
Maximizing utility in multi-agent environments by
anticipating the behavior of other learners

Angelos Assos
MIT CSAIL

Cambridge, MA
assos@mit.edu

Yuval Dagan
UC Berkeley
Berkeley, CA

yuvaldag@berkeley.edu

Constantinos Daskalakis
MIT CSAIL

Cambridge, MA
costis@mit.edu

Abstract

Learning algorithms are often used to make decisions in sequential decision-making
environments. In multi-agent settings, the decisions of each agent can affect the
utilities/losses of the other agents. Therefore, if an agent is good at anticipating the
behavior of the other agents, in particular how they will make decisions in each
round as a function of their experience that far, it could try to judiciously make
its own decisions over the rounds of the interaction so as to influence the other
agents to behave in a way that ultimately benefits its own utility. In this paper, we
study repeated two-player games involving two types of agents: a learner, which
employs an online learning algorithm to choose its strategy in each round; and
an optimizer, which knows the learner’s utility function and the learner’s online
learning algorithm. The optimizer wants to plan ahead to maximize its own utility,
while taking into account the learner’s behavior. We provide two results: a positive
result for repeated zero-sum games and a negative result for repeated general-
sum games. Our positive result is an algorithm for the optimizer, which exactly
maximizes its utility against a learner that plays the Replicator Dynamics — the
continuous-time analogue of Multiplicative Weights Update (MWU). Additionally,
we use this result to provide an algorithm for the optimizer against MWU, i.e. for
the discrete-time setting, which guarantees an average utility for the optimizer
that is higher than the value of the one-shot game. Our negative result shows that,
unless P=NP, there is no Fully Polynomial Time Approximation Scheme (FPTAS)
for maximizing the utility of an optimizer against a learner that best-responds to
the history in each round. Yet, this still leaves open the question of whether there
exists a polynomial-time algorithm that optimizes the utility up to o(T).

1 Introduction

With the increased use of learning algorithms as a means to optimize agents’ objectives in unknown
or complex environments, it is inevitable that they will be used in multi-agent settings as well. This
encompasses scenarios where multiple agents are repeatedly taking actions in the same environment,
and their actions influence the payoffs of the other players. For example, participants in repeated
online auctions use learning algorithms to bid, and the outcome, who gets to win and how much they
pay, depends on all the bids (see e.g. [39, 40]). Other examples arise in contract design (see e.g. [30]),

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

38769 https://doi.org/10.52202/079017-1225

Bayesian persuasion (see e.g. [19]), competing retailers that use learning algorithms to set their prices
(see e.g. [25, 14]), and more.

It is thus natural to contemplate the following: in a setting where multiple agents take actions
repeatedly, using their past observations of the other players’ actions to decide on their future actions,
what is the optimal strategy for an agent? This question is rather difficult, hence players often resort
to simple online learning algorithms such as mean-based learners: those algorithms select actions
that approximately maximize the performance on the past, and include methods such as MWU, Best
Response Dynamics, FTRL, FTPL, etc; see e.g. [16]. Yet, when an agent knows that the other agents
are using mean-based learners, it can it can adjust its strategy to take advantage of this knowledge.
This was shown in specific games [9, 24]; however, in general settings it is not known how to best
play against mean-based learners, even if the agent knows everything about the learners, and can
predict with certainty what actions they would take as a function of the history of play. This raises
the following question:

Meta Question. In a multi-agent environment where agents repeatedly take actions, what is the best
strategy for an agent, if it knows that the other agents are using mean-based learners to select their
actions? Can it plan ahead if it can predict how the other agents will react? Can such an optimal
strategy be computed efficiently?

Setting. We study environments with two agents: a learner who uses a learning algorithm to decide
on its actions, and an optimizer, that plans its actions, by trying to optimize its own reward, taking
into account the learner’s behavior. The setting is modeled as a repeated game: in each iteration
t = 1, . . . , T , the optimizer selects a strategy x(t), which is a distribution over a finite set of pure
actions A = {a1, . . . , an}, i.e. x(t) ∈ ∆(A). At the same time, the learner selects a distribution
y(t) over B = {b1, . . . , bm}, i.e. y(t) ∈ ∆(B). The strategies x(t) and y(t) are viewed as elements
of Rn and Rm, respectively, and the elements of A and B are identified with unit vectors. In each
round, each player gains a utility, which is a function of the strategies played by both agents. The
utilities for the optimizer and the learner equal x(t)⊤Ay(t) and x(t)⊤By(t), respectively, where
A,B ∈ Rn×m. The goal of each player is to maximize their own utility, which is summed over
all rounds t = 1, . . . , T . We split our following discussion according to the study of zero-sum and
general-sum games, as defined below.

Zero-sum games. Zero-sum games are those where A = −B. Namely, the learner and the optimizer
have opposing goals. Such games have a value, which determines the best utility that the players can
hope for, if they are both playing optimally. It is defined as:

Val(A) = max
x∈∆(A)

min
y∈∆(B)

x⊤Ay = min
y∈∆(B)

max
x∈∆(A)

x⊤Ay .

The two quantities in the definition above are equal, as follows from von Neumann’s minmax theorem.
The first of these quantities implies that the optimizer has a strategy that guarantees them a utility
of Val(A) against any learner, and the second quantity implies that the learner has a strategy which
guarantees that the optimizer’s utility is at most Val(A). Such strategies, namely, those that guarantee
minmax value, are termed minmax strategies.

If the learner would have used a minmax strategy in each round t, then the optimizer could have
only received a utility of T Val(A). Yet, when the learner uses a learning algorithm, the optimizer
can receive higher utility. A standard theoretical guarantee in online learning is no-regret. When a
learner uses a no-regret algorithm to play a repeated game, it is guaranteed that the optimizer’s reward
after T rounds is at most T Val(A) + o(T). Yet, T is finite, and the o(T)-term can be significant.
Consequently, we pose the following question, which we study in Section 2.

Question 1. In repeated zero-sum games between an optimizer and a learner, when can the optimizer
capitalize on the sub-optimality of the learner’s strategy, to obtain significantly higher utility than the
value of the game? Can the optimizer’s algorithm be computationally efficient?

General-sum games. Games where B ̸= −A are termed general-sum. These games are signifi-
cantly more intricate: they do not posses a value or minmax strategies. In order to study such games,
various notions of game equilibria have been proposed, such as the celebrated Nash Equilibrium.
In the context related to the topic of our paper, if the optimizer could commit on a strategy, and the
other player would best respond to it, rather than using a learning algorithm, then the optimizer could

2

38770https://doi.org/10.52202/079017-1225

get the Stackelberg value, by playing according to the Stackelberg Equilibrium. Further, there is a
polynomial-time algorithm to compute the optimizer’s strategy in this case [21, 41, 20].

Against a learner that uses a no-regret learning algorithm, the optimizer could still guarantee the
Stackelberg value of the game, by playing according to the Stackelberg Equilibrium. Yet, it was shown
that in certain games, the optimizer can gain up to Ω(T) more utility compared to the Stackelberg
value when they are playing against mean-based learners [9, 24, 37, 30, 18]. However, this often
requires playing a carefully-planned strategy which changes across time. While such a strategy could
be computed in polynomial-time for specific games [9, 13, 23], no efficient algorithm was known
for general games. Deng et al. [24] devised a control problem whose solution is approximately
the optimal strategy for the optimizer, against mean-based learners. Yet, they do not provide a
computationally-efficient algorithm for this control problem. Finding an optimal strategy for the
learner was posed as an open problem [24, 30, 11], that can be summarized as follows:
Question 2. In repeated general-sum games between an optimizer and a mean-based learner, is
there a polynomial-time algorithm to find an optimal strategy for the optimizer?

We study this question in Section 3.

1.1 Our results

Our results are two-fold; In zero sum games, we provide positive results, and show what the
optimizer’s optimal rewards and strategies for a given game should be, in both discrete and continuous
time games. Our results in that realm are the following:

• For continuous time games, we provide an exact, closed form solution of the rewards of the
optimizer against a learner that uses the replicator dynamics, i.e. continuous MWU (Section
2, Theorem 1). In the same theorem we prove that the optimizer can achieve optimal rewards
by playing a constant strategy throughout the game. i.e. x(t) = x∗, x ∈ ∆(A)∀t ∈ [0, T].

• We also prove a range where the optimal rewards might be and provide a lower bound for
when ηT →∞ (Section 2, Proposition 1).

• For discrete time games, when the optimizer is up against a learner that uses MWU, we first
prove that the optimal rewards of the optimizer in this setting, will be lower bounded by
the rewards of the optimizer in the continuous time game, if they use the same strategy x∗

(Section 2 Proposition 2).
• We then prove that the reward ’gap’ between continuous and discrete time games cannot be

greater than ηT/2 (Section B, Proposition 10), and there are games that achieve a gap of at
least Ω(ηT) (Section 2, Proposition 3). In fact we give a class of games that can achieve
that gap in rewards (Section 2,Proposition 4).

In general-sum games, we provide the first known computational lower bound for calculating the
optimal strategy against a mean based learner. We formalize the problem of optimizing rewards as a
decision problem, where the answer for an instance is ’YES’ if the optimizer can achieve rewards
more than T and ’NO’ if the optimizer can receive rewards at most T − 1. We prove that there is no
polynomial time algorithm, assuming P ̸= NP that distinguishes between the two cases by using a
reduction from Hamiltonian Cycle. The formal theorem and a sketch of the reduction construction
can be found in Section 2 Theorem 4.

1.2 Related Work

The game-theoretic modeling of multi-agent environments has long history [16, 45, 27]. Such studies
often revolve around proving that if multiple agents use learning algorithms to repeatedly play against
each other, the avarege history of play converges to various notions of game equilibria [43, 16].
Recent works have shown that some learning algorithms yield fast convergence to game equilibria
and fast-decaying regret, if all players are using the same algorithm [44, 22, 2, 4, 26, 42, 46].

