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Abstract

Current studies on adversarial robustness mainly focus on aggregating local ro-
bustness results from a set of data samples to evaluate and rank different models.
However, the local statistics may not well represent the true global robustness of the
underlying unknown data distribution. To address this challenge, this paper makes
the first attempt to present a new framework, called GREAT Score, for global ro-
bustness evaluation of adversarial perturbation using generative models. Formally,
GREAT Score carries the physical meaning of a global statistic capturing a mean
certified attack-proof perturbation level over all samples drawn from a generative
model. For finite-sample evaluation, we also derive a probabilistic guarantee on
the sample complexity and the difference between the sample mean and the true
mean. GREAT Score has several advantages: (1) Robustness evaluations using
GREAT Score are efficient and scalable to large models, by sparing the need of run-
ning adversarial attacks. In particular, we show high correlation and significantly
reduced computation cost of GREAT Score when compared to the attack-based
model ranking on RobustBench [12]. (2) The use of generative models facilitates
the approximation of the unknown data distribution. In our ablation study with
different generative adversarial networks (GANs), we observe consistency between
global robustness evaluation and the quality of GANs. (3) GREAT Score can be
used for remote auditing of privacy-sensitive black-box models, as demonstrated
by our robustness evaluation on several online facial recognition services.

Project Demo and Code Page:

https://huggingface.co/spaces/TrustSafeAI/GREAT-Score
https://github.com/IBM/GREAT-Score

1 Introduction

Adversarial robustness is the study of model performance in the worst-case scenario, which is a key
element in trustworthy machine learning. Adversarial robustness evaluation refers to the process of
assessing a model’s resilience against adversarial attacks, which are inputs intentionally designed to
deceive the model. Without further remediation, state-of-the-art machine learning models, especially
neural networks, are known to be overly sensitive to small human-imperceptible perturbations to data
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inputs [19]. Such a property of over-sensitivity could be exploited by bad actors to craft adversarial
perturbations leading to prediction-evasive adversarial examples.

Given a threat model specifying the knowledge of the target machine learning model (e.g., white-box
or black-box model access) and the setting of plausible adversarial interventions (e.g., norm-bounded
input perturbations), the methodology for adversarial robustness evaluation can be divided into two
categories: attack-dependent and attack-independent. Attack-dependent approaches aim to devise the
strongest possible attack and use it for performance assessment. A typical example is Auto-Attack
[10], a state-of-the-art attack based on an ensemble of advanced white-box and black-box adversarial
perturbation methods. On the other hand, attack-independent approaches aim to develop a certified or
estimated score for adversarial robustness, reflecting a quantifiable level of attack-proof certificate.
Typical examples include neural network verification techniques [60, 66], certified defenses such as
randomized smoothing [9], and local Lipschitz constant estimation [59].

Despite a plethora of adversarial robustness evaluation methods, current studies primarily focus on
aggregating local robustness results from a set of data samples. However, the sampling process of
these test samples could be biased and unrepresentative of the true global robustness of the underlying
data distribution, resulting in the risk of incorrect or biased robustness benchmarks. For instance, we
find that when assessing the ranking of Imagenet models through Robustbench [11], using AutoAttack
[10] with 10,000 randomly selected samples (the default choice) with 100 independent trials results
in an unstable ranking coefficient of 0.907±0.0256 when compared to that of the entire 50,000
test samples. This outcome affirms that AutoAttack’s model ranking has notable variations with an
undersampled or underrepresented test dataset.

An ideal situation is when the data distribution is transparent and one can draw an unlimited number
of samples from the true distribution for reliable robustness evaluation. But in reality, the data
distribution is unknown and difficult to characterize. In addition to lacking rigorous global robustness
evaluation, many attack-independent methods are limited to the white-box setting, requiring detailed
knowledge about the target model (e.g., model parameters and architecture) such as input gradients and
internal data representations for robustness evaluation. Moreover, state-of-the-art attack-dependent
and attack-independent methods often face the issue of scalability to large models and data volumes
due to excessive complexity, such as the computational costs in iterative gradient computation and
layer-wise interval bound propagation and relaxation [20, 31].

To address the aforementioned challenges including (i) lack of proper global adversarial robustness
evaluation, (ii) limitation to white-box settings, and (iii) computational inefficiency, in this paper
we present a novel attack-independent evaluation framework called GREAT Score, which is short
for global robustness evaluation of adversarial perturbation using generative models. We tackle
challenge (i) by using a generative model such as a generative adversarial network (GAN) [17, 18] or
a diffusion model [27] as a proxy of the true unknown data distribution. Formally, GREAT Score
is defined as the mean of a certified lower bound on minimal adversarial perturbation over the data
sampling distribution of a generative model, which represents the global distribution-wise adversarial
robustness with respect to the generative model in use. It entails a global statistic capturing the mean
certified attack-proof perturbation level over all samples from a generative model. For finite-sample
evaluation, we also derive a probabilistic guarantee quantifying the sample complexity and the
difference between the sample mean and true mean.

For challenge (ii), our derivation of GREAT Score leads to a neat closed-form solution that only
requires data forward-passing and accessing the model outputs, which applies to any black-box
classifiers giving class prediction confidence scores as model output. Moreover, as a byproduct
of using generative models, our adversarial robustness evaluation procedure is executed with only
synthetically generated data instead of real data, which is particularly appealing to privacy-aware
robustness assessment schemes, e.g., remote robustness evaluation or auditing by a third party with
restricted access to data and model. We will present how GREAT Score can be used to assess the
robustness of online black-box facial recognition models. Finally, for challenge (iii), GREAT Score is
applicable to any off-the-self generative models so that we do not take the training cost of generative
models into consideration. Furthermore, the computation of GREAT Score is lightweight because
it scales linearly with the number of data samples used for evaluation, and each data sample only
requires one forward pass through the model to obtain the final predictions.

We highlight our main contributions as follows:

2

39159https://doi.org/10.52202/079017-1236



• We present GREAT Score as a novel framework for deriving a global statistic representative of the
distribution-wise robustness to adversarial perturbation, based on an off-the-shelf generative model
for approximating the data generation process.
• Theoretically, we show that GREAT Score corresponds to a mean certified attack-proof level of
L2-norm bounded input perturbation over the sampling distribution of a generative model (Theorem
1). We further develop a formal probabilistic guarantee on the quality of using the sample mean as
GREAT Score with a finite number of samples from generative models (Theorem 2).
• We evaluate the effectiveness of GREAT Score on all neural network models on RobustBench

[11] (the largest adversarial robustness benchmark), with a total of 17 models on CIFAR-10 and
5 models on ImageNet. We show that the model ranking of GREAT Score is highly aligned
with that of the original ranking on RobustBench using AutoAttack [10], while GREAT Score
significantly reduces the computation time. Specifically, on CIFAR-10 the computation complexity
can be reduced by up to 2,000 times. The results suggest that GREAT Score is a competitive and
computationally-efficient approach complementary to attack-based robustness evaluations.
• As a demonstration of GREAT Score’s capability for remote robustness evaluation of access-limited

systems, we show how GREAT Score can audit several online black-box facial recognition APIs.

