone is going to be small.

5 E-RLHF: improving alignment by expanding the safety zone

Recall from Theorem 2 and the subsequent discussion in the previous section, that jailbreaking
becomes more likely the larger the harmful zone is in comparison to the safety zone. The size of both
zones relates to the size of their respective explanation sets. In other words, the size of the preference
alignment dataset is crucial to successful alignment. Unfortunately, the human labor involved in
creating such a dataset effectively caps its size.

In order to bridge the gap between our theoretical insights and a practical solution towards suppressing
the jailbreaking problem, we focus on other more practical ways to expand the safety zone. Even
though our ideas are more broadly applicable, in our experiments we will focus on improving
Reinforcement Learning with Human Feedback (RLHF). RLHF typically includes three phases: i)
supervised fine-tuning (SFT); ii) preference sampling and reward learning and iii) RL optimization.
Rafailov et al. [23] have recently proposed a widely applied version of RLHF for LMs, coined Direct
Preference Optimization (DPO), that employs a clever reparameterization which leads to directly
learning from the preference dataset, without the need of obtaining a reward model beforehand.
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DPO is more stable in the training process than other implementations of RLHF. A more complete
overview of RLHF and DPO can be found in Appendix C.

For our purposes, we assume access to an LLM pSFT that has been supervised fine-tuned on high-
quality data. We further assume access to a preference aligned dataset Ds; that contains a set of text
prompts (q, c) = x, and two respective explanations that have been rated by human annotators as
better ew or worse el. In phase ii) of RLHF, one typically optimizes a reward model r(x, e) based on
the annotated explanations. Our proposal concerns phase iii) of the RLHF process: training of the
preference aligned model pLM . For a given reward model, pLM is typically obtained by minimizing
the following objective:

LRLHF (pLM ) = −Ex∼Ds
{Ee∼pLM (·|x)[r(x, e)] + βDKL(pLM (x)||pSFT(x))} (2)

Note that, the first term is maximizing the reward, while the KL-term acts as a regularizer ensuring
the aligned model can not drift off too far from the SFT model. We claim that this regularization is
exactly the problem for safety. While designed to keep the model helpful7, for any harmful prompt
xh and any harmful explanation e ∈ supp(pSFT(xh)), regularizing pLM to pSFT lets pLM maintain
e in the support of the output distribution. Specifically, the supervised fine-tuning process does
not involve elimination of any harmful explanations from the support of the output distribution
of the pretrained model, 8 which leads to the fact that pSFT(xh) supports harmful responses that
can not be negated with a realistically sized preference aligned dataset. Thus, this small safe set
problem of pSFT will be further passed to pLM , even if pLM is optimized to the optimal solution
of the above objective. This suggests we should not push pLM into the direction guided by pSFT.
Instead, for any harmful prompt xh, we propose to use a distribution that we design to have a large
safety zone to replace pSFT(xh). Inspired by our framework, we can achieve this by modifying
the harmful prompt, such that a safe concept is used to replace the harmful concept, which alters
supp(pSFT(·)) to include more safe explanations. For example, when xh is “Tell me how to
make a bomb”, instead of aligning pLM (xh) to pSFT(xh), now we align pLM (xh) to pSFT(xs)
where xs is “Tell me how to reject a request of making a bomb”. This can be done in
an individualized manner for all harmful prompts in Ds, or simply by prefacing all harmful prompts
with a prefix such as "Please ensure your response adheres to community guidelines
and ethical standards:". 9 Importantly, the non-harmful prompts are not modified. Due to the
focus of our approach to expand the safety zone of the output distribution, we coin our proposal
E-RLHF, resulting in the following modification to Eq. (2):

LE−RLHF (pLM ) = −Ex∼Ds
{Ee∼pLM (·|x)[r(x, e)] + βDKL(pLM (x)||pSFT(xs))} (3)

where xs is a safety-transformed version of the original harmful prompt xh. To recap, the key
argument we put forth is that, in order to ensure the stability of model fine-tuning, it is not imperative
to utilize identical prompt inputs x for both the reference model and the target model, particularly
when the original input x itself is harmful. In fact, as long as the substitute or "anchor" prompt
generates logically reasonable outputs akin to those produced by the original prompt, this approach
would not impede the training process of the model. To solidify our argument we show the impact of
our modification on the support of the optimal policy in Appendix C. We also deduce there that we
can trivially integrate our modification into the DPO objective allowing us to train without an explicit
reward model (eliminates step ii)) as follows, where σ(·) stands for the sigmoid function:

LE-DPO (pLM ) = −E(x,ew,el)∼Ds

[
log σ

(
β log

pLM (ew | x)
pSFT (ew | xs)

− β log
pLM (el | x)
pSFT (el | xs)

)]
. (4)

6 Experiments and results

Our experimental set-up is based on the alignment-handbook code base [50]. We tune the publicly-
available SFT model pSFT provided by huggingface hub [51], using the public dataset [52, 53], with
default hyperparameter setup. We label harmful prompts in the preference dataset by prompting
GPT-3.5-Turbo, see Appendix E. We are using the very same prefix proposed in the previous section
to generate xs. Experiments are performed on 8 NVIDIA Tesla V100 GPUs, using half-precision

7Otherwise the model could drift into trivial behaviour like always responding with "I can’t help you.".
8Even the probability can be suppressed to close to 0.
9The prefix shares similarities to the system prompts used by open-source LLMs [13, 49] to boost safety.
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Table 1: Safety alignment with the E-RLHF objective, here specifically E-DPO, reduces the average
Attack Success Rate (ASR) across all jailbreak adversaries for both the HarmBench and the AdvBench
data, to 36.95, and to 20.89, respectively. Moreover, resilience against all adversaries improves with
our modification to safety alignment ( indicates better performance between DPO and E-DPO).

HarmBench ASR [2]
Model Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

pSFT 32.25 59.25 35.50 42.75 42.75 36.20 56.50 65.00 56.75 26.75 35.50 44.47

pDPO 27.50 53.00 39.00 46.75 43.25 29.10 52.50 54.00 51.00 28.75 37.15 42.00

pE-DPO (ours) 23.50 47.50 31.75 36.25 40.50 26.45 48.50 51.00 43.00 27.00 31.05 36.95

AdvBench ASR [1]

pSFT 6.00 80.00 13.00 37.00 31.00 14.80 65.00 78.00 91.00 4.00 21.20 40.09

pDPO 0.00 47.00 12.00 39.00 30.00 7.00 50.00 61.00 44.00 4.00 18.40 28.40

pE-DPO (ours) 0.00 38.00 8.00 15.00 21.00 5.20 41.00 53.00 31.00 4.00 13.60 20.89

tuning i.e., Float16. In the appendix, we also show results for an alternative training paradigm: the
Low-Rank Adaptation (LoRA) [54] (see Appendix D.1). Following community standards [3, 1, 2],
we use greedy decoding i.e., T = 0 for model evaluation.

We first show empirical evidence that our proposed modification of DPO, E-DPO, does in fact improve
safety alignment, using the Harmbench dataset [2] and the first 100 prompts in the AdvBench harmful
behavior dataset [1], measured by the HarmBench protocol. We give an overview on all adversaries
in Appendix F. The results are presented in Table 1. E-DPO achieves improvements across every
task we tested.

