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Fig. 1. Epipolar priors can be unreliable across extremely sparse views, especially in non-overlapping
or occluded areas. Our model, eFreeSplat, generalizes to novel scenes without relying on epipolar
priors, offering superior appearance and geometric perception.

Abstract

Generalizable 3D Gaussian splitting (3DGS) can reconstruct new scenes from
sparse-view observations in a feed-forward inference manner, eliminating the need
for scene-specific retraining required in conventional 3DGS. However, existing
methods rely heavily on epipolar priors, which can be unreliable in complex real-
world scenes, particularly in non-overlapping and occluded regions. In this paper,
we propose eFreeSplat, an efficient feed-forward 3DGS-based model for generaliz-
able novel view synthesis that operates independently of epipolar line constraints.
To enhance multiview feature extraction with 3D perception, we employ a self-
supervised Vision Transformer (ViT) with cross-view completion pre-training on
large-scale datasets. Additionally, we introduce an Iterative Cross-view Gaussians
Alignment method to ensure consistent depth scales across different views. Our
eFreeSplat represents an innovative approach for generalizable novel view synthe-
sis. Different from the existing pure geometry-free methods, eFreeSplat focuses
more on achieving epipolar-free feature matching and encoding by providing 3D
priors through cross-view pretraining. We evaluate eFreeSplat on wide-baseline
novel view synthesis tasks using the RealEstate10K and ACID datasets. Extensive
experiments demonstrate that eFreeSplat surpasses state-of-the-art baselines that
rely on epipolar priors, achieving superior geometry reconstruction and novel view
synthesis quality. Project page: https://tatakai1.github.io/efreesplat/.
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1 Introduction

Rendering novel views from sparse observations has long been a challenging research task in the 3D
vision community. Recently, generalizable novel view synthesis (GNVS) techniques have emerged as
a promising solution. These models, trained on large-scale multiview datasets, can directly synthesize
novel views of new scenes from a few observations, eliminating the need for scene-specific retraining.
Notable works in this vein include NeRF-based GNVS [37, 38, 55, 64] and Light Field Network-
based GNVS [12, 48, 49]. An enabling factor in their generalizability is the use of epipolar priors,
which help determine the precise location of a pixel in one image on the corresponding epipolar
line in another viewpoint [17, 70]. More recently, generalizable 3D Gaussian splatting methods,
such as pixelSplat [6] and MVSplat [9], have been proposed. These methods leverage the benefits
of a primitive-based 3D representation, offering fast and memory-efficient rendering along with
an interpretable 3D structure for generalizable view synthesis. Like previous approaches, most
3DGS-based GNVS methods [6, 9, 61] depend on epipolar priors to achieve high-quality and fast
cross-scene novel view rendering.

Despite significant advancements utilizing epipolar priors, a new and underexplored issue has emerged
in GNVS: epipolar priors prove unreliable in non-overlapping and occluded regions of complex real-
world scenes, where corresponding points on epipolar lines are absent. As depicted in Fig. 1, epipolar
lines (marked in green) effectively identify geometric correspondences in multiview overlapping
areas. Conversely, epipolar lines (marked in red) become invalid in those non-overlapping regions,
leading to unreliable geometric reconstructions. Moreover, sampling on invalid epipolar lines and
employing attention mechanism will produce a lot of redundant calculations [6, 38, 49].

A newly proposed geometry-free 3D reconstruction method [56], which captures multiview consistent
knowledge from a versatile model pre-trained on cross-view data, has inspired our development
of a novel GNVS method that circumvents the dependence on epipolar priors through data-driven
3D priors. Leveraging this insight, we propose eFreeSplat, an efficient feed-forward 3D Gaussian
Splatting model for GNVS that operates independently of epipolar line priors. eFreeSplat is built
upon 3DGS [23] originally designed for single-scene NVS and extends its advantages to GNVS.
The overview of our method is illustrated in Fig. 2. To capture 3D structural information across
sparse views without unreliable epipolar priors, we utilize a self-supervised pre-training model for
3D cross-view completion [59, 60]. This model uses a Vision Transformer (ViT) [11] encoder and
cross-attention decoder to predict parts of the masked images from reference views. In eFreeSplat,
the pre-training model retains all patches, effectively capturing spatial relationships and acting as
a “cross-view mutual perceiver”. This approach provides robust geometric biases for global 3D
representation via cross-view completion pre-training on large-scale datasets [25, 35, 40, 44, 45].