2 Background and Related Works

Adversarial Attack and Defense. Adversarial attacks aim to generate examples that can evade
classifier predictions in classification tasks. In principle, adversarial examples can be crafted by small
perturbations to a native data sample, where the level of perturbation is measured by different Lp
norms [7, 8, 58]. The procedure of finding adversarial perturbation within a perturbation level is
often formulated as a constrained optimization problem, which can be solved by algorithms such as
projected gradient descent (PGD) [38]. The state-of-the-art adversarial attack is the Auto-Attack [10],
which uses an ensemble of white-box and black-box attacks. There are many methods (defenses)
to improve adversarial robustness. A popular approach is adversarial training [38], which generates
adversarial perturbation during model training for improved robustness. One common evaluation
metric for adversarial robustness is robust accuracy, which is defined as the accuracy of correct
classification under adversarial attacks, evaluated on a set of data samples. RobustBench [10] is the
largest-scale standardized benchmark that ranks the models using robust accuracy against Auto-Attack
on test sets from image classification datasets such as CIFAR-10 . In addition to discussed works,
several studies evaluate model robustness differently. [43] introduce adversarial sparsity, quantifying
the difficulty of finding perturbations, providing insights beyond adversarial accuracy. [48] propose
probabilistic robustness, balancing average and worst-case performance by enforcing robustness to
most perturbations, better addressing trade-offs. [22] introduce the adversarial hypervolume metric, a
comprehensive measure of robustness across varying perturbation intensities.

Generative Models. Statistically speaking, let X denote the observable variable and let Y denote
the corresponding label, the learning objective for a generative model is to model the conditional
probability distribution P (X | Y ). Among all the generative models, GANs have gained a lot of
attention in recent years due to their capability to generate realistic high-quality images [18]. The
principle of training GANs is based on the formulation of a two-player zero-sum min-max game to
learn the high-dimension data distribution. Eventually, these two players reach the Nash equilibrium
that D is unable to further discriminate real data versus generated samples. This adversarial learning
methodology aids in obtaining high-quality generative models. In practice, the generator G(·) takes a
random vector z (i.e., a latent code) as input, which is generated from a zero-mean isotropic Gaussian
distribution denoted as z ∼ N (0, I), where I means an identity matrix. Conditional GANs refer to
the conditional generator G(·|Y ) given a class label Y . In addition to GAN, diffusion models (DMs)
are also gaining popularity. DMs consist of two stages: the forward diffusion process and the reverse
diffusion process. In the forward process, the input data is gradually perturbed by Gaussian Noises
and becomes an isotropic Gaussian distribution eventually. In the reverse process, DMs reverse the
forward process and implement a sampling process from Gaussian noises to reconstruct the true
samples by solving a stochastic differential equation. In our proposed framework, we use off-the-shelf
(conditional) GANs and DMs (e.g., DDPM [27]) that are publicly available as our generative models.

Formal Local Robustness Guarantee and Estimation. Given a data sample x, a formal local
robustness guarantee refers to a certified range on its perturbation level such that within which the top-
1 class prediction of a model will remain unchanged [26]. In Lp-norm (p ≥ 1) bounded perturbations
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centered at x, such a guarantee is often called a certified radius r such that any perturbation δ to
x within this radius (i.e., ∥δ∥p ≤ r) will have the same top-1 class prediction as x. Therefore, the
model is said to be provably locally robust (i.e., attack-proof) to any perturbations within the certified
radius r. By definition, the certified radius of x is also a lower bound on the minimal perturbation
required to flip the model prediction.

Among all the related works on attack-independent local robustness evaluations, the CLEVER
framework proposed in [59] is the closest to our study. The authors in [59] derived a closed-form
of certified local radius involving the maximum local Lipschitz constant of the model output with
respect to the data input around a neighborhood of a data sample x. They then proposed to use
extreme value theory to estimate such a constant and use it to obtain a local robustness score, which
is not a certified local radius. Our proposed GREAT Score has major differences from [59] in that our
focus is on global robustness evaluation, and our GREAT Score is the mean of a certified radius over
the sampling distribution of a generative model. In addition, for every generated sample, our local
estimate gives a certified radius.

Notations. All the main notations used in the paper are summarized in Appendix A.

3 GREAT Score: Methodology and Algorithms

3.1 True Global Robustness and Certified Estimate

Let f = [f1, . . . , fK ] : Rd → RK denote a fixed K-way classifier with flattened data input
of dimension d, (x, y) denote a pair of data sample x and its corresponding groundtruth label
y ∈ {1, . . . ,K}, P denote the true data distribution which in practice is unknown, and ∆min(x)
denote the minimal perturbation of a sample-label pair (x, y) ∼ P causing the change of the top-1
class prediction such that argmaxk∈{1,...,K} fk(x + ∆min(x)) ̸= argmaxk∈{1,...,K} fk(x). Note
that if the model f makes an incorrect prediction on x, i.e., y ̸= argmaxk∈{1,...,K} fk(x), then we
define ∆min(x) = 0. This means the model is originally subject to prediction evasion on x even
without any perturbation. A higher ∆min(x) means better local robustness of f on x.

The following statement defines the true global robustness of a classifier f based on the probability
density function p(·) of the underlying data distribution P .
Definition 1 (True global robustness w.r.t. P ). The true global robustness of a classifier f with
respect to a data distribution P is defined as:

Ω(f) = Ex∼P [∆min(x)] =

∫
x∼P

∆min(x)p(x)dx (1)

Unless the probability density function of P and every local minimal perturbation are known, the
exact value of the true global robustness cannot be computed. An alternative is to estimate such a
quantity. Extending Definition 1, let g(x) be a local robustness statistic. Then the corresponding
global robustness estimate is defined as

Ω̂(f) = Ex∼P [g(x)] =
∫
x∼P

g(x)p(x)dx (2)

Furthermore, if one can prove that g(x) is a valid lower bound on ∆min(x) such that g(x) ≤
∆min(x), ∀x, then the estimate Ω̂(f) is said to be a certified lower bound on the true global
robustness with respect to P , and larger Ω̂(f) will imply better true global robustness. In what
follows, we will formally introduce our proposed GREAT Score and show that it is a certified
estimate of the lower bound on the true robustness with respect to the data-generating distribution
learned by a generative model.

3.2 Using GMs to Evaluate Global Robustness

Recall that a generative model (GM) takes a random vector z ∼ N (0, I) sampled from a zero-mean
isotropic Gaussian distribution as input to generate a data sample G(z). In what follows, we present
our first main theorem that establishes a certified lower bound Ω̂(f) on the true global robustness of a
classifier f measured by the data distribution given by G(·).
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Without loss of generality, we assume that all data inputs are confined in the scaled data range [0, 1]d,
where d is the size of any flattened data input. The K-way classifier f : [0, 1]d 7→ RK takes a
data sample x as input and outputs a K-dimensional vector f(x) = [f1(x), . . . , fK(x)] indicating
the likelihood of its prediction on x over K classes, where the top-1 class prediction is defined as
ŷ = argmaxk={1,...,K} fk(x). We further denote c as the groundtruth class of x. Therefore, if
ŷ ̸= c, then the classifier is said to make a wrong top-1 prediction. When considering the adversarial
robustness on a wrongly classified sample x, we define the minimal perturbation for altering model
prediction as ∆min(x) = 0. The intuition is that an attacker does not need to take any action to
make the sample x evade the correct prediction by f , and therefore the required minimal adversarial
perturbation level is 0 (i.e., zero robustness).

Given a generated data sample G(z), we now formally define a local robustness score function as

g (G(z)) =

√
π

2
·max{fc(G(z))− max

k∈{1,...,K},k ̸=c
fk(G(z)), 0} (3)

The scalar
√

π/2 is a constant associated with the sampling Gaussian distribution of G, which
will be apparent in later analysis. We further offer several insights into understanding the phys-
ical meaning of the considered local robustness score in (3): (i) The inner term fc(G(z)) −
maxk∈{1,...,K},k ̸=c fk(G(z)) represents the gap in the likelihood of model prediction between the
correct class c and the most likely class other than c. A positive and larger value of this gap reflects
higher confidence of the correct prediction and thus better robustness. (ii) Following (i), a negative
gap means the model is making an incorrect prediction, and thus the outer term max{gap, 0} = 0,
which corresponds to zero robustness.

