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Abstract

A fundamental objective in robot manipulation is to enable models to comprehend
visual scenes and execute actions. Although existing Vision-Language-Action
(VLA) models for robots can handle a range of basic tasks, they still face challenges
in two areas: (1) insufficient reasoning ability to tackle complex tasks, and (2)
high computational costs for VLA model fine-tuning and inference. The recently
proposed state space model (SSM) known as Mamba demonstrates promising
capabilities in non-trivial sequence modeling with linear inference complexity.
Inspired by this, we introduce RoboMamba, an end-to-end robotic VLA model
that leverages Mamba to deliver both robotic reasoning and action capabilities,
while maintaining efficient fine-tuning and inference. Specifically, we first integrate
the vision encoder with Mamba, aligning visual tokens with language embedding
through co-training, empowering our model with visual common sense and robotic-
related reasoning. To further equip RoboMamba with SE(3) pose prediction
abilities, we explore an efficient fine-tuning strategy with a simple policy head. We
find that once RoboMamba possesses sufficient reasoning capability, it can acquire
manipulation skills with minimal fine-tuning parameters (0.1% of the model) and
time. In experiments, RoboMamba demonstrates outstanding reasoning capabilities
on general and robotic evaluation benchmarks. Meanwhile, our model showcases
impressive pose prediction results in both simulation and real-world experiments,
achieving inference speeds 3 times faster than existing VLA models. Our project
web page: https://sites.google.com/view/robomamba-web

1 Introduction

The scaling up of data has significantly propelled research on Large Language Models (LLMs) [1–3],
showcasing notable advancements in reasoning and generalization abilities within Natural Language
Processing (NLP). To comprehend multimodal information, Multimodal Large Language Models
(MLLMs) [4–8] have been introduced, empowering LLMs with the capability of visual instruction-
following and scene understanding. Inspired by the strong capabilities of MLLMs in general settings,
recent research aims to incorporate MLLMs into robot manipulation. On the one hand, some works
[9–12] enable robots to comprehend natural language and visual scenes, automatically generating
task plans. On the other hand, Vision-Language-Action (VLA) models [13–15] leverage the inherent
capabilities of MLLMs, empowering them with the ability to predict low-level SE(3) poses.
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Figure 1: Overview of RoboMamba. RoboMamba is an efficient robotic VLA model that combines
reasoning and manipulation capabilities. First, we integrate and align a vision encoder with the Mamba
LLM, endowing our model with common sense and robotic-related reasoning abilities. Subsequently,
we introduce an efficient fine-tuning strategy to equip RoboMamba with pose prediction abilities,
requiring a few dozen minutes to fine-tune a simple policy head (3.7M parameters). In terms of
inference speed, RoboMamba achieves the highest control frequency, surpassing other VLA models,
running on an NVIDIA A100 GPU without any quantization or inference acceleration techniques.
More real-world downstream tasks are displayed in Figure 4 and Figure 5.

Robot manipulation involves interacting with objects in dynamic environments, requiring human-like
reasoning abilities to comprehend the semantic information of scenes [11, 16], alongside a robust
low-level action prediction ability [17, 18]. While existing MLLM-based policies can handle a range
of basic tasks, they still face challenges in two aspects. First, the reasoning capabilities of pre-trained
MLLMs [6, 19] in robotic scenarios are found to be insufficient. As shown in Figure 1 (reasoning
example), this deficiency presents challenges for fine-tuned robot MLLMs when they encounter
complex reasoning tasks. Second, fine-tuning MLLMs and using them to generate robot manipulation
actions incurs higher computational costs due to their expensive attention-based LLMs [20, 21]. To
balance the reasoning ability and efficiency, several studies [22–24] have emerged in the field of
NLP. Notably, Mamba [25] introduces the innovative selective State Space Model (SSM), promoting
context-aware reasoning while maintaining linear complexity. Drawing inspiration from this, we
raise a question: “Can we develop an efficient robotic VLA model that possesses strong reasoning
capabilities while also acquiring robot manipulation skills in a cost-effective manner?"

To address this, we propose RoboMamba, an efficient robotic VLA that empowers the Mamba LLM to
achieve robust robotic reasoning and action capabilities. As shown in Figure 1, we initially integrate
a vision encoder (e.g., CLIP [26]) with Mamba to empower RoboMamba with visual common
sense and robotic-related reasoning. Specifically, we proceed with alignment pre-training, activating
the cross-modal connector [4, 19] to convert visual information into Mamba’s token embeddings.
We then unfreeze Mamba for instructions co-training, utilizing its powerful sequence modeling to
comprehend high-level robotic and general instruction data. On top of this, to equip RoboMamba
with SE(3) pose prediction abilities, we explore an efficient fine-tuning strategy with a simple policy
head. Notably, we discover that once RoboMamba possesses sufficient reasoning capabilities, it
can acquire pose prediction skills with minimal parameter fine-tuning. The fine-tuned policy head
constitutes only 0.1% of the model parameters, which is 10 times smaller than existing robotic VLA
approaches [15, 14]. In this way, RoboMamba can simultaneously generate robot reasoning using
language responses and predict end-effector poses via the policy head.

To systematically evaluate our proposed RoboMamba, we conduct extensive experiments in both
simulation and real-world scenarios. First, we assess our reasoning abilities on general and robotic

2

40086https://doi.org/10.52202/079017-1266



evaluation benchmarks. RoboMamba, with only 3.2B parameters, achieves competitive performance
on several MLLM benchmarks and also delivers promising results on RoboVQA (42.8 BLEU-4) [27].
With its strong reasoning abilities, RoboMamba achieves state-of-the-art (SOTA) manipulation per-
formance in the SAPIEN simulation [28], requiring only a 7MB policy head and a few dozen minutes
of fine-tuning on a single A100 GPU. Moreover, RoboMamba achieves an inference speed that is 3
times faster than previous robotic VLA models [29, 15]. Additionally, we evaluate RoboMamba in
real-world scenarios, where it can generate long-horizon planning and predict the end-effector pose
for each atomic task. In summary, our contributions are as follows:

• We introduce RoboMamba, an efficient VLA model that integrates a vision encoder with the
linear-complexity Mamba LLM, which possesses visual common sense and robotic-related
reasoning abilities.

• To equip RoboMamba with action pose prediction abilities, we explore an efficient fine-
tuning strategy using a simple policy head. We find that once RoboMamba achieves sufficient
reasoning capabilities, it can acquire pose prediction skills with minimal cost.

• In our extensive experiments, RoboMamba excels in reasoning on general and robotic
evaluation benchmarks, and showcases impressive pose prediction results in both simulation
and real-world experiments.