Experimentally, we found that without an explicit 3D constraint, the scale of predicted depth maps
of per-pixel 3D points from different views tends to be inconsistent [4, 53], leading to artifacts or
pixel displacement in images from novel views. To address the issue of inconsistent depth scales
across different views, we introduce an Iterative Cross-view Gaussians Alignment (ICGA) technique
to eFreeSplat. ICGA is based on the fact that the features of most surface points projected onto the
camera planes of different views remain consistent. Specifically, we obtain the warped features for
each view based on the predicted depths via U-Net. We then calculate the fine depths for the next
iteration via the correlation between the warped features and the features from other views. Unlike
the plane-sweep stereo approach [9, 62, 63], our updating and alignment strategy does not require
numerous depth candidates, thereby reducing computational and storage costs.

The main contributions of this paper are summarized as follows:

• We introduce eFreeSplat, a method with novel insights into GNVS that operates without
relying on epipolar priors in the process of multi-view geometric perception. eFreeSplat
demonstrates robustness in generalizing to new scenarios with sparse and non-overlapping
observations.

• To ensure depth scale consistency across different viewpoints without explicit epipolar con-
straints, we propose an Iterative Cross-view Gaussians Alignment method, which alleviates
artifacts and pixel displacement issues in renderings.

• eFreeSplat achieves competitive cross-scene rendering performance on the
RealEstate10K [72] and ACID [26] datasets, surpassing state-of-the-art approaches
such as pixelSplat [6] and MVSplat [9].
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2 Related Work

Single-Scene 3DGS. 3D Gaussian Splatting (3DGS) [23] marks a significant shift in 3D scene
representation. It employs millions of learnable 3D Gaussians to explicitly map spatial coordinates to
pixel values, enhancing rendering efficiency and quality via a rasterization-based splatting approach,
and boosting various downstream tasks [34, 36]. Unlike early 3D neural representation methods [37,
39, 46] that require intensive computations and large memory usage (e.g., neural fields [2, 3, 67] and
volume rendering [27, 65, 66]) , 3DGS enables real-time rendering and editability with minimized
computational demands [8]. Existing single-scene 3DGS-liked methods [10, 18, 23] demand dense
views for each scene via the expensive per-scene gradient back-propagation process. In our work, we
employ a single feedforward network to deduce the parameters of Gaussian primitives using merely
two images.

Cross-Scene Generalizable 3DGS. Cross-scene generalizable 3DGS learns robust priors from
large-scale scenarios to predict Gaussian primitive parameters and render novel view images using
sparse inputs. pixelSplat [6] and LatentSplat [61] leverage the epipolar transformer [17] to find
cross-view correspondences and learn per-pixel Gaussian depth distributions. However, this can fail
in non-overlapping and occluded areas, leading to inaccurate geometry and surface reconstructions.
Splatter Image [50] merges Gaussian primitives from single-view regressions but lacks cross-view
information, limiting its multiview applications. GPS-Gaussian [71] and MVSplat [9] improve feature
matching with cost volumes for better geometries; however, GPS-Gaussian is limited to human body
reconstruction with depth ground truth, and MVSplat, using plane-sweep stereo [28, 29, 62, 63], still
relies on the epipolar priors [13, 15, 63]. Triplane-Gaussian [73] encodes single-view images into
latent 3D point clouds and triplane features, outputting 3D Gaussian properties via MLP decoders.
However, it focuses on single-view reconstruction, with rendering quality dependent on initial
geometry. Our method bypasses 3D priors through sampling along epipolar lines or cost volumes,
instead using cross-view competition pre-training [59, 60] on large-scale datasets [25, 35, 40, 44, 45].

Solving 3D Tasks using Geometry-free Methods. Priors are crucial for visual tasks to provide
generalized features [14, 30, 31, 32, 33]. Capitalizing on the geometric priors, methods based on
re-projection features [21, 51, 64], cost volume [7, 19, 22, 63], and image warping [5] have performed
well in downstream 3D activities. However, these methods rely on task-specific designs and struggle
with complex scenarios, such as occlusions or non-overlapping views. Recently, some geometry-free
alternatives have been proposed to this challenge. SRT [43] and GS-LRM [68] are epipolar-free
GNVS methods that boldly eschew any explicit geometric inductive biases. SRT encodes patches
from all reference views using a Transformer encoder and decodes the RGB color for target rays
through a Transformer decoder. GS-LRM’s network, composed of a large number of Transformer
blocks, implicitly learns 3D representations. However, due to the lack of targeted scene encoding,
these methods are either limited to specific datasets or suffer from unacceptable computational
efficiency and carbon footprint. Some pose-free GNVS methods [20, 43, 54] are also epipolar-
free. These methods, lacking known camera poses, find it challenging to perform epipolar line
sampling. They often reduce task complexity through specially designed feature representations
(e.g., Learned 3D Neural Volume in LEAP [20] and Triplane in PF-LRM [54]), but this reduction
comes at the cost of decreased model generalization. Different from the above methods, our method
focuses on data-driven 3D priors and does not require any time-consuming and complex structured
feature representations, such as cost volumes. CroCo [59], a self-supervised pre-training method for
3D vision tasks, uses cross-view completion to recover occluded parts of an image from different
viewpoints without any 3D inductive biases, significantly enhancing downstream 3D vision tasks.
DUSt3R [56] introduces a novel paradigm for dense and unconstrained stereo 3D reconstruction from
arbitrary image collections, operating without prior information about camera calibration. These
geometry-free pioneers pave the way for more adaptable and efficient 3D vision systems capable of
performing accurately across diverse and challenging environments.

