
Large Spatial Model:
End-to-end Unposed Images to Semantic 3D

Zhiwen Fan1,2†∗, Jian Zhang3∗, Wenyan Cong1, Peihao Wang1, Renjie Li4, Kairun Wen3, Shijie Zhou5,
Achuta Kadambi5, Zhangyang Wang1, Danfei Xu2,6, Boris Ivanovic2, Marco Pavone2,7, Yue Wang2,8

1UT Austin 2NVIDIA Research 3XMU
4TAMU 5UCLA 6GaTech 7Stanford University 8USC

Project Website: https://largespatialmodel.github.io

Images
Unposed & Unseen

F
ea

tu
re

 F
ie

ld
R

ad
ia

n
ce

 F
ie

ld
Large Spatial Model

0.1 second

100+
FPS

N
V

S
S

eg
.

D
ep

th
Text

Figure 1: Large Spatial Model takes two unposed images as input and reconstructs an explicit radi-
ance field, capturing geometry, appearance, and semantics in real time. This yields high performance
in versatile tasks such as view synthesis, depth prediction, and open-vocabulary 3D segmentation.

Abstract
Reconstructing and understanding 3D structures from a limited number of im-
ages is a classical problem in computer vision. Traditional approaches typically
decompose this task into multiple subtasks, involving several stages of complex
mappings between different data representations. For example, dense reconstruc-
tion using Structure-from-Motion (SfM) requires transforming images into key
points, optimizing camera parameters, and estimating structures. Following this,
accurate sparse reconstructions are necessary for further dense modeling, which is
then input into task-specific neural networks. This multi-stage paradigm leads to
significant processing times and engineering complexity.
In this work, we introduce the Large Spatial Model (LSM), which directly pro-
cesses unposed RGB images into semantic radiance fields. LSM simultaneously
estimates geometry, appearance, and semantics in a single feed-forward pass and
can synthesize versatile label maps by interacting through language at novel views.
Built on a general Transformer-based framework, LSM predicts global geometry
via pixel-aligned point maps. To improve spatial attribute regression, we adopt
local context aggregation with multi-scale fusion, enhancing the accuracy of fine
local details. To address the scarcity of labeled 3D semantic data and enable natural
language-driven scene manipulation, we incorporate a pre-trained 2D language-
based segmentation model into a 3D-consistent semantic feature field. An efficient
decoder parameterizes a set of semantic anisotropic Gaussians, allowing supervised
end-to-end learning. Comprehensive experiments on various tasks demonstrate
that LSM unifies multiple 3D vision tasks directly from unposed images, achieving
real-time semantic 3D reconstruction for the first time.

∗Z. Fan and J. Zhang contributed equally; † Z. Fan is the Project Lead

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

40212 https://doi.org/10.52202/079017-1271

https://largespatialmodel.github.io


1 Introduction

The computer vision community has devoted considerable effort to recovering and understanding
3D information (e.g., depth and semantics) from 2D sensory data (e.g., images). This process aims
to derive 3D representations that encapsulate both geometric and semantic details from cheap and
widely available 2D data, facilitating further interaction, reasoning, and planning within 3D physical
world. Traditional approaches [1] tackle this by pipelining several distinct tasks: detecting, matching,
and triangulating points for initial sparse reconstructions and the subsequent dense reconstruction,
followed by the integration of specialized submodules for semantic 3D modeling.

Recent developments in this domain have markedly proceeded with a more powerful representa-
tion using both sparse reconstruction, and subsequent dense 3D modeling via Multi-View Stereo
(MVS) [2, 3], Neural Radiance Field (NeRF) [4], and 3D Gaussian Splatting (3D-GS) [5], This
trend influenced various industries, including autonomous driving [6], robotics [7], digital twins [8],
and virtual/augmented reality (VR/AR) [9, 10]. Due to the complexity of inferring 3D information
from 2D images, previous methods have broken down the holistic task into distinct, manageable
subproblems. However, this strategy propagates errors from stage to stage and downgrades the
performance of subsequent tasks. For instance, the critical step of precomputing camera poses
-utilizing Structure from Motion (SfM) [1]— has proven to be vulnerable and often fails in scenes
covered by a sparse number of views or exhibiting low-textured surfaces [11]. Such inaccuracies in
camera pose estimation can ultimately lead to imprecise interpretation of the 3D scene.