2 Related work

State Space Models (SSMs). SSMs have become effective substitutes for transformers and CNNs
due to their linear scalability with sequence length [30, 23]. Recent works [22, 31, 32] use the
state space to robustly establish dependencies across long sequences. Especially, Mamba [25]
designs the SSM matrices to be functions of the input, creating a learnable selection mechanism that
improves adaptability and reasoning capabilities. [33–38] expand selective SSMs to vision and video
tasks. Furthermore, MambaIR [39] focuses on image restoration, and PanMamba [40] addresses
pan-sharpening, while DiS [41] integrates SSMs into diffusion models. These findings demonstrate
that Mamba exhibits promising performance and efficiency in various visual downstream tasks. With
the emergence of SSMs, we make the first attempt to introduce Mamba to address critical challenges
in robotics, which demands efficient action capabilities.

Multimodal Large Language Models. Large language models (LLMs) have exhibited remark-
able reasoning capabilities across various downstream tasks [19, 42, 2]. When addressing complex
multimodal reasoning challenges, multimodal large language models (MLLMs) have shown excep-
tional visual understanding, i.e., BLIP-2 [43], OpenFlamingo [44], LLaMA-Adapter [19, 45], and
LLaVA [46]. Additionally, the introduction of 3D MLLMs [12, 47, 48] seeks to expand the reasoning
and conversational capabilities of LLMs to include the 3D modality. However, deploying LMMs
is expensive due to their significant computational overhead, primarily caused by their billions of
parameters. To mitigate these challenges, recent small-scale models [49, 50] demonstrate impressive
performance while maintaining manageable computational costs. LLaVA-Phi [49] empowers the re-
cently developed smaller LLM, Phi-2, for visual instruction tuning. TinyLLaVA [50] and MobileVLM
V2 [51] demonstrate that high-quality training data and schemes can effectively compensate for the
reasoning abilities of smaller LMMs. Furthermore, Cobra [52] innovatively utilizes an SSM-based
Mamba LLM to reduce complexity and improve inference speed on common sense reasoning tasks.
Different from previous works, our goal is to develop an efficient Robotic VLA model using the
SSM-based language model. This model not only possesses common sense understanding but also
has the capability to complete manipulation tasks effectively.

Robot Manipulation. Traditional robotic manipulation employs state-based reinforcement learn-
ing [53–56]. In contrast, [57, 11, 58–60] use state with visual observation as input and then make
predictions. Specifically, Where2Act [61] takes visual observations and predicts on actionable pixels
and movable regions in objects. Flowbot3d [57] predicts point-wise motion flow on 3D objects.
Anygrasp [17] employs point cloud data to learn grasp poses on a large scale datasets. Inspired
by the success of MLLMs in general scenarios [43, 44, 19, 45, 46], several VLA models [13, 16]
explore utilizing their common sense reasoning capabilities to address manipulation problems. Palm-
E [10] integrates multimodal encodings with LLMs, training them end-to-end for manipulation
planning. VoxPoser [11] extracts affordances and constraints from MLLMs to further zero-shot
predict trajectories. RoboFlamingo [14] fine-tunes MLLM on vision language manipulation dataset
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to complete language-conditioned manipulation tasks. ManipLLM [15] introduces specific training
scheme for manipulation tasks that equips MLLMs with the ability to predict end-effector poses.
ManipVQA [62], enhancing robotic manipulation with physically grounded information processed
by MLLM. In this paper, instead of fine-tuning a pre-trained MLLM, we introduce a novel efficient
VLA model that possesses both robotic-related reasoning and low-level pose prediction capabilities.

3 RoboMamba

In Section 3.1, we introduce the preliminaries of our proposed RoboMamba, including the problem
statement and a description of the language model. Subsequently, in Section 3.2 and 3.3, we describe
the architecture of RoboMamba and how we empower it with common sense and robotic-related
reasoning. In Section 3.4, we outline our proposed robot manipulation fine-tuning strategy, which
equips our model with pose prediction skills by minimal fine-tuning parameters and time.

3.1 Preliminaries

Problem statement. For robot visual reasoning, our RoboMamba generates a language answer La

based on the image I ∈ RW×H×3 and the language question Lq, denoted as La = R(I, Lq). The
reasoning answer usually contains individual sub-tasks (La → (L1

a, L
2
a, . . . , L

n
a)) for one problem

Lq. For example, when faced with a planning question like ’How to clean the table?’, the response
typically includes steps such as ’Step 1: Pick up the object’ and ’Step 2: Place the object in the
box’. For action prediction, we utilize an efficient and simple policy head π to predict an action
a = π(R(I, Lq)). Following previous works [63, 15], we use 6-DoF to express the end-effector
pose of the Franka Emika Panda robot arm. The 6-DoF includes the end-effector position apos ∈ R3

representing a 3D coordinate and direction adir ∈ R3×3 representing a rotation matrix. If training for
a grasping task, we add gripper status to the pose prediction, resulting in a 7-DoF control.

State Space Models (SSMs). In this paper, we select Mamba [25] as our language model. Mamba
consists of numerous Mamba blocks, with the most crucial component being the SSM. SSMs [21] are
designed based on continuous systems, projecting the 1D input sequence x(t) ∈ RL into a 1D output
sequence y(t) ∈ RL through a hidden state h(t) ∈ RN . An SSM consists of three key parameters:
the state matrix A ∈ RN×N , the input matrix B ∈ RN×1, and the output matrix C ∈ RN×1. The
SSM can be represented as follows:

h′(t) = Ah(t) +Bx(t); y(t) = Ch(t), (1)

Recent SSMs (e.g., Mamba [25]) are constructed as discretized continuous systems using a timescale
parameter ∆. This parameter transforms the continuous parameters A and B into their discrete
counterparts A and B. The discretization employs the zero-order hold method, defined as follows:

A = exp(∆A), (2)

B = (∆A)−1(exp(∆A)− I) ·∆B (3)

ht = Aht−1 +Bxt; yt = Cht. (4)

Mamba introduces the Selective Scan Mechanism (S6) to form its SSM operator in each Mamba
block. The SSM parameters are updated to B ∈ RB×L×N , C ∈ RB×L×N , and ∆ ∈ RB×L×D,
achieving better content-aware reasoning. The details of the Mamba block are shown in Figure 2.

3.2 RoboMamba architecture

To equip RoboMamba with both visual reasoning and manipulation abilities, we start from pre-
trained Large Language Models (LLMs) [25] and visual models to construct an effective VLA
model architecture. As shown in Figure 2, we utilize the CLIP visual encoder [26] to extract
visual features fv ∈ RB×N×1024 from input images I , where B and N represent batch size and
tokens, respectively. In contrast to [64, 52], we do not adopt the vision encoder ensemble technique,
which employs various backbones (i.e., DINOv2 [65], CLIP-ConvNeXt [66], CLIP-ViT) for image
feature extraction. The ensemble introduces additional computational costs that severely impact
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Figure 2: Overall framework of RoboMamba. RoboMamba projects images onto Mamba’s
language embedding using a vision encoder and projection layer, which is then concatenated with text
tokens and fed into the Mamba model. To predict the position and rotation of the end-effector pose,
we inject simple MLP policy heads and use the global token as input, which is generated through
a pooling operation from the language output tokens. Training strategy of RoboMamba. For
model training, we divide our training pipeline into two stages. In Stage 1, we introduce alignment
pre-training (Stage 1.1) and instruction co-training (Stage 1.2) to equip RoboMamba with both
common sense and robotic-related reasoning abilities. In Stage 2, we propose robotic manipulation
fine-tuning to efficiently empower RoboMamba with low-level manipulation skills.