Optimizing against no regret learners. Braverman et al. [9] initiated a recent thread of works,
which studies how a player can take advantage of the learning algorithms run by other agents in order
to gain high utility. They showed that in various repeated auctions where a seller sells an item to a
single buyer in each iteration t = 1, . . . , T , the seller can gain nearly the maximal utility that they

3

38771 https://doi.org/10.52202/079017-1225

could possibly hope for, if the learner runs an EXP3 learning algorithm (i.e., the seller’s utility can be
arbitrarily close to the total welfare). This can be Ω(T) larger than what they can get if the buyer
is strategic. Deng et al. [24] generalized the study to arbitrary normal-form games. They showed
an example for a game where an optimizer that plays against any mean-based learner gets Ω(T)
more than the Stackelberg value, which is what they would get against strategic agents. The same
paper further showed that against no-swap-regret learners, the optimizer cannot gain Ω(T) more
than the Stackelberg value and Mansour et al. [37] showed that no-swap-regret learners are the only
algorithms with this property. Brown et al. [11] showed a polynomial time algorithm to compute the
optimal strategy for the optimizer against the no-regret learner that is most favorable to the optimizer
— yet, such no-regret learner may be unnatural. Additional work obtained deep insights into the
optimizer/learner interactions in general games [11, 5], in Bayesian games [37] and in specific games
such as auctions [23, 13, 35, 34], contract design [30] and Bayesian persuasion [18].

Optimizing against MWU in 2× 2-games. Guo and Mu [29] obtain a computationally-efficient
algorithm for an optimizer that is playing a zero-sum game against a learner that uses MWU, in
games where each player holds 2 actions, and they analyze that optimal strategy.

Regret lower bounds for online learners. Regret lower bounds for learning algorithms are tightly
related to upper bounds for an optimizer in zero-sum games. The optimizer can be viewed as an
adversary that seeks to maximize the regret of the algorithm. The main difference is that these lower
bounds construct worst-case instances, yet, we seek to maximize the utility of the optimizer in any
game. Regret lower bounds for MWU and generalizations of it were obtained by [17, 32, 15, 28].
Minmax regret lower bounds against any online learner can be found, for example, in [16].

Approximating the Stackelberg value. Lastly, the problem of computing the Stackelberg equilib-
rium is well studied [21, 41, 20]. Recent works also study repeated games between an optimizer and
a learner, where the optimizer does not know the utilities of the learner and its goal is to learn to be
nearly as good as the Stackalberg strategy [6, 38, 36, 31].

2 Optimizing utility in zero-sum games

Continuous-time games. We begin our discussion with continuous-time dynamics, where x(t) and
y(t) are functions of the continuous-time parameter t ∈ [0, T]. The total reward for the optimizer
is
∫ T

0
x(t)⊤Ay(t)dt, whereas the learner’s utility equals the optimizer’s utility multiplied by −1.

We assume that the learner is playing the Replicator Dynamics with parameter η > 0, which is the
continuous-time analogue of the Multiplicative Weights Update algorithm, which plays at every time
t:

yi(t) =
exp

(
η
∫ t

0
x(s)⊤Beids

)
∑m

j=1 exp
(
η
∫ t

0
x(s)⊤Bejds

) , i = 1, . . . ,m . (1)

This formula gives a higher weight to actions that would have obtained higher utility in the past.
When η is larger, the learner is more likely to play the actions that maximize the past utility. The
value of η usually becomes smaller as T increases, and typically η → 0 as T →∞.

The following definition will be helpful for the analysis:

Definition 1 (Historical Rewards for the learner). The historical rewards for the learner in continuous
games at time t, denoted by h(t) ∈ Rm, is an m dimensional vector where hi(t), i = 1, . . . ,m
corresponds to the sum of rewards achieved by action ai of the learner against the history of play
in the game so far. We assume a general setting where the learner at t = 0 might have non-zero
historical rewards, i.e. h(0) ∈ Rm. If the strategy of the optimizer is x : [0, t]→ ∆(A) we get:

h(t) = h(0) +

∫ t

0

B⊤x(t)dt

Suppose the game has been played for some time t and the learner has collected historical rewards
h(t). The total reward that the optimizer gains from the remainder of this game can be written as a

4

38772https://doi.org/10.52202/079017-1225

function of the time left for the game T − t, the historical rewards of the learner at time t, h(t), and
the strategy x : [0, T − t]→ ∆(A) of the optimizer for the remainder of the game.

Rcont(x, h(t), T − t, A,B) =

∫ T−t

0

∑m
i=1 e

η(hi(u)+e⊤i B⊤ ∫ u
0

x(s)ds) · e⊤i A⊤x(u)∑m
i=1 e

η(hi(u)+e⊤i B⊤
∫ u
0

x(s)ds)
du (2)

For simplicity, we can just transfer the time to 0 and assume that the historical rewards of the learner
are just h(0). That way we can rewrite the above definition as:

Rcont(x, h(0), τ, A,B) =

∫ τ

0

∑m
i=1 e

η(hi(t)+e⊤i B⊤ ∫ t
0
x(s)ds) · e⊤i A⊤x(t)∑m

i=1 e
η(hi(t)+e⊤i B⊤

∫ t
0
x(s)ds)

dt (3)

In general we are interested in finding the maximum value that the optimizer can achieve at any
moment of the game:

R∗
cont(h(0), τ, A,B) = max

x
Rcont(x, h(0), τ, A,B) (4)

For finding the optimal reward for the optimizer from the beginning of the game we would have to
find R∗

cont(0, T, A,B), where 0 = (0, 0, . . . , 0)⊤.

The next theorem characterizes the exact optimal strategy for the optimizer, against a learner that
uses the Replicator Dynamics in zero sum games:
Theorem 1. In a zero-sum continuous game, when the learner is using the Replicator Dynamics, the
optimal rewards for the optimizer can be achieved with a constant strategy throughout the game, i.e.
x(t) = x∗ ∈ ∆(A). The optimal reward is obtained by the following formula:

R∗
cont(h(0), T, A,−A) = max

x∈∆(A)

 ln
(∑m

i=1 e
ηhi(0)

)
− ln

(∑m
i=1 e

η(hi(0)−Te⊤i A⊤x)
)

η

 (5)

Further, x∗ is the maximizer in the formula above.

Proof. For zero sum games in continuous time, we have that equation 3 becomes:

Rcont(x, h(0), T, A,−A) =

∫ T

0

∑m
i=1 e

η(hi(0)−e⊤i A⊤ ∫ t
0
x(s)ds) · e⊤i A⊤x(t)∑m

i=1 e
η(hi(0)−e⊤i A⊤

∫ t
0
x(s)ds)

dt (6)

Notice that
d

dt

(
eη(hi(0)−e⊤i A⊤ ∫ t

0
x(s)ds)

)
= eη(hi(0)−e⊤i A⊤ ∫ t

0
x(s)ds) · d

dt

(
ηhi(0)− η · e⊤i A⊤

∫ t

0

x(s)ds

)
From Leibniz rule we have that d

dt

∫ t

0
x(s)ds = x(t), thus we get:

d

dt

(
eη(hi(0)−e⊤i A⊤ ∫ t

0
x(s)ds)

)
= −eη(hi(0)−e⊤i A⊤ ∫ t

0
x(s)ds) · η · e⊤i A⊤x(t)

Given that, note that we can find a closed form solution for Rcont(x, h(0), T, A,−A) as follows:

Rcont(x, h(0), T, A,−A) =

[
−1

η
ln

(
m∑
i=1

eη(hi(0)−e⊤i A⊤ ∫ t
0
x(s)ds)

)]T
0

=
ln
(∑m

i=1 e
ηhi(0)

)
− ln

(∑m
i=1 e

η(hi(0)−e⊤i A⊤ ∫ T
0

x(s)ds)
)

η

Suppose the optimal rewards R∗
cont(h(0), T, A,−A) are achieved with xopt(t). Note that the final

reward only depends on
∫ T

0
x(s)ds, thus the same reward that is achieved by xopt(t), can be achieved

by x∗ = 1
T

∫ T

0
xopt(s)ds. Thus there exists a x∗ such that:

R∗
cont(h(0), T, A,−A) =

ln
(∑m

i=1 e
ηhi(0)

)
− ln

(∑m
i=1 e

η(hi(0)−e⊤i A⊤x∗T)
)

η
(7)

which is what we wanted.

5

38773 https://doi.org/10.52202/079017-1225

The optimal strategy x∗ for the optimizer in continuous zero-sum games can be therefore obtained by
finding the minimum of the convex function f(x) = ln

(∑m
i=1 e

η(hi(0)−e⊤i A⊤xT)
)

. We can compute
the optimal strategy of the optimizer in an efficient way using techniques from convex optimization.
More details can be found in the appendix at Proposition 5.

We further analyze how larger the optimal achievable reward is, compared to the naive bound of
T Val(A). We specifically show that always the optimal rewards of the optimizer are in the range
of [T Val(A), T Val(A) + log(m)/η], where m is the number of actions of the learner, showing the
optimizer can always get more utility than just the value of the game.

We also analyze what happens to the rewards of the optimizer as ηT →∞. First, let us define for
any optimizer’s strategy x, the set of all best-responses,

BR(x) = argmax
b∈B

x⊤Bb.

This defines a set, and if there are multiple maximizers, |BR(x)| > 1. We then have the following
proposition:
Proposition 1 (informal). The optimal reward for an optimizer playing against a learner that uses
the replicator dynamics with parameter η in an n×m game, is in the range [T Val(A), T Val(A) +
log(m)/η]. Further, as ηT →∞, this optimal utility is at least

T Val(A) +
log(m/k)

η
, where k = min

x∈∆(A) minmax strategy
|BR(x)| .

The proof of Proposition 1 can be found in Appendix B, Propositions 6 and 7. We note that the
limiting utility is obtained by playing constantly any minmax strategy x that attains the minimum in
the definition of k above.