Next, we use the local robustness score g defined in (3) to formally state our theorem on establishing
a certified lower bound on the true global robustness and the proof sketch.
Theorem 1 (certified global robustness estimate). Let f : [0, 1]d 7→ [0, 1]K be a K-way clas-
sifier and let fk(·) be the predicted likelihood of class k, with c denoting the groundtruth
class. Given a generator G such that it generates a sample G(z) with z ∼ N (0, I). Define

g (G(z)) =

√
π

2
·max{fc(G(z))−maxk∈{1,...,K},k ̸=c fk(G(z)), 0}. Then the global robustness es-

timate of f evaluated with L2-norm bounded perturbations, defined as Ω̂(f) = Ez∼N (0,I)[g(G(z))],
is a certified lower bound of the true global robustness Ω(f) with respect to G.

The complete proof is given in Appendix C.

3.3 Probabilistic Guarantee on Sample Mean

As defined in Theorem 1, the global robustness estimate Ω̂(f) = Ez∼N (0,I)[g(G(z))] is the mean of
the local robustness score function introduced in (3) evaluated through a generator G and its sampling
distribution. In practice, one can use a finite number of samples {G(zi|yi)}ni=1 generated from a
conditional generator G(·|y) to estimate Ω̂(f), where y denotes a class label and it is also an input
parameter to the conditional generator. The simplest estimator of Ω̂(f) is the sample mean, defined as

Ω̂S(f) =
1

n

n∑
i=1

g(G(zi|yi)) (4)

In what follows, we present our second main theorem to deliver a probabilistic guarantee on the
sample complexity to achieve ϵ difference between the sample mean Ω̂S(f) and the true mean Ω̂(f).
Theorem 2 (probabilistic guarantee on sample mean). Let f be a K-way classifier with its outputs
bounded by [0, 1]K and let e denote the natural base. For any ϵ, δ > 0, if the sample size n ≥
32e·log(2/δ)

ϵ2 , then with probability at least 1− δ, the sample mean Ω̂S(f) is ϵ-close to the true mean
Ω̂(f). That is, |Ω̂S(f)− Ω̂(f)| ≤ ϵ.

The complete proof is given in Appendix D. The proof is built on a concentration inequality in [40].
It is worth noting that the bounded output assumption of the classifier f in Theorem 2 can be easily
satisfied by applying a normalization layer at the final model output, such as the softmax function or
the element-wise sigmoid function.
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3.4 Algorithm and Computational Complexity

Algorithm 1 summarizes the procedure of computing GREAT Score using the sample mean estimator.
It can be seen that the computation complexity of GREAT Score is linear in the number of generated
samples NS , and for each sample, the computation of the statistic g defined in (3) only requires
drawing a sample from the generator G and taking a forward pass to the classifier f to obtain the
model predictions on each class. As a byproduct, GREAT Score applies to the setting when the
classifier f is a black-box model, meaning only the model outputs are observable by an evaluator.

Algorithm 1: GREAT Score Computation
Input: K-way classifier f(·), conditional generator G(·), local score function g(·) defined in

(3), number of generated samples NS

Output: GREAT Score Ω̂S(f)
for i←1 to NS do

Randomly select a class label y ∈ {1, 2, . . . ,K}
Sample z ∼ N (0, I) from a Gaussian distribution and generate a sample G(z|y) with

class y
Pass G(z|y) into the model f and get the prediction for each class {fk(G(z|y))}Kk=1
Record the statistic

g(i)(G(z|y)) =
√

π

2
·max{fy(G(z|y))−maxk∈{1,...,K}, k ̸=y fk(G(z|y)), 0}

end
Ω̂S(f)←Compute the sample mean of {g(i)}NS

i=1

3.5 Calibrated GREAT Score

In cases when one has additional knowledge of adversarial examples on a set of images from
a generative model, e.g., successful adversarial perturbations (an upper bound on the minimal
perturbation of each sample) returned by any norm-minimization adversarial attack method such as
the CW attack [7], the CW attack employs two loss terms, classification loss and distance metric, to
generate adversarial examples. See Appendix E for details. We can further “calibrate” the GREAT
Score with respect to the available perturbations. Moreover, since Theorem 1 informs some design
choices on the model output layer, as long as the model output is a non-negative K-dimensional
vector f ∈ [0, 1]K reflecting the prediction confidence over K classes, we will incorporate such
flexibility in the calibration process.

Specifically, we use calibration in the model ranking setup where there are M models {f (j)}Mj=1 for

evaluation, and each model (indexed by j) has a set of known perturbations {δ(j)i }Ni=1 on a common
set of N image-label pairs {xi, yi}Ni=1 from the same generative model. We further consider four
different model output layer designs (that are attached to the model logits): (i) sigmoid(·|T1): sigmoid
with temperature T1, (ii) softmax(·|T2): softmax with temperature T2, (iii) sigmoid(softmax(·|T2 =
1)|T1): sigmoid with temperature after softmax, and (iv) softmax(sigmoid(·|T1 = 1)|T2): softmax
with temperature after sigmoid. Finally, let {Ω̂S(f (j))}Mj=1 denote the GREAT Score computed
based on {xi, yi}Ni=1 for each model. We calibrate GREAT Score by optimizing some rank statistics
(e.g., the Spearman’s rank correlation coefficient) over the temperature parameter by comparing the
ranking consistency between {Ω̂S(f (j))}Mj=1 and {δ(j)i }Ni=1. In our experiments, we find that setting
(iv) gives the best result and use it as the default setup for calibration, as detailed in Appendix F.

4 Experimental Results

4.1 Experiment Setup

Datasets and Models. We conduct our experiment on several datasets including CIFAR-10 [32],
ImageNet-1K [13] and CelebA-HQ [29]/CelebA [36]. For neural network models, we use the
available models on RobustBench [11] (see more details in the next paragraph), which includes
17/5 models on CIFAR-10/ImageNet, correspondingly. We also use several off-the-shelf GANs and
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Figure 1: Comparison of local GREAT Score
and CW attack in L2 perturbation on CIFAR-10
with Rebuffi_extra model [46]. The x-axis is
the image id. The result shows the local GREAT
Score is indeed a lower bound of the perturbation
level found by CW attack.

Figure 2: Cumulative robust accuracy (RA) with
varying L2 perturbation level using 500 samples.
Note that GREAT Score gives a certified RA for
attack-proof robustness, whereas Auto-Attack is
an empirical robustness evaluation.

diffusion models (DMs) trained on CIFAR-10 and ImageNet for computing GREAT Score in an
ablation study (we defer the model details to later paragraphs).

Summary of Classifiers on RobustBench. The RobustBench [49] is to-date the largest benchmark
for robustness evaluation with publicly accessible neural network models submitted by contributors.
RobustBench uses the default test dataset from several standard image classification tasks, such
as CIFAR-10 and ImageNet-1K, to run Auto-Attack [10] and report the resulting accuracy with
L2-norm and L∞-norm perturbations (i.e., the robust accuracy – RA) as a metric for adversarial
robustness. Even under one perturbation type, it is not easy to make a direct and fair comparison
among all submitted models on RobustBench because they often differ by the training scheme,
network architecture, as well as the usage of additional real and/or synthetic data. To make a
meaningful comparison with GREAT Score, we select all non-trivial models (having non-zero RA)
submitted to the CIFAR-10 and ImageNet-1K benchmarks and evaluated with L2-norm perturbation
with a fixed perturbation level of 0.5 using Auto-Attack. We list the model names in Table 1 and
provide their descriptions in Appendix G.

GANs and DMs. We used off-the-shelf GAN models provided by StudioGAN [41], a library
containing released GAN models. StudioGAN also reports the Inception Score (IS) to rank the
model quality. We use the GAN model with the highest IS value as our default GAN for GREAT
Score, which are StyleGAN2 [30]/ BigGAN [6] for CIFAR-10 /ImageNet with IS = 10.477/99.705,
respectively. For the ablation study of using different generative models in GREAT Score (Section
4.4), we also use the following GAN/DM models: LSGAN [39], GGAN [35], SAGAN [65], SNGAN
[42], DDPM [27] and StyleGAN2 [30].