Furthermore, reasoning about and interacting with the environment would benefit from a comprehen-
sive 3D understanding. Open-vocabulary methods, which perform semantic segmentation without
relying on a fixed set of labels, provide notable flexibility. However, unlike single-image under-
standing, the absence of large-scale and diverse 3D scene data with accurate multiview language
annotations complicates the challenge. Efforts have been made to integrate 2D features into frame-
works such as NeRF [12–14] and 3D-GS [15, 16]. Yet, these methods, such as Feature-3DGS [15]
, typically require overfitting each 3D scene separately with extensive captured viewpoints and
preprocessing camera poses using Structure-from-Motion.

To address the challenges outlined above, we propose for the first time a novel unified framework
for these key 3D vision subproblems: dense 3D reconstruction, open-vocabulary semantic segmen-
tation, and novel view synthesis from unposed and uncalibrated images. Our approach leverages a
single Transformer-based model that learns the attributes of a 3D scene via semantic anisotropic
Gaussians. Unlike previous methods that rely on epipolar Transformers with known camera parame-
ters [17–19] or require extensive per-scene fitting [5, 15], we employ a coarse-to-fine strategy. This
strategy predicts dense 3D geometry using pixel-aligned point maps, progressively refining these
points into anisotropic Gaussians in a single feed-forward pass.

Our framework, dubbed Large Spatial Model (LSM), begins with a general Transformer architecture
incorporating cross-view attention [20], which constructs pixel-aligned point maps at a normalized
scale, enabling generalization across various datasets. LSM further enhances point-based representa-
tions through multi-scale fusion and local context aggregation using a ViT encoder. Additionally,
LSM performs hierarchical cross-modal fusion, integrating features from a pre-trained 2D semantic
model into a consistent 3D feature field. Through differentiable splatting of the regressed semantic
anisotropic Gaussians, LSM enables end-to-end supervision and supports real-time scene-level 3D
semantic reconstruction and rendering without needing explicit camera parameters. This allows for
efficient, data-driven rendering of labels from novel viewpoints, as demonstrated in Figure 1.

Our contributions are summarized as follows:

• We introduce a unified 3D representation and an end-to-end framework that addresses dense
3D reconstruction, 3D language-based segmentation, and novel-view synthesis directly from
unposed images in a single forward pass.

• Our method leverages a Transformer architecture with cross-view attention for multi-view ge-
ometry prediction, combined with hierarchical cross-modal attention to propagate geometry-
rich features. We further integrate a pre-trained semantic segmentation model to enhance 3D
understanding. By aggregating local context at the point level, we achieve fine-grained fea-
ture integration, enabling the prediction of anisotropic 3D Gaussians and efficient splatting
for RGB, depth, and semantics.
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• Our model performs multiple tasks simultaneously with real-time reconstruction and render-
ing on a single GPU. Experiments show that our unified approach scales effectively across
different 3D vision tasks, surpassing many state-of-the-art baselines without the need for
additional SfM steps.