Connection to optimal control and the Hamilton-Jacobi-Bellman equation. We will present
another way of achieving Theorem 1, using literature from control theory. One can view the problem
of maximizing the optimizer’s utilities as an optimal control problem; what control (or strategy)
should the optimizer use in order to maximize their utility given that the learner has some specific
dynamics that depend on the control of the optimizer? The Hamilton-Jacobi-Bellman equation [8]
gives us a partial differential equation (PDE) of R∗

cont(h, t, A,B) that if we solve, we can find a
closed form solution of the optimal utility of the optimizer. The equation (for general sum games):

−dR∗
cont(h, t, A,B)

dt
= max

x∈∆(A)

(∑m
i=1 e

ηhi · e⊤i A⊤x∑m
i=1 e

ηhi
+ (∇hR

∗
cont(h, t, A,B))

⊤ ·B⊤x

)
The intuition of the PDE is as follows; the current state of the learner can be defined given only
the history h of the sum of what the optimizer played so far, and the time left in the game t. Given
we are at a state h, t, the optimal rewards for the optimizer are going to be equal to the rewards
of playing action x ∈ ∆(A) for time ∆t added together with the optimal reward in the new state,
namely R∗

cont(h+ B⊤x∆t, t+∆t, A,B). Taking the limit as ∆t→ 0, gives us the above partial
differential equation.

Plugging in B = −A, for the case of zero-sum games, we get:

−dR∗
cont(h, t, A,−A)

dt
= max

x∈∆(A)

(∑m
i=1 e

ηhi · e⊤i A⊤x∑m
i=1 e

ηhi
− (∇hR

∗
cont(h, t, A,−A))

⊤ ·A⊤x

)
If one plugs in the formula we calculated in Theorem 1, they would find that indeed it is a solution to
the above PDE.

Discrete-time games. We now move to the discrete-time setting. The learner is assumed to be
playing the Multiplicative-Weights update algorithm, defined by:

yi(t) =
exp

(
η
∑t−1

s=0 x(s)
⊤Bei

)
∑m

j=1 exp
(
η
∑t−1

s=1 x(s)
⊤Bej

) , i = 1, 2, . . . ,m . (8)

We show that if the learner constantly plays the strategy x∗ that is optimal for continuous-time,
the obtained utility against MWU can only be higher, compared to playing against the Replicator
Dynamics in continuous-time, with the same step size η:

6

38774https://doi.org/10.52202/079017-1225

Proposition 2 (informal). Let A be a zero-sum game matrix and η > 0 and T ∈ N. Let x∗ ∈ ∆(A)
be the optimal strategy against the replicator dynamics, from Theorem 1. Then, the utility in the
discrete time, achieved by an optimizer which plays x(t) = x∗ for all t ∈ {1, . . . , T} against MWU
with parameter η, is at least the utility achieved in the continuous-time by playing x∗ against the
replicator dynamics with the same parameters η, T .

The proof can be found in Appendix B (Proposition 8).

Proposition 2 implies that Proposition 1 provides lower bounds on the achievable utility of this
constant discrete-time strategy. In order to further analyze its performance, we would like to ask how
much larger the discrete-time utility of the optimizer can be from the optimal continuous-time utility.
We include the following statement, which follows from a standard approach:

Proposition 3. Let T ∈ N and η > 0. For any zero-sum game whose utilities are bounded in [−1, 1],
the best discrete-time optimizer obtains a utility of at most ηT/2 more than the best continuous-time
optimizer. Further, there exists a game where the best discrete-time optimizer achieves a utility of
tanh(η)T/2 = (η −O(η2))T/2 more than the optimal continuous-time optimizer, and tanh(η)T/2
more than the discrete-time optimizer from Proposition 2.

The proof can be found in Appendix B (Propositions 9 and 10).

Proposition 3 implies that in some cases, the best discrete-time optimizer can gain T Val(A)+Ω(ηT).
We would like to understand in which games this is possible for any choice of η ∈ (0, 1). We provide
a definition that guarantees that this would be possible:

Condition 1. There exists a minmax strategy x for the optimizer such that there exist two best
responses for the learner, bi1 , bi2 ∈ BR(x), which do not coincide on support(x). Namely, there
exists an action ak ∈ support(x) such that a⊤k Abi1 ̸= a⊤k Abi2 .

To motivate Condition 1, notice that in order to achieve a gain of Ω(ηT) for any η, the discrete
optimizer has to be significantly better than the continuous-time optimizer. For that to happen the
learner would have to change actions frequently. Indeed, the difference between the discrete and
continuous learners is that the discrete learner is slower to change actions: they only change actions
at integer times, whereas the continuous learner could change actions at each real-valued time. In
order to change actions, they need to have at least two good actions, and this is what Assumption 1
guarantees. We derive the following statement:

Proposition 4. For any zero-sum game A ∈ Rn×m that satisfies Assumption 1, η ∈ (0, 1) and
T ∈ N, there exists an optimizer, such that against a learner that uses MWU with step size η, achieves
a utility of at least T Val(A) + Ω(ηT), where the constant possibly depends on A.

The proof can be found in Appendix B (Proposition 11).

Proposition 4 considers a strategy for the optimizer which takes the minmax strategy x from As-
sumption 1, and splits into two strategies: x′, x′′ ∈ ∆(A), such that (x′ + x′′)/2 = x. Further,
x′⊤Abi1 ̸= x′′⊤Abi2 , where bi1 , bi2 are defined in Assumption 1. It plays x′ in each odd round t, and
x′′ in each even round. It is possible to show that in each two consecutive iterations, the reward for
the optimizer is 2Val(A) + Ω(η). Summing over T/2 consecutive pairs yields the final bound.

3 A computational lower bound for optimization in general-sum games

In this section, we present the first limitation on optimizing against a mean-based learner. Specifically,
we study the algorithm which is termed Best-Response or Fictitious Play [10, 43]. At each time step
t = 1, . . . , T , this algorithm selects an action y(t) that maximizes the cumulative utility for rounds
1, . . . , t− 1:

y(t) = arg max
y∈∆(B)

t−1∑
s=1

x(s)⊤By (9)

There is always a maximizer which corresponds to a pure action bi ∈ B of the learner and we assume
that if there are ties, they are broken lexicographically. In this section, we constrain the optimizer to
also play pure actions.

7

38775 https://doi.org/10.52202/079017-1225

To put this algorithm in context, we note the following connections to general mean-based learners:
(1) mean-based learners are any algorithms which select an action y(t) that approximately maximizes
Eq. (9); (2) Best-Response is equivalent to MWU with η →∞.

We prove that there is no algorithm that approximates the optimal utility of the optimizer up to an
approximation factor of 1− ϵ, whose runtime is polynomial in n,m, T and 1/ϵ, as exemplified by
the following (informal) Theorem:

Theorem 2 (informal). Let Alg be an algorithm that receives parameters ϵ > 0, m,n, T ∈ N
and utility matrices A,B of dimension m× n and entries in [0, 1], and outputs a control sequence
x(1), . . . , x(T) ∈ A. Let U denote the utility attained by the learner and let U∗ denote the optimal
possible utility. If U ≥ (1− ϵ)U∗ for any instance of the problem, and if P ̸= NP, then Alg is not
polynomial-time in m,n, T and 1/ϵ.

A sketch of the proof can be found below, and a full proof can be found in the Appendix C. The
proof is obtained via a reduction from the Hamiltonian cycle problem. We note two limitations of this
result: (1) The lower bound is for T = n/2 + 1, and it shows hardness in distinguishing between the
case that the optimal reward is T and the case that the optimal reward is at most T − 1. It is still open
whether one could efficiently find a sequence that optimizes the reward up to o(T); (2) fictitious-play
is a fundamental online learning algorithm. Yet, it does not possess the no-regret guarantee. It is still
open whether one could obtain maximal utility against no-regret learners such as MWU with a small
step size.

We continue by framing the problem of maximizing rewards against a Best-Response learner as a
decision problem, called OCDP:

Problem 1 (Optimal Control Discrete Pure (OCDP)). An OCDP instance is defined by
(A,B, n,m, k, T), where n,m, k, T ∈ N, A ∈ {0, 1}n×m and B ∈ [0, 1]n×m. The numbers n
and m correspond to the actions of the optimizer and learner in a game, where A is the utility matrix
of the optimizer and B is the utility matrix of the learner. This instance is a ’YES’ instance if the
optimizer can achieve utility at least k after playing the game for T rounds with a learner that uses
the Best Response Algorithm (Eq. (9)), and ’NO’ if otherwise.

We will prove that OCDP is NP-hard, using a reduction from the Hamiltonian cycle problem.

Problem 2 (Hamiltonian cycle). Given a directed graph G(V,E), find whether there exists a
Hamiltonian cycle, i.e. a cycle that starts from any vertex, visits every vertex exactly once and closes
at the same vertex where it started.

It is a known theorem that the Hamiltonian Cycle is an NP-complete problem, as it is one of Karp’s
21 initial NP-Complete problems.

Theorem 3 ([33]). Hamiltonian Cycle is NP-complete.

We conclude with the main result of this section, followed by a proof sketch. The full proof appears
in Section C.

Theorem 4. OCDP is NP-hard. That is, if P ̸= NP, there exists no algorithm that runs in polynomial
time in n,m and k which distinguishes between the case that a reward of k is achievable and the
case that it is impossible to obtain reward more than k − 1.

Proof sketch. Consider an instance of the Hamiltonian cycle problem: πH = (V,E), where V =
{v1, . . . , vn}, E = {e1, . . . , em}. We create an instance of OCDP as follows. First, set T = k =
n+ 1. We will construct the instance such that the optimizer can receive reward n+ 1 if and only if
there is a Hamiltonian cycle in the graph. Define the optimizer’s actions to be {a1, . . . , am}, and the
learner’s actions to be {b1, . . . , bn, b′1, . . . , b′n}. Namely, for each node vi of the graph, the learner
has two associated actions, bi and b′i. The details in the sketch differ slightly from the proof for clarity.
The reduction is constructed to satisfy the following properties:

• The only way for the optimizer to receive maximal utility, is to play a strategy as follows:
the first n actions should correspond to edges ei1 − ei2 − · · · − ein that form a Hamiltonian
cycle which starts and ends at the vertex v1; and the last action corresponds to ein+1

which
is an outgoing edge from v1.