GREAT Score implementation. The implementation follows Algorithm 1 in Appendix ?? with a
sigmoid/softmax function on the logits of the CIFAR-10/ImageNet classifier to ensure the model
output of each dimension is within [0, 1], as implied by Theorem 1. As ImageNet-1K has 1000
classes, applying sigmoid will make the robustness score function in (3) degenerate. We use softmax
instead. 500 samples drawn from a generative model were used for computing GREAT Score.

Comparative methods. We compare the effectiveness of GREAT Score in two objectives: robustness
ranking (global robustness) and per-sample perturbation. For the former, we compare the RA reported
in RobustBench on the test dataset (named RobustBench Accuracy) as well as the RA of Auto-Attack
on the generated data samples (named AutoAttack Accuracy). For the latter, we report the RA of
Auto-Attack in L2-norm with a fixed perturbation level of 0.5.

Evaluation metrics. For robustness ranking, we report Spearman’s rank correlation coefficient
between two sets of model rankings (e.g., GREAT Score v.s. RobustBench Accuracy). A value closer
to 1 means higher consistency. Robust accuracy refers to the fraction of correctly classified samples
against adversarial perturbations.

Calibration Method. We run L2-norm CW attack [7] (with learning rate 0.005 and 200 iterations)
on each generated data sample to find the minimal adversarial perturbation. Then, we use grid search
in the range [0,2] with an interval of 0.00001 to find temperature value maximizing the Spearmans’
rank correlation coefficient between GREAT Score and CW attack distortion.

Compute Resources. All our experiments were run on a GTX 2080 Ti GPU with 12GB RAM.

7
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Table 1: Comparison of (Calibrated) GREAT Score v.s. minimal
distortion found by CW attack [7] on CIFAR-10. The results are
averaged over 500 samples from StyleGAN2.

Model Name RobustBench
Accuracy(%)

AutoAttack
Accuracy(%)

GREAT
Score

Calibrated
GREAT Score

CW
Distortion

Rebuffi_extra [46] 82.32 87.20 0.507 1.216 1.859
Gowal_extra [21] 80.53 85.60 0.534 1.213 1.324
Rebuffi_70_ddpm [46] 80.42 90.60 0.451 1.208 1.943
Rebuffi_28_ddpm [46] 78.80 90.00 0.424 1.214 1.796
Augustin_WRN_extra [3] 78.79 86.20 0.525 1.206 1.340
Sehwag [54] 77.24 89.20 0.227 1.143 1.392
Augustin_WRN [3] 76.25 86.40 0.583 1.206 1.332
Rade [45] 76.15 86.60 0.413 1.200 1.486
Rebuffi_R18[46] 75.86 87.60 0.369 1.210 1.413
Gowal [21] 74.50 86.40 0.124 1.116 1.253
Sehwag_R18 [54] 74.41 88.60 0.236 1.135 1.343
Wu2020Adversarial [62] 73.66 84.60 0.128 1.110 1.369
Augustin2020Adversarial [3] 72.91 85.20 0.569 1.199 1.285
Engstrom2019Robustness [15] 69.24 82.20 0.160 1.020 1.084
Rice2020Overfitting [47] 67.68 81.80 0.152 1.040 1.097
Rony2019Decoupling [50] 66.44 79.20 0.275 1.101 1.165
Ding2020MMA [14] 66.09 77.60 0.112 0.909 1.095

Table 2: Spearman’s rank cor-
relation coefficient on CIFAR-
10 using GREAT Score, Ro-
bustBench (with test set), and
Auto-Attack (with generated
samples).

Uncalibrated Calibrated
GREAT Score vs.
RobustBench
Correlation 0.6618 0.8971
GREAT Score vs.
AutoAttack
Correlation 0.3690 0.6941
RobustBench vs.
AutoAttack
Correlation 0.7296 0.7296

4.2 Local and Global Robustness Analysis

Recall from Theorem 1 that the local robustness score proposed in (3) gives a certified perturbation
level for generated samples from a generative model. To verify this claim, we randomly select 20
generated images on CIFAR-10 and compare their local certified perturbation level to the perturbation
found by the CW attack [7] using the Rebuffi_extra model [46]. Figure 1 shows the perturbation level
of local GREAT Score in (3) and that of the corresponding CW attack per sample. We can see that the
local GREAT Score is a lower bound of CW attack, as the CW attack finds a successful adversarial
perturbation that is no smaller than the minimal perturbation ∆min (i.e., an over-estimation). The
true ∆min value lies between these lower and upper bounds.

In Figure 2, we compare the cumulative robust accuracy (RA) of GREAT Score and Auto-Attack over
500 samples by sweeping the L2 perturbation level from 0 to 1 with a 0.05 increment for Auto-Attack.
The cumulative RA of GREAT Score at a perturbation level r represents the fraction of samples with
local GREAT Scores greater than r, providing an attack-proof guarantee that no attacks can achieve
a lower RA at the same perturbation level. For Auto-Attack, the RA at each perturbation level is
calculated as the fraction of correctly classified samples under that specific perturbation. The blue
curve in the figure represents the RA from empirical Auto-Attack, while the orange curve shows the
RA derived from GREAT Score, offering a certified robustness guarantee. We observe that the trend
of attack-independent certified robustness (GREAT Score) closely mirrors that of empirical attacks
(Auto-Attack), suggesting that GREAT Score effectively reflects empirical robustness. It is important
to note that the gap between our certified curve and the empirical curve of AutoAttack does not
necessarily indicate inferiority of GREAT Score. Instead, this discrepancy could point to the existence
of undiscovered adversarial examples at higher perturbation radii. This gap illustrates the fundamental
difference between certified and empirical robustness measures, highlighting the potential for GREAT
Score to provide a more conservative, yet guaranteed, estimate of model robustness.

Table 1 compares the global robustness statistics of the 17 grouped CIFAR-10 models on RobustBench
for uncalibrated and calibrated versions respectively, in terms of the GREAT Score and the average
distortion of CW attack, which again verifies GREAT Score is a certified lower bound on the true
global robustness (see its definition in Section 3.1), while any attack with 100% attack success rate
only gives an upper bound on the true global robustness. We also observe that calibration can indeed
enlarge the GREAT Score and tighten its gap to the distortion of CW attack.

4.3 Model Ranking on CIFAR-10 and ImageNet

Following the experiment setup in Section 4.1, we compare the model ranking on CIFAR-10 using
GREAT Score (evaluated with generated samples), RobustBench (evaluated with Auto-Attack on the
test set), and Auto-Attack (evaluated with Auto-Attack on generated samples). Table 2 presents their
mutual rank correlation (higher value means more aligned ranking) with calibrated and uncalibrated
versions. We note that there is an innate discrepancy between Spearman’s rank correlation coefficient
(way below 1) of RobustBench v.s. Auto-Attack, which means Auto-Attack will give inconsistent
model rankings when evaluated on different data samples. In addition, GREAT Score measures
classification margin, while AutoAttack measures accuracy under a fixed perturbation budget ϵ.
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AutoAttack’s ranking will change if we use different ϵ values. E.g., comparing the ranking of ϵ = 0.3
and ϵ = 0.7 on 10000 CIFAR-10 test images for AutoAttack, the Spearman’s correlation is only
0.9485. Therefore, we argue that GREAT Score and AutoAttack are complementary evaluation
metrics and they don’t need to match perfectly. Despite their discrepancy, before calibration, the
correlation between GREAT Score and RobustBench yields a similar value. With calibration, there is a
significant improvement in rank correlation between GREAT Score to Robustbench and Auto-Attack,
respectively.