2 Related Work

SfM and Differentiable Neural Representation Structure-from-Motion (SfM) aims to jointly esti-
mate camera poses and reconstruct sparse 3D structures from multiple views. Traditional pipelines [1]
involve multiple stages, including descriptor extraction, correspondence estimation, and incremental
bundle adjustment. Recent advances in learning-based techniques [21–25] have further improved
the accuracy and efficiency of SfM. These methods are widely adopted in 3D vision tasks, where
differentiable neural representations typically assume accurate camera poses provided by SfM. For
instance, NeRF [4] and its successors [26] rely on poses estimated offline via COLMAP [1, 27].
Similarly, 3D Gaussian Splatting [5] uses SfM-generated 3D points for initialization and has been
applied to robotics [28–30], healthcare [31–33], and many other domains [34–36]. Beyond novel
view synthesis, lifting 2D features to 3D has gained traction in various editing tasks [13, 15, 37, 14].
End-to-End Image-to-3D 3D reconstruction is a long-standing problem in computer vision, with
traditional approaches like SfM [38, 39, 1], Multi-view Stereo (MVS) [3, 2, 40, 41], and Signed
Distance Function (SDF) [42, 43]. More recent techniques utilize neural representations, including
implicit [4] and explicit [5] formats to generate 3D models. Semantic understanding is often integrated
during the reconstruction process [44], or through additional optimization steps [12, 13]. However,
most methods depend on a preprocessing step like SfM [1] to estimate camera calibration, poses,
and sparse point clouds before dense reconstruction, either through feed-forward prediction or
test-time optimization. This reliance on calibration and pose estimation limits scalability with large-
scale data, contrasting the success seen with large foundation models [45]. The latest pose-free,
feedforward approaches, such as Scene Representation Transformers[46–48], have advanced the
concept of representing multiple images as a “set latent scene representation,” allowing for novel
view generation even in the presence of inaccurate camera poses or without any pose information.
However, these methods struggle to produce explicit geometry. DUSt3R[20] addresses this limitation
by predicting dense point clouds directly from unposed stereo image pairs, enabling pixel-aligned
geometry prediction at normalized scales. Practically, dense point prediction requires accurate
multi-view RGB-D pairs, which significantly limits its scalability. InstantSplat[49] addresses this
by utilizing novel-view synthesis with only posed image data and employing Gaussian Bundle
Adjustment to jointly optimize camera and scene parameters for ultra-fast dense 3D reconstruction.

In contrast, our framework offers a holistic solution for dense 3D semantic reconstruction from
unposed images. It integrates dense 3D geometry reconstruction, and language-based 3D interaction,
while minimizing the need for extensive data annotation by using novel view synthesis as a core task.
Since dense 3D annotations are often scarce in real-world scenarios, we propose semantic anisotropic
Gaussians to lift 2D features map to 3D semantic embeddings without additional annotation. Our
approach addresses higher-level 3D tasks in perception and dense 3D reconstruction compared to
DUSt3R [20], by utilizing lightweight annotations and solving these tasks jointly within a unified
framework.

3 Methods

Overview Figure 2 illustrates the architecture for training the Large Spatial Model (LSM). During
training, the input consists of stereo image pairs along with associated camera intrinsics and poses:
{(Ii ∈ RH×W×3), (T i ∈ R3×4), (Ki ∈ R3×3)}2i=1. At inference, however, unposed images can be
directly fed into the framework. The pixel-aligned geometry is predicted using a standard Transformer
architecture [50] with cross-attention between input views. Dense prediction heads are employed to
regress normalized point maps during training: {Di ∈ RH×W×3}2i=1 (see Sec. 3.1).

To support fine-grained semantic anisotropic 3D Gaussian regression, which represents the 3D scene
and lifts generic feature fields from pre-trained 2D vision models, we apply point-based attention
with learnable positional encoding in a local window. This propagates features from neighboring
points (Sec. 3.2), effectively merging encoded features with rich semantics (Sec. 3.2) at multiple
scales using 2D pre-trained models (Sec. 3.3). New views from the semantic radiance fields can be
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decoded using splitting [5] on the target poses (Sec. 3.4). During inference, semantic anisotropic
Gaussians are directly predicted, and the renderer takes the camera parameters derived from the point
maps. An overview of the model architecture is shown in Figure 2.

Patchify+PE
ViT

Encoder

…

ViT
Decoder

Dense Geometry Prediction
(Sec. 3.1)

Cross-view Attention Block
(Sec. 3.1)

x8

Point-wise Aggregation
(Sec. 3.2)

Encoder Decoder

Feature Lifting
(Sec. 3.3)

Input Image

Rasterizer

Target ImageTarget Feature

Figure 2: Network Architecture. Our method utilizes input images from which pixel-aligned
point maps are regressed using a generic Transformer. A set of semantic anitrosopic 3D Gaussians
incorporating geometry, appearance, and semantics are then predicted employing another point-based
Transformer that facilitates local context aggregation and hierarchical fusion. It is supervised end-
to-end, minimizing the loss function through comparisons against ground truth and rasterized label
maps on new views. During the inference stage, our approach is capable of predicting the scene
representation without requiring camera parameters, enabling real-time semantic 3D reconstruction.