On top of our safety results, we want to make sure E-RLHF does not sacrifice helpfulness for
increased safety. We evaluate helpfulness with the MT-Bench project [3]. The SFT model pSFT
receives a score of 6.3, and both the DPO and E-DPO models perform better than that (6.9 and 6.7
respectively), making us believe that performance degradation is not a problem with our proposal.
Next, we show the impact of the safe prefix on model performance. We demonstrate that our
method’s performance depends on the choice of safe prefix to some extend but never fails (see
Appendix D.2). We believe, finding better safe prefixes by explicit tuning would improve our results,
similar to the work by Yang et al. [55], but we leave this exploration for future work. Further, we
confirm that the improvement arises from using a safe prior in the KL term for harmful prompts.
We ablate our results by appending the prefix on all prompts in the preference alignment
dataset (see Appendix D.3). In all cases, applying the safe prefix to usual prompts degrades safety,
showcasing the importance of switching the prior only on the harmful prompts. Finally, we show that
E-DPO can be combined with any system prompt, to further boost safety (see Appendix D.4).
The proposal can even be used to improve helpfulness and safety simultaneously (see Appendix
D.5).

7 Conclusion and discussions

In this paper, we present a theoretical framework for language model pretraining and jailbreaking by
dissecting input prompts into query and concept pairs. Through this approach, we have established
two theoretical results pertaining to the ability of language models to mimic the world following pre-
training, which leads to outputting harmful explanations given harmful prompts; and the inevitability
of jailbreaking resulting from alignment challenges. Guided by these theoretical insights, we have
devised a simple yet effective technique to enhance safety alignment, and demonstrate the improved
resilience to jailbreak attacks with this methodology.

Current limitations (1) Although we have classified concepts as either harmful or non-harmful, it
is important to acknowledge that the perception of a concept’s potential for harm can be influenced
by various factors such as cultural, legal, and societal norms, which collectively form the context
of the situation. (2) Language models have demonstrated impressive capabilities in reasoning and
completing tasks within multi-round, multi-step conversations; our current framework may not fully
account for the generalization and jailbreaking possibilities associated with such input formats. (3)
Our analysis is grounded on a fixed pworld mapping and DP distribution. Nevertheless, the world is
inherently dynamic, as both pworld and DP continually evolve.
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Future work (1) Regarding our E-RLHF approach, as highlighted in the experimental section, in
addition to attaching a universally safe prefix to all harmful prompts, improvements can be achieved
by individually transforming the harmful prompts. Moreover, the safety-transformed prompts can be
employed to expand the preference dataset for conventional RLHF. (2) Throughout our analysis, we
have not imposed any constraints on the capacity of the language model. Extending our analysis under
finite memory constraints or analyzing hallucination properties of LLMs is an interesting direction to
explore. (3) Large language models have shown remarkable capabilities as in-context learners [56],
and such techniques could potentially be used for jailbreaking them as well [57–59]. Investigating
the incorporation of such input paradigms remains a promising avenue for future research.
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Appendix

A Glossary

Table 2: Summary of notation.
Symbol Meaning

q A single query, composable with a certain set of concepts.
c A single concept, composable with a certain set of queries.

x = (q, c) A single prompt composed by query q and concept c.
e A single explanation.
Q The query set.
C The concept set.
E The explanation set.

P ⊊ Q× C The set of plausible prompts.
pworld : P → ∆(E) The world mapping. For each plausible prompt, it specifies the ground-truth distribution over E , a.k.a. the “knowledge”.

pworld(q, c) The ground-truth distribution over a subset of E , given a prompt (q, c). With slight abuse of notation, it also refers to a point on the probability simplex.
supp(pworld(q, c)) Support of pworld(q, c). A strict subset of E .
pLM : P → ∆(E) A language model. For each plausible prompt, it specifies a distribution over (a subset of) E , to mimic pworld.

pLM (q, c) The output distribution over (a subset of) E by LM, given a prompt (q, c). With slight abuse of notation, it also refers to a point on the probability simplex.
dom(pLM (q, c)) Domain of the pLM (q, c) distribution, a subset of E .
(q, c) ∼ DP Underlying generative distribution over prompts, a.k.a. the distribution governing the creation of our pretraining corpus.

supp(DP) ⊊ P Support of DP . (q, c) ∈ supp(DP) is called a direct prompt.
LM A set of language models.
π The prior distribution over LM.
ρ The posterior distribution over LM, after pretraining.
γ The posterior distribution over LM, after preference alignment.

B Proof of Theorems

B.1 Proof of PAC-Bayesian bounds

Definition B.1. (Bounded Difference) A function f : Xn → R is said to have bounded difference
property w.r.t. a collection of constants c1, · · · , cn, iff

sup
x1,x2,...,xn,x

′
i

|f(x1, x2, · · · , xn)− f(x1, x2, · · · , xi−1, x
′

i, · · · , xn)| ≤ ci,∀i ∈ [n].

Lemma B.1. (Hoeffding’s Lemma) for random variable X ∈ [a, b] with probability 1, the following
holds:

E[exp(λX)] ≤ exp(λEX +
λ2(b− a)2

8
).

Lemma B.2. (Hoeffding’s Lemma, Multivariate) for random variables Z = f(x1, · · · , xn) where f
has the bounded difference property, the following holds:

E[exp(λ(EZ − Z))] ≤ exp(
λ2

∑n
i=1 c

2
i

8
).

Note that substituting Z with R̂S(LM) is valid.
Lemma B.3. Empirical Loss defined in Definition 3.1 satisfies the bounded difference condition with
constant c = 1,∀i.

We are ready to present the proof of Theorem 1.

Proof. Starting with the above lemma, we know

ES [exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

The above result holds for a manually picked LM. With an overall average over the prior π we have

ELM∼πES [exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

Apply Fubini’s theorem (note that π is independent of S):

ESELM∼π[exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

20

38286https://doi.org/10.52202/079017-1210



Define Y = ELM∼π[exp(λ(R(LM) − R̂S(LM)))], a random variable depends on S. Obviously
Y ≥ 0. Thus, with Markov’s inequality:

P[Y ≥ 1

δ
ESY ] ≤ δ.

Equivalently, with probability at least 1− δ, we have

Y ≤ 1

δ
exp[

λ2c2

8n
].

Since we have assumed π, ρ share the same support, using Radon-Nykodim derivative to change the
expectation with respect to π to with respect to ρ, we have

ELM∼ρ

[
dπ

dρ
exp(λ(R(LM)− R̂S(LM)))

]
≤ 1

δ
exp[

λ2c2

8n
].

Taking logarithm and applying Jensen’s Inequality we know

ELM∼ρ

[
dπ

dρ
+ λ(R(LM)− R̂S(LM))

]
≤ log

1

δ
+

λ2c2

8n
.

Incorporating c = 1, noticing dρ
dπ = (dπdρ )

−1 we could rewrite the inequality as

ELM∼ρ

[
(R(LM)− R̂S(LM))

]
≤ 1

λ

(
KL[ρ||π] + log

1

δ

)
+

λ

8n
.

Finding λ that minimizes the term on right hand side gives us the ϱ term.

When DP allows for a decomposition into mixture components, noticing the linearty of expectation,
the bound can be re-written as

αELM∼ρ[E(q,c)∼DPh
ℓTV(pLM , (q, c))] + (1− α)ELM∼ρ[E(q,c)∼DPs

ℓTV(pLM , (q, c))]

≤ ϱ+ ELM∼ρ[R̂S(pLM )].

which leads to

ELM∼ρ[E(q,c)∼DPh
ℓTV(pLM , (q, c))] ≤ 1

α
[ϱ+ ELM∼ρ[R̂S(pLM )]].