the practicality of VLA model in the real world. Therefore, we demonstrate that a simple and
straightforward model design can also achieve strong reasoning abilities when combined with high-
quality data and appropriate training strategies. To enable the LLM to understand visual features, we
connect the vision encoder to the LLM using a multilayer perceptron (MLP). Through this simple
cross-modal connector, RoboMamba can convert visual information into language embedding space
fL
v ∈ RB×N×2560. Note that model efficiency is crucial in the field of robotics, as robots need to

respond quickly based on human instructions. Therefore, we select Mamba as our language model
due to its context-aware reasoning ability and linear computational complexity. Text prompts are
encoded into embedding space ft ∈ RB×N×2560 using the pre-trained tokenizer, then concatenated
(cat) with visual tokens and input into Mamba. We leverage Mamba’s powerful sequence modeling
to comprehend multimodal information and utilize effective training strategies to develop visual
reasoning capabilities (as described in the next section). The output tokens Ta are then detokenized
(det) to produce responses in natural language La. To equip our model with both reasoning and
manipulation abilities, we meticulously design a comprehensive training pipeline, which is divided
into two stages. We introduce the training recipes of Stage 1 in Section 3.3 and present the robot
manipulation fine-tuning in Section 3.4.

3.3 General and robotic-related training

After constructing the RoboMamba architecture, the next goal is to train our model to learn general
vision and robotic-related reasoning abilities. As shown in Figure 2, we divide our Stage 1 training
into two steps: alignment pre-training (Stage 1.1) and instruction co-training (Stage 1.2). Specifically,
unlike previous MLLM training methods [19, 67, 64], we aim to enable RoboMamba to comprehend
both common vision and robotic scenes. Given that the robotics field involves numerous complex
and novel tasks, RoboMamba requires enhanced generalization capabilities. Therefore, we adopt a
co-training strategy in Stage 1.2, combining high-level robotic data (e.g., task planning) with general
instruction data. We find that co-training not only leads to more generalizable robotic policies but
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also enhances the majority of general scene reasoning abilities due to the complex reasoning tasks
embedded in the robotic data (demonstrated in Appendix C). The training details are shown below:

Stage 1.1: Alignment pre-training. We adopt LLaVA [4] filtered 558k image-text paired dataset for
our cross-modal alignment. As shown in Figure 2, we freeze the parameters of the vision encoder and
Mamba language model, and only update the project layer. In this way, we can align image features
with the pre-trained Mamba word embedding.

State 1.2: Instruction co-training. In this stage, we first follow previous MLLM works [4, 64, 52] for
general vision instruction data collection. We adopt the 655K LLaVA mixed instruction dataset [4], the
ShareGPT4V-SFT dataset [68], or the LLaVA-Next dataset [69]. In our dataset selection, mitigating
hallucination is crucial in robotic scenarios, as the robotic MLLM needs to generate task planning
based on real scenes rather than imagined ones. For example, existing MLLMs might formulaically
answer “open the microwave” with “step 1: find the handle,” but many microwaves do not have
handles. Next, we incorporate the RoboVQA dataset [27] to learn high-level robotic skills, such
as long-horizon planning, success classification, discriminative and generative affordance, past
description, and future prediction. During co-training, as shown in Figure 2, we freeze the parameters
of the CLIP encoder and fine-tune the projection layer and Mamba on the combined instruction
datasets. All outputs from the Mamba language model are supervised using the cross-entropy loss.

3.4 Robot manipulation fine-tuning

Building upon RoboMamba’s strong reasoning ability, we introduce our robot manipulation fine-
tuning strategy in this section, termed Training Stage 2 in Figure 2. Existing manipulation VLA
models [29, 15, 14] require updating the projection layer and the LLM during the manipulation
fine-tuning stage. While this paradigm can develop action prediction capabilities, it also breaks the
inherent abilities of the pre-trained model and demands significant training resources. To address
these challenges, we propose an efficient fine-tuning strategy, as shown in Figure 2. We freeze all
the parameters of RoboMamba and introduce a simple policy head to model Mamba’s output tokens.
The policy head contains two types of MLPs that separately learn the end-effector’s position apos and
direction adir, collectively occupying around 0.1% of the model’s total parameters. Following [61],
the position and direction losses are formulated as follows:

Lpos =
1

N

N∑
i=1

|apos − agtpos| (5)

Ldir =
1

N

N∑
i=1

arccos

Tr
(
agtdir

T

adir

)
− 1

2

 (6)

where N represents the number of training samples, Tr(A) means the trace of matrix A. In our
open-loop simulation experiments, RoboMamba only predicts the 2D position (x, y) of the contact
pixel in the image, which is then translated into 3D space using depth information. We also derive the
gripper’s left direction (gripper z-forward) from its up and forward orientations based on geometric
relationships. To evaluate this fine-tuning strategy, we generate a dataset of 10k end-effector pose
predictions using the SAPIEN simulation [28]. After manipulation fine-tuning, we find that once
RoboMamba possesses sufficient reasoning capabilities, it can acquire pose prediction skills with
extremely efficient fine-tuning. Due to the minimal fine-tuning parameters (7MB) and efficient model
design, we need only a few dozen minutes to achieve novel manipulation skills. This finding highlights
the importance of reasoning abilities for learning manipulation skills and presents a new perspective:
we can efficiently equip an VLA model with manipulation abilities without compromising its inherent
reasoning capabilities. Finally, RoboMamba can use language responses for common sense and
robotic-related reasoning, and the policy head for action pose prediction.

4 Experiment

In Section 4.1, we introduce our experiment settings, including dataset, implementation, and eval-
uation benchmark details. Subsequently, we conduct extensive experiments to demonstrate Robo-
Mamba’s reasoning and manipulation abilities in Sections 4.2 and 4.3, respectively. To thoroughly
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validate the effectiveness of each method design, we perform an ablation study in Section 4.4. Finally,
the qualitative results of real-world experiments are presented in Section 4.5.

4.1 Experiment settings

Datasets (Stage 1) In the alignment pre-training stage, we utilize the LLaVA-LCS 558K dataset [67],
which is a curated subset of the LAION-CC-SBU dataset, supplemented with captions. During the
instruction co-training stage, we combine general instruction datasets with the robotic instruction
datasets. Specifically, for the general instruction dataset, we selectively adopt the LLaVA mixed
instruction dataset [4], the ShareGPT4V-SFT dataset [68], or the LLaVA-Next dataset [69]. For the
robotic instruction dataset, we randomly sample some image-text paired training samples from the
RoboVQA [27] dataset. In our main experiments, a mixture of the LLaVA 1.5 instruction dataset
and the 300K RoboVQA dataset is used during the co-training stage. Detailed descriptions of these
datasets are provided in Appendix B.