3.1 Dense Geometry Prediction

Instead of adopting a conventional Transformer with Epipolar attention—which can be inefficient as
pixel-wise prediction requires hundreds of queries on sampled epipolar lines [17, 18]—we implement
an encoder-decoder structure for directly regressing view-specific point maps at normalized scales.
Cross-view attention is utilized to aggregate multi-view information efficiently.

Direct Regression of Normalized Depth Map We employ a Siamese ViT-based encoder [50]
that processes stereo images using shared weights. It involves the patchification and tokenization
of images, followed by the integration of sinusoidal positional embeddings. To directly regress
the pixel-aligned point maps from the unposed images for view v ∈ {1, 2}, cross-view attention
is also employed, enhancing the architecture’s capacity to infer spatial relationships and propagate
information between views—an approach that has proven effective in prior research [51, 20, 52]. The
decoder block consists of interleaved self-attention for each view and cross-attention across views,
which integrates tokens from both images. The inter-view decoder includes 12 attention blocks,
akin to those utilized in previous multi-view stereo (MVS) studies [52, 20]. These blocks generate
tokenized features for a subsequent Dense Prediction Transformer head (DPT) [53], which estimates
a pixel-wise point map in a normalized coordinate system along with confidence value:

Lconf =
∑

v∈{1,2}

∑
i∈Dv

Mi
v,1 · Ldepth(v, i)− α · logMi

v,1, (1)

where M is pixel-aligned confidence map, same as DUSt3R, D indicates all valid points to the origin,
Mv,1 denotes the confidence map obtained from view v, expressed in the coordinate frame of view
1, α is a hyper-parameter that apply regularization, encouraging the network to perform robustly in
challenging areas. The depth error is calculated by

Ldepth =
∑

v∈{1,2}

∥∥∥∥1z ·Pv,1 −
1

ẑ
· P̂v,1

∥∥∥∥ , (2)

where the normalization factors (z and ẑ) indicate that the predicted and ground-truth
pointmaps are processed by normalizing. For example, z is obtained by: norm(P1,P2) =

1
|D1|+|D2|

∑
v∈{1,2}

∑
i∈Dv ∥Pi

v∥ .
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3.2 Point-wise Feature Aggregation

Building on the foundational work in NeRF[4] and Multi-view Stereo[3], which employ a coarse-
to-fine strategy for high-quality radiance field and depth estimation, we also aggregate the initial
predicted geometry by applying a Transformer [54] at the point level, leveraging hierarchical repre-
sentations to achieve more refined, point-based regression.

Point-wise Attribute Prediction Rather than relying solely on a single network to represent the
scene, we employ two Transformer-based networks optimized for distinct tasks: one for capturing
“coarse” global geometry and another for “fine” local information aggregation. Initially, we integrate
stereo point maps, including color information for each point primitive, formulated as {pi =
(xi, yi, zi, ri, gi, bi)}Ni=1 to serve as input. Unlike tokenized image patches, point primitives carry
distinct geometric significance within Euclidean space. Inspired by recent advancements in point-
cloud processing [55–57], we employ a Transformer within a localized window to perform point-wise
aggregation, selectively emphasizing key features from neighboring primitives. Point-wise encoding
and decoding are essential for refining scene representation, utilizing multiscale aggregation across
five hierarchical levels.

After aggregating the point-wise features, we employ an additional layer of multilayer perceptron
(MLP) to regress the parameters, representing the 3D scene through a set of anisotropic Gaussians [5].
The parameters include the opacity α, scale factor s, rotation r, and Spherical Harmonics coefficients{
ci ∈ R3|i = 1, 2, ..., k

}
where k = (K + 1)2 is the number of coefficients of SH with degree K.