3 Methodology

3.1 Overview

Our objective is to predict per-pixel 3D Gaussian [23] primitives {µi,Σi, αi,SHi}Mi=1 using N

reference views images {Ij}Nj=1, camera intrinsics matrices {Kj}Nj=1 and poses matrices {Pj}Nj=1
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Fig. 2. Overview of eFreeSplat. (a) Epipolar-free Cross-view Mutual Perception leverages self-
supervised cross-view completion pre-training [60] to extract robust 3D priors. The ViT [11] with
shared weights processes the reference images, followed by a cross-attention decoder to generate
multiview feature maps, forming 3D perception without epipolar priors. (b) Iterative Cross-view
Gaussians Alignment module iteratively refines Gaussian attributes through a 2D U-Net. The process
involves warped features to align corresponding features and depths, ensuring consistent depth
scales across different views. (c) The final step involves employing rasterization-based volume
rendering [23] to generate high-quality geometry and realistic novel view images.

in a single feed-forward inference. The 3D Gaussian primitives include position µ, covariance Σ,
opacity α, and spherical harmonics SH for colors. Given a H × W sized reference image, the
number of 3D Gaussian primitives can be calculated as M = N ×H ×W . The position of the 3D
Gaussians µi determines the geometric shape of the scene, which corresponds to pixel u is calculated
using the camera origin o, the ray direction du, and the predicted depth d:

µi = o+ d · du, (1)

where du is calculated by the camera intrinsic and pose matrix: du = PK−1[u, 1]T . However, when
the number of reference views is extremely sparse, predicting accurate depths d and reconstructing
high-quality geometric structures and appearances become particularly challenging. Particularly in
non-overlapping and occluded areas, prevalent methods [6, 9, 12] based on epipolar line sampling
fail to introduce valid geometric priors.

In this paper, we propose eFreeSplat, a generalizable 3D Gaussian Splatting model from sparse
reference views2 that operates independently of epipolar line priors. As illustrated in Fig. 2, the pre-
trained ViT model based on cross-view completion via self-supervised training [59, 60] in large-scale
datasets provides robust geometric priors, serving as our Epipolar-free Cross-view Mutual Perception
(Sec. 3.2). Unlike recent works [6, 9, 61], which directly combine per-view 3D Gaussians, we propose
Iterative Cross-view Gaussians Alignment (ICGA) in Sec. 3.3. This module iteratively updates
the position and features of Gaussians by calculating the similarity between warped features and
corresponding features, alleviating the issues of local geometric inaccuracies caused by inconsistent
depth scales. In Sec. 3.4, we predict the centers of the 3D Gaussians by unprojecting the aligned
depth maps while calculating other 3D Gaussian parameters based on the aligned features.

3.2 Epipolar-free Cross-view Mutual Perception

To realize the cross-view mutual preception without relying on the epipolar prior, we extract cross-
view image features using a shared-weight ViT Eθ1 and a cross-attention decoder Dθ2 , both pre-
trained on large-scale cross-view completion tasks in a self-supervised manner [60]. Following

2In our experiments, the number of reference views N = 2, which is consistent with previous methods [6, 9].
For convenience, all subsequent discussions will assume a 2-views input scenario.
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the methodologies of CroCo v2 [60] and ViT [11], both images I1 and I2 are divided into 2n non-
overlapping patches via a linear projection, with each patch measuring 16× 16 pixels. Additionally,
relative positional embeddings [47] are added to the RGB patches before inputted into a series of
stacked Transformer modules for encoding tokens εj :

{εj}2j=1 = {Eθ1(Ij)}
2
j=1 . (2)

After encoding I1 and I2 via ViT independently, the cross-attention decoder Dθ2 takes ε1 and ε2
conditioned on each other for cross-view features F j ∈ RC×H×W :

F1 = f (Dθ2 (ε1, ε2)) , F2 = f (Dθ2 (ε2, ε1)) . (3)

The structure of the cross-attention decoder consists of alternating multi-head self-attention blocks
and multi-head cross-attention blocks. The mapping function f refers to unflattening the tokens
back to the original image size. The multi-head self-attention blocks learn token representations
from the first viewpoint, while the multi-head cross-attention blocks facilitate cross-view information
exchange conditioned on the token representations from the second view.