Datasets (Stage 2) For the dataset used in the robot manipulation fine-tuning stage, we follow the
data collection process of previous works [61, 15], adopting the SAPIEN engine [28] to set up an
interactive simulation environment with articulated objects from PartNet-Mobility [58]. The Franka
Panda Robot, equipped with a suction gripper, serves as the robotic actuator. During data collection,
we randomly select a contact point p on the movable part and orient the end-effector’s z-axis opposite
to its normal vector, with a random y-axis direction to interact with the object. Successful operations
are categorized as successful samples and integrated into the dataset. In the training set, we collect
10K images across 20 tasks. For evaluation, we generate 1.1K examples for the test set, comprising 20
training (seen) and 10 testing (unseen) tasks. The unseen tasks are used to evaluate the generalization
capability of our model. The details of the categories are provided in Appendix B.

Implementation details Before training, RoboMamba loads a pre-trained CLIP/SigLIP ViT-Large
[26, 70] as the visual encoder, and the 2.8/1.4B Mamba [1] model as the language model. During
the alignment pre-training and instruction co-training, we conduct training for 1 epoch and 2 epochs,
respectively. We utilize the AdamW optimizer with (β1, β2) = (0.9, 0.999) and a learning rate (LR)
of 4e-5. The precision of floating-point calculations is set to 16-bit. For manipulation fine-tuning,
we train the model for 8 epochs, setting the LR to 1e-5 and applying a weight decay of 0.1. The
floating-point precision is set to 32-bit. All experiments are conducted on NVIDIA A100 GPUs.

Reasoning evaluation benchmarks To evaluate reasoning capabilities, we employ several popu-
lar benchmarks, including VQAv2 [71], OKVQA [72], RoboVQA [27], GQA [73], VizWiz [74],
POPE [75], MME [76], MMBench [77], and MM-Vet [78]. As detailed in Appendix E, we describe
the key aspects each benchmark focuses on when assessing models in the field of robotics. Notably,
we also directly evaluate RoboMamba’s robotic-related reasoning abilities on the 18k validation
dataset of RoboVQA, covering robotic tasks such as long-horizon planning, success classification,
discriminative and generative affordance, past description, and future prediction.

Manipulation evaluation benchmarks To evaluate our model’s manipulation capabilities, we
follow previous works [57, 63, 15] and test open-loop task completion accuracy exclusively in the
simulator [28]. The predicted contact point and rotation are used to interact with objects. To measure
the model’s performance, we use the classical manipulation success rate, defined as the ratio of
successfully manipulated samples to the total test samples. A manipulation action is considered
successful if the difference in the object’s joint state before and after interaction exceeds a threshold
of 0.1 meters. In real-world experiments, we use the Franka Panda robot to manipulate several
articulated objects.

4.2 Reasoning quantitative results

General reasoning. As shown in Table 1, we compare RoboMamba with previous state-of-the-art
(SOTA) MLLMs on general VQA and recent MLLM benchmarks. First, we find that RoboMamba
achieves promising results across all VQA benchmarks, using only a 2.7B language model. The
results demonstrate that our simple architecture design is effective. The proposed instruction co-
training significantly enhance the MLLM’s reasoning capabilities. For example, due to the large
amount of robot data introduced during the co-training stage, our model’s spatial identification
performance on the GQA benchmark is improved. Meanwhile, we also test our RoboMamba on
recently proposed MLLM benchmarks. Compared to previous MLLMs, we observe that our model
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Table 1: Comparison of general reasoning abilities with previous MLLMs across several benchmarks.
’Res.’ indicates the resolution of the input image. RoboVQA1 to RoboVQA4 represent the BLEU-1
to BLEU-4 scores, respectively. For TinyLLaVA and LLaMA-AdapterV2, we evaluate robotic
reasoning abilities after fine-tuning the pre-trained MLLMs on the RoboVQA dataset.

Method LLM Res. OKVQA VQAV2 GQA VizWiz POPE MME MMB MM-Vet RoboVQA4 RoboVQA1

BLIP-2 [43] 7B 224 45.9 - 41.0 19.6 85.3 1293.8 - 22.4 - -
InstructBLIP [79] 7B 224 - - 49.5 33.4 - - 36 26.2 - -

LLaMA-AdapterV2 [45] 7B 336 49.6 70.7 45.1 39.8 - 1328.4 - - 8.1 27.8
MiniGPT-v2 [80] 7B 448 57.8 - 60.1 53.6 - - - - - -

Qwen-VL [81] 7B 448 58.6 79.5 59.3 35.2 - - 38.2 - - -
LLaVA1.5 [67] 7B 336 - 78.5 62.0 50.0 85.9 1510.7 64.3 30.5 - -
SPHINX [64] 7B 224 62.1 78.1 62.6 39.9 80.7 1476.1 66.9 36.0 - -

LLaVA-Phi [49] 2.7B 336 - 71.4 35.9 - 85.0 1335.1 59.8 28.9 - -
MobileVLM [82] 2.7B 336 - - 59.0 - 84.9 1288.9 59.6 - - -
TinyLLaVA [83] 2.7B 336 - 77.7 61.0 - 86.3 1437.3 68.3 31.7 29.6 43.5

RoboMamba(Ours) 2.7B 224 63.3 79.6 64.2 57.1 86.3 1297.2 60.9 29.4 42.8 62.7
RoboMamba(Ours) 2.7B 336 62.7 77.7 63.3 58.1 87.0 1335.5 60.7 31.4 41.8 61.9

achieves competitive results across all benchmarks. Specifically, our model achieves satisfactory
results on the POPE benchmark, helping to reduce failed robot actions caused by hallucinations.
Although some performances of RoboMamba are still below those of LLaVA1.5 and SPHINX, we
prioritize using a smaller and faster Mamba to balance the efficiency of the robotic model. In the
future, we plan to develop RoboMamba-7B for scenarios where resources are not limited.

Robotic-related reasoning. To comprehensively compare RoboMamba’s robotic-related rea-
soning abilities, we benchmark it against LLaMA-AdapterV2 [45] and TinyLLaVA [83] on the
RoboVQA [27] validation set. We choose LLaMA-AdapterV2 as a baseline because it serves as
the base model for the current state-of-the-art (SOTA) robot MLLM, ManipLLM [15]. Meanwhile,
TinyLLaVA is chosen as a representative tiny MLLM, enabling a comparison of robotic-related
reasoning abilities. For a fair comparison, we load the pre-trained parameters of both LLaMA-
AdapterV2 and TinyLLaVA and fine-tuned the baseline models on the RoboVQA training set for two
epochs, using their official instruction-tuning method. As shown in Table 1, RoboMamba achieves
superior performance across BLEU-1 to BLEU-4. The results indicate that our model possesses
advanced robotic-related reasoning capabilities and confirms the effectiveness of our training strategy.
In addition to higher accuracy, our model achieves inference speeds 7 times faster than LLaMA-
AdapterV2 and ManipLLM, which can be attributed to the content-aware reasoning ability and
efficiency of the Mamba language model [25]. Finally, we visualize the qualitative results in Figure 4.