The Gaussian centers µ are regressed from geometry prediction backbone. The color c of direction
d is then computed by summing up all SH basis as c (d) =

∑n
i=1 ciBi (d), where Bi is the ith SH

basis. The final pixel intensity c is calculated by blending n ordered Gaussians overlapping the pixels
using the following render function:

c =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj) (3)

This equation efficiently models the contributions of each Gaussian to the pixel’s final appearance,
accounting for their transparency and layering order.

Cross-model Feature Aggregation To effectively combine multi-view image features with point-
wise geometric information, we implement cross-model attention between two sets of tokens. The
attention block fuses tokens from different sources by first applying self-attention to the input P,
allowing each token to attend to other tokens within the same sequence. This process helps capture
internal relationships and enrich the representation of the input token. Next, cross-attention is
used, where two sets of tokens (P and F) from the latent layers of two different models are fused,
enabling the integration of external information into P. Finally, a feed-forward network (MLP)
further processes the updated information following cross-model fusion.

The original point features P contain explicit and precise spatial information, which is critical for
accurate geometry reconstruction. In contrast, the image token features F, from image encoder
(Sec. 3.1) are rich in semantic content, providing important contextual information that enhances
general understanding of the scene. Cross-model fusion enables the integration of detailed spatial
geometry with semantic richness:

Q = Proj(P), V,K = Proj(F),

P = softmax
(
QK⊤
√
dk

)
V

where P and F were normalized with a linear layer before projection.

3.3 Learning Hierarchical Semantics

To facilitate semantic 3D representation, we augment the anisotropic 3D Gaussians with a learnable
semantic feature embedding (a.k.a. semantic anisotropic Gaussians) and rasterize into the 2D image
plane by blending Gaussians that overlap with each pixel using a feature rendering function.

s =

n∑
i=1

siαi

i−1∏
j=1

(1− αj) (4)

5
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s indicates the final rasterized feature embedding on image plane, and si is semantic embedding on
anisotropic Gaussians.
3D Semantic Field from 2D Images After obtaining s, we optimize si by minimizing the difference
between the rasterized feature map and the feature maps generated by a pre-trained 2D model. Unlike
the previous method [15] which requires test time optimization, we transform the estimation of the
feature field into a fully learnable process.

Feature maps ({Si ∈ RH′×W ′×N}2i=1) from a pre-trained 2D multi-modal model [58] are inherently
view-inconsistent due to the lack of spatial awareness during the model’s training. To elevate multi-
view feature embeddings into a coherent 3D feature field for holistic 3D understanding, we introduce a
dynamic fusion strategy employing an attention-based correlation module. This module is specifically
designed to learn blending weights for each token within Point Transformer [54] from the input
pixel-wise feature embedding (Si). We employ attention blocks as described in Eq.3.2 to synchronize
in the latent spaces through a supplementary set of cross-attention layers. The visual feature from
LSeg[58], denoted as Ŝ, is utilized for this purpose. This loss function is minimized during training
by utilizing rasterized feature maps on new views S and directly inferred feature maps using ground
truth images on new views Ŝ (LSeg [58]), thereby facilitating the learning of blending weights for
consistent semantic field regression.

Ldist = 1− sim(Ŝ,S) = 1− Ŝ · S
∥Ŝ∥∥S∥

(5)

Multi-scale Feature Fusion To improve model efficiency, we propagate information from ViT
Encoder feature F and the frozen semantic feature S, to the 3D latent space (point feature P)
which has fewer tokens, thereby enabling selective attention to critical features. We further refine
feature fusion across multiple stages, optimizing information flow while minimizing additional
computational overhead. Novel view synthesis serves as an effective task to encode the complete
geometric and appearance features into a low-dimensional 3D latent space, while recovering a set of
semantic anisotropic Gaussians (G ∈

{
gi ∈ R1×C

}N

i=1
) through learning from large-scale data and

end-to-end training.