The CroCo model [59, 60], as a variant of masked image modeling [1, 16, 58] that leverages cross-
view information from the same scene to capture the spatial relationship between two images, can
significantly enhance performance on 3D downstream tasks. Based on cross-view completion self-
supervised pre-training on large-scale datasets, our epipolar-Free cross-view mutual perception
method provides robust 3D priors information by understanding the spatial relationship between the
two images [59]. Due to the randomness of the masking process during pre-training, the pre-trained
model is capable of reasoning about non-overlapping and occluded areas, which is hard for traditional
geometric methods to achieve. Therefore, our epipolar-Free mutual perception possesses a more
global and robust feature-matching inductive bias compared to methods [6, 9, 12, 61] that rely on
epipolar line sampling [17] or the plane-sweep stereo approach [63].

3.3 Iterative Cross-view Gaussians Alignment

To address the issue of inconsistent depth scales across different views, we utilize cross-view feature
matching information to align and update per-pixel Gaussians’ centers and features iteratively.

Firstly, we predict per-pixel Gaussians’ depths d and features G via a 2D U-Net [42] mapping U with
cross-view attention, similar to [9]:

d1,G1,d2,G2 = U(F1,F2). (4)

Next, to establish cross-view correspondences, we endeavor to make the features of each 3D Gaussian
point projected onto the known camera planes to be as similar as possible. Taking the first view as an
example, we calculate the warped features G1,2 of the first view on the second view’s features map
via the predicted coarse depth d1:

W1,2 = K2R2

(
R−1

1 −
(
R−1

2 t2 −R−1
1 t1

)
nT
1

d1

)
K−1

1 , (5)

G1,2(u) = G2(W1,2[u, 1]
T ), (6)

where W denotes the homographic warping matrix. u represents a pixel location in the first view.
Ri and ti are the rotation and translation parameters of the camera pose Pi. ni refers to the normal
vector of the target plane. We compute the similarity S1,S2 between the warped feature map G1,2

and the corresponding feature map G1 based on ∆dcos. S2 is obtained by the dot product of G1 and
G1,2, where C denotes the feature dimension of the 3D Gaussian primitives.

S1 = (G1 − G1,2)
2, S2 =

G1 · G1,2√
C

. (7)

Finally, we update the coarse per-pixel 3D Gaussian features and predicted depths.

∆G1 = φ([ G1 ∥ S1 ]) · S2, ∆d1 = d1 · S2, (8)
G1 = G1 +∆G1, d1 = d1 +∆d1, (9)
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Table 1. Quantitative comparisons. We evaluate our method by rendering three novel view images
from two reference viewpoints for each scene. The performance is determined by averaging across all
scenes. The dataset’s training and testing split follows the protocol established by pixelSplat [6]. The
inference time includes both scene encoding and rendering time, tested on a single RTX-4090 GPU.

Methods RealEstate10K [72] ACID [26] Inference Time
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (s)

Du et al. [12] 24.78 0.820 0.213 26.88 0.799 0.218 1.578
GPNR [49] 24.11 0.793 0.255 25.28 0.764 0.332 13.180
pixelSplat [6] 25.89 0.858 0.142 28.14 0.839 0.150 0.100
MVSplat [9] 26.39 0.869 0.128 28.25 0.843 0.144 0.046
eFreeSplat 26.45 0.865 0.126 28.30 0.851 0.140 0.061

where [·∥·] refers to the concatenation operation of tensors. We employ the mapping function φ :
R2C×H×W 7→ RC×H×W through lightweight convolutional blocks.

The updated features and depths serve as inputs for Eq. (4) (5) and (6), bootstrapping the next iteration
of Gaussian updates. Our cross-view Gaussians alignment method, during each iteration, involves
establishing a match for target pixel u1 in the first view with matching pixel u2 in the second view.
This process is akin to considering all neighboring pixels of the projected pixel u′

2 based on the
current coarse depth due to the locality inductive bias inherent in convolutions. During each querying
process, the discrepancy between u′

2 and the true matching u2 progressively decreases, thereby
harmonizing the consistency of depth scales across multiple views.