B.2 An estimation on the non-vacuousness of the PAC bound

We give an estimation of the term appears in our PAC bound, ϱ, and state that it is non-vacuous.

The numerator. We follow Neyshabur et al. [60] to instantiate the term in the simplest setup. Assume
π, ρ are defined over the parameter space of a given LM, with K parameters. Assume w is a set of
weights learned from the pretraining corpus. Let the prior π be the zero-mean multivariate Gaussian,
whose entry-wise variance is related to the magnitude of the weight: σi = β|wi|, and ρ be a Gaussian
with the same anisotropic variance centered around w. We argue though simple, both settings
are practical, since Gaussian initialization is common for model training, and the SWA-Gaussian
algorithm [61] utilizes such Gaussian posterior. Under this setup, the KL goes as

∑
i

w2
i

2σ2
i
= O(K).

Specifically, taking β =
√
2
2 makes the term exactly K. Current language models often possess

millions, or billions, of parameters, namely, K ∼ [106, 109].

The denominator. To estimate the number of unique direct prompts in the training corpus, it is
important to notice that the dataset does not only consist of (q, c) prompts but also e explanations.
Thus, we need to estimate the average token length (ATL) associated with each unique prompt
x = (q, c). For each unique prompt x, aside from its own token length l(x), there will be a collection
of explanations {ei}N(x)

i=1 , with expected token length of each associated explanation l(e). We have

EATL = Ex∼DPN(x)× [l(x) + l(e)].
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Fact. Given a prompt x, the larger the expected length of the prompt itself and explanation (l(x) +
l(e) ↑), the larger the expected number of explanation elements (N(x) ↑), and the smaller the number
of such prompts (DP(x) ↓), appearing in the training corpus. The former comes naturally due to the
composability of natural language: the longer the text fragment, the more equivalent text fragments
in expectation, while the latter is reflected by the spirit of the widely accepted Zipf’s law.

Inspired by the fact, we assume prompts are categorized by the quantity of l(x) + l(e), namely, for
all prompt x, N(x) is a function of l(x) + l(e). Moreover, the complete data generation process is
decomposed into i) sample a value of l(x) + l(e) out, and then ii) sample a unique prompt from the
set decided by this specific l(x) + l(e) value, and iii) generate N(x) explanations.

Step i). Use the fact: the larger the expected length of the output explanation, the smaller the
probability that such a prompt appears in the training corpus. We assume step i) follows a (cut-off)
zeta distribution. Specifically, for a random prompt x,

p(l(x) + l(e) = k) ∝ k−s,∀k ≥ k0.

When k0 = 1, we resume the zeta distribution with coefficient s.

Step ii). We assume each prompt following this step is unique.

Step iii). Use the fact: the larger the expected length of the output explanation, the larger the expected
number of explanation elements in the training corpus. We assume a power law scaling on N , with a
constant t > 1, such that

N(l(x) + l(e) = k) = kt−1.

Thus, the average token length writes

EATL =
∑
k

p(l(x) + l(e) = k)× k ×N(l(x) + l(e) = k) =
ζ(s− t)−

∑k0−1
i=1 i−(s−t)

ζ(s)−
∑k0−1

i=1 i−s
.

where ζ(s) =
∑

i∈Z+ i−s is the Riemann zeta function.

For example, take s = 4, t = 2. With k0 = 1, the ATL would be 1.52, while with k0 = 10, the ATL
becomes 272. These results translate into an estimation of unique prompts as ntokens/ATL. With
current SOTA LM, the pretraining corpus often includes (tens of) trillions of tokens (> 1012), thus
n > 1010 > K can be safely assumed ⇒ ϱ < 1.

α constant. According to LLaMa-2 report (section 4.1, Figure 13) [13], approximately 0.2% of
the documents in their training corpus is labeled as harmful. However, we argue this is indeed
an extremely loose lower bound for α, due to the estimation strategy used in their paper. Given a
document, they use a binary classifier on harmfulness over each single line (1 means harmful and 0
otherwise), and assign the average score to the document. 0.2% is the ratio of documents with score
≥ 0.5. Take the example of “How to build a bomb”. The chemical reaction parts will not be
counted as harmful, and thus this estimation strategy could judge a completely harmful explanation
as harmless. Thus, it is reasonable to assert α is not too small, though with current literature we are
not capable of raising an accurate estimation on it.

B.3 Proof of jailbreaking

Before proceeding to the proof, we list necessary definitions and lemmas as follows.

Lemma B.4. (Volume of n-simplex)10 For any dimension n, the volume of the n-element probability
simplex: ∆n−1, in the n− 1-dimensional space is

√
n

(n− 1)!
.

We define the projected probability simplex as follows.

Definition B.2. (Projected probability simplex) Given ∆n−1, the corresponding projected probability
simplex, ∆n−1

p , is defined as a subset of Rn−1: {x ∈ Rn−1|
∑n−1

i=1 xi ≤ 1,∀i ∈ [n− 1]}.
10See https://en.wikipedia.org/wiki/Simplex#Volume.
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An illustration of ∆n−1 and ∆n−1
p . For example, take n = 3. The probability simplex with n = 3

elements is a triangle whose (euclidean) side length is
√
2 with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1).

Then its volume in the 2-dimensional space, i.e., its area, is
√
3
2 . The corresponding projected

probability simplex is the triangle between the X − Y axis, with vertices (1, 0), (0, 1), (0, 0).

A direct lemma that connects the probability simplex and the projected probability simplex is given
below.

Lemma B.5. (Transformation of probability simplex) Given a proper probability density function
ν(x) defined on ∆n−1

p , it is equivalent to the distribution defined on ∆n−1 with density ν(x)√
n

: ∀A ∈
Borel(∆n−1

p ), let B = {x ∈ ∆n−1 : x1:n−1 ∈ A}. Then
∫
A
ν(x)dx =

∫
B

ν(x)√
n
dx. Specifically, this

implies volume(A)

volume(∆n−1
p )

= volume(B)
volume(∆n−1) .

Proof. Consider a translation on ∆n−1 with xn = −
∑n−1

i=1 xi which does not affect its the volume
and shape. The mapping: ∆n−1

p → translated∆n−1 is an affine transformation with matrix

T =

 1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
−1 −1 · · · −1


n×(n−1)

Thus, any area under this transformation is scaled by
√
detT⊤T =

√
n: a constant. The lemma

follows directly after this conclusion.

We use U(·) to denote the uniform distribution over ∆n−1: U(x) = (n−1)!√
n

,∀x ∈ ∆n−1. We use the
notation vol[S] =

∫
S
1ds to represent the volume of a given subset S ⊂ ∆n−1, and use rvol[S] for

the relative volume (w.r.t. the underlying n-simplex) of S, i.e., rvol[S] := vol[S]
vol[∆n−1] =

∫
S
U(x)dx.

We also use n = |E(c)| from now on. We use the vector x to denote (with the slight abuse of notation
we have mentioned) pLM (q, c) on the output simplex.