3.4 Training Objective

Putting all together, our model can be optimized end-to-end:

L =
∥∥∥C(G,d)− Ĉ

∥∥∥+ λ1 ·D-SSIM(C(G,d), Ĉ)︸ ︷︷ ︸
Photometric

(6)

+ λ2 · Ldist(S(G,d), Ŝ)︸ ︷︷ ︸
Semantic

+
∑

v∈{1,2}

λ3 · Lconf(Dv,1, D̂v,1)︸ ︷︷ ︸
Geometric

(7)

where C and Ĉ are rasterized and GT pixel intensities, G denotes represented 3D scene using a set
of 3D semantic anisotropic Gaussians, S and Ŝ denotes rendered LSeg feature extractor and feature
on the target image, d indicates the direction and position at new views. In our methodology, we
leverage both photometric loss and semantic loss to supervise the generation of rasterized new views.
In order for geometry prediction and semantic feature lifting, we employ a confidence-weighted depth
loss applied to the input views. The parameters λ1, λ2, λ3 are set to 0.25, 0.3, and 1.5, respectively,
as determined by the grid search.

4 Experiments

4.1 Implementation Details

For our architecture, we employ ViT-Large as the encoder and ViT-Base as the decoder, complemented
by a DPT head [53] for pixel-wise geometry regression. We initialize the geometry prediction layers
using DUSt3R [20]. Point Transformer layers consists of 5 encoder and 4 decoder blocks with
progressive downsampling and upsamping. The cross-model fusion strategy is implemented at
the output of the last encoder and the output of the first decoder. The entire system is optimized
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Table 1: Quantitative Comparison in 3D Tasks. We report novel-view synthesis, depth estimation
quality, and open-vocabulary segmentation accuracy. Our method eliminates the need for any
preprocessing in 3D tasks, while achieving performance comparable to other baselines that rely on
SfM to obtain camera parameters and poses.

Reconstruction Time↓ Source View Target View
SfM Per-Scene mIoU ↑ Acc.↑ rel ↓ τ ↑ mIoU ↑ Acc.↑ PSNR ↑ SSIM ↑ LPIPS ↓

LSeg N/A N/A 0.5278 0.7654 - - 0.5281 0.7612 - - -
NeRF-DFF 20.52s 1min2s 0.4540 0.7173 27.68 9.61 0.4037 0.6755 19.86 0.6650 0.3629
Feature-3DGS 20.52s 18mins36s 0.4453 0.7276 12.95 21.07 0.4223 0.7174 24.49 0.8132 0.2293
pixelSplat 20.52s 0.064s - - - - - - 24.89 0.8392 0.1641
Ours 0.108s 0.5034 0.7740 3.38 67.77 0.5078 0.7686 24.39 0.8072 0.2506

Input (Unposed Images) Feature Field Rendered at New Views

Figure 3: Visualization of the 3D Feature Field. We present examples of features rendered from
novel viewpoints, illustrating how our method converts 2D features into a consistent 3D, facilitating
versatile and efficient segmentation. Visualizations are generated using PCA [59].

end-to-end using the loss function described in Eq. 6. The training of our model contains 100 epochs,
leveraging a combined dataset of ScanNet++[60] and Scannet[61], of 1565 scenes. Training is on
8 Nvidia A100 GPU lasts for 3 days. We start with a base learning rate of 1e-4 and incorporate a
10-epoch warm-up period. AdamW is employed as the optimizer for all experiments. Evaluation is
conducted on 40 unseen scenes from ScanNet. Additionally, we assess on tasks: novel view synthesis,
multi-view depth prediction, and 3D language-based semantic segmentation.