8

38776https://doi.org/10.52202/079017-1225

• We define the utility matrix for the learner such that, if the optimizer is playing according
to this strategy, then the learner’s actions will correspond to the vertices of the same cycle,
denoted as vj1 − · · · − vjn − vj1 . This is achieved by defining the learner’s tie-breaking rule
to play a1 in the first round; and defining the learner’s utilities such that, if the optimizer
has played in rounds 1, . . . , t − 1 the edges along a path vj1 − · · · − vjt , then the best
response for the learner at time t would be to play ajt . To achieve this, we define for any
edge ek = (vp, vq): B[ak, bp] = −1, B[ak, bq] = 1 and B[ak, b] = 0 for any other action b.
Consequently, after observing the edges along bj1 − · · · − bjt , the cumulative reward for the
learner would be 1 for bjt , −1 for bj1 and 0 for any other bj . Consequently, the learner will
best respond with bjt — we ignore the actions b′1, . . . , b

′
n of the learner at the moment.

• In order to guarantee that the above optimizer’s strategy yields a utility of n+1, we define the
optimizer’s utility such that A[ek, bp] = 1 if ek = (vp, vq) and for all q ̸= p A[ek, bq] = 0.
This will also force the optimizer to play edges that form a path. Indeed, if the optimizer
has previously played the edges along a path vj1 − · · · − vjt , then, as we discussed, the
learner will play bit in the next round. For the optimizer to gain a reward at the next round,
they must play an edge outgoing from ajt . This preserves the property that the optimizer’s
actions form a path.

• Next, we would like to guarantee that the optimizer’s actions align with a Hamiltonian cycle.
Therefore, we need to ensure that the path played by the optimizer does not close too early.
Namely, if the learner has played the edges along the path vj1 − · · · − vjt and if t < n, then
j1, . . . , jt are all distinct. For this purpose, the actions v′1, . . . , v

′
n are defined. We define for

any edge ek = (vi, vj): B[ak, b
′
i] = 0.85. This will prevent the optimizer from playing the

same vertex twice, for any round t = 1, . . . , n (recall that there are T = n+ 1 rounds), as
argued below.

Assume for the sake of contradiction that the first time the same vertex is visited is at t,
where jt = jr for some r < t ≤ n. Then, the cumulative utility of action b′jr for rounds
1, . . . , t is 1.7, which is larger than any other action. This implies that at the next round, the
learner will play action b′jr . We define the utility for the optimizer to be zero against any
action b′j . Hence, any scenario where the learner plays an action b′j , prevents the optimizer
from receiving a utility of n + 1. This happens whenever it = ij for some j < t ≤ n.
Hence, an optimizer that receives a reward of 1 at any round must play a path that does not
visit the same vertex twice, in rounds t = 1, . . . , n.

• Lastly, notice that we do want the optimizer to play the same vertex a1 twice, at rounds 1
and n+ 1. This does not prevent the optimizer from receiving optimal utility. Indeed, if the
optimizer would play the action a1 twice, then the learner would play b′1 at the next round.
Yet, since there are only n+ 1 rounds, there is no “next round” and no reward is lost. The
details that force the learner to play b1 in round n+ 1 appear in the full version of the proof.

The above explanation sketches why it is possible to get n + 1 reward if and only if there is a
Hamiltonian cycle and this concludes the reduction.

4 Conclusion and future directions

In this paper we studied how an optimizer should play in a two-player repeated game knowing that the
other agent is a learner that is using a known mean-based algorithm. In zero-sum games we showed
how they can gain optimal utility against the Replicator Dynamics and we further analyzed the utility
that they could gain against MWU. In general sum games, we showed the first computational hardness
result on optimizing against a mean-based learner, by reduction from Hamiltonian Cycle.

One interesting problem that remains is the open is analyzing the optimal reward in general sum
games against the Replicator Dynamics (or the MWU), which was denoted as R∗

cont(0, T, A,B).
In the fully general case with no restriction on the utility matrices A and B, we believe there is no
closed form solution for the optimal utility, differently from the zero-sum case. However, it would
be interesting to understand how R∗

cont(0, T, A,B) behaves as a function of A and B and how the
best strategy for the optimizer looks like. A conjecture in this direction was given by Deng et al.
[24]. Perhaps it would be easier to study simpler scenarios, such as the one where rank(A+B) = 1,

9

38777 https://doi.org/10.52202/079017-1225

which has been explored in the context of computing equilibria and the convergence of learning
algorithms to them ([1], [3]). Another direction is improving on the lower bound for general sum
games. Currently, we prove that it is hard to distinguish between the case where the optimizer can
achieve reward α = T and the case where the optimizer cannot achieve more than β = T − 1. Is it
also hard to distinguish between a reward of at least α or at most β in cases where α− β = Ω(T)?
Are there lower bounds when the learner uses different learning algorithms, such as MWU? Other
relevant open directions are extensions to multi-agent settings [13], analyzing how the learner’s utility
is impacted by interaction with the optimizer in general-sum games [30], which learning algorithms
yield higher utilities against an optimizer, and what algorithms should be used to both learn and
optimize at the same time?

Societal impact. The work studies multi-agent environments and how agents can benefit by
anticipating the behavior of other agents. We believe that increasing the academic knowledge in this
topic can help learning agents assess their risk of being utilized by other agents and can help to build
algorithms that are more resilient to manipulation. As always with new technologies, there is a risk
that malicious players will utilize ideas from this paper, which could cause a harmful effect on other
agents.

10

38778https://doi.org/10.52202/079017-1225

References
[1] Bharat Adsul, Jugal Garg, Ruta Mehta, Milind Sohoni, and Bernhard Von Stengel. Fast

algorithms for rank-1 bimatrix games. Operations Research, 69(2):613–631, 2021.

[2] Ioannis Anagnostides, Constantinos Daskalakis, Gabriele Farina, Maxwell Fishelson, Noah
Golowich, and Tuomas Sandholm. Near-optimal no-regret learning for correlated equilibria in
multi-player general-sum games. In ACM Symposium on Theory of Computing, 2022.

[3] Ioannis Anagnostides, Gabriele Farina, Ioannis Panageas, and Tuomas Sandholm. Optimistic
mirror descent either converges to nash or to strong coarse correlated equilibria in bimatrix
games. Advances in Neural Information Processing Systems, 35:16439–16454, 2022.

[4] Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-iterate
convergence beyond zero-sum games. In International Conference on Machine Learning, 2022.

[5] Eshwar Ram Arunachaleswaran, Natalie Collina, and Jon Schneider. Pareto-optimal algorithms
for learning in games. arXiv preprint arXiv:2402.09549, 2024.

[6] Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D. Procaccia. Commitment
without regrets: Online learning in stackelberg security games. In Proceedings of the Sixteenth
ACM Conference on Economics and Computation, pages 61–78, 2015.

[7] Amir Beck. First-order methods in optimization. SIAM, 2017.

[8] Richard Bellman. Dynamic programming and a new formalism in the calculus of variations.
Proceedings of the national academy of sciences, 40(4):231–235, 1954.

[9] Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a no-regret buyer.
In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 523–538,
2018.

[10] George W Brown. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation, 13
(1):374, 1951.

[11] William Brown, Jon Schneider, and Kiran Vodrahalli. Is learning in games good for the learners?
Advances in Neural Information Processing Systems, 36, 2024.

[12] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[13] Linda Cai, S Matthew Weinberg, Evan Wildenhain, and Shirley Zhang. Selling to multiple
no-regret buyers. In International Conference on Web and Internet Economics, pages 113–129.
Springer, 2023.

[14] Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello. Artificial
intelligence, algorithmic pricing, and collusion. American Economic Review, 110(10):3267–
3297, 2020.

[15] Nicolo Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regression. In
Proceedings of the tenth annual conference on Computational learning theory, pages 163–170,
1997.

[16] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[17] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E Schapire, and
Manfred K Warmuth. How to use expert advice. Journal of the ACM (JACM), 44(3):427–485,
1997.

[18] Yiling Chen and Tao Lin. Persuading a behavioral agent: Approximately best responding and
learning. arXiv preprint arXiv:2302.03719, 2023.

[19] Yiling Chen and Tao Lin. Persuading a behavioral agent: Approximately best responding and
learning. arXiv preprint arXiv:2302.03719, 2023.

11

38779 https://doi.org/10.52202/079017-1225

[20] Natalie Collina, Eshwar Ram Arunachaleswaran, and Michael Kearns. Efficient stackelberg
strategies for finitely repeated games. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pages 643–651, 2023.

[21] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM Conference on Electronic Commerce, pages 82–90, 2006.

[22] Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret
learning in general games. Advances in Neural Information Processing Systems, 34:27604–
27616, 2021.

[23] Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Prior-free dynamic auctions with low
regret buyers. Advances in Neural Information Processing Systems, 32, 2019.

[24] Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Strategizing against no-regret learners.
Advances in neural information processing systems, 32, 2019.

[25] Heng Du and Tiaojun Xiao. Pricing strategies for competing adaptive retailers facing complex
consumer behavior: Agent-based model. International Journal of Information Technology &
Decision Making, 18(06):1909–1939, 2019.

[26] Gabriele Farina, Ioannis Anagnostides, Haipeng Luo, Chung-Wei Lee, Christian Kroer, and
Tuomas Sandholm. Near-optimal no-regret learning dynamics for general convex games. In
Neural Information Processing Systems (NeurIPS), 2022.

[27] S. Freund and L. Gittins. Strategic learning and teaching in games. Econometrica, 66(3):
597–625, 1998.

[28] Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight lower bounds for multiplicative
weights algorithmic families. In 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2017.

[29] Xinxiang Guo and Yifen Mu. The optimal strategy against hedge algorithm in repeated games.
arXiv preprint arXiv:2312.09472, 2023.

[30] Guru Guruganesh, Yoav Kolumbus, Jon Schneider, Inbal Talgam-Cohen, Emmanouil-Vasileios
Vlatakis-Gkaragkounis, Joshua R Wang, and S Matthew Weinberg. Contracting with a learning
agent. arXiv preprint arXiv:2401.16198, 2024.