3.4 Gaussian Parameters Prediction

We calculate the per-view Gaussians’ centers µ based on the refined depths and camera parameters
using Eq. (1). We predict additional Gaussian primitives: Σ, α,SH , via an additional U-Net.
Following other 3DGS-based methods [6, 9, 23], the covariance matrix Σ is composed of a scaling
matrix and a rotation matrix. The spherical harmonic coefficients SH are used to compute RGB
values given a direction. Since we have harmonized the depth scale across different viewpoints, we
directly merge all views’ Gaussian primitives {µi,Σi, αi,SHi}N×H×W

i=1 .

4 Experiments

4.1 Experimental Settings

Datasets. eFreeSplat is trained on RealEstate10K [72] and ACID [26]. The RealEstate10K dataset
consists of home tour videos, providing a wealth of scenes and a variety of viewpoint changes. The
ACID dataset contains aerial landscape videos, featuring expansive views and complex terrains. Both
datasets provide estimated camera parameters. Following pixelSplat [6], we use the provided training
and testing splits and evaluate three novel view images on each test scene.

Evaluation Metrics and Training Losses. We employ standard image quality metrics to validate
and compare our results quantitatively: pixel-level PSNR, patch-level SSIM [57], and feature-level
LPIPS [69]. During the training phase, the loss is composed of a linear combination of MSE and
LPIPS loss, with loss weights of 1 and 0.05, respectively. Since existing methods conduct experiments
at 256× 256, we also set the resolution of our training and testing images for fair comparison.

Comparison Methods. We compared four feed-forward methods for sparse view novel view
synthesis. Du et al. [12] and GPNR [49] are the methods based on light field rendering that combines
features on epipolar lines aggregated by the epipolar transformer. pixelSplat [6] and MVSplat [9] are
the latest 3DGS-based models based on epipolar sampling and multi-plane sweeping, respectively.
Our method compared the qualitative and quantitative results with these four methods.

Implementation details. The ViT-B vision transformer [11] and cross-attention decoder [59]
have been pretrained by CroCo v2 [60], which underwent self-supervised cross-view completion
training on large-scale datasets [25, 35, 40, 44, 45]. The Iterative Alignment and Updating strategy
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Ref. Du et al. [12] pixelSplat [6] MVSplat [9] eFreeSplat Ground Truth

Fig. 3. We provide qualitative comparisons on the RealEstate10K (first four rows) and the ACID
(last two rows). Compared to baselines, our method produces fewer artifacts in rendering results (red
boxes). Moreover, our approach can perform better in non-overlapping areas (1st, 2nd, 5th and 6th
rows) and occluded areas ( 3th and 4th rows) without relying on unreliable epipolar priors.

is implemented through 2 iterations. All models are trained on 4 RTX-4090 GPUs for 300, 000
iterations using the Adam optimizer [24]. More details are provided in Appendix C.

4.2 Comparative Studies

Image quality comparison. We report quantitative results against baselines [6, 9, 12, 49] on the
RealEstate10K and ACID datasets in Tab. 1. Our method, eFreeSplat, outperforms the SOTA method,
MVSplat [9] by 0.06dB in PSNR on the RealEstate10K dataset and by 0.05dB on the ACID dataset.
The evaluation metrics for all baselines are derived from experimental results published in the papers
on pixelSplat [6] and MVSplat [9].
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Ref. pixelSplat [6] MVSplat [9] eFreeSplat

Fig. 4. Comparison results about 3D Gaussians (top) and predicted depth maps of the reference
viewpoints (bottom). Compared to SOTA 3DGS-based methods [6, 9], our method achieves higher
quality in 3D Gaussian Splatting and produces smoother depth maps.

Table 2. In more challenging scenarios, we classify the RealEstate10K dataset [72] into three subsets
based on the overlap size of the reference images: scenes with an overlap below 0.7, 0.6, and 0.5.

Methods Overlap 0.7 Overlap 0.6 Overlap 0.5
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelSplat [6] 25.05 0.852 0.145 24.79 0.849 0.149 24.96 0.846 0.149
MVSplat [9] 25.11 0.854 0.139 24.70 0.841 0.146 24.64 0.840 0.150
eFreeSplat 25.72 0.861 0.132 25.48 0.859 0.135 25.46 0.853 0.139

Our method’s qualitative comparison with baselines is illustrated in Fig. 3. Our rendering results show
fewer artifacts or object deformations, especially in non-overlapping or occluded areas. Competitive
methods like pixelSplat [64] and MVSplat [9], based on sampling along the epipolar lines, produce
unreliable reconstructions in these challenging areas. It demonstrates that eFreeSplat provides more
robust 3D priors than epipolar priors, offering global 3D perception even in challenging areas.