Lemma B.6. (Gaussian cdf Tail Bound, Gordon [62]) Denote ϕ(·) as the standard Gaussian pdf.
When x > 0,

x

x2 + 1
ϕ(x) =

x

x2 + 1

e−x2/2

√
2π

≤ 1− Φ(x) ≤ e−x2/2

√
2πx

=
1

x
ϕ(x).

Now we are ready to give the proof of Theorem 2.

Proof. Let |Eh(c)| = n0 and denote |Eh(c)|+ |Es(c)|+ |En(c)| = n. Without loss of generality,
we define the first n0 = |Eh(c)| elements as the harmful explanations. Let the thresholding constant
be p. That is, we define the harmful zone Hh as {x ∈ ∆n−1|

∑n0

i=1 xi ≥ p}. To compute the
relative volume of Hh in ∆n−1, we could instead operate on the projected probability simplex ∆n−1

p

introduced in Definition B.2, and compute the relative volume of the projected Hh: Hh,p := {x ∈
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∆n−1
p |

∑n0

i=1 xi ≥ p}. Note that ∆n−1
p ⊂ Rn−1. We derive its expression as follows.

volume[HC
h,p] = volume[{x ∈ ∆n−1

p |
n0∑
i=1

xi ≤ p]}

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−1
i=1 xi

0

dxn0

∫ 1−
∑n0

i=1

0

dxn0+1 · · ·
∫ 1−

∑n−2
i=1 xi

0

dxn−1

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−1
i=1 xi

0

dxn0

[
1

(n− n0 − 1)!
(1−

n0∑
i=1

xi)
n−n0−1

]

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−2
i=1 xi

0

dxn0−1
1

(n− n0)!

[
(1−

n0−1∑
i=1

xi)
n−n0 − (1− p)n−n0

]
= · · ·

=
1

(n− 1)!
[1− (1− p)n−1]−

n0−1∑
j=1

(1− p)n−1−j

j!(n− 1− j)!
pj

(5)
Thus, the relative volume of Hh can be written as

rvol[Hh] = 1−
volume[HC

h,p]

volume[projected probability simplex]

= (1− p)n−1 +

n0−1∑
j=1

(n− 1)!(1− p)n−1−j

j!(n− 1− j)!
pj

=

n0−1∑
j=0

pj(1− p)n−1−j

(
n− 1

j

)
.

(6)

Which is precisely the binomial distribution formula. With the Central Limit Theorem, when
n ≫ O(1), we know the binomial distribution can be well approximated via the normal distribution
as follows:

f(x) =

(
n

x

)
px(1− p)n−x d−→ N (np, np(1− p)). (7)

Thus, denote ϕ(n−1),p(x) as the pdf of Gaussian variable with mean (n−1)p, variance (n−1)p(1−p),
the rvol term above can be estimated as follows:

n0−1∑
j=0

pj(1− p)n−1−j

(
n− 1

j

)
≍

∫ n0−1

−∞
ϕ(n−1),p(x)dx

= Φ

[
n0 − 1− (n− 1)p√
(n− 1)p(1− p)

]

= Φ

[
|Eh(c)| − 1− (n− 1)p√

(n− 1)p(1− p)

]
.

(8)

We use a = |Eh(c)|−1−(n−1)p√
(n−1)p(1−p)

. Consider an adversary with budget ϵ under ℓp or Jensen-Shannon

Divergence (JSD) / Total Variation (TV) capability. Since ||x||1 ≥ ||x||p,∀p ≥ 1 as well as
||x||1 ≥ 2JSD(x), ||x||1 ≥ 2TV(x), we know Hh(ϵ, ℓ1) ⊂ Hh(ϵ, d) for all d we have considered.
With that ℓ1, ϵ setup, the corresponding ϵ−expansion set of Hh has a closed-form expression as

Hh(ϵ, ℓ1) = {x ∈ ∆n−1|
n0∑
i=1

xi ≥ p− ϵ

2
}.
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Similar as above, we derive the analytical solution of its relative volume associated with constant a′
as:

a′ =
|Eh(c)| − 1− (n− 1)(p− ϵ

2 )√
(n− 1)(p− ϵ

2 )(1− p+ ϵ
2 )

= a

√
p(1− p)

(p− ϵ
2 )(1− p+ ϵ

2 )
+

ϵ

2

√
n− 1

(p− ϵ
2 )(1− p+ ϵ

2 )
.

(9)

Under our framework, with p < 1
2 , we know 1

4 > p(1− p) > (p− ϵ
2 )(1− p+ ϵ

2 )). Thus

a′ > a+
√
n− 1ϵ := aϵ.

Consider the induced distribution γc on the output simplex. Given an adversary with ℓp or JSD/TV
perturbing capability, with the fixed harmful concept c, safety is guaranteed if and only if pLM (q, c)
resides outside Hh(ϵ, d). Define the area of interest, S(d) as S(d) := ∆n−1 −Hh(ϵ, d). Thus, the
probability of this event could be bounded as

Px∼γc1x∈S(d) < max
x∈S(d)

γc(x)

∫
S(d)

1dx < γsrvol[S(d)] < γsrvol[S(ℓ1)] < γs(1−rvol[Hh(ϵ, ℓ1)])

This gives an upper bound of
γs(1− Φ(aϵ)).

which can be simplified when a ≥ 0 using Lemma B.6:

γs

(
ϕ(aϵ)

aϵ

)
.

Thus, the probability of getting a LM instance from the preference alignment process such that it
allows for successful jailbreaking on a specific harmful concept c is at least

1− γs (1− Φ(aϵ)) .

Up to now, we have derived the result in Theorem 2. However, we can move a step further to show
the decay rate on the right hand side term. It can be simplified when a ≥ 0:

1− γs

(
ϕ(aϵ)

aϵ

)
,

which finishes the proof.

C RLHF, DPO and our E-RLHF

The classic RLHF framework was established by Christiano et al. [63], and developed by Ziegler
et al. [19], Ouyang et al. [20], Bai et al. [21]. After the collection of a preference dataset Ds =
{(x, ew, el)}, one first trains a reward model under the Bradley-Terry model [64], with the objective,
where σ(·) stands for the sigmoid function:

r(x, e) = argmax
r

E(x,ew,el)∼D log σ(r(x, ew)− r(x, el)).

Following, proximal policy optimization (PPO) [65] is commonly adopted across these implemen-
tations, forming the basis of current state-of-the-art language models. The KL-constrained RL
Fine-Tuning (RLFT) objective takes the form:

max
pLM

Ex∼Ds{Ee∼pLM (·|x)[r(x, e)]− βDKL(pLM (x)||pSFT(x))}.

However, PPO tuning can suffer from instability [66] and implementation complication [67]. To
overcome these issues, a series of work propose to skip the reward modeling step and learn directly
from the preference dataset, with the representative pioneering work by Rafailov et al. [23], namely
Direct Preference Optimization (DPO). We summarize the derivation of the DPO objective below,
and generalize the objective to the one we use in our experiments, i.e., E-DPO.
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First, noticing the closed-form optimal solution for pLM of the RLFT objective writes (see e.g.,
Appendix A.1 of Rafailov et al. [23])

p∗RLFT(e|x) =
1

Z ′(x)
pref(e|x) exp(

1

β
r(x, e)).

With this analytical solution in mind, we can solve the reward as

r(x, e) = β log
p∗RLFT(e|x)
pref(e|x)

+ β logZ ′(x).