[31] Nika Haghtalab, Thodoris Lykouris, Sloan Nietert, and Alexander Wei. Learning in stackelberg
games with non-myopic agents. In Proceedings of the 23rd ACM Conference on Economics
and Computation, pages 917–918, 2022.

[32] David Haussler, Jyrki Kivinen, and Manfred K Warmuth. Tight worst-case loss bounds for
predicting with expert advice. In European Conference on Computational Learning Theory,
pages 69–83. Springer, 1995.

[33] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

[34] Yoav Kolumbus and Noam Nisan. Auctions between regret-minimizing agents. In Proceedings
of the ACM Web Conference 2022, pages 100–111, 2022.

[35] Yoav Kolumbus and Noam Nisan. How and why to manipulate your own agent: On the
incentives of users of learning agents. In Advances in Neural Information Processing Systems,
volume 35, pages 28080–28094, 2022.

[36] Niklas Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Yagiz Savas, and Ufuk Topcu. No-regret
learning in dynamic stackelberg games. In arXiv preprint arXiv:2203.17184, 2022.

[37] Yishay Mansour, Mehryar Mohri, Jon Schneider, and Balasubramanian Sivan. Strategizing
against learners in bayesian games. In Conference on Learning Theory, pages 5221–5252.
PMLR, 2022.

12

38780https://doi.org/10.52202/079017-1225

[38] Janusz Marecki, Gerry Tesauro, and Richard Segal. Playing repeated stackelberg games with
unknown opponents. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, pages 821–828, 2012.

[39] Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. Econometrics for learning agents. In
Proceedings of the sixteenth acm conference on economics and computation, pages 1–18, 2015.

[40] Gali Noti and Vasilis Syrgkanis. Bid prediction in repeated auctions with learning. In Proceed-
ings of the Web Conference 2021, pages 3953–3964, 2021.

[41] Binghui Peng, Weiran Shen, Pingzhong Tang, and Song Zuo. Learning optimal strategies to
commit to. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
2149–2156, 2019.

[42] Georgios Piliouras, Ryann Sim, and Stratis Skoulakis. Beyond time-average convergence: Near-
optimal uncoupled online learning via clairvoyant multiplicative weights update. Advances in
Neural Information Processing Systems, 35:22258–22269, 2022.

[43] Julia Robinson. An iterative method of solving a game. Annals of mathematics, pages 296–301,
1951.

[44] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence
of regularized learning in games. In Advances in Neural Information Processing Systems,
volume 28, 2015.

[45] J. Youn. Learning algorithms in games. Journal of Game Theory, 56(2):123–134, 2004.

[46] Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus
McAleer, Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas
Sandholm. Computing optimal equilibria and mechanisms via learning in zero-sum extensive-
form games. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

13

38781 https://doi.org/10.52202/079017-1225

A Additional Definitions

We introduce the following definitions that will help us in the future proofs.

Definition 2 (Historical Rewards for the learner). The historical rewards for the learner in continuous
games at time t, denoted by h(t) ∈ Rm, is an m dimensional vector that corresponds to the sum of
rewards achieved by each action of the learner against the history of play in the game so far. We
assume a general setting where the learner at t = 0 might have non-zero historical rewards, i.e.
h(0) ∈ Rm. If the strategy of the optimizer is x : [0, t]→ ∆(A) we get:

h(t) = h(0) +

∫ t

0

B⊤x(t)dt

In the discrete setting, given that the optimizer has played x0, x1, . . . , xt−1 ∈ ∆(A), we have for
t ≥ 1:

h(t) = h(0) +

t−1∑
i=0

B⊤xi

Definition 3 (Value of the game). In a zero sum case, where B = −A we define the value of the
game for the optimizer as Val(A):

Val(A) = min
y∈∆(B)

max
x∈∆(A)

x⊤Ay

Definition 4 (Best Response Set). For a given strategy of the optimizer x ∈ ∆(A), denote by BR(x)
the set of best responses by the learner:

BR(x) =
{
ei|i ∈ argmini∈[m]

[
x⊤Aei

]}
Definition 5 (Min-max strategies). Denote with MinMaxStratsopt(A) the set of strategies of the
optimizer that achieve the value of the game.

MinMaxStratsopt(A) =

{
x ∈ ∆(A)

∣∣∣∣ Val(A) = min
i∈[m]

x⊤Aei

}
A.1 Algorithms for the learner

For completeness, we provide pseudocode for the algorithms.

Definition 6 (MWU Algorithm). Fix the step size 0 ≤ η ≤ 1
2 . In a game where the utility matrix of

the learner isB, the MWU algorithm is as follows:

Algorithm 1 MWU algorithm
1: procedure MWU(B, T, η)
2: h(t) = (0, 0, . . . , 0)⊤

3: for t = 1, 2, . . . , T do
4: y ←

(
eη·h1(t)∑m
i=1 eη·hi(t)

, . . . , eη·hm(t)∑m
i=1 eη·hi(t)

)
5: Submit y
6: Observe xt

7: h(t+ 1) = h(t) +B⊤x
8: end for
9: end procedure

Definition 7 (Replicator Dynamics). Suppose x : [0, T]→ ∆(A) is a strategy for the optimizer. If
the learner is using the replicator dynamics, the strategy for the learner at time t is given by:

yi(t) =
exp

(
η
∫ t

0
x(s)⊤Bei

)
∑n

j=1 exp
(
η
∫ t

0
x(s)⊤Bej

) , i = 1, 2, . . . ,m . (10)

14

38782https://doi.org/10.52202/079017-1225

Definition 8 (Best Response Algorithm). In a game where the utility matrix of the learner is B, the
best response algorithm is as follows, assuming we break ties lexicographically (i.e. if hi(t) = hj(t),
then bi beats bj if i < j):

Algorithm 2 Best Response algorithm
1: procedure BRA(B, T)
2: h(0) = (0, 0, . . . , 0)⊤

3: for t = 0, 1, . . . , T − 1 do
4: y ← bargmaxi∈[m] hi(t)

5: Submit y
6: Observe xt

7: h(t+ 1) = h(t) +B⊤x
8: end for
9: end procedure

B Optimization in zero-sum games: missing proofs

In this section, we present some ommited proofs of lemmas mentioned in the main section.

B.1 Continuous games

First, we prove that the optimal strategy for the optimizer in continuous games can be computed
efficiently. From theorem 1 we know that the optimal strategy for the optimizer throughout the game,
is just x(t) = x∗, where x∗ minimizes f(x):

f(x) = ln

(
m∑
i=1

eη(hi(0)−Te⊤i A⊤x)

)
The above is also known as the log-sum-exp function. This is a convex function, which allows us to
compute its minima efficiently. We use the following two lemmas.
Lemma 1 (Example 5.15 [7]). The log-sum-exp function f : Rn → R, for which f(x) =
ln (
∑m

i=1 e
xi), is 1-smooth with respect to the ℓ2, ℓ∞ norms and convex.

Lemma 2 (Theorem 3.8, [12]). For a function f : X → R that is convex and β-smooth with respect
to a norm ∥·∥ and where R = supx,y∥x− y∥, the Frank-Wolfe algorithm can find xt on O(t) time
for which:

f(xt)− f(x∗) ≤ 2βR2

t+ 1

We can therefore compute the approximate optimal strategy for the optimizer efficiently:
Proposition 5. For zero sum continuous games where the learner is using replicator dynamics, we
can find an ϵ approximate optimal strategy for the optimizer in O(1

ϵη) time. That is we can find x for
which:

R∗
cont(0, T, A,−A)−Rcont(x,0, T, A,−A) ≤ ϵ

Proof. Consider the function g(x) = ln
(∑m

i=1 e
η(hi(0)−e⊤i A⊤xT)

)
. From 1, we also know that g

is 1−smooth with respect to the ℓ∞ norm. Note that since the strategies are on the simplex, we
have that R = supx,y∥x − y∥ = 1. Using lemma 2, with t = 2

ϵη − 1 we can find x for which
g(x)− g(x∗) ≤ ϵη. Using theorem 1, we get:

R∗
cont(0, T, A,−A)−Rcont(x,0, T, A,−A) =

g(x)− g(x∗)

η
≤ ϵ

as required.

Next, we bound the range of the possibilities for the utility gained by the best optimizer:

15

38783 https://doi.org/10.52202/079017-1225

Proposition 6. In the zero-sum continuous setting, the optimizer’s optimal utility is bounded as
follows:

Val(A) · T ≤ R∗
cont(0, T, A,−A) ≤ Val(A) · T +

lnm

η
(11)

where Val(A) is as defined in 3.

Proof. We have:

R∗
cont(0, T, A,−A) =

1

η

(
ln (m)−min

x
ln

(
m∑
i=1

e−η·e⊤i A⊤xT

))
=

=
1

η

(
ln (m)− min

x∈∆(A)
max

j∈{1,2,...,m}
ln

(
e−ηe⊤j A⊤xT

m∑
i=1

eη(e
⊤
j −e⊤i)A⊤xT

))
=

=
1

η

(
ln (m)− min

x∈∆(A)
max

j∈{1,2,...,m}

(
−ηe⊤j A⊤xT + ln

(
m∑
i=1

eη(e
⊤
j −e⊤i)A⊤xT

)))
=

=
1

η

(
ln (m) + max

x∈∆(A)
min

j∈{1,2,...,m}

(
ηe⊤j A

⊤xT − ln

(
m∑
i=1

eη(e
⊤
j −e⊤i)A⊤xT

)))

Note that picking out the j for which e⊤j A
⊤x ≤ e⊤i A

⊤x for all i ∈ [m], makes eη(e
⊤
j −e⊤i)A⊤xT ≤

1 for all i = 1, 2, . . . ,m. On the other hand eη(e
⊤
j −e⊤j)A⊤xT = 1 . That gives ln 1 = 0 ≤

ln
(∑m

i=1 e
η(e⊤j −e⊤i)A⊤xT

)
≤ lnm. We finally have:

max
x∈∆(A)

min
j∈{1,2,...,m}

e⊤j A
⊤xT ≤ R∗

cont(0, T, A,−A) ≤ max
x∈∆(A)

min
j∈{1,2,...,m}

e⊤j A
⊤xT+

lnm

η
(12)

which is exactly what we want.