0.5 0.6 0.7 0.8 0.9 1.0
Overlap

0

50

100
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200
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eq
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nc

y

eFreeSplat excels
MVSplat excels

Fig. 5. Our method reconstructs more reliable results
than MVSplat when the reference views overlap is
low. In the histogram, the blue bars represent the
frequency at which our method exceeds MVSplat in
rendering quality under the current overlap conditions,
while the orange bars indicate the opposite.

Geometry quality comparison. As illus-
trated in Fig. 4, our method produces higher-
quality 3DGS reconstructions and smoother
priors without the epipolar priors. pixel-
Splat [6], despite additional finetuning via
depth regularization during training, exhibits
noticeable artifacts in its reconstructed 3DGS
and depth maps. MVSplat [9] generates com-
petitive depth maps by building a cost volume
representation [63], which directly merges
per-view Gaussians, resulting in significant
point cloud shifts. Our method, which does
not rely on sampling along epipolar lines
or additional depth regularization finetuning,
surpasses current SOTA methods in 3DGS
reconstruction quality. Please refer to Ap-
pendix A for additional comparison and anal-
ysis.

Performance with Low-overlapped obser-
vations. In this section, we analyze the
differences between our method and 3DGS-
based methods when the reference view-
points have a lower overlap. First, we
counted the number of scenes where our method and MVSplat [9] outperform each other in PSNR
on the RealEstate10K dataset, selecting the top 400 scenes with the largest PSNR differences for
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Ground Truth w/o mutual perception w/o Gaussians alignment w/o pre-training Ours

Ref.

Fig. 6. Ablations. The first row displays the novel viewpoint images, while the last row shows the
reference viewpoints and the depth maps of the novel views. Our full model renders higher-quality
RGB images and smoother depth maps.

Table 3. Ablations. All ablation experiments were conducted by training and evaluating on the
RealEstate10K dataset [72]. Each ablation model was derived from our full model by removing the
corresponding modules.

Model PSNR↑ SSIM↑ LPIPS↓
eFreeSplat (Full) 26.45 0.865 0.126
w/o mutual perception 22.04 0.723 0.212
w/o Gaussians alignment 23.03 0.758 0.187
w/o pre-training weights 24.81 0.829 0.153

each. As shown in Fig. 5, our method performs better in scenes with more minor viewpoint overlaps,
while MVSplat excels when the overlap is close to 1. In Tab. 2, our method outperforms other 3DGS
baselines [6, 9] in settings with more minor overlaps by 3.1% ↑ in PSNR and 8.6% ↓ in LPIPS. It
confirms the robustness of our method in non-overlapping areas. However, methods based on epipolar
priors have advantages in scenes where reference viewpoints are closer, and reconstruction quality
declines as the overlap decreases.

4.3 Ablation Studies

As shown in Tab. 3 and Fig. 6, we conducted ablation studies on the eFreeSplat model on the
RealEstate10K dataset. We will detail the analysis in the following three subsections.

Importance of epipolar-free cross-view mutual perception. Epipolar-free cross-view mutual
perception extracts cross-view image features using a shared-weight ViT [11] and a cross-attention
decoder. According to Tab. 3, this module’s absence results in a 4.41dB decrease in PSNR. In
Fig. 6, the absence of cross-view mutual perception results in significant offsets in the depth map and
noticeable artifacts.

Importance of iterative cross-view Gaussians alignment. Iterative cross-view Gaussian alignment
updates per-pixel Gaussian features and depths through warped U-Net features, thereby aligning the
cross-view 3D Gaussian point clouds. The lack of Gaussian alignment can lead to pixel displacement
or unreliable local geometric details (e.g., the lamp’s position in Fig 6). Additionally, we conducted
extra experiments with 1 to 3 iterations. As shown in Fig. 7, using 2 iterations significantly reduces
artifacts and inconsistent depth in novel view rendering. This validates that the iterative mode helps
align the depth scale across multiple views. When the iteration count increases to 3, there is no
notable improvement in reconstruction and rendering quality. For further analysis and results, please
refer to Appendix B.

Importance of self-supervised cross-view completion pre-training. In Fig. 6, the absence of
cross-view completion pre-training weights results in unaccuracy depth maps. Self-supervised pre-
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Ground Truth w/o Gaussians alignment Iteration 1 Iteration 2 Iteration 3

Ref.