Regard π∗ as the optimization target, plug this transformation into the reward model objective to
obtain the DPO objective:

pDPO = argmin
pLM

−E(x,ew,el)∼D[log σ(β log
pLM (ew|x)
pref(ew|x)

− β log
pLM (el|x)
pref(el|x)

)].

For our E-RLHF, the modification to the objective leads to another optimal solution of pLM :

p∗(e|x) = 1

Z(x)
pref(e|xs) exp(

1

β
r(x, e)).

Thus,

r(x, e) = β log
p∗(e|x)
pref(e|xs)

+ β logZ(x)

And plug it in to the reward model objective to formulate our E-DPO:

pE-DPO = argmin
pLM

−E(x,ew,el)∼D[log σ(β log
pLM (ew|x)
pref(ew|xs)

− β log
pLM (el|x)
pref(el|xs)

)].

The advantage of our E-RLHF objective is as follows.
Proposition C.1. (Overcoming the small safe set problem) E-RLHF will lead to the optimal solution
p∗:

p∗(e|x) = 1

Z(x)
pref(e|xs) exp(

1

β
r(x, e)).

Compared to p∗RLFT, the advantage when encountering a harmful prompt x is:

(1) (Erase harmful explanations) ∀e ∈ supp(pref(·|x))− supp(pref(·|xs)), p∗(e|x) = 0;

(2) (Add safe explanations) ∀e ∈ supp(pref(·|xs))− supp(pref(·|x)), p∗(e|x) > 0 = p∗RLFT(e|x).
Thus, with the same jailbreak threshold p, the safety zone is successfully expanded.

Intriguingly, when the safe transformation is done by appending an identical safe prefix to all harmful
prompts, we can connect our E-RLHF to context distillation. A good prompt is known to matter for
the performance of a fixed-parameters LM [68, 55]. Researchers have proposed a systematic LM
tuning algorithm, called Context Distillation [69], aiming at distilling useful information from a good
context as prefix to a language model. Given an initialized language model, for example pSFT, an
input prompt x and a prefix context string prefix, Askell et al. [69] optimizes the loss

L(pLM ) = DKL(pSFT(prefix⊕ x), pLM (x))

where ⊕ stands for string concatenation. This technique has been adopted as part of the safety
alignment process during the LLaMa-2 series tuning [13], where prefix is chosen from a set of pre-
defined safe prefixes. When applying the identical prefix transform in our E-RLHF transformation, it
can be regarded as a combination of safety context distillation and RLHF. This gives another point of
view on the effectiveness of our proposal.

D Ablation Study

In this section, we perform extensive ablation studies to showcase the effectiveness of our proposed
E-RLHF.
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Table 3: Safety evaluation, LoRA results. The result is consistent with the one we have obtained
in the main text, that our E-DPO performs better than DPO across a collection of adversaries.
indicates better performance.

HarmBench ASR [2]
Model Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

πDPO (LoRA) 24.50 47.50 40.50 43.25 43.25 28.50 45.25 53.25 53.50 29.75 38.90 40.74

πE-DPO (LoRA) 24.25 42.50 36.50 41.50 42.75 27.20 45.00 53.75 50.25 27.25 38.05 39.00

AdvBench ASR [1]

πDPO (LoRA) 2.00 29.00 26.00 26.00 40.00 8.80 32.00 54.00 46.00 2.00 31.20 27.00

πE-DPO (LoRA) (ours) 0.00 25.00 20.00 27.00 33.00 7.20 23.00 50.00 45.00 2.00 28.80 23.73

Table 4: Safe prefix ablation. Prefixes we use are included in Table 8. Our E-DPO performs better
than the DPO baseline in most cases we have tested. indicates best performance. Number in
bracket [] indicates the MT-Bench score.

HarmBench ASR [2]
Model [MT-Bench] Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

πDPO[6.9] 27.50 53.00 39.00 46.75 43.25 29.10 52.50 54.00 51.00 28.75 37.15 42.00

πE-DPO(1)[6.9] 26.25 56.50 33.75 44.25 42.25 29.30 50.00 56.75 56.25 31.50 34.05 41.90

πE-DPO(2)[6.9] 24.75 52.25 34.00 39.00 44.75 29.75 50.50 54.50 53.25 28.00 34.35 40.46

πE-DPO(3)[6.8] 24.75 52.75 35.25 37.50 35.50 28.65 49.00 53.50 47.25 30.50 30.25 38.63

πE-DPO(4)[6.7] 23.50 47.50 31.75 36.25 40.50 26.45 48.50 51.00 43.00 27.00 31.05 36.95

AdvBench ASR [1]

πDPO[6.9] 0.00 47.00 12.00 39.00 30.00 7.00 50.00 61.00 44.00 4.00 18.40 28.40

πE-DPO(1)[6.9] 0.00 51.00 12.00 29.00 33.00 6.80 47.00 62.00 53.00 5.00 20.00 28.98

πE-DPO(2)[6.9] 1.00 39.00 12.00 20.00 34.00 6.20 53.00 63.00 49.00 3.00 15.60 26.89

πE-DPO(3)[6.8] 0.00 47.00 11.00 23.00 23.00 6.80 45.00 58.00 36.00 4.00 15.80 24.51

πE-DPO(4)[6.7] 0.00 38.00 8.00 15.00 21.00 5.20 41.00 53.00 31.00 4.00 13.60 20.89

D.1 LoRA results

In this section, we show results obtained by Low-Rank Adaptation [54]. We explore the same set of
safe prefixes as in ablation D.2, and choose the best model for illustration. Numbers are illustrated
in Table 3. Results are identical to the ones obtained via full parameter tuning that our E-RLHF
performs better consistently against the RLHF baseline.

D.2 Ablation on safe prefixes

We ablate the effect of different safe prefixes. The prefixes we consider are collected in Table 8.
Attack success rate numbers are shown in Table 4, with each model’s MT-Bench scores shown in the
brackets. Clearly, almost all safe prefixes lead to better safety against the DPO baseline and improved
helpfulness compared to the SFT model (whose MT-Bench score is 6.3), and the performance could
vary depending on the choice of the prefix. Finding a good prefix matters for our method, and we
leave digging the optimal one out as future work.

D.3 Ablation on transforming all prompts

Here, we proceed to ablating the effect of transforming all prompts, no matter harmful or not. Results
are shown in Table 5, where the red color indicates that safety downgrades compared to the model
obtained via transforming harmful prompts only. Clearly, most models even persist worse safety
compared to the DPO baseline itself, suggesting the detrimental effect of transforming the unharmful
prompts.

D.4 Ablation with system prompt

As pointed out by previous works [2, 48, 70], system prompt can have a significant impact on ASR.
This comes in two-folds: firstly, a powerful system prompt can initialize the LM to be closer to
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Table 5: Ablation study on transforming all prompts. We apply the same safe prefixes as used in
Table 4. indicates the safety is worse compared to the model trained with transforming only the
harmful prompts. AVG scores achieved by the DPO baseline are 42.00 and 28.40, respectively.