4.3 Manipulation quantitative results

Baselines. To evaluate RoboMamba’s manipulation abilities, we compare our model with four
baselines: UMPNet [63], Flowbot3D [57], RoboFlamingo [14], and ManipLLM [14]. Before
comparison, we reproduce all baselines and train them on our collected dataset. For UMPNet, we
execute manipulation on the predicted contact point, with the orientation perpendicular to the object’s
surface. Flowbot3D predicts motion direction on the point cloud, selecting the largest flow magnitude
as the interaction point and using the direction of the flow to represent the end-effector’s orientation.
RoboFlamingo and ManipLLM separately load the pre-trained parameters of OpenFlamingo [44]
and LLaMA-AdapterV2 [45], and follow their respective fine-tuning and model updating strategies.

Results. As shown in Table 2, our RoboMamba achieves a 7.0% improvement on seen tasks and
a 2.0% improvement on unseen tasks compared to the previous SOTA ManipLLM. Moreover, our
method showcases SOTA performance across 14 of 20 seen tasks, highlighting its effectiveness
and stability in predicting action poses. For unseen tasks, the recent three MLLM-based meth-
ods—RoboFlamingo, ManipLLM, and our method—all achieved promising performance. The results
demonstrate that leveraging the strong generalization abilities of MLLMs can effectively improve the
policy’s generalization ability while enhancing accuracy on unseen objects. Regarding efficiency,
RoboFlamingo updates 35.5% (1.8B) of the model parameters, ManipLLM updates an adapter
(41.3M) comprising 0.5% of the model parameters, whereas our fine-tuned simple policy head (3.7M)
only constitutes 0.1% of the model parameters. RoboMamba effectively updates 10 times fewer
parameters than previous MLLM-based methods while achieving seven times faster inference speeds.
The results reveal that our RoboMamba not only possesses strong reasoning abilities but also can
acquires manipulation capabilities in a cost-effective manner.
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Table 2: Comparison of the success rates between RoboMamba and baselines across various training
(seen) and test (unseen) tasks. The representation for each task icon is shown in Table 3.

Seen Categories

Method
UMPNet [63] 0.28 0.41 0.25 0.20 0.49 0.20 0.35 0.57 0.51 0.25 0.66 0.17 0.17 0.26 0.27 0.40

FlowBot3D [57] 0.50 0.53 0.26 0.36 0.34 0.36 0.54 0.26 0.12 0.34 0.41 0.23 0.36 0.30 0.17 0.37
RoboFlamingo [14] 0.48 0.51 0.50 0.35 0.11 0.47 0.54 0.35 0.19 0.46 0.18 0.64 0.26 0.42 0.15 0.87

ManipLLM [15] 0.68 0.62 0.45 0.74 0.42 0.25 0.61 0.66 0.56 0.52 0.50 0.42 0.64 0.76 0.63 0.60
RoboMamba (Ours) 0.81 0.73 0.33 0.85 0.86 0.60 0.81 0.42 0.56 0.54 0.68 0.81 0.26 0.86 0.39 0.91

Seen Categories Unseen Categories

Method AVG AVG
UMPNet [63] 0.27 0.37 0.19 0.60 0.34 0.32 0.36 0.18 0.37 0.21 0.12 0.04 0.53 0.28 0.13 0.26

FlowBot3D [57] 0.21 0.57 0.29 0.45 0.35 0.36 0.36 0.18 0.30 0.21 0.50 0.13 0.53 0.28 0.09 0.30
RoboFlamingo [14] 0.20 0.42 0.58 0.60 0.41 0.36 0.62 0.64 0.33 0.14 0.34 0.44 0.66 0.41 0.31 0.43

ManipLLM [15] 0.41 0.78 0.41 0.59 0.56 0.21 0.25 0.79 0.76 0.52 0.76 0.43 0.85 0.26 0.52 0.51
RoboMamba(Ours) 0.40 0.55 0.37 0.80 0.63 0.19 0.23 0.67 0.66 0.57 0.45 0.65 0.68 0.30 0.93 0.53

a) The impact of LLM on reasoning abilities
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Figure 3: Ablation study a) The impact of LLM on reasoning abilities. Ablation study b) The
impact of reasoning ability on manipulation accuracy.

4.4 Ablation study

The impact of LLM on reasoning abilities. As shown in Figure 3 a), we explore the impact of
different LLMs on general and robotic-related reasoning abilities. Given that efficiency is crucial in
robotic tasks and directly affects the practicality of policy models, we compare Mamba-2.7B with
other linear complexity LLMs. For all experiments, we utilize the same training data and strategy.
Compared with RWKV-3B [24], Mamba-2.7B achieves significant improvements on both common
sense and robotic-related reasoning benchmarks. The results demonstrate that the Mamba-2.7B
model not only possesses linear complexity but also efficiently acquires strong reasoning abilities
through our proposed training strategy. Meanwhile, our proposed RoboMamba VLA framework and
training strategy can also be adapted to other, more advanced linear-complexity LLM models.

The impact of reasoning abilities on manipulation accuracy. We explore whether utilizing MLLMs
with different reasoning abilities affects manipulation skill learning. For a fair comparison, we use
the same manipulation fine-tuning strategy, injecting and fine-tuning a simple MLP policy head after
the MLLM (while freezing other parameters). We compare our RoboMamba-2.7B (Ours-2.7B) with
OpenFlamingo, LLaMA-AdapterV2, and our RoboMamba-1.4B. As shown in Figure 3 b), Ours-2.7B
achieves promising results compared with other methods, which is proportional to its reasoning ability.
Meanwhile, Ours-2.7B (w/o C) indicates that we did not use the instruction co-training method,
omitting the robotic-related RoboVQA dataset during fine-tuning. We find that this also impacts the
accuracy of manipulation, especially reducing the model’s generalization ability when facing unseen
objects. The results confirm our finding: fine-tuning an MLLM to learn robot skills does not require
extensive resources; it only requires that the MLLM possesses strong robotic-related reasoning
abilities. Additionally, we present more ablation studies in Appendix C, including explorations of
different vision encoders, training datasets, and policy head design.
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Question:<image>\n{current goal is: open the 
top drawer pick chips from top drawer and put it 
in wired basket and close the top drawer. last 20 
steps: 1- open the drawer next 5 steps?}answer:
RoboMamba(Ours): 1- drop the green packet 
chip into the basket 2- drop the blue packet chip 
into the basket 3- close the top drawer 4- done
LLaMA-AdapterV2: 1- close the drawer 2-done

Question:<image>\n{current goal is: please remove the 
chips from the bowl and place them in the top draw. last 
20 steps: 1- open the drawer of the table 2- put the white 
packet in the drawer 3- put the black bag in the drawer 4- 
put the brown bag in the drawer 5- put the orange bag in 
the drawer 6- put the black bag in the drawer immediate 
next step? }answer:
RoboMamba(Ours): close the drawer