If we take the limit of the game as ηT goes to infinity, we can lower bound the optimal rewards of the
optimizer by considering a strategy from the set MinMaxStrats(A) as defined in 5, that has the least
number of best responses.

Proposition 7. As ηT →∞,

R∗
cont(0, T, A,−A)

≥ Val(A) · T +
1

η

(
ln(m)− ln

(
min

x∗∈MinMaxStratsopt(A)
|BR(x∗)|

)
(1 + oηT (1))

)
,

where oηT (1) denotes a terms that decays to 0 as ηT →∞, and BR(x) is the set of best responses
of a strategy x of the optmizer as defined in 4.

Proof. Fix some x ∈ ∆(A). Note that from Theorem 6 we have:

R∗
cont(0, T, A,−A) ≥ ln (m)

η
+

(
e⊤j A

⊤xT − 1

η
ln

(
m∑
i=1

eη(e
⊤
j −e⊤i)A⊤xT

))

for any j ∈ [m]. Choose j ∈ BR(x) (thus it minimizes e⊤j A
⊤x). Denote with di(j, x) = (ej −

ei)
⊤A⊤x. Note that for all i ∈ [m]/BR(x) we have di(j, x) = 0 and for i ̸∈ BR(x) we have

16

38784https://doi.org/10.52202/079017-1225

di(j, x) < 0. We can rewrite this as:

R∗
cont(0, T, A,−A)

≥ ln (m)

η
+

e⊤j A
⊤xT − 1

η
ln

|BR(x)|+ ∑
i∈[m]/BR(x)

eηT ·di(j,x)


=

ln (m)

η
+

+

(
e⊤j A

⊤xT − 1

η
ln (|BR(x)|) + 1

η
ln

(
1 +

∑
i∈[m]/BR(x) e

ηT ·di(j,x)

|BR(x)|

))
=

=
ln (m)

η
+

+

e⊤j A
⊤xT − 1

η
ln (|BR(x)|)

1 +

ln

(
1 +

∑
i∈[m]/BR(x) e

ηT ·di(j,x)

|BR(x)|

)
ln(|BR(x)|)




Note that as ηT →∞, the term
ln

(
1+

∑
i∈[m]/BR(x) eηT ·di(j,x)

|BR(x)|

)
ln(|BR(x)|) goes to 0, as di(j, x) < 0. Therefore

this gives :

R∗
cont(0, T, A,−A) ≥ ln (m)

η
+

(
e⊤j A

⊤xT − 1

η
ln(|BR(x)|)(1 + oηT (1))

)
Choosing x ∈ MinMaxStratsopt(A) that minimizes |BR(x)| yields the desired result.

Below we provide an example of a game with multiple min-max strategies for the optimizer, however
only one of them gives optimal rewards when used against MWU.

Example 1. Consider the zero sum game where:

A =

b1 b2 b3 . . . bn bn+1 bn+2 bn+3

a1 n 0 0 . . . 0 n n 1
a2 0 n 0 . . . 0 n n 1
a3 0 0 n . . . 0 n n 1
...

...
...

... . . .
...

...
...

...
an 0 0 0 . . . n n n 1

an+1 n n n . . . n 2 0 1
an+2 n n n . . . n 0 2 1

Notice that the Val(A) = 1, and there are multiple strategies that achieve this result, that might have
a different number of best responses. For example x1 = (1n ,

1
n , . . . ,

1
n , 0, 0) has n+1 best responses;

BR(x1) = {b1, b2, . . . , bn+3). One of the strategies that achieves the value of the game with the
least number of best responses is x∗ = (0, 0, . . . , 1

2 ,
1
2 , 0) that has only 1 best response, namely

BR(x∗) = {bn+3}. For this game playing x∗ as ηT →∞ yields R∗
cont(0, 0, A,−A) = T + ln(n+3)

η

B.2 Discrete Case

We can have the analogous definitions of optimal rewards for the optimizer for the discrete case.
Given the sequence of actions of the optimizer given by x : {1, . . . , T} → ∆(A), we can define:

Rdisc(x, h(0), T, A,B) =

T∑
t=1

∑m
i=1 e

η(hi(0)+e⊤i B⊤∑t
s=1 x(s)) · e⊤i A⊤x(t)∑m

i=1 e
η(hi(0)+e⊤i B⊤∑t

s=1 x(s))
(13)

17

38785 https://doi.org/10.52202/079017-1225

Again, we are interested in finding the sequence of actions that maximize the rewards:

R∗
disc(h(0), T, A,B) = max

x(t)
0≤t≤T

T∑
t=1

∑m
i=1 e

η(hi(0)+e⊤i B⊤∑t
s=1 x(s)) · e⊤i A⊤x(t)∑m

i=1 e
η(hi(0)+e⊤i B⊤∑t

s=1 x(s))
(14)

We begin by proving that the rewards for the discrete game will always be more than the rewards for
the analogous continuous game.
Proposition 8. In the zero-sum discrete game, the optimizer can receive more utility compared to
the continuous game. This can be done by playing discretely the same optimal strategy x∗ for the
continuous game (as defined in Theorem 1). Consequently,

R∗
disc(0, T, A,−A) ≥ R∗

cont(0, T, A,−A) (15)

Proof. From Theorem 1 we know that R∗
cont(0, 0, A,−A) is achieved by a constant strategy x∗ for

the optimizer throughout the game. We will prove that using that same strategy x∗ will yield more
reward for the discrete case than the continuous case, i.e.:

R∗
disc(0, 0, A,−A) ≥

T−1∑
t=0

∑m
i=1 e

−ηe⊤i A⊤x∗t · e⊤i A⊤x∗∑m
i=1 e

−ηe⊤i A⊤x∗t

≥
∫ T

t=0

∑m
i=1 e

−ηe⊤i A⊤x∗t · e⊤i A⊤x∗∑m
i=1 e

−ηe⊤i A⊤x∗t
dt = R∗

cont(0, 0, A,−A)

All we need for the above to be true is that the function f(t) =
∑m

i=1 e−ηe⊤i A⊤x∗t·e⊤i A⊤x∗∑m
i=1 e−ηe⊤

i
A⊤x∗t

=

1
η

∑m
i=1 e−cit·ci∑m
i=1 e−cit

is non-increasing. This is because Rdisc(0, 0, A,−A) − Rcont(0, 0, A,−A) =∑T−1
t=0 f(t)−

∫ T

0
f(t)dt =

∑T−1
t=0

(
f(t)−

∫ t+1

t
f(s)ds

)
, so by proving f is non-increasing we can

prove f(t) ≥
∫ t+1

t
f(s)ds. Therefore, all we are left with is showing that df(t)

dt < 0 for all t ≥ 0.
Notice that:

f ′(t) = −1

η

(∑m
i=1 e

−cit · c2i∑m
i=1 e

−cit
+

(∑m
i=1 e

−cit · ci∑m
i=1 e

−cit

)2
)

< 0 (16)

which concludes the proof.

We continue by proving that there are instances of discrete games, that achieve reward for the
optimizer approximately ηT

2 more than the analogous continuous game in Theorem 9. We also prove
that this difference between rewards in continuous and discrete games cannot be greater than ηT

2 in
Theorem 10.
Proposition 9. There is a zero sum game instance for which we have that

R∗
disc(0, T, A,−A) ≥ R∗

cont(0, T, A,−A) +
tanh (η) · T

2

The above is achieved by taking the optimal strategy x∗ for the continuous game (as defined in 1) and
playing it over discrete time.

Proof. Consider the matching pennies problem, where the utility matrices are:

A =
b1 b2

a1 1 −1
a2 −1 1

, B =
b1 b2

a1 −1 1
a2 1 −1

Note that Val(A) = 0, and MinMaxStratsopt(A) = {(12 ,
1
2)}, and |BR((12 ,

1
2))| = 2. This gives

R∗
cont(0, T, A,−A) = 0. On the other hand, consider the sequence of actions of the optimizer for

the discrete game to be as follows:

x(t) =

{
a2, if t is odd
a1, otherwise

18

38786https://doi.org/10.52202/079017-1225

We claim that at round t where t is odd, the learner will play (12 ,
1
2), while when t is even, the learner

will play (eη

eη+e−η ,
e−η

eη+e−η). Indeed, at t = 1, 3, 5, . . . , the optimizer will have played equal times
the action a1 and a2, thus the rewards for actions b1 and b2 so far will be equal, leading the learner
to play (12 ,

1
2). When t is even, action a2 has been played one more time than a1 is played. That

means that at time t for b1 the historical reward is 1 , while the historical reward for b2 is −1. Thus
the strategy for the learner for even t will indeed be (eη

eη+e−η ,
e−η

eη+e−η). Therefore the optimizer’s
reward will be:

Rdisc(x(t),0, T, A,−A) =
T

2
· [0 1]

[
1 −1
−1 1

] [
1
2
1
2

]
+

T

2
·
[

eη

eη+e−η
e−η

eη+e−η

] [
1 −1
−1 1

] [
1
0

]
=

(17)

= 0 +
T

2

(
eη

eη + e−η
− e−η

eη + e−η

)
=

T

2
· tanh (η) ≈ ηT

2
(18)

Combining the two gives the desired result.

Proposition 10. In a zero-sum game where the entries of A satisfy Aij ∈ [−1, 1], we have that the
optimal utility the optimizer can achieve in the discrete game is not more than ηT/2 compared to the
continuous game:

R∗
disc(0, T, A,−A)−R∗

cont(0, T, A,−A) ≤ ηT/2 .