Fig. 7. Ablation of gaussians alignment module. Additional iterations can significantly aid in aligning
the depth scale and reducing artifacts that occur during novel view rendering.

training by cross-view completion [60] on large-scale datasets allows our model to perceive spatial
correspondences, thereby enabling it to predict more reliable and smoother depth maps.

5 Conclusion

Our work introduces eFreeSplat, a novel generalizable 3D Gaussian Splatting model tailored for novel
view synthesis across new scenes, designed to function independently of epipolar constraints that
might be unreliable when large viewpoint changes occur. By leveraging a Vision Transformer archi-
tecture self-supervised pre-trained by cross-view completion [60] on large-scale datasets, eFreeSplat
excels in handling sparse and challenging viewing conditions that traditional methods [17, 63] strug-
gle with. This model’s ability to unify the consistency of depth scales across different views marks
a significant improvement over existing techniques, effectively addressing issues like artifacts and
misalignment in rendered images. Our experiments have demonstrated that our method provides
high-quality geometric reconstructions and novel viewpoint images. In settings with a large baseline
from 2-view inputs, it outperforms the latest state-of-the-art methods [6, 9] that rely on epipolar
priors.
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A Additional Experimental results

We provide additional qualitative comparisons against baselines. The visualization results on the
RealEstate10K are shown in Fig. 8. Additionally, we provide more geometry reconstruction compari-
son results, as shown in Fig. 9. Our method reconstructs high-quality 3DGS without using epipolar
priors or depth regularization finetuning.

Ref. Du et al. [12] pixelSplat [6] MVSplat [9] eFreeSplat Ground Truth

Fig. 8. Additional visualization results on the RealEstate10K [72]. Our method, eFreeSplat, outper-
forms baselines in rendering results, producing fewer artifacts and scene distortions.
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Ref. pixelSplat [6] MVSplat [9] eFreeSplat

Fig. 9. Additional geometry reconstruction quality comparison results. Our method achieves
higher quality in 3D Gaussian Splatting and produces smoother depth maps than pixelSplat [6] and
MVSplat [9].

Table 4. Quantitative results of gaussians alignment module under the settings of 1 to 3. "Memory"
refers to GPU memory usage, and "Time" indicates the inference time.

Iterations PSNR↑ SSIM↑ LPIPS↓ Memory(M) Times(s)

1 23.36 0.768 0.182 2410 0.058
2 26.45 0.865 0.126 2452 0.061
3 26.40 0.861 0.126 2488 0.086

Ground Truth w/o Gaussians alignment Iteration 1 Iteration 2 Iteration 3

Ref.

Fig. 10. Visualization of gaussians alignment module under the settings of 1 to 3.

B Additional Experimental Analysis

More ablations. In this section, we provide both quantitative and qualitative results of the Gaussians
Alignment module under the settings of 1 to 3 iterations. As shown in Tab. 4 and Fig. 10, setting
the iteration count to 2 effectively reduces artifacts caused by inconsistent depth scales. When the
iteration count is set to 3, we had to reduce the model’s parameter size and batch size to avoid
OOM errors, which might be one of the reasons for the lack of significant improvement in image
reconstruction metrics.

Failure cases. Our method relies on the 3D prior knowledge provided by CroCo [59] pre-trained
weights. However, the input viewpoint overlap in the pre-trained dataset does not exceed 0.75 [60],
while the input viewpoint overlap in the RealEstate10K and ACID datasets mainly ranges from 0.9 to
1.0. As shown in Fig. 11, our method renders unreliable results when the input viewpoints are very
close, which can be attributed to the distribution bias between the GNVS dataset [26, 72] and the
pre-trained dataset [25, 35, 40, 44, 45].
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Ground Truth eFreeSplat Exp.A w/o pre-training Exp.B

Ref.

Fig. 11. Failure cases. Our method may produce unstable results in scenarios where the input
viewpoints are very close. Exp.A and Exp.B indicate that fine-tuning the CroCo model on Re10k
helps mitigate this issue.

Table 5. Exp. A involves fine-tuning the CroCo pretrained weights using the RE10K training set,
while Exp. B trains CroCo directly using the RE10K training set without loading the pretrained
weights. w/o pre-training refers to neither using CroCo pre-trained weights nor performing fine-
tuning.