4.2 Semantic 3D Reconstruction

Evaluation of Synthesized Images Quality Novel view synthesis is evaluated using NeRF-
DFF [13] and Feature-3DGS [15], both of which are capable of predicting RGB values as well
as features. In addition, we compared our approach with the state-of-the-art, generalizable, pose-
based 3D Gaussian Splatting method, pixelSplat [18], which generates point-based representations
through a feed-forward pass. Unlike our method, these existing approaches rely on known camera
intrinsics and poses prior to evaluation. As indicated in Table 1, NeRF-DFF and Feature-3DGS tend
to overfit on each individual scene, requiring significantly more time than our method, yet performing
comparably in terms of output quality. pixelSplat utilizes an Epipolar Transformer, searching along
the epipolar line using GT camera parameters to regress Gaussian attributes, resulting in longer
inference times. Visualizations in Figure 4 demonstrate that our results are sharper and exhibit fewer
artifacts than NeRF-DFF, and are comparable to Feature-3DGS and pixelSplat in performance.

Evaluation of Open-vocabulary Semantic 3D Segmentation The semantic segmentation is
evaluated by class-wise intersection over union (mIoU) and average pixel accuracy (mAcc) on novel
views as metrics. Following the approach of Feature-3DGS [15], we map thousands of category labels
from diverse datasets into a set of common categories, including {Wall, Floor, Ceiling, Chair, Table,
Bed, Sofa, Others}. We compare our model against two state-of-the-art 3D baselines with the capacity
for generating RGB, semantics and depth on any view: Feature-3DGS [15] and NeRF-DFF [13],
which are based on 3D-GS [5] and NeRF [4], respectively. Additionally, the model LSeg [58],
used as a 2D open-vocabulary segmenter for feature lifting, is included in our comparisons. We
present statistics related to the semantic annotations on the adopted the ScanNet datasets in Table 1,
where LSM demonstrates competitive performance compared to baseline 3D methods that require

7
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OursFeature-3DGSNeRF-DFFGround-Truth pixelSplat

Figure 4: Novel-View Synthesis (NVS) Comparisons. We evaluate scene-level reconstruction by
comparing our method to approaches that require per-scene optimization, such as NeRF-DFF and
Feature-3DGS, which predicts both RGB and segmentation, and the generalizable 3D Gaussian
Splatting method (pixelSplat). Notably, these methods require a pre-processing step to obtain
camera poses using off-the-shelf SfM. Through end-to-end, data-driven training, our method achieves
comparable visual quality to these approaches while reconstructing the 3D radiance field in a single
feed-forward pass.

Table 2: Ablation Study on Our Design Choices. We refer to the model that integrates cross-
view attention for multi-view geometry with point-wise aggregation for future refinement as the
baseline configuration (Exp #1). Implementing cross-modal attention to fuse geometry encoder
features enhances both the rendering quality of new views and the segmentation accuracy (Exp
#2). Additionally, incorporating features from frozen 2D semantic backbone into the fusion process
(Exp #3) for consistent feature field amalgamation, and multi-scale fusion enhances hierarchical
information flow (Exp #4), substantially improving language-based semantic 3D segmentation.
Segmentation metrics use LSeg results as ground-truth in this table.

Exp ID Model mIoU↑ Acc.↑ PSNR↑ SSIM↑
[1] Baseline 0.4562 0.6940 24.00 0.7981
[2] [1] + Fuse Encoder Feat. 0.5410 0.8083 23.67 0.7876
[3] [1] + Fuse LSeg Feat. 0.5586 0.8505 23.85 0.7902
[4] [1] + [2] + [3] + Multi-scale Fusion 0.6042 0.8681 24.39 0.8072

ground-truth camera parameters and extensive per-scene optimization. The visualized results in
Figure 5 illustrate that LSM can produce view-consistent semantic maps. In contrast, the 2D method
LSeg yields detailed segmentation results but lacks cross-view consistency. To validate that LSM
learns semantically meaningful features, we visualize the lifted feature field using PCA to reduce the
high-dimensional features into three channels [13]. As shown in Figure 3, LSM effectively generates
a faithful semantic feature field through feed-forward inference using pair images.