Question:<image>\n{place the packet 
on the table  possible right now?
}answer:
RoboMamba(Ours): yes

Question:<image>\n{what is likely 
to happen next?
}answer:
RoboMamba(Ours): put banana in 
the bowl

Long Horizon Planing
Question:<image>\n{current goal is: can you 
make a bowl of pistachos and place it on the 
table for me please. last 20 steps: 1- Upright a 
cup from the stack 2- Place the cup on the table 
3- Remove the lid of the jar 4- Place the lid on 
the table 5- Take out scoop from the holder 6- 
Take out some scoop of Pistachio from the jar 7- 
Put the Pistachio inside the cup 8- Take out some 

Question:<image>\n{current goal is: empty 
the box of chips. last 20 steps: none  next 5 
steps?}answer:
RoboMamba(Ours): 1- put the packet on the 
table 2- put the packet on the table 3- put the 
packet on the table 4- put the packet on the 
table 5- put the packet on the table
LLaMA-AdapterV2: 1- done

Generative Affordance

Discriminative Affordance

Future Prediction

Past Prediction
Question:<image>\n{what just 
happened?}answer:
RoboMamba(Ours): place the book 
on the table

Planning

Question:<image>\
n{what action is 
possible right now?
}answer:
RoboMamba(Ours):
put plate in the 
drawer

Planning With Context

Question:<image>\n{current 
goal is: Please remove the fruits 
from top draw then place them in 
the bowl.  immediate next step?
}answer:
RoboMamba(Ours): place the 
apple in the bowl

Pose Prediction

scoop of Pistachio from the jar next 5 steps?}answer:
RoboMamba(Ours): 1- close the drawer 2- leave the room with the 
cup 3- Enter the cabin 4- Place the cup on the table  5- done 
LLaMA-AdapterV2: 1- done

Figure 4: The visualization of RoboMamba’s abilities across various robotic downstream tasks in
real-world scenarios, including task planning, long-horizon planning, discriminative and generative
affordance, past and future prediction, and low-level pose prediction.

4.5 Real-world experiments

As shown in Figure 4, we visualize RoboMamba’s reasoning results across various robotic down-
stream tasks. For task planning, compared to LLaMA-AdapterV2, RoboMamba demonstrates more
accurate and long-horizon planning abilities, thanks to its strong reasoning capabilities. For a fair
comparison, we also fine-tuned the baseline LLaMA-AdapterV2 on the RoboVQA dataset. Addition-
ally, RoboMamba accurately performs fundamental robotic tasks such as affordance generation and
discrimination, proving that it can understand robotic scenes. Notably, our model also possesses past
and future prediction capabilities, further highlighting its robust reasoning capabilities. Prediction of
past and future actions is crucial in robotic manipulation, as it not only enables effective rethinking
of past failure actions but also enhances the robustness of future manipulation pose generation. For
low-level action, we use a Franka Emika robotic arm to interact with various household objects. Due
to the direct visualization of the gripper causing occlusion, we project RoboMamba’s predicted 6
DoF pose onto a 2D image, using a red dot to indicate the contact point and the end-effector to show
the rotation, as shown in the bottom right corner of the figure.More real-world demonstrations are
provided in Appendix D and the supplementary video file. Meanwhile, as shown in Figure 5, we also
visualize the failure cases of RoboMamba’s predictions in both reasoning and manipulation tasks.

5 Conclusion and future plan

In this paper, we introduce RoboMamba, an efficient VLA model that combines a vision encoder
with the linear-complexity Mamba LLM, equipped with visual common sense reasoning and robotic
reasoning abilities. Based on our RoboMamba, we can impart new manipulation skills to the model
by fine-tuning a simple policy head (0.1% of the model) in a few dozen minutes. This finding reveals
how to efficiently equip an VLA model with manipulation abilities without compromising its inherent
reasoning capabilities. Finally, RoboMamba excels in reasoning on both general and robotic-related
evaluation benchmarks and showcases impressive pose prediction results. Regarding limitations,
while our proposed RoboMamba achieves efficient inference speed, its reliance on a 2.7B LLM
leads to limitations on certain complex reasoning tasks when compared to MLLMs built on 7B/13B
LLMs. Looking ahead, our future work will focus on two main directions. 1) We plan to adapt the
RoboMamba VLA framework and training strategy to more advanced linear-complexity LLM models
to further enhance its reasoning and manipulation capabilities. 2) Constructing a 4D Robot VLA
model [84, 48, 85], as 3D point cloud and temporal data contain more robotics-specific information
that aids in predicting robust low-level actions.
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A Appendix

Due to space limitations, we provide additional details of the proposed method in this supplementary
material. In Appendix B, we offer a more detailed description of our training dataset, including
alignment pre-training, instruction co-training, and robot manipulation fine-tuning datasets. Addi-
tional ablation studies are presented in Appendix C, exploring the impact of different image encoders
on reasoning ability, the impact of different training datasets on reasoning ability, and the effect of
various head designs on manipulation fine-tuning. In Appendix D, we show additional qualitative
results across multiple robot-related downstream tasks. Finally, we provide the metric selection
rationale and the usage of prompts during testing in Appendix E.

B Dataset description

Stage 1.1: Alignment pre-training dataset

1) LLaVA-LCS 558K: This LLaVA Visual Instruct Pretrain LCS-558K dataset is a curated subset
of the LAION/CC/SBU dataset, specifically filtered to achieve a more balanced distribution of
concept coverage. Additionally, it includes captions paired with BLIP synthetic captions for reference
purposes.

Stage 1.2: Instruction co-training dataset.

1) LLaVA-v1.5 655K: This dataset is a mixture of ten distinct datasets, including LLaVA [4],
ShareGPT [86], VQAv2 [71], GQA [73], OKVQA [72], OCRVQA [72], A-OKVQA [87],
TextCaps [88], RefCOCO [89, 90], and Visual Genome (VG) [91]. This mix dataset is also one of
the most renowned datasets used for instruction tuning in several works [4, 67].

2) ShareGPT4V-SFT dataset: The ShareGPT4V-SFT dataset is similar to LLaVA-v1.5 655K [67],
except that the 23K detailed description entries in LLaVA-1.5-SFT are replaced with detailed captions
randomly sampled from the 100K ShareGPT4V data [86].

3) LLaVA-Next dataset: Compared to LLaVA-v1.5 655K [67], LLaVA-Next [69] enhances the
instruction data mixture by prioritizing high-quality user instruction data and expanding multimodal
document/chart data sources. For high-quality user instruction data, LLaVA-Next ensure task
diversity and response quality by using existing GPT-V data (LAION-GPT-V and ShareGPT-4V) and
a carefully curated 15K visual instruction dataset from LLaVA demos. Additionally, LLaVA-Next
replaces TextCaps with DocVQA and SynDog-EN to improve OCR capability.