Model PSNR↑ SSIM↑ LPIPS↓
raw eFreeSplat 26.45 0.865 0.126
Exp.A 26.32 0.862 0.129

w/o pre-training 24.81 0.829 0.153
Exp.B 25.12 0.839 0.144

Limitations. Our method lacks geometric inductive biases, so our model is data-hungry and sensitive
to the training data distribution. Joint training with richer multiview datasets across different scenes
could be a viable direction. Additionally, the per-pixel 3D Gaussian mapping struggles to reconstruct
parts of the scene that are occluded or missing from input viewpoints, such as an obscured chair.
Therefore, introducing high-level features for scene completion might be a future research direction
for generalizable 3D Gaussian Splatting work.

Fine-tuning of the CroCo model. We have conducted preliminary explorations to address the
aforementioned limitation. We conducted relevant Experiments A and B regarding fine-tuning the
CroCo model using the RE10K dataset. Experiment A involved fine-tuning the CroCo pretrained
weights with the RE10K training set, while Experiment B involved training CroCo directly with the
RE10K training set without loading the pretrained weights. Finally, we retrained eFreeSplat using
the new pretrained weights. As shown in Fig. 11 and Tab. 5, the results indicate that pretraining the
backbone model on the RE10K training set effectively addresses the model’s poor performance in
low-overlap scenarios. However, in the RE10K test set, Experiment A’s reconstruction metrics were
slightly lower than those of the original model, which may be due to insufficient training iterations.
We will further investigate the positive impact of fine-tuning the CroCo pretrained model on novel
view synthesis and 3D reconstruction in future work.

Potential negative societal impacts. Our model could be misused for unethical purposes, such as
creating false evidence or manipulating media, which threatens information integrity and personal
privacy. Additionally, the model introduces security risks in contexts like autonomous driving, as it
may produce incorrect reconstructions in real and complex scenarios. These concerns underscore the
importance of implementing stringent ethical guidelines and security measures when deploying such
technology, to prevent misuse and ensure that it is used responsibly.
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C Additional Implementation Details

The cross-attention decoder. Following the CrossBlock decoder architecture in CroCo [59],
the cross-attention decoder comprises a self-attention module and a cross-attention module. Let
ε1, ε2 ∈ RN×C be the tokens of the two viewpoints outputted by a Vision Transformer [11]. The
computation process of the decoder is as follows:

ε̄i = LayerNorm (εi), i = 1, 2

ε′i = εi +Attention (ε̄i, ε̄i, ε̄i) , i = 1, 2

ε′′1 = ε′1 +Attention (LayerNorm (ε′1) , ε̄2, ε̄2) ,

ε′′2 = ε′2 +Attention (LayerNorm (ε′2) , ε̄1, ε̄1) ,

outputi = ε′′i +MLP (LayerNorm (ε′′i )) , i = 1, 2

(10)

In Equations 10, Attention is derived from the classic attention computation. The inputs Q,K, V
undergo projection transformations using Wq,Wk,Wv:

Q′ = WqQ, K ′ = WkK, V ′ = WvV,

Attention(Q,K, V ) = Linear

(
softmax

(
Q′K ′⊤
√
C

)
V ′

)
.

(11)

The cross-view U-Net. For the Gaussian Alignment Strategy and the prediction of Gaussian
primitives, we utilize a 2D Cross-View U-Net inspired by [41, 52], 2024. We concatenate and flatten
multiview feature maps for cross-view information exchange, similar to the structure of the U-Net
used for cost volume refinement in MVSplat [9]. Specifically, for the Gaussian Alignment Strategy,
we apply four times of 2 × down-sampling and add attention at the 16 × down-sampled level, with
the channel dimensions being [32, 32, 64, 128, 256]. For the prediction of Gaussian primitives, we
keep the channel dimension fixed at 32, while the rest of the architecture remains the same as that of
the U-Net used in the Gaussian Alignment Strategy.

More training details. Our model is trained and tested on 4 RTX-4090 GPUs using the Adam
optimizer with a learning rate 2e-4. The per-GPU batch size during training is 4. Similar to
pixelSplat [6], the distance between the two input viewpoints gradually increases throughout training.
However, to learn more robust 3D prior information, our setup allows for a maximum viewpoint
distance of 60 frames, compared to the 45 frames used by pixelSplat [6] and MVSplat [9].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions and scope are claimed clearly in the abstract and introduction
(last paragraph).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Limitation section in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce our method and experimental details in the paper. We will open
source the code and provide model weights in the future.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Our datasets is open-source, and we will open source our code in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We detail all the training and test details in the Experiments and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include statistical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appenidx B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

22

39594https://doi.org/10.52202/079017-1251

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We follow the license CC-BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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