Table 3 presents the global robustness statistics of these three methods on ImageNet. We observe
almost perfect ranking alignment between GREAT Score and RobustBench, with their Spearman’s
rank correlation coefficient being 0.8, which is higher than that of Auto-Attack and RobustBench (0.6).
These results suggest that GREAT Score is a useful metric for margin-based robustness evaluation.

4.4 Ablation Study and Run-time Analysis

Ablation study on GANs and DMs. Evaluating on CIFAR-10, Figure 3 compares the inception score
(IS) and the Spearman’s rank correlation coefficient between GREAT Score and RobustBench on five
GANs and DDPM. One can observe that models with higher IS attain better ranking consistency.

Limitations and Further Analysis for generation models. While our experiments demonstrate the
effectiveness of GREAT Score, it’s important to acknowledge certain limitations and provide further
analysis. The performance of GREAT Score relies on the generative model’s ability to produce valid
samples belonging to the conditioned class. Recent studies [34, 53] have shown GANs’ convergence
to true data distributions under specific conditions, and our experiments further demonstrate high-
quality instances produced by the generative models, as evidenced by the inception score and the
strong Spearman’s rank correlation between GREAT Score and RobustBench. We recognize that in
some cases, class ambiguity may exist. However, given our focus on evaluating classifier robustness,
we typically deal with well-defined and distinctive labels, considering the issue of label ambiguity is
beyond the scope of our method. Furthermore, the assumption that the generative model provides
a good approximation of the true data-generating distribution is crucial. Recent work [34, 53] has
also demonstrated the convergence rate of approaching the true data distribution for a family of
GANs under certain conditions. These considerations highlight areas for potential future work and
underscore the importance of careful generative model selection when applying GREAT Score.

Run-time analysis. Figure 4 compares the run-time efficiency of GREAT Score over Auto-Attack on
the same 500 generated CIFAR-10 images. We show the ratio of their average per-sample run-time
(wall clock time of GREAT Score/Auto-Attack is reported in Appendix I) and observe around 800-
2000 times improvement, validating the computational efficiency of GREAT Score. Furthermore, our
framework demonstrates excellent scalability with increasing dataset sizes and model complexity,
as detailed in Appendix N, showing linear scaling behavior that makes it suitable for large-scale
applications.

Sample Complexity and GREAT Score. In Appendix J, we report the mean and variance of GREAT
Score with a varying number of generated data samples. The results show that the statistics of GREAT
Score are quite stable even with a small number of data samples (i.e., ≥500).

Table 3: Robustness evaluation on Im-
ageNet using GREAT Score, Robust-
Bench (with test set), and Auto Attack
(with generated samples). The Spear-
man’s rank correlation coefficient for
GREAT Score v.s. RobustBench and
Auto-Attack v.s. RobustBench is 0.9 and
0.872, respectively.

Model
Name

RobustBench
Accuracy (%)

AutoAttack
Accuracy (%)

GREAT
Score

Trans1 [52] 38.14 30.4 0.504
Trans2 [52] 34.96 25.8 0.443
LIBRARY [15] 29.22 30.6 0.449
Fast [61] 26.24 19.2 0.273
Trans3 [52] 25.32 19.6 0.275

Figure 3: Comparison
of Inception Score and
Spearman’s rank correla-
tion to RobustBench using
GREAT Score with differ-
ent GANs.

Figure 4: Run-time improve-
ment (GREAT Score over
Auto-Attack) on 500 gener-
ated CIFAR-10 images.
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Table 4: Group-wise and overall robustness eval-
uation for online gender classification APIs over
500 generated samples (per group).

Online API Name Old Young With
Eyeglasses

Without
Eyeglasses Total

BetaFace 0.950 0.662 0.547 0.973 0.783
Inferdo 0.707 0.487 0.458 0.669 0.580
ARSA-Technology 1.033 0.958 0.739 1.082 0.953
DEEPFACE 0.979 0.774 0.763 0.969 0.872
Baidu 1.097 1.029 0.931 1.134 1.048
Luxand 1.091 0.912 0.673 1.010 0.944

Table 5: GREAT Score v.s. robust accuracy
under square attack [1].

DEEPFACE Old Young With
Eyeglasses

Without
Eyeglasses

Square Attack 84.40% 72.60% 65.80% 89.00%
GREAT Score 0.979 0.774 0.763 0.969

4.5 Evaluation on Online Facial Recognition APIs

To demonstrate GREAT Score enables robustness evaluation of black-box models that only provide
model inference outcomes based on date inputs, we use synthetically generated face images with
hidden attributes to evaluate six online face recognition APIs for gender classification. It is worth
noting that GREAT Score is suited for privacy-sensitive assessment because it only uses synthetic
face images for evaluation and does not require using real face images.

We use an off-the-shelf face image generator InterFaceGAN [56] trained on CelebA-HQ dataset
[29], which can generate controllable high-quality face images with the choice of attributions such
as eyeglasses, age, and expression. We generate four different groups (attributes) of face images
for evaluation: Old, Young, With Eyeglasses, and Without Eyeglasses. For annotating the ground
truth gender labels of the generated images, we use the gender predictions from the FAN classifier
[25]. In total, 500 gender-labeled face images are generated for each group. Appendix L shows some
examples of the generated images for each group.

We evaluate the GREAT Score on six online APIs for gender classification: BetaFace [5], Inferdo
[28], Arsa-Technology [2], DeepFace [55], Baidu [4] and Luxand [37]. These APIs are “black-box”
models to end users or an external model auditor because the model details are not revealed and only
the model inference results returned by APIs (prediction probabilities on Male/Female) are provided.

Finally, we upload these images to the aforementioned online APIs and calculate the GREAT Score
using the returned prediction results. Table 4 displays the group-level and overall GREAT Score
results. Our evaluation reveals interesting observations. For instance, APIs such as BetaFace, Inferno,
and DEEPFACE exhibit a large discrepancy for Old v.s. Young, while other APIs have comparable
scores. For all APIs, the score of With Eyeglasses is consistently and significantly lower than that of
Without Eyeglasses, which suggests that eyeglasses could be a common spurious feature that affects
the group-level robustness in gender classification. The analysis demonstrates how GREAT Score can
be used to study the group-level robustness of an access-limited model in a privacy-enhanced manner.

To verify our evaluation, in Table 5 we compare GREAT Score to the black-box square attack [1] with
ϵ = 2 and # queries= 100 on DEEPFACE. For both Age and Eyeglasses groups (Old v.s. Young
and W/ v.s. W/O eyeglasses), we see consistently that a higher GREAT Score (second row) indicates
better robust accuracy (%, first row) against square attack.

5 Conclusion

In this paper, we presented GREAT Score, a novel and computation-efficient attack-independent
metric for global robustness evaluation against adversarial perturbations. GREAT Score uses an
off-the-shelf generative model such as GANs for evaluation and enjoys theoretical guarantees on its
estimation of the true global robustness. Its computation is lightweight and scalable because it only
requires accessing the model predictions on the generated data samples. Our extensive experimental
results on CIFAR-10 and ImageNet also verified high consistency between GREAT Score and the
attack-based model ranking on RobustBench, demonstrating that GREAT Score can be used as an
efficient measure complementary to existing robustness benchmarks. We also demonstrated the novel
use of GREAT Score for the robustness evaluation of online facial recognition APIs.

Limitations. One limitation could be that our framework of global adversarial robustness evaluation
using generative models is centered on L2-norm based perturbations. This limitation could be
addressed if the Stein’s Lemma can be extended for other Lp norms.
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A Notations

Table 6: Main notations used in this paper
Notation Description
d dimensionality of the input vector
K number of output classes
f : Rd → RK neural network classifier
x ∈ Rd data sample
y groundtruth class label
δ ∈ Rd input perturbation
∥δ∥p Lp norm of perturbation, p ≥ 1
∆min minimum adversarial perturbation
G (conditional) generative model
z ∼ N (0, I) latent vector sampled from Gaussian distribution
g robustness score function defined in (3)
Ω(f)/Ω̂(f) true/estimated global robustness defined in Section 3.1

B More Motivations on using Generative Models for Robustness Evaluation

We emphasize the necessity of generative models using the points below.