Proof. Suppose the optimal strategy for the discrete game is xdisc. We will construct a strategy xcont

for the continuous game, that approximates the utility of the discrete game pretty well. The strategy
is as follows; if xdisc(t) = xt ∈ ∆(A), then xcont(s) = xt,∀a ∈ [t, t+ 1). Note that the historical
rewards of the learner for t = 0, 1, 2, . . . , T − 1 are the same for both the continuous and the discrete
game for these specific strategies. Suppose the history at time t is h(t), the strategy being played at
time t be x, and ui = e⊤i A

⊤x. We have:

R∗
disc(h(t), 1, A,−A) =

∑m
i=1 e

ηhi(t)ui∑m
i=1 e

ηhi(t)

We also have:

R∗
cont(h(t), 1, A,−A) =

∫ 1

0

∑m
i=1 e

ηhi(t)−ηuit · ui∑m
i=1 e

ηhi(t)−ηuit
dt (19)

Denote by f(t) =
∑m

i=1 eηhi(t)−ηuit·ui∑m
i=1 eηhi(t)−ηuit

. Then,

R∗
disc(h(t), 1, A,−A) = f(0),

whereas

R∗
cont(h(t), 1, A,−A) =

∫ 1

0

f(t)dt . (20)

Note that:

f ′(t) =
−η
∑m

i=1 e
ηhi(t)−ηuit · u2

i∑m
i=1 e

ηhi(t)−ηuit
+

η
(∑m

i=1 e
ηhi(t)−ηuit · ui

)2(∑m
i=1 e

ηhi(t)−ηuit
)2 .

Since ui’s are bounded by in [−1, 1], we get that f ′(t) ≥ −η. Hence f(t) ≥ f(0)−ηt, consequently,

R∗
cont(h(t), 1, A,−A) =

∫ 1

0

f(t)dt ≥
∫ 1

0

(f(0)− ηt)dt = f(0)− η

2
.

Therefore summing up for all t = 0, 1, . . . , T − 1:

R∗
disc(0, T, A,−A)−R∗

cont(0, T, A,−A) ≤ ηT/2

We conclude with the last proposition of this section which states that in games that satisfy the
following Condition, we get that the optimizer can achieve reward at least T Val(A)+Ω(ηT) against
a MWU learner.

19

38787 https://doi.org/10.52202/079017-1225

Condition 2. There exists a minmax strategy x for the optimizer such that there exists two best
responses for the learner, bi1 , bi2 ∈ BR(x), which do not identify on support(x). Namely, there
exists an action ak ∈ support(x) such that a⊤k Abi1 ̸= a⊤k Abi2 .
Proposition 11. For any zero-sum game A ∈ Rn×n that satisfies Condition 1, η ∈ (0, 1) and T ∈ N,
there exists an optimizer, such that against a learner that uses MWU with step size η, achieves a
utility of at least

T Val(A) + CAηT,
where CA is a constant that depends only on the game matrix A.

Proof. Let x, bi1 , bi2 , ak be the strategies and actions guaranteed from Condition 1. Since bi1
and bi2 are both best responses for x, x⊤Aei1 = x⊤Aei2 . By the Condition that there exists an
action ak ∈ support(x) such that e⊤k Aei1 ̸= e⊤k Aei2 , it follows that there exists two strategies
x′, x′′ ∈ ∆(A) such that (x′ + x′′)/2 = x, x′⊤Aei1 > x′⊤Aei2 and x′′⊤Aei1 < x′′⊤Aei2 . We
propose the following strategy for the learner: at any odd time t, play x′ and at any even time t, play
x′′. We will prove that in iterations t and t+1 the reward of the optimizer is at least 2Val(A)+CAη
by playing as described. Therefore, if we just sum up over all t, we will get the desired result. Now,
fix some odd t, and we will lower bound the sum of utilities of the optimizer in iterations t and t+ 1:

x(t)⊤Ay(t) + x(t+ 1)⊤Ay(t+ 1) = x′⊤Ay(t) + x′′⊤Ay(t+ 1)

Denote ui = x′⊤Aei and vi = x′′⊤Aei, then

x′⊤Ay(t) + x′′⊤Ay(t+ 1) =

n∑
i=1

uiyi(t) +

n∑
i=1

viyi(t+ 1) .

Notice that

yi(t+ 1) =
yi(t)e

−ηx′⊤Abi∑n
j=1 yj(t)e

−ηx′⊤Abj
=

yi(t)e
−ηui∑n

j=1 yj(t)e
−ηuj

.

Therefore
n∑

i=1

uiyi(t) +

n∑
i=1

viyi(t+ 1) =

n∑
i=1

uiyi(t) +

n∑
i=1

vi(t)yi(t)e
−ηui∑n

j=1 yj(t)e
−ηuj

. (21)

Notice that
ui + vi

2
=

(x′ + x′′)⊤

2
Aei = x⊤Aei ≥ Val(A) .

Hence, vi(t) ≥ 2Val(A)− ui(t), hence the right hand side of Eq. (21) is at least
n∑

i=1

yi(t)ui+2Val(A)−
n∑

i=1

uiyi(t)e
−ηui∑n

j=1 yi(t)e
−ηui

= 2Val(A)+

n∑
i=1

yi(t)ui

(
1− e−ηui∑n

j=1 yj(t)e
−ηuj

)
The right hand side equals 2Val(A) if η = 0. We will differentiate it wrt η to get

d

dη

(
−
∑n

i=1 yi(t)uie
−ηui∑n

j=1 yj(t)e
−ηuj

)
=

∑n
i=1 yi(t)u

2
i e

−ηui∑n
j=1 yj(t)e

−ηuj
−

(∑n
i=1 yi(t)uie

−ηui∑n
j=1 yj(t)e

−ηuj

)2

.

The right hand side equals the variance of a random variable, which we denote by Zη , such that

Pr[Zη = u] =
∑

i : ui=u

yie
−ηyi∑n

j=1 uje−ηuj
.

We obtain that the sum of utilities for the optimzer in steps t and t + 1 is at least 2Val(A) +∫ η

0
Var(Zr)dr. Recall that we assumed that η ≤ 1. Hence, if we prove that there exists some constant

CA such that Var(Zr) ≥ CA for all r ∈ [0, 1], we will obtain that the sum of utilities in iterations t
and t+ 1 is at least 2Val(A) + ηCA. This will imply that the sum of utilities in iterations 1 through
T is at least T Val(A) + ηTCA/2, assuming that T is even (if T is odd then we can play a minmax
strategy in the last round and get a similar bound). It remains to bound Var(Zr). Recall that bi1 and
bi2 are two best responses to x, and since

∑t−1
i=1 x(i) =

t
2x, it holds from the definition of MWU

that yi1(t) and yi2(t) are among the largest entries of y(t). Consequently, yi1(t), yi2(t) ≥ 1/n. This
implies that there exists some C > 0 (that possibly depends on A and n), such that for all r ∈ (0, 1),
Pr[Zr = ui1],Pr[Zr = ui2] ≥ C. Further, by Condition, ui1 = x′⊤Abi1 ̸= x′⊤Abi2 = ui2 .
Consequently, there exists some CA > 0 such that Var(Zr) ≥ CA for all r ∈ [0, 1]. This is what we
wanted to prove.

20

38788https://doi.org/10.52202/079017-1225

C Computational lower bound

In this section, we present the full omitted proof of Theorem 4.

Proof of theorem 4. We’ll show a polynomial time reduction from OCDP to the hamiltonian cy-
cle problem. Let n = |V | and m = |E|. Given an instance πHam = G(V,E), where
V = {v1, v2, . . . , vn} and E = {e1, . . . , em} of the Hamiltonian cycle problem, we create an in-
stance of the OCDP problem as follows: the optimizer has m actions, denoted by A = {a1, . . . , am}
and the learner has 2n actions, denoted by B = {b1, . . . , b|V |, bin1 , . . . , bin|V |}. The matrices A and
B, which correspond to the optimizer and learner’s utility matrices respectively are defined as follows:

A[ai, bj] =

{
1, if there exists u ∈ V such that ei = (vj , u), i.e. ei is outgoing edge of node vj
0, otherwise

A[ai, binj] = 0

B[ai, bj] =


−0.1 if j = 1 and ∃u ∈ V s.t. ei = (v1, u), i.e. ei is an outgoing edge of node v1
−4, if j ̸= 1 and ∃u ∈ V s.t. ei = (vj , u), i.e. ei is an outgoing edge of node vj
1, if ∃u ∈ V such that ei = (u, vj), i.e. ei is an incoming edge of node vj
0, o.w.

B[ai, binj] =

{
0.85, if ∃u ∈ V such that ei = (vj , u), i.e. ei is an outgoing edge of node vj
0, o.w.

Finally, we set k = T = n + 1, constructing the instance πOCDP = (A,B,m, 2n, k, T). We
conclude the reduction by proving that πHam is a ’Yes’ instance if and only if πOCDP is a ’Yes’
instance.

1. πHam =⇒ πOCDP : Suppose we have a Hamiltonian cycle that visits vertices v1 = vu1
→

vu2
→ · · · → vun

→ vun+1
= vu1

= v1. Suppose that edge epi
connects vui

to vui+1
.

We will prove that the sequence of actions ap1
, ap2

, . . . , apn−1
, apn

, apn+1
= ap1

achieve
reward exactly n+1 for the optimizer. To prove that, it is enough to argue that if the optimizer
plays as we described above, the learner will respond with bu1

, bu2
, . . . , bun

, bun+1
= bu1

.
Indeed, notice that A[api , bui] = 1,∀i ∈ [n + 1], since epi is an outgoing edge of vui ,
therefore the optimizer will be getting reward 1 every round. Now, to prove that the learner
best responds as described, let us look at the historical rewards of the learner. Suppose the
rewards for each of the m = 2 · |V | actions of the learner for rounds 1, 2, . . . , t−1 is denoted
by h(t) = (h1(t), . . . , hn(t), hin1(t), . . . , hinn(t)) ∈ R2n . We will prove inductively that
after t rounds we will have h(t) = H(t), where H(t) is defined as:

H1(t) =


0, if t = 1

− 0.1, if 2 ≤ t ≤ n

0.9, if t = n+ 1

Hui
(t) =


0, if t < i

1, if t = i

− 3, if t > i

, i > 1

Hinui
(t) =

{
0, if t ≤ i

0.85, if t > i
, i = 1, 2, . . . , n

Notice that the cases t = 1, 2 are trivial; at t = 1 everything is equal to 0 since the learner has
accumulated no reward yet. At time t = 2 we only update hin1 → 0.85, h1 → −0.1, hu2

→
1, thus giving us h(2) = H(2). Suppose that after some t rounds, where 2 ≤ t ≤ n
rounds we have h(t) = H(t). After apt is played by the optimizer, the learner has to update
hinut

→ 0.85, hut → 1− 4 = −3 and if t < n we update hut+1 → 1 otherwise if t = n we
update h1 → −0.1 + 1 = 0.9. Either way, we get h(t+ 1) = H(t+ 1). To complete the
proof, note that for each t, given that the of the learner history is H(t), best response for the
learner is but

, thus the sequence of actions ap1
, ap2

, . . . , apn
, apn+1

achieves reward n+ 1
for the optimizer.