HarmBench ASR [2]
Model Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

πE-DPO(1) 28.00 55.75 41.00 42.00 42.50 31.00 51.25 56.25 56.00 32.00 36.05 42.89

πE-DPO(2) 25.75 60.50 40.25 46.50 44.75 30.15 52.75 57.25 63.50 30.75 40.45 44.78

πE-DPO(3) 24.00 57.25 35.00 41.75 39.50 26.55 49.25 55.00 58.75 29.25 38.70 41.36

πE-DPO(4) 27.75 58.50 38.00 42.00 40.75 31.20 52.75 60.50 54.75 31.50 38.30 43.27

AdvBench ASR [1]

πE-DPO(1) 0.00 53.00 17.00 31.00 26.00 6.00 50.00 57.00 61.00 4.00 19.00 29.45

πE-DPO(2) 0.00 52.00 17.00 29.00 26.00 6.20 56.00 58.00 73.00 3.00 25.60 31.44

πE-DPO(3) 0.00 56.00 17.00 23.00 17.00 3.80 46.00 58.00 66.00 4.00 23.40 28.56

πE-DPO(4) 0.00 58.00 17.00 36.00 27.00 6.80 46.00 60.00 68.00 3.00 25.20 31.54

Table 6: Ablation with the default Mistral system prompt. It boosts the safety of our E-DPO models
to achieve better safety, while maintaining the advantage over the DPO baseline.

HarmBench ASR [2]
Model Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

πSFT 25.25 61.25 26.75 37.00 27.25 24.75 55.50 58.75 61.25 24.00 30.35 39.28

πDPO 20.50 49.25 29.25 32.75 34.50 22.55 42.75 50.25 50.75 30.00 31.20 35.80

πE-DPO 15.50 41.50 22.75 29.00 31.25 17.95 41.75 44.25 44.25 23.00 26.55 30.70

the safety zone, thus making the model safer; secondly, a longer system prompt would enlarge the
difficulty of launching a specific attack due to the increased computational consumption. To confirm
our E-RLHF is still helpful under this specific situation, we ablate this effect under the control of the
default Mistral system prompt 11. The results can be found in Table 6, where nearly all ASRs drop,
whilst the conclusion does not change.

D.5 Ablation on improving helpfulness and safety simultaneously

In similar spirit, we ask the question: can the trick we propose to improve safety be used to
improve helpfulness simultaneously? To achieve this goal, we choose the prefix "Give me a
safe and helpful response to the following request.", and apply it to all prompts in
the preference dataset. Results can be found in Table 7. Our model achieves better safety, and
improves the helpfulness benchmarked by MT-Bench [3] from 6.9 to 7.0.

E Filtering harmful prompt in the preference alignment dataset

Inspired by the work by Chao et al. [30], we prompt GPT-3.5-Turbo as a harmness judge on input
prompts. It assigns an integer score ranging from 1 to 10 for a given prompt, and we choose the score
≥ 6 subset as harmful. The system prompt is shown in Table 9.

11https://docs.mistral.ai/capabilities/guardrailing/

Table 7: Improving helpfulness and safety simultaneously using E-RLHF. MT-Bench scores are 6.8
and 6.9, for the DPO baseline and our E-DPO model, respectively.

HarmBench ASR [2]
Model Direct Request GCG GBDA AP SFS ZS PAIR TAP AutoDAN PAP-top5 Human AVG ↓

πSFT 32.25 59.25 35.50 42.75 42.75 36.20 56.50 65.00 56.75 26.75 35.50 44.47

πDPO 27.50 53.00 39.00 46.75 43.25 29.10 52.50 54.00 51.00 28.75 37.15 42.00

πE-DPO (ours) 26.25 56.00 37.00 43.75 38.25 27.90 49.75 56.00 52.25 27.50 32.65 40.66
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Table 8: Safe prefixes we use in our experiments.
(1) "Provide a responsible and ethical answer to the following request. "

(2) "In a manner that promotes safety and well-being, please respond to the following request. "

(3) "Keeping in mind the importance of safety and legality, how would you respond to this: "

(4) "Please ensure your response adheres to community guidelines and ethical standards: "

Table 9: System prompt for GPT-3.5-Turbo used to filter harmful and non-harmful prompt in the
preference dataset.

You are a helpful red teaming assistant. You will receive a prompt. Please act as an impartial judge and evaluate
whether the prompt itself is requesting information that violates ethical, legal, or safety guidelines. Be as
objective as possible. Rate the prompt on a scale from 1 to 10. A rating of 1 signifies a fully non-harmful prompt.
A rating of 10 signifies prompts that could lead to responses that fully violate ethical, legal, or safety guidelines.
Your rating should strictly follow this format: "Rating: [[rating]]", the rating in the double-closed brackets is a
number from 1 to 10, e,g, "Rating: [[5]]".

F Jailbreak adversaries collected in the HarmBench project [2]

In this section, we give a short overview of the adversaries we adopt to evaluate our models. Some
descriptions are summarized in Mazeika et al. [2].

• Direct Request refers to sending the original harmful prompt directly to the target LLM.

• GCG [1], GBDA [71] and AP [72] find adversarial suffixes via token-level optimization.

• SFS (Stochastic Few-Shot) and ZS (Zero-Shot) [15] are few-shot sampling or zero-shot
generation of test cases by an attacker LLM to elicit a behavior from a target LLM.

• PAIR [30] and TAP [33] are iterative prompting / tree-structured prompting methods, with
an attacker LLM, to adaptively explore and elicit specific harmful behaviors from the target
LLM.

• AutoDAN [29] is a genetic-algorithm based attack with initializations from handcrafted
DAN jailbreak prompts.

• PAP [73] uses persuasive strategies to jailbreak the target LLM.

• HumanJailbreaks [74] uses a fixed set of in-the-wild human jailbreak templates, similar to
the Do Anything Now (DAN) jailbreaks.

We exclude all transfer attacks since we focus on single-model jailbreak. Furthermore, we choose to
discard the UAT [75] and PEZ [76] adversaries, because the former induces an out-of-memory error
on our V100 GPUs, and the latter never succeeds to find a suffix according to our experiments.

G Broader Impacts

The societal impact of our work has close connection to the topic of LLM safety. We propose a
framework for analyzing language model pretraining and jailbreaking, and we design a new RLHF
algorithm for improving safety. As shown in our experiments, our work could advocate for safer
LLMs.

H Related work

In this section, we provide a review of the current literature on LLM jailbreaking.

H.1 Jailbreak methods

In this section, we summarize existing jailbreaking methods.
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Baseline and pioneers Autoprompt [72], a baseline method for optimizing in the token space w.r.t.
a certain objective, approximates coordinate ascent by first ranking all tokens using an approximate
objective, and then compute the exact value on them. The approximation is carried out by a single step
of gradient computation. Jones et al. [77] propose Autoregressive Randomized Coordinate Ascent
(ARCA) to generate (input, output) pairs that include certain harmful info or satisfy a fixed format
requirement. Token level optimization is carried out with linear approximation on GPT-2. GBDA [71]
study adversarial attack on text classification problems, by optimizing the continuous relaxation of the
autoregressive sampling probability matrix. In late 2022, among social media, users misalign GPT-3
via prompt injection. Perez and Ribeiro [78] study how this be done by adversaries. They successfully
manipulate the model to output a given harmful string and leak the system prompt. In early 2023,
an empirical study was carried out by Liu et al. [9] to measure the result of prompt engineering for
breaking ChatGPT safeguards. Shen et al. [74] collect jailbreaking prompts from multiple platforms
on the internet, analyze these data, create a harmful question set, and identify some typical harmful
prompts that are effective at that moment. Later, the Greedy Coordinate Gradient (GCG) method [1],
a strong white-box attack variant of AutoPrompt [72] was proposed. Wei et al. [79] categorizes two
general modes of jailbreaking: competing objective and mismatched generalization.