1. Global robustness assessment requires a GM. The major focus and novelty of our study are
to evaluate the global robustness with respect to the underlying true data distribution, and
we propose to use a GM as a proxy. We argue that such a proxy is necessary to evaluate
global robustness unless the true data distribution is known.

2. GAN can provably match data distribution. Recent works such as [53] and [34] have proved
the convergence rate of approaching the true data distribution for a family of GANs under
certain conditions. This will benefit global robustness evaluation (see Figure 3 for ablations
on GAN variants).

3. Privacy-sensitive remote model auditing. As shown in Sec 4.5, synthetic data from generative
models can facilitate the robustness evaluation of privacy-sensitive models.

B.1 Related Works for Global Robustness Evaluation for Deep Neural Networks.

There are some works studying “global robustness”, while their contexts and scopes are different
than ours. In [51], the global robustness is defined as the expectation of the maximal certified radius
of L0-norm over a test dataset. Ours is not limited to a test set, and we take the novel perspective of
the entire data distribution and use a generative model to define and evaluate global robustness. The
other line of works considers deriving and computing the global Lipschitz constant of the classifier
as a global certificate of robustness guarantee, as it quantifies the maximal change of the classifier
with respect to the entire input space [33]. The computation can be converted as a semidefinite
program (SDP) [16]. However, the computation of SDP is expensive and hard to scale to larger neural
networks. Our method does not require computing the global Lipschitz constant, and our computation
is as simple as data forward pass for model inference.

C Proof of Theorem 1

In this section, we will give detailed proof for the certified global robustness estimate in Theorem 1.
The proof contains three parts: (i) derive the local robustness certificate; (ii) derive the closed-form
global Lipschitz constant; and (iii) prove the proposed global robustness estimate is a lower bound on
the true global robustness.

We provide a proof sketch below:

1. We use the local robustness certificate developed in [59], which shows an expression of a certified
(attack-proof) Lp-norm bounded perturbation for any p ≥ 1. The certificate is a function of the
gap between the best and second-best class predictions, as well as a local Lipschitz constant
associated with the gap function.
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2. We use Stein’s Lemma [57] which states that the mean of a measurable function integrated over
a zero-mean isotropic Gaussian distribution has a closed-form global Lipschitz constant in the
L2-norm. This result helps avoid the computation of the local Lipschitz constant in Step 1 for
global robustness evaluation using generative models.

3. We use the results from Steps 1 and 2 to prove that the proposed global robustness estimate Ω̂(f)
is a lower bound on the true global robustness Ω(f) with respect to G.

C.1 Local robustness certificate

In this part, we use the local robustness certificate in [59] to show an expression for local robustness
certificate consisting of a gap function in model output and a local Lipschitz constant. The first
lemma formally defines Lipschitz continuity and the second lemme introduces the the local robustness
certificate in [59].

Lemma 1 (Lipschitz continuity in Gradient Form ([44])). Let S ⊂ Rd be a convex bound closed set
and let f : S→ R be a continuously differentiable function on an open set containing S. Then f is a
Lipschitz continuous function if the following inequality holds for any x, y ∈ S :

|f(x)− f(y)| ≤ Lq ∥x− y∥p (5)

where Lq = maxx∈S ∥∇f(x)∥q : is the corresponding Lipschitz constant, and ∇f(x) =

( ∂f∂x1
, ... ∂f∂xd

)⊤ is the gradient of the function f(x), and 1/q + 1/p = 1, p ≥ 1, q ≤ ∞.

We say f is Lq-continuous in Lp norm if (5) is satisfied.

Lemma 2 (Formal guarantee on lower bound for untargeted attack of Theorem 3.2 in [59]). Let
x0 ∈ Rd and f : Rd → RK be a multi-class classifier, and fi be the i-th output of f . For untargeted
attack, to ensure that the adversarial examples can not be found for each class, for all δ ∈ Rd, the
lower bound of minumum distortion can be expressed by:

∥δ∥p ≤ min
i ̸=m

fm(x0)− fi(x0)

Liq
(6)

where m = argmaxi∈{1,...,K} fi(x0), 1/q + 1/p = 1, p ≥ 1, q ≤ ∞, and Liq is the Lipschitz
constant for the function fm(x)− fi(x) in Lq norm.

C.2 Proof of closed-form global Lipschitz constant in the L2-norm over Gaussian distribution

In this part, we present two lemmas towards developing the global Lipschitz constant of a function
smoothed by a Gaussian distribution.

Lemma 3 (Stein’s lemma [57]). Given a soft classifier F : Rd → P, where P is the space of
probability distributions over classes. The associated smooth classifier with parameter σ ≥ 0 is
defined as:

F̄ := (F ∗ N (0, σ2I))(x) = Eδ∼N (0,σ2I)[F (x+ δ)] (7)

Then, F̄ is differentiable, and moreover,

∇F̄ =
1

σ2
Eδ∼N (0,σ2I)[δ · F (x+ δ)] (8)

In a lecture note1, Li used Stein’s Lemma [57] to prove the following lemma:

Lemma 4 (Proof of global Lipschitz constant). Let σ ≥ 0, let h : Rd → [0, 1] be measurable, and

let H = h ∗ N (0, σ2I). Then H is

√
2

πσ2
– continuous in L2 norm

1https://jerryzli.github.io/robust-ml-fall19/lec14.pdf
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C.3 Proof of the proposed global robustness estimate Ω̂(f) is a lower bound on the true global
robustness Ω(f) with respect to G

Recall that we assume a generative model G(·) generates a sample G(z) with z ∼ N (0, I). Following
the form of Lemma 2 (but ignoring the local Lipschitz constant), let

g′ (G(z)) = max{fc(G(z))− max
k∈{1,...,K},k ̸=c

fk(G(z)), 0} (9)

denote the gap in the model likelihood of the correct class c and the most likely class other than c
of a given classifier f , where the gap is defined to be 0 if the model makes an incorrect top-1 class
prediction on G(z). Then, using Lemma 4 with g′, we define

Ez∼N (0,I)[g
′(G(z))] = (g′ ◦G) ∗ N (0, I) (10)

[ZAITANG: Modified the equations] and thus Ez∼N (0,I)[g
′(G(z))] has a Lipschitz constant

√
2

π
in

L2 norm. This implies that for any input perturbation δ,

|Ez∼N (0,I)[g
′(G(z) + δ)]− Ez∼N (0,I)[g

′(G(z))]| (11)

≤
√

2

π
· ∥δ∥2 (12)

and therefore

Ez∼N (0,I)[g
′(G(z) + δ)] (13)

≥ Ez∼N (0,I)[g
′(G(z))]−

√
2

π
· ∥δ∥2 (14)

Note that if the right-hand side of (13) is greater than zero, this will imply the classifier attains a
nontrivial positive mean gap with respect to the generative model. This condition holds for any δ

satisfying ∥δ∥2 <

√
π

2
· Ez∼N (0,I)[g

′(G(z))]. Note that by definition any minimum perturbation on

G(z) will be no smaller than

√
π

2
· Ez∼N (0,I)[g

′(G(z))] as it will make g′(G(z)) = 0 almost surely.

Therefore, by defining g =

√
π

2
· g′, we conclude that the global robustness estimate Ω̂(f) in (2)

using the proposed local robustness score g defined in (3) is a certified lower bound on the true global
robustness Ω(f) with respect to G.