4) RoboVQA 800K: In co-training, we use this dataset to enhance our model’s robot-related reasoning
abilities. RoboVQA [27] comprises realistic data collected by performing various user requests and
using multiple embodiments, such as robots, humans, and humans with grasping tools. This dataset
includes 5,246 long-horizon episodes and 92,948 medium-horizon episodes of robotic tasks, each
paired with image and text prompt inputs. In our experiments, we randomly select 300K image-text
paired instruction samples from RoboVQA to construct the co-training dataset.

Safe Door Display Refrigerator Laptop Lighter Microwave Mouse Box Trashcan

Kitchen pot Suitcase Pliers Storage Remote Bottle Folding chair Toaster Lamp Dispenser

Toilet Scissors Table Stapler Kettle USB Switch Washing Faucet Phone

Table 3: Representation of each category icon.

Stage 2: Robot manipulation fine-tuning dataset.

Representation for Each Category Icon In Table 3, we provide an overview of the meaning of
each category icon presented in Table 2 of the main paper. Following Partnet [58], different tasks
are designed for each category. For instance, opening the door or control panel of a refrigerator,
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opening the cap of a bottle, and rotating the lid of a box. The detailed task design can be found at:
https://sapien.ucsd.edu/browse.

Simulator Data Collection In the simulator, we use a Franka Panda Robot with a suction gripper as
the robotic actuator. During data collection, we randomly select a contact point on the movable part
of the object and orient the end-effector’s z-axis opposite to the object’s normal vector, with a random
y-axis direction to interact with the object. Successful operations are categorized as successful
samples and integrated into the training dataset. For the training set, we collect 10K images across 20
categories, including Safe, Door, Display, Refrigerator, Laptop, Lighter, Microwave, Mouse, Box,
Trash Can, Kitchen Pot, Suitcase, Pliers, Storage Furniture, Remote, Bottle, Folding Chair, Toaster,
Lamp, and Dispenser. For testing, we use a set of 1.1K images that include both seen categories from
training and unseen categories, such as Toilet, Scissors, Table, Stapler, Kettle, USB, Switch, Washing
Machine, Faucet, and Phone. Regarding the variation between training and testing data, we followed
the data collection settings of where2act [61] and ManipLLM [15]. The specific variations can be
divided into two aspects: 1) Asset Variation and 2) State Variation.

1) Asset Variation: We use 20 categories from PartNet [58] for seen objects and reserve the remaining
10 categories for unseen objects to analyze if RoboMamba can generalize to novel categories.
Specifically, we further divide the seen objects into 1037 training shapes and 489 testing shapes,
using only the training shapes to construct the training data. Thus, the shapes of the seen objects
encountered during training and testing are different. For unseen categories, there are a total of 274
shapes, which are used exclusively in the testing data.

2) State Variation: We observe the object in the scene from an RGB-D camera with known intrinsics,
mounted 4.5-5.5 units away from the object, facing its center. The camera is located at the upper
hemisphere of the object with a random azimuth between [-45, 45] and a random altitude between
[30, 60]. Since the tasks involve ’pulling,’ we also initialize the starting pose for each articulated
part randomly between its rest joint state (fully closed) and any position up to half of its joint state
(half-opened). These state settings are utilized for both training and testing data, aiming to boost the
model’s generalization ability.

C Additional ablation study

Table 4: Ablation study of different image encoders on reasoning abilities.

Encoder Image Resolution OKVQA GQA POPE RoboVQA(BLEU-4)

CLIP 224 x 224 46.7 50.7 79.7 35.2
XCiT 224 x 224 63.3 64.2 86.3 42.8
CLIP 336 x 336 62.7 63.3 87.0 41.8

SigLIP 384 x 384 62.4 64.4 86.0 40.6

The impact of different image encoders on reasoning abilities In this section, we replace the CLIP
encoder used in our initial submission with other linear-complexity encoders, such as XCiT [92].
Additionally, we supplement our experiments by using SigLIP [70] as an image encoder. As shown
in Table 4, we analyze the impact of different image encoders and input resolutions on reasoning
abilities. The training dataset and strategy remain consistent with those in our main experiment.
The results indicate that the choice of image encoder and input resolution does not significantly
impact reasoning ability within our RoboMamba VLA framework. However, using an image encoder
without cross-modality alignment (i.e., XCiT) presents challenges in converting image tokens to LLM
language embeddings. Although our training process includes an alignment pre-training stage, this
primarily trains the projection layer. Therefore, in future work, we aim to develop a robotics-specific
image encoder capable of projecting image tokens into language embeddings while maintaining
linear computational complexity to further improve inference speed.

The impact of training datasets on reasoning abilities As shown in Table 5, we examine the impact
of different training datasets on common sense and robotic-specific reasoning abilities. Specifically,
we conduct these experiments using 224× 224 input images and the CLIP vision encoder. First, we
observe that Ex2 outperforms Ex1 across two benchmarks, confirming that incorporating robotic
instruction data can effectively enhance specific reasoning abilities. Similarly, comparing Ex3 and
Ex4 shows comparable results, though performance on the GQA benchmark declines. However, in
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Table 5: Ablation study of training strategies on MLLM reasoning benchmarks.

LLaVA 1.5 ShareGPT4V-SFT LLaVA-Next Robo-300k GQA POPE RoboVQA4

Ex1 ✓ - - - 65.3 85.6 26.5
Ex2 ✓ - - ✓ 64.2 86.3 42.8
Ex3 - ✓ - - 64.3 85.2 26.7
Ex4 - ✓ - ✓ 62.1 85.5 42.5
Ex5 - - ✓ - 62.9 86.6 25.1
Ex6 - - ✓ ✓ 60.8 85.4 43.0

our generated descriptions within robotic scenes, we find that the inclusion of robotic instruction
data enhances understanding of geometric relationships. Consequently, we plan to propose a robotic-
specific geometric reasoning benchmark to more accurately assess the spatial reasoning capabilities
of VLA models. Finally, comparing Ex1, Ex3, and Ex5, we find that using more advanced general
instruction datasets does not yield significant performance improvements, which may be due to the
model capacity of the 2.7B LLM.

The impact of policy head designs on manipulation accuracy As shown in Table 6, we explore the
impact of different policy head designs on manipulation skill learning. In this table, MLP×1 means
using only one MLP heads to predict the position and direction of the end-effector pose. MLP×2
means using one shared head to predict direction and another head to predict position separately.
(SSM block+MLP)×2 is similar to MLP×2 but adds a State Space Model (SSM) block before the
MLP to increase the parameter count of the policy head. The experimental results show that the
manipulation accuracy across the three configurations is quite similar, indicating that the parameter
count of the fine-tuning policy head has small impact on the results. Combined with Figure 3 b), this
further supports our finding that once RoboMamba achieves sufficient robotic reasoning capabilities,
it can acquire pose prediction skills at a low cost, regardless of the policy head design.