Evaluation of Depth Accuracy We also evaluate the performance of our model on the task of
multi-view stereo depth estimation. We utilize the Absolute Relative Error (rel) and Inlier Ratio
(τ ) with a threshold of 1.03 to assess each scene, similar to DUSt3R [20]. Since our approach does
not rely on any camera parameters for prediction, we align the scene scale between the predictions
and the ground truth. Specifically, we normalize the predicted point maps using the median of the
predicted depths and similarly normalize the ground truth depths, following procedures established in
previous literature [62, 20] to align the two sets of depth maps. We observe in Table. 1 that LSM
achieves state-of-the-art accuracy on ScanNet datasets than the per-scene wise methods. Our model
is significantly faster than baseline methods, as it only require a forward-pass.

8
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Figure 5: Language-based 3D Segmentation Comparison. We visualize the segmentation results
across four unseen scenes and observe that our method performs comparably to NeRF-DFF and
Feature-3DGS. This indicates that LSM effectively lifts 2D feature maps into high-quality 3D feature
fields.

Table 3: Inference Time per Module. Breakdown of inference time for each module for analysis.
Module Inference Time (seconds)
Dense Geometry Prediction (Sec. 3.1) 0.029
Point-wise Aggregation (Sec. 3.2) 0.046
Feature Lifting (Sec. 3.3) 0.019

Total 0.096

4.3 Ablation Studies

We conduct ablations to validate our desing effectiveness. Experiments are on both language-based
segmentation and novel view synthesis. The quantitative results can be views at Table 2.

Cross-Model Feature Aggregation Incorporating the geometry encoder feature from ViT into the
hidden layer of the point-aggregation layer (Sec. 3.2) demonstrates that such cross-model information
flow significantly benefits the segmentation task, improving the mean Intersection over Union (mIoU)
from 0.4562 to 0.5410 (Exp #1 → 2).

Semantic Feature Fusion at Multi-Scale Employing cross-model fusion, where latent features of
the semantic model are integrated into the middle layers of point-based aggregation, also improves
injection of semantically rich embeddings (0.4562 to 0.5586, Exp # 1 → 3). The decoded features
confirm that the lifted feature field produces higher-quality feature maps, with the semantic mIoU
improving from 0.5586 to 0.6042 (Exp #3 → 4) through multi-scale fusion.

Module Timing. We analyze the computational cost of each module by running inference 1,000
times on the ScanNet test dataset with the model, as shown in Table 3, and calculating the average
inference time for each module of the Large Spatial Model.
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Table 4: Performance Comparison on Replica Dataset. LSM operates without ground-truth camera
parameters, achieving decent PSNR and low relative depth error, while also enabling semantic
understanding within a unified framework.

Model Offline SfM mIoU ↑ rel ↓ PSNR ↑

Replica
pixelSplat Required None 20.14 26.28
Splatter Image Required None None 12.37
Ours Not Required 0.51 4.91 23.10

Evaluation of Generalizable Methods on New Datasets. To avoid potential overfitting, we adopt
the Replica dataset[63], a photorealistic simulated 3D dataset with accurate RGB, dense depth maps,
and semantic annotations for comprehensive evaluation. We use the same data preparation with
Feature-3DGS. LSM generalizes well to the simulated Replica test set, achieving the best depth
estimation metrics and enabling 3D semantic segmentation, which is unique among generalizable
methods. Splatter Image[64], an ultra-fast monocular 3D object reconstruction method using 3D-GS,
performs well for object reconstruction with masked backgrounds but struggles with scene-wise
reconstruction in complex backgrounds.

5 Conclusion, Limitation, and Broader Impact

We have introduced the Large Spatial Model (LSM), a unified framework for holistic 3D semantic
reconstruction from uncalibrated and unposed images, with the added capability of interaction through
language. LSM leverages cross-view attention to aggregate multi-view cues and utilizes multi-
scale cross-modal attention to integrate semantically rich features into a point-based representation.
Hierarchical point-wise aggregation layers further refine these representations and enhance the
integration of cross-modal attention. By splatting regressed anisotropic 3D Gaussians, LSM enables
the generation of novel views with versatile label maps. LSM is highly efficient, capable of real-time
end-to-end 3D modeling, and supports various downstream applications.

While our method significantly accelerates semantic 3D scene reconstruction, it relies on a pre-trained