D Proof of Theorem 2

To prove Theorem 2, we first define some notations as follows, with a slight abuse of the notation f
as a generic function in this part. For a vector of independent random variables X = (X1..., Xn),
define X

′
= (X

′

1..., X
′

n) to be i.i.d. to X, x = (x1, ..., xn) ∈ X, and the sub-exponential norms
∥·∥ψ2

for any random variable Z as

∥Z∥ψ2
= sup

p≥1

∥Z∥p√
p

(15)

Let f : Xn 7→ R. We further define the k-th centered conditional version of f as :

fk(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ...Xn] (16)

Lemma 5 (Concentration inequality from Theorem 3.1 in [40]). Let f : Xn 7→ R and X =
(X1, . . . , Xn) be a vector of independent random variables with values in a space X. Then for any
t > 0 we have

Pr(f(X)− E[f(X ′)] > t) ≤ exp

 − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 (17)
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Recall that we aim to derive a probabilistic guarantee on the sample mean of the local robustness
score in (3) from a K-way classifier with its outputs bounded by [0, 1]K . Following the definition of
g (for simplicity, ignoring the constant

√
π/2), the sample mean f can be expressed as:

f(X) =
1

n

n∑
i=1

g(Xi) (18)

where Xi ∼ N (0, I).

Following the definition of (16),

fk(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ...Xn] (19)

=
1

n
[g(Xk)− g(X

′

k)] ≤
1

n
(20)

This implies fk(X) is bounded by
1

n
, i.e., ∥fk(X)∥∞ ≤

1

n
, and also ∥fk(X)∥ψ2

≤
1

n
.

Squaring over ∥fk(X)∥ψ2
gives

∥fk(X)∥2ψ2
≤

1

n2
(21)

As a result, ∥∥∥∥∥∑
k

∥fk(X)∥2ψ2

∥∥∥∥∥
∞

≤ n ·
1

n2
=

1

n
(22)

Divide both side of (22) and multiply with
− t2

32e
gives:

− t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

≤
− t2n

32e
(23)

Take exponential function over both side of (23) gives

exp

 − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 ≤ exp

(
− t2n

32e

)
(24)

Recall Lemma 5, since this bound holds on both sides of the central mean, we rewrite it as:

Prob(
∣∣f(X)− E[f(X ′)]

∣∣ > t) ≤ 2 exp

 − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 (25)

Hence to ensure that given a statistical tolerance ϵ > 0 with δ as the maximum outage probability,
i.e., Prob(|f(X)− E[f(X ′)|] > ϵ) ≤ δ, we have

2 · exp

 − ϵ2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 ≤ 2 exp

(
− ϵ2n

32e

)
(26)

≤ δ (27)

Finally, (26) implies that the sample complexity to reach the (ϵ, δ) condition is n ≥ 32e·log(2/δ)
ϵ2 .

Figure 5 shows the flow chart of Algorithm 1.
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Figure 5: The Flow Chart of GREAT Score.

Table 7: Spearman’s rank correlation coeffienct on CIFAR-10 using GREAT Score, RobustBench
(with test set), and Auto-Attack (with generated samples) with different calibration methods.

GREAT Score v.s.
RobustBench Correlation

GREAT Score v.s.
AutoAttack Correlation

RobustBench v.s
AutoAttack Correlation

softmax with temperature -0.5024 -0.5334 0.7296
sigmoid with temperature 0.7083 0.3641 0.7296
sigmoid with temperature after softmax -0.2525 -0.2722 0.7296
softmax with temperature after sigmoid 0.8971 0.6941 0.7296

E Comparison between CW Attack and GREAT Score

We provide a detailed comparison of the time complexity between GREAT Score and CW Attack.

The time complexity of the GREAT Score algorithm is determined by the number of iterations
(generated samples) in the loop, which is denoted as NS . Within each iteration, the algorithm
performs operations such as random selection, sampling from a Gaussian distribution, generating
samples, and predicting class labels using the classifier. We assume these operations have constant
time complexity I and absorb them in the big O notation. Additionally, the algorithm computes the
sample mean of the recorded statistics, which involves summing and dividing the values. As there are
NS values to sum and divide, this step has a time complexity of O(NS). Therefore, the overall time
complexity of the algorithm can be approximated as O(NS · I).
Using our nation, consider a K-way classifier f . Let x be a data sample and y be its top-1 classification
label. Denote δ as the adversarial perturbation. The untargeted CW Attack (L2 norm) solves the
following optimization objective:

δ∗ = argmin
δ

(∥δ∥22 + α ·max{fy(x+ δ)− max
k∈{1,...,K},k ̸=y

fk(x+ δ), 0}) (28)

where fk(·) is the prediction of the k-th class, and α > 0 is a hyperparameter.

For CW attack, the optimization process iteratively finds the adversarial perturbation. The number of
iterations required depends on factors such as the desired level of attack success and the convergence
criteria. Each iteration involves computing gradients, updating variables, and evaluating the objective
function. It also involves a hyperparameterα search stage to adjust the weighted loss function.

Specifically, let B be the complexity of backpropagation, Tg be the number of iterative optimizations,
and Tb be the number of binary search steps for α. The dominant computation complexity of CW
attack for NS samples is in the order of O(NS · Tg · Tb ·B). Normally, Tg is set to 1000, and Tb is
set to 9. Therefore, CW attack algorithm is much more time-consuming than GREAT Score.

F Best Calibration Coefficient on different activation methods

Table 7 shows the best ranking coefficient we achieved on each calibration option for CIFAR-10.
Among all these four calibration choices, we found that Sigmoid then Temperature Softmax achieves
the best result.
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G Detailed descriptions of the Models

We provide the detail description for classifiers on RobustBench in what follows. The classfiers for
CIFAR-10 are mentioned first and the last paragraph provides descriptions for ImageNet classifiers.
• Rebuffi et al. [46]: Rebuffi et al. [46] proposed a fixing data augmentation method such as using
CutMix [63] and GANs to prevent over-fitting. There are 4 models recorded in [46]: Rebuffi_extra
uses extra data from Tiny ImageNet in training, while Rebuffi_70_ddpm uses synthetic data from
DDPM. Rebuffi_70_ddpm/Rebuffi_28_ddpm/Rebuffi_R18 varies in the network architecture. They
use WideResNet-70-16 [64]/WideResNet-28-10 [64]/PreActResNet-18 [24].
• Gowal et al.[21]: Gowal et al. [21] studied various training settings such as training losses, model
sizes, and model weight averaging. Gowal_extra differs from Gowal in using extra data from Tiny
ImageNet for training.
• Augustin et al.[3]: Augustin et al.[3] proposed RATIO, which trains with an out-Of-distribution
dataset. Augustin_WRN_extra uses the out-of-distribution data samples for training while Au-
gustin_WRN does not.
• SehWag et al. [54]: SehWag et al. [54] found that a proxy distribution containing extra data can
help to improve the robust accuracy. Sehwag/Sehwag_R18 uses WideResNet-34-10 [64]/ResNet-18
[23], respectively.
• Rade et al. [45]: Rade [45] incorporates wrongly labeled data samples for training.
• Wu et al. [62]: Wu2020Adversarial [62] regularizes weight loss landscape.
• LIBRARY: Engstrom2019Robustness 2 is a package used to train and evaluate the robustness of
neural network.
• Rice et al. [47]: Rice2020Overfitting [47] uses early stopping in reduce over-fitting during training.
• Rony et al. [50]: Rony2019Decoupling [50] generates gradient-based attacks for robust training.
• Ding et al. [50]: Ding2020MMA [14] enables adaptive selection of perturbation level during
training.

For the 5 ImageNet models, Trans [52] incorporates transfer learning with adversarial training. Its
model variants Trans1/Trans2/Trans3 use WideResNet-50-2 [64]/ResNet-50 [23]/ResNet-18 [23].
LIBRARY means using the package mentioned in Group of other models to train on ImageNet. Fast
[61] means fast adversarial training. There is no L2-norm benchmark for ImageNet on RobustBench,
so we use the L∞-norm benchmark.