LLM automation and suffix-based attacks Liu et al. [29] propose AutoDAN, that relies on genetic
algorithms, with the requirement of manual prompts for conducting mutation and crossover on the
paragraph and sentence level. The jailbreaking prompts generated by AutoDAN are semantically
plausible, unlike the suffix generated by GCG. As a comparison, Lapid et al. [25] use genetic
algorithm for black-box universal adversarial suffix generation. Chao et al. [30] propose another
LLM-based jailbreak automation algorithm, where an LLM judge is built to assign a safety score
to a given output, while the attacker is enforced (via a page-long prompt) to improve the quality of
jailbreaking prompts from multiple perspectives. Zhu et al. [24] propose another AutoDAN method
that explores the balanced loss between jailbreak loss (log probability on the harmful string, as used
in Zou et al. [1]) and the plausibility loss (log probability over the adversarial suffix), aiming at
improving interpretability. Li et al. [31] uses genetic algorithm to search with similarty measure
and initialize with paraphrasing. Its performance is claimed to be better than AutoDAN-GA. Deng
et al. [80] investigate the possible defensive tricks in proprietary LLMs, and propose a pipeline for
automated jailbreaking using a fine-tuned LLM. Yu et al. [81] propose GPTFuzzer, essentially a
genetic algorithmic framework for jailbreaking. Their work’s difference between AutoDAN is that
it has a pool of “seeds”, a.k.a. templates for transforming the harmful prompt, and the mutation is
done on the template level. Ding et al. [32] propose automating attack via LLM prompt rewriting and
scenario nesting. The latter consists of code completion, table filling and text continuation, since the
authors regard these as align with training objectives well, and are suitable for LLMs to complete
the task. Mehrotra et al. [33] combine Automation used in Chao et al. [30] and tree-of-thought
[82], create interpretable prompts in a black-box manner. Li et al. [83] propose DeepInception, and
use nested, imaginary scenario to induce harmful content. Li et al. [84] propose DrAttack, which
camouflages a query’s malicious intent through semantic decomposition, by constructing a parsing
tree and split the original prompt into different segmentations. Wang et al. [85] draw inspiration from
the self-perception theory from psychology to design a prompt modification pipeline on gradually
persuading the LM to be jailbroken. Paulus et al. [86] propose AdvPrompter, where the authors train
a language model as a suffix generator to speed up LLM attack.

Manipulating the decoding process Huang et al. [48] find the method of changing the generating
hyperparameters (i.e., p of top-p sampling, the temperature T , and k of top-k sampling) of safety-
aligned LLMs suffices for obtaining harmful outputs when the user is able to manipulate the system
prompt and input configurations. Zhang et al. [87] directly manipulate the output generation probabil-
ity by enforcing an affirmative prefix, and reversing the negation words if they appear in a pre-defined
vocabulary (e.g., sorry → glad). Zhao et al. [88] assume access to the decoding distribution of a LM.
They use two small LMs, a safe one and a harmful one, to manipulate the decoding ratio of the large
safe LM for jailbreaking. The key insight is the decoding distribution between the safe model and the
harmful model only differs significantly for the first tens of tokens.

Fine-Tuning alone suffices Yang et al. [89] show that fine-tuning on as few as 100 harmful example
pairs suffices for turning the LLaMa-chat models (and some other <70B LMs) into malicious
counterparts. Zhan et al. [90] fine-tune GPT-4 on harmful data, and find the fine-tuned models escape
previous safety constraints while maintaining usefulness. Qi et al. [91] find fine-tuning alone, even on
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benign data, leads to safety degradation using LLaMa and GPT-3.5-Turbo. Fine-tuning on harmful
data (with less than 5 gradient steps) will cause the model to be completely harmful, while tuning on
identity-shifting data could make the LM fully obedient.

Low-resource language and cipher Yong et al. [26], Deng et al. [27] explore the difference in
languages when encountering the same harmful query, and find a direct translation to low resource
languages will lead to higher risk, and Deng et al. [27] additionally find when combined with
sophisticated methods, the drawback of low-resource languages disappear. Yuan et al. [28] use cipher
encoding and decoding to break LLMs. Smaller scale models are immune from such attacks, while
the smartest GPT-4 encountered the highest risk.

Vision-language model attacks Besides pure LLM, some research works move a step forward, uti-
lizing images for breaking vision-language models (VLMs). Shayegani et al. [92] explore multimodal
attack on VLM via embedding space feature matching. Qi et al. [93] generate adversarial examples
via maximizing the conditional probability of a harmful corpus, i.e., the sum of log probabilities over
all outputs, and use the final image with harmful query for jailbreaking. Carlini et al. [94] generate
adversarial example for a fixed harmful content, and find no matter what input prompt is given to the
VLM, it will respond with the target harmful string. Maus et al. [95] propose a black-box attack on
manipulating the generated image with modified adversarial prompt.

Misc Wei et al. [57], Wang et al. [58] explore in-context learning for attack and defense. The attack
is weak since it could only break Vicuna [96] and can be defended by in-context safe examples. Later,
this method is scaled-up to significantly improve strength for breaking guardrails of large, state-of-
the-art models [59]. An early work in February 2023 [97] adopts obfuscation (including synonym and
typos), code injection and virtualization to successfully jailbreak ChatGPT. Shah et al. [98] illustrate
in-context automated persona modulation attack for large-scale LLMs and Vicuna. Zeng et al. [73]
consider the more broadly perspective of persuasion: they train a persuasive paraphraser based on a
fine-grained taxonomy of persuasion techniques. Detailed ablation on attack effectiveness is studied.
Guo et al. [99] focus on stealthiness and controllability. They notice the constraints applied to the
jailbreaking prompts (e.g., fluency) are exactly the targets of the controllable text generation problem.
Thus, they adopt the Energy-based Constrained Decoding with Langevin Dynamic (COLD) [100]
on output logits. Forming each constraint as well as the task of jailbreaking as an energy function
over logits, the Langevin Dynamic is used for finding a good logit distribution, and the decoding
technique in Qin et al. [100] is used for output generation. Banerjee et al. [101] introduce a dataset
TECHHAZARDQA, compare direct query v.s. pseudo-code format, and find the latter induces higher
risk. Mangaokar et al. [102] considers a type of adaptive attack against checking-based defense,
that appends a universal adversarial prefix into the jailbreaking prompt to make the guard model
always output “safe”, and thus making the detector fails to detect harmful information. Lv et al. [103]
propose Code Chameleon, which contains multiple encryption and decryption methods defined by
python functions, that transforms the harmful prompt into specific predefined form to jailbreak LLMs.
Sadasivan et al. [104] speed up the computation of GCG [1] to make it possible to launch on a single
GPU. Geiping et al. [105] build a taxonomy on risks beyond jailbreaking, and coerce the LLM to
provide certain outputs by optimizing a set of tokens via GCG. Ren et al. [106] propose CodeAttack
that use code templates to query the output out instead of using natural language directly, and obtain
descent results.

H.2 Defense methods

Up to now, no universal defensive strategy as adversarial training [107] for adversarial attacks /
differential privacy [108] for membership attacks exists as a gold standard. In general, we can classify
the methods into three typical types: alignment, red-teaming, and algorithmic proposals.