21

38789 https://doi.org/10.52202/079017-1225

2. πOCDP =⇒ πHam : Suppose there is a sequence of actions played by the optimizer
that receive reward n + 1 in n + 1 rounds, with actions ap1 , ap2 , . . . , apn+1 . We will
prove that ap1 , . . . apn correspond to the edges of a Hamiltonian Cycle starting from node
v1 = 1, i.e. edges ep1

, . . . , epn
make a Hamiltonian Cycle, by connecting nodes v1 =

vu1
, vu2

, . . . , vun
. We again denote the rewards of the learner for rounds 1, 2, . . . , t−1 with

h(t) = (h1(t), . . . , hn(t), hin1(t), . . . , hinn(t)) ∈ R2n.

• Action at t = 1: Start by observing that the learner will play b1 at t = 1 as it is the tie
breaking rule, so the optimizer needs to play an action that achieves reward 1 against
that. Note that the way we constructed the utility matrix of the optimizer, the only
actions that achieve reward against vi correspond to outgoing edges from vertex vi. So
at t = 1, the optimizer is forced to play an action that corresponds to an outgoing edge
of v1 = 1. Suppose the first action of the optimizer is ap1

, corresponding to the edge
ep1

= (v1, vu2
).

• Action at t = 2: The rewards of the optimizer will be updated as follows, after the
optimizer plays ap1 and the learner plays b1:

Hi(t) =


− 0.1, if i = 1

1, if i = u2

0, o.w.

Hini(t) =

{
0.85, if i = 1

0, o.w.
We note that now new best response of the learner will be bu2 . Thus, the only way for
the optimizer to obtain reward 1 for the second round is to play an action corresponding
to an outgoing edge of node vu2 . Suppose the action the optimizer plays is bp2 ,
corresponding to an edge ep2

= (vu2
, vu3

).
• Actions at 2 < t < n: We will prove inductively that the first t ≤ n − 1

actions ap1
, . . . , apt

correspond to edges of the form ep1
= (vu1

, vu2
), ep2

=
(vu2 , vu3), . . . , ept = (vut , vut+1) where ui ̸= uj for 1 ≤ i < j ≤ n, i.e. edges
that define a simple path in the graph, starting from node v1. By playing actions in
such a manner, the historical rewards of the learner will be of the form:

H1(t) =

{
0, if t = 1

− 0.1, if 2 ≤ t ≤ n

Hui
(t) =


0, if t < i

1, if t = i

− 3, if t > i

, i > 1

Hinui
(t) =

{
0, if t ≤ i

0.85, if t > i
, i = 1, 2, . . . , n

We proved that the first t actions correspond to edges of a simple path for t ≤ 2. We
assume for the inductive step that it is true for the first t < n−1 actions ap1 , . . . , apt of
the optimizer. We will prove that the next action apt+1

by the optimizer corresponds to
an edge ept+1

that extends this simple path. Since the first t actions are corresponding
to a simple path, at round t+ 1 the learner’s historical rewards are going to be equal to
H(t+ 1). Note that the best response for the learner is going to be but+1

. In order for
the optimizer to gain reward 1 the t+1’th round, they have to be playing an action apt+1

for which ept+1
is an outgoing edge of the node vut+1

. Suppose the optimizer chooses
to play apt+1

, where ept+1
= (vut+1

, vut+2
), and ut+2 = ul for some 1 ≤ l ≤ t + 1.

At round t + 2 the optimizer will still have to play an action that corresponds to an
outgoing edge of vul

. However, after that, we will have hinul
(t+3) = 1.70, which will

make bul
the best response. However, there is no action the optimizer can play against

bul
in which they receive reward 1, making it impossible for the optimizer to obtain

n+1 reward in n+1 rounds. Thus the optimizer needs to play ept+1 = (vut+1 , vut+2),
and ut+2 ̸= ul, l ∈ [t+ 1], completing the inductive step. Since we also proved that
the first 2 actions are forming a simple path starting from v1, using the inductive step,
we conclude that the first n− 1 actions have to correspond to a simple path in the graph
starting from v1.

22

38790https://doi.org/10.52202/079017-1225

• Actions at t = n, n+ 1: Suppose the last two actions of the optimizer are apn , apn+1 .
We want to prove that epn = (vun , v1), epn+1 = (v1, u), where u is some node
connected to v1. We know that the history of the learner at time t = n, as proven in the
previous bullet point, is as follows:

hui
(n) =


− 0.1, if i = 1

1, if i = n

− 3, o.w.
, i > 1

hinui
(n) =

{
0, if i = n

0.85, o.w.
, i = 1, 2, . . . , n

Note that the best response for the learner at time t = n will be bun
. Thus the

optimizer will have to play an action apn
corresponding to an outgoing edge of vun

.
Suppose epn

= (vun
, x). Assume x ̸= 1. Then the history is updated to hun

→
−3, hx → −2, hinun

→ 0.85. Note that the best response is any action buini
for which

the optimizer cannot get reward 1 from. Thus if x ̸= 1 it is impossible to get reward
1 every round. On the other hand, if x = 1, then the best response at time n+ 1 will
be b1 since the h1(n + 1) = −0.1 + 1 = 0.9 > 0.85, and thus playing any action
corresponding to an outgoing edge of v1 will obtain reward 1 for the learner at that
round.

Lastly, notice that the problem statement requests the entries of the weight matrix B to be in [0, 1].
While our construction have weights in [−4, 4], scaling and shifting all the entries by the same amount
does not affect the identity of the best response.

Figure 1: Graph G

We will show an example of how we can make the reduction from Hamiltonian Cycle to OCDP.
Imagine we have an instance of Hamiltonian Cycle that corresponds to the graph shown in 1, and
we want to reduce to OCDP. Since we have |V | = 5 vertices and |E| = 7 edges, we instantiate
the following instance of OCDP: (A,B, n = |E|,m = 2|V |, k = |V | + 1, T = |V | + 1), where
the actions sets are A = {e1 = (1, 5), e2 = (5, 2), e3 = (1, 2), e4 = (2, 4), e5 = (4, 1), e6 =
(4, 3), e7 = (3, 1)} B = {v1, v2, v3, v4, v5, vin1

, vin2
, vin3

, vin4
, vin5

}, and the utility matrices A
and B as shown in the tables below.

23

38791 https://doi.org/10.52202/079017-1225

A =

v1 v2 v3 v4 v5 vin1 vin2 vin3 vin4 vin5

e1 1 0 0 0 0 0 0 0 0 0
e2 0 0 0 0 1 0 0 0 0 0
e3 1 0 0 0 0 0 0 0 0 0
e4 0 1 0 0 0 0 0 0 0 0
e5 0 0 0 1 0 0 0 0 0 0
e6 0 0 0 1 0 0 0 0 0 0
e7 0 0 1 0 0 0 0 0 0 0

B =

v1 v2 v3 v4 v5 vin1
vin2

vin3
vin4

vin5

e1 -1 0 0 0 1 0.85 0 0 0 0
e2 0 1 0 0 -4 0 0 0 0 0.85
e3 -1 1 0 0 0 0.85 0 0 0 0
e4 0 -4 0 1 0 0 0.85 0 0 0
e5 1 0 0 -4 0 0 0 0 0.85 0
e6 0 0 1 -4 0 0 0 0 0.85 0
e7 1 0 -4 0 0 0 0 0.85 0 0

Notice that the only way for the optimizer to achieve reward |V |+ 6 = 5 + 1 = 6 is if he plays the
following actions:

e1, e2, e4, e6, e7, e1

and the learner’s actions are the following:

v1, v5, v2, v4, v3, v1

The following table shows the rewards history of the learner during this game:

r(t) =

v1 v2 v3 v4 v5 vin1 vin2 vin3 vin4 vin5

t = 0 0 0 0 0 0 0 0 0 0 0
t = 1 -0.1 0 0 0 1 0.85 0 0 0 0
t = 2 -0.1 1 0 0 -3 0.85 0 0 0 0.85
t = 3 -0.1 -3 0 1 -3 0.85 0.85 0 0 0.85
t = 4 -0.1 -3 1 -3 -3 0.85 0.85 0 0.85 0.85
t = 5 -0.1 -3 1 -3 -3 0.85 0.85 0 0.85 0.85
t = 5 0.9 -3 -3 -3 -3 0.85 0.85 0.85 0.85 0.85
t = 6 0.8 -3 -3 -3 -3 1.70 0.85 0.85 0.85 0.85

24

38792https://doi.org/10.52202/079017-1225

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? NEUR
Answer: [Yes]
Justification: The introduction and abstract accurately reflect the main scope of the paper.
We have proofs for the propositions and theorems of the paper in the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions made in each claim are clearly described in the statement of
the claim. We discuss possible future directions in section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

38793 https://doi.org/10.52202/079017-1225

Answer: [Yes]

Justification: The assumptions are stated clearly in each theorem, lemma or proposition.
Full proofs of what was omitted in the main section, are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

38794https://doi.org/10.52202/079017-1225

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include any experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

27

38795 https://doi.org/10.52202/079017-1225

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is compliant with the code of NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussed in the end of page 9.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

38796https://doi.org/10.52202/079017-1225

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not contain data models and therefore does not pose such
risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

38797 https://doi.org/10.52202/079017-1225

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not use any existing assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

38798https://doi.org/10.52202/079017-1225