H Approximation Error and Sample Complexity

Figure 6 presents the sample complexity as analyzed in Theorem 2 with varying approximation error
(ϵ) and three confidence parameters (δ) for quantifying the difference between the sample mean and
the true mean for global robustness estimation. As expected, smaller δ or smaller ϵ will lead to higher
sample complexity.

Figure 6: The relationship between the approximation error (ϵ) and sample complexity in Theorem 2,
with three different confidence levels: δ = {5, 15, 25}%.

2https://github.com/MadryLab/robustness
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Table 8: Group-wise time efficiency evaluation on CIFAR-10 using GREAT Score and Auto-Attack
(with 500 generated samples).

Model Name GREAT Score(Per Sample)(s) AutoAttack(Per Sample)(s)

Rebuffi_extra [46] 0.038 60.872
Gowal_extra [21] 0.034 59.586
Rebuffi_70_ddpm [46] 0.034 61.3362
Rebuffi_28_ddpm [46] 0.011 10.3828
Augustin_WRN_extra [3] 0.013 10.096
Sehwag [54] 0.011 10.3662
Augustin_WRN [3] 0.011 10.1056
Rade [45] 0.007 4.4114
Rebuffi_R18[46] 0.008 4.4644
Gowal [21] 0.034 60.746
Sehwag_R18 [54] 0.007 3.8652
Wu2020Adversarial [62] 0.012 10.9826
Augustin2020Adversarial [3] 0.014 6.9148
Engstrom2019Robustness [15] 0.012 6.6462
Rice2020Overfitting [47] 0.007 3.5776
Rony2019Decoupling [50] 0.010 8.5834
Ding2020MMA [14] 0.008 3.6194

I Complete Run-time Results

The complete run-time results of Figure 4 are given in Table 8:

J Sample Complexity and GREAT Score

Figure 7: The relation of GREAT Score and sample complexity using CIFAR-10 and Rebuffi_extra
model over (500-10000) range. The data points refer to the mean value for GREAT Score, and the
error bars refers to the standard derivation for GREAT Score.

Figure 7 reports the mean and variance of GREAT Score with a varying number of generated data
samples using CIFAR-10 and the Rebuffi_extra model, ranging from 500 to 10000 with 500 increment.
Figure 8 reports the mean and variance of GREAT Score ranging from 50 to 1000 with 50 increment.
The results show that the statistics of GREAT Score are quite stable even with a small number of data
samples.

K GREAT Score Evaluation on the Original Test Samples of CIFAR-10

Besides evaluating the GREAT Score on the generated samples from GAN, we also run the evaluation
process on 500 test samples of CIFAR-10. Table 9 shows the evaluated GREAT Score.
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Figure 8: The relation of GREAT Score and sample complexity using CIFAR-10 and Rebuffi_extra
model over (50-1000) range. The data points refer to the mean value for GREAT Score, and the error
bars refers to the standard derivation for GREAT Score.

Figure 9: Generated Images for old subgroup.

L Generated Images from Facial GAN Models

We show the generated images from four groups in what follows.

M Impact Statements

As this work focuses on quantifying and scoring the global robustness of neural network classifiers,
we do not currently foresee any negative impact based on our work. We envision our work to be used
in model auditing settings such as model cards.

N Scalability Analysis

To evaluate the scalability of the GREAT Score framework, we conducted experiments using three
ResNet variants (ResNet50, ResNet101, and ResNet152) with varying dataset sizes ranging from 500
to 2000 images. The computation times were measured in milliseconds without implementing any
attack mechanisms.

Table 10 presents the detailed computational performance across different configurations.

Our experimental results demonstrate a linear increase in computation time with respect to both dataset
size and model complexity. More sophisticated architectures like ResNet152 required proportionally
more processing time compared to simpler ones like ResNet50. This linear scalability indicates that
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Figure 10: Generated Images for young subgroup.

Figure 11: Generated Images for with-eyeglasses subgroup.

Figure 12: Generated Images for without-eyeglasses subgroup.
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the GREAT Score framework efficiently handles larger datasets and more complex models, making it
suitable for large-scale applications.

Table 9: GREAT Score on CIFAR-10. The results are averaged over 500 original test samples.

Model Name RobustBench
Accuracy(%)

AutoAttack
Accuracy(%)

GREAT
Score

Test Samples
GREAT Score

Rebuffi_extra [46] 82.32 87.20 0.507 0.465
Gowal_extra [21] 80.53 85.60 0.534 0.481
Rebuffi_70_ddpm [46] 80.42 90.60 0.451 0.377
Rebuffi_28_ddpm [46] 78.80 90.00 0.424 0.344
Augustin_WRN_extra [3] 78.79 86.20 0.525 0.525
Sehwag [54] 77.24 89.20 0.227 0.227
Augustin_WRN [3] 76.25 86.40 0.583 0.489
Rade [45] 76.15 86.60 0.413 0.331
Rebuffi_R18[46] 75.86 87.60 0.369 0.297
Gowal [21] 74.50 86.40 0.124 0.109
Sehwag_R18 [54] 74.41 88.60 0.236 0.176
Wu2020Adversarial [62] 73.66 84.60 0.128 0.106
Augustin2020Adversarial [3] 72.91 85.20 0.569 0.493
Engstrom2019Robustness [15] 69.24 82.20 0.160 0.127
Rice2020Overfitting [47] 67.68 81.80 0.152 0.120
Rony2019Decoupling [50] 66.44 79.20 0.275 0.221
Ding2020MMA [14] 66.09 77.60 0.112 0.08
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Table 10: Computation time (ms) for different ResNet models and dataset sizes
Dataset Size ResNet50 ResNet101 ResNet152

500 3274 6251 9149
1000 6529 12528 18339
1500 9785 18838 27481
2000 12960 24917 36588
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
In the abstract and introduction, we introduce the GREAT Score, a novel and computation-
efficient attack-independent metric for global robustness evaluation against adversarial
perturbations. This claim is supported throughout the paper by detailing the methodology
and implementation of the GREAT Score, which utilizes off-the-shelf generative models
such as GANs. The paper discusses the theoretical guarantees associated with GREAT
Score’s estimation of true global robustness, reinforcing the validity of this claim.
The lightweight and scalable nature of the GREAT Score is emphasized, noting that it
only requires model predictions on generated data samples. This is thoroughly validated
through extensive experimental results on CIFAR-10 and ImageNet datasets, where we
demonstrate high consistency between GREAT Score and the attack-based model rankings
on RobustBench. These results substantiate the claim that GREAT Score can serve as an
efficient alternative for robustness benchmarks.
Furthermore, the paper explores the novel application of GREAT Score for evaluating the
robustness of online facial recognition APIs. This application is detailed in the results
section, providing additional evidence of the metric’s versatility and practical utility.
Therefore, the main claims in the abstract and introduction are well-supported by the
comprehensive experimental results and detailed analysis presented in the paper, ensuring
an accurate reflection of our contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, please see Limitations in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please see Section 3 for all the Theory Assumptions, we provide the proof for
them in Appendix C and D .
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, please check Section 4.1 and Appendix for experiment details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please see the attached code in the supplementary material. We also prepare a
document alongside the code for instructions to reproduce the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided a experiment setup in Section 4.1. Besides, we give a detail
explanation in each subsection of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide a probabilistic guarantee on our GREAT Score evaluation in
Theorem 2, which can be translated to error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please check Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have exactly follow the code of Ethics of NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Section M.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As our work do not directly release models and data, hence no high risk for
misuse of it.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We have cite all the assets we used in the paper. We use all licensed datasets
under MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided our code for evaluation robustness framework. Although
our method involved using generative model to generate new data. We actually share the
generation process, not the data itself. Therefore, no new data is introduced here.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No Human Subjects concerned.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No Human Subjects concerned.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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