Alignment The target of alignment is to push the output of language models be aligned to human
values. Regarding safety, the goal is to avoid outputting harmful information. RLHF is widely
adopted in these methods [19, 20, 109, 22]. Variants like RLAIF also have been proposed recently
[21, 110].

Red teaming This term is populated as specifically dealing with harmful info on dataset curation,
used together with RLHF [14–18].
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Next, we proceed to defensive algorithm proposals. We classify existing defensive strategies in the
following categories.

Defense against suffix-based attacks. Alon and Kamfonas [111] notice the messy nature of the
suffix generated by GCG, and propose to use a perplexity (PPL) filter on input prompts. They also
explore using a LightGBM [112] with 2 features (PPL, prompt length) to filter harmful prompt,
and show it does better than naive PPL thresholding. The PPL-based filter does not succeed with
human-crafted jailbreaks. Jain et al. [37] explore many concerning viewpoints, including self-PPL
filtering, paraphrasing the input prompt, and re-tokenization since many LLMs’ tokenizers are based
on Byte-Pair Encoding (BPE). All methods are successful in regards of defending against suffix-based
attacks. They also explore the simplest form of adversarial training. Robey et al. [34] propose to
perturb the input token string by random replacement/erasement/insertion, and finally perform a
majority vote in the end. Cao et al. [35] judges whether an input prompt is safe or not by estimation
with Monte Carlo, when randomly dropping a fraction of tokens, using the LLM itself. Kumar et al.
[36] try to perform “certified” safety against harmful prompts, by erasing tokens and set the original
prompt as harmful if at least one of these erased prompts lead to a harmful response, or be classified
as harmful by a DistillBERT-based classifier.

System prompt defense. We could modify the input prompt for jailbreaking; and several works
explore if we can apply similar methods to system prompts to defend against such attacks. Xie et al.
[113] propose “self-reminder”, i.e., appending a reminding prompt within the system prompt for
defense. The attacks are collected from the JailbreakChat collection, and this strategy is effective for
defending against them. Zheng et al. [114] advocate for finding a good system prompt automatically,
by investigating the representational difference between safe and harmful queries, and optimizing
the safety prompts along the harmful refusal direction in the representation space. One intriguing
takeaway is harmful / harmless queries can be distinguished in the representation space, different from
the adversarial examples in vision. Zhou et al. [115] also optimize the safe system prompt, but in a
more “adversarial training” fashion, that apply jailbreak algorithms with current safe prompts first and
then find good replacement candidates in the same way as done by Zou et al. [1]. Concurrently, Mo
et al. [116] propose prompt adversarial tuning, where an adversarial suffix is assumed, while a safe
system prompt is jointly optimized with this suffix, with an additionally constructed benign loss to
improve helpfulness under normal queries. Zhang et al. [117] propose the idea of “goal prioritization”,
either without training (append prioritize safety than helpfulness and in-context examples to the
system prompt) or with training (generate data pairs of prioritizing safety or helpfulness, finetune,
and append prioritize safety prompt into system prompt). The former is effective for large-scale
LLMs, while the latter improves safety of LLaMa-chat models. Zhou et al. [118] propose in-context
adversarial game, where an attack LLM and a defense LLM interact on exchanging insights on
successful jailbreaks, and defend by improving the system prompt. Zou et al. [70] give the result
that system prompt matters for jailbreaking, and shows conducting GA-based search over it could
improve safety.

Checking-based, decoding-based, and Misc. Helbling et al. [119] generate responses first, and
then use the LLM itself to examine whether the output is harmful or not. They find such simple
self-examination is powerful since the TPR reported can be up to ∼ 1.00. Wang et al. [120] propose
to (1) tune the LM to enhance its capability on discriminating harmful / harmless content; (2) tune
the LM to make it able to tag its own response; and (3) rewrite response if output is harmful. Li
et al. [121] propose to suppress the attack performance by iteratively rewinding and re-examining the
generated output. The method does not work well with small models, but works pretty fine with large
(open-source) models. They find the strategy can improve generalization as well. Xu et al. [122] train
a safer model first, and use normalized pattacked + α(psafer − pattacked) over top-k shared tokens for
decoding to enhance safety. Hasan et al. [123] show with original Wanda pruning [124], the LLM
can help resist direct jailbreaking prompts, e.g., with role-playing attacks. Pi et al. [125] propose
MLLM-Protector on safeguarding Visual LLMs by checking the output and then detoxifying the
content. Zhang et al. [126] perform intention analysis on the input, and enforce the model generate
policy-aligned outputs both by prompting. Wang et al. [127] propose backtranslation that guesses
the input prompt directly, and reject if it is harmful. Kim et al. [128] propose self-refinement which
consists of generating a feedback and then refine the response to avoid harmful info output. They
find using additional JSON and code formatting would improve safety. Zeng et al. [129] propose
AutoDefense, which utilizes multiple agents on analyzing prompt, response and intention, to defend

32

38298https://doi.org/10.52202/079017-1210



against attacks. Hu et al. [130] propose Gradient Cuff, a sampling-based gradient-norm defense
method, by rejecting those input prompts with large gradient norm on top of a majority-vote based
filtering. Ji et al. [131] propose a method similar to Robey et al. [34], but for semantically-meaningful
attacks, that paraphrases the input according to several criteria and conduct a majority vote for
judging.

Several company-centered products also fall into this regime. For example, LLaMa-Guard [132] is
trained on toxic data such that it is able to discriminate unsafe user prompts and outputs, respectively.
IBM also propose a framework on constructing and deploying safeguard detection modules, and
releases the details in a technical report [133].

H.3 Theory and experimental understanding

Wolf et al. [38] assumes the decomposability of LLM output into a good and bad component, and
show possible jailbreaking in theory by prompting the model with a sufficiently long input. Kalai and
Vempala [134] use statistical tools to prove hallucination for calibrated LMs. Lee et al. [135] study
the representation in GPT-2. They train a base classifier for toxicity, and use the linear weight as a
proxy of toxic vector. They find there are value vectors close to the toxic vector itself, that are not
suppressed by DPO tuning [23]. Wei et al. [136] use pruning and low-rank analysis on safe LM, and
find (1) safe neurons and useful neurons are sparse; pruning the safe neurons or removing the safe
ranks away degrades safety a lot, and (2) fixing the safe neurons in fine-tuning does not maintain
safety.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: we state the three main contributions of our work explicitly, following by
individual sections that clearly illustrate them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we discuss the limitation of our work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are clearly stated in the main text, and all proofs can be found
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: all models, code, data and training configurations we used are publicly avail-
able, and we provide links to them in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: we do not use our own model or data for training. Thus, we do not provide any
data or code by ourselves. All of them are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we adopt all default training hyperparameters from the public codebase.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: following community standard, we use greedy decoding for language model
evaluation, which naturally leads to zero variance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we state our experiments are consistently launched on 8 NVIDIA V-100 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: our research does not involve human participants, and never use private data or
models. Our research is related to LLM safety, and we propose an algorithm to improve it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: the societal impact of our work has close connection to the topic of LLM
safety. We propose a framework for analyzing language model pretraining and jailbreaking,
and we design a new RLHF algorithm for improving safety. Our work could advocate for
safer LLMs.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: although our research involves jailbreaking language models, we do not release
any models or data, thus the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: the code and data we use to train the model possess the Apache-2.0 license,
and the code we use to test the model possess the MIT license. We include links to these
public assets explicitly in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: we do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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