Table 6: Ablation study of policy head design on manipulation dataset.

result MLP×2 MLP×1 (SSM block+MLP)×2

Acc (Seen) 63.7% 62.1% 63.2%
Parameters 3.7M 1.8M 45.2M
Percentage 0.11% 0.05% 1.3%

D Additional real-world experiments

We conduct real-world experiments involving interactions with various household objects using a
Franka Emika robotic arm. We modify the finger gripper by attaching double-sided tape to convert it
into a suction gripper, providing the gripper head with adhesive properties. The video demonstrations
are included in the supplementary video file. As shown in Figure 5, we visualize our model’s reasoning
results on a series of robotic downstream tasks, including long-horizon planning, discriminative
affordance, generative affordance, past description, and future prediction. Additionally, failure cases
in reasoning are illustrated in Figure 6. Compared to the ground truth, RoboMamba demonstrates
limitations in reasoning ability on some complex tasks, occasionally misinterpreting the current task
objective or the target manipulated object.

E Reasoning evaluation bencharks

• VQAv2 and OKVQA: These benchmarks are utilized to assess the model’s proficiency in
basic vision question answering, which is a foundational skill in embodied AI. This ability
ensures that the model can understand and respond to visual content effectively.

• POPE and VizWiz: These benchmarks are chosen to evaluate the model’s capability to
answer questions without falling prey to visual illusions or ambiguities. This aspect is
crucial for avoiding significant errors in robotic applications.
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Question:<image>\n{current goal is: Refill the 
stack of cups and the coffee lids please. last 20 
steps: 1- Stack the lid on top of existing stack 
next 5 steps?}answer:
RoboMamba(Ours): 1- Stack the lid on top of 
existing stack 2- Stack the lid on top of existing 
stack 3- Stack the lid on top of existing stack 4- 
Stack the lid on top of existing stack 5- Stack the 
lid on top of existing stack
LLaMA-AdapterV2: 1- Stack the lid  2- Stack 
the lid 3- Stack the lid 4-done

Question:<image>\n{current goal is: stack the cups and 
put the blocks away. last 20 steps: 1- stack the cups 2- 
stack the cup on top of existing stack 3- stack the plastic 
glass 4- stack the cup on top of existing stack 5- pick up 
block 6- move the box left side }answer:
RoboMamba(Ours): put the block in the box 

Question:<image>\n{Place the blue 
candy on the table possible right now?
}answer:
RoboMamba(Ours): no

Question:<image>\n{what is 
likely to happen next?
}answer:
RoboMamba(Ours): open the 
yellow drawer

Long Horizon Planing

Question:<image>\n{current goal is: put the 
apples into the crate. last 20 steps: 1- put the 
apple in the container 2- put the apple in the 
container next 5 steps?}answer:
RoboMamba(Ours): 1- put the apple in the 
container 2- put the apple in the container 3- put 
the apple in the container 4- put the apple in the 
container 5- put the apple in the container 
LLaMA-AdapterV2: 1- place the apple in the 
container 2- put the fruits on the sink 3- done

Question:<image>\n{current goal is: write on the 
whiteboard. last 20 steps: 1- pick up marker 2- 
place marker on the table next 5 steps?}answer:
RoboMamba(Ours): 1- write letter t on the white 
board 2- write letter i on the white board 3- write 
letter o on the white board 4- write letter t on the 
white board 5- write letter t on the white board
LLaMA-AdapterV2: 1- done

Generative Affordance

Discriminative Affordance

Future Prediction

Past Prediction
Question:<image>\n{what just 
happened?}answer:
RoboMamba(Ours): put the fork in 
the holder

Planning

Question:<image>\
n{what action is 
possible right now?
}answer:
RoboMamba(Ours):
place strawberry in 
the bowl

Planning With Context

Question:<image>\n{current 
goal is: please remove the 
snacks from the tray  immediate 
next step?}answer:
RoboMamba(Ours): Place the 
popcorn packet on the table

Pose Prediction

Figure 5: Additional visualization of RoboMamba’s abilities across various robotic downstream tasks
in real-world scenarios, including task planning, long-horizon planning, discriminative and generative
affordance, past and future prediction, and low-level pose prediction.

Question:<image>\n{question: current goal is: please insert the
hole-punched paper into the 3-ring binder. last 20 steps: 1- Move
towards the white paper 2- Drag the white paper to the bottom 3-
Grasp the paper 4- Drag the white paper to the right 5- Move your
arm away from the paper on the table 6- Pick up the paper on the
table 7- Move to the left8- Move towards the steel object 9- place
the paper in the file 10- Release the paper 11- Grasp the steel 

object in the file  immediate next step?}answer:

RoboMamba(Ours): 1- drop the scrub packet in the cardboard box 2- pick the 
tape dispenser box from the table 3- drop the tape dispenser box in the 
cardboard box 4- pick the brown box from the table 5- drop the brown box in the 
cardboard box
GroudTruth: 1- Go to the cardboard box 2- drop the brown belt into the bottom 
cardboard box 3- drop the orange object into the cardboard box 4- Move the arm 
in clock wise direction 5- Grasp the brown object

RoboMamba(Ours): 1- Place the paper in the file
GroundTruth: 1- Move away from the ring binder

Question:<image>\n{current goal is: first open the larger 
box on the floor then move the items from the smaller box on 
the desk to the larger box on the floor. last 20 steps: 1- move 
towards the bottom cardboard box 2- open the bottom 
cardboard box 3- move away from the bottom cardboard  box 
4- pick the scrub packet from the bottom cardboard box  next 
5 steps?}answer:

Generative Affordance

Question:< image>\n{current goal is: 
Please remove the fruits from top draw then 
place them in the bowl.  immediate next 
step?}answer
RoboMamba(Ours): put the orange in the 
bowl
GroudTruth: Place the apple inside the 
white bowl

Question:< image>\n{what action is
possible right now?}answer:
RoboMamba(Ours): popen the left 
sleeve of the hoodie
GroudTruth: fold the hoodie upwards

Planning With Context

Long Horizon Planning

Pose Prediction

Figure 6: The visualization of reasoning failure cases. In the bottom right corner of the image, we
re-select the qualitative results from our real-world demonstration. Additionally, we replace the red
dot and virtual end-effector with a physical Franka Panda Robot.

• GQA: These benchmarks are employed to test the model’s ability to identify and comprehend
the types and positions of important objects within an image. Such spatial identification
skills are vital for tasks related to robotic manipulation and interaction with the environment.

• RobotVQA: This benchmark is used to assess the model’s ability to plan and understand
actions based on both textual and visual inputs. This skill is indispensable in the realm of
robotics, where understanding and executing complex actions is necessary.

• MM-Vet, MME and MMB: These benchmarks are utilized to evaluate multimodal large
language models’s ability to integrate on complex multi-modal tasks including Recognition,
Spatial awareness, OCR, and Math. All of them contain a wealth of evaluation indicators,
such as perception and cognition, which can fully demonstrate the performance of the model
under different tasks, and this performance is the best embodiment of the comprehensive
application performance of multimodal large language models(MLLM).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We did.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We did.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21

40105 https://doi.org/10.52202/079017-1266



Justification: We do not have theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will open source the code as soon as it is ready.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We did not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not involve with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We didn’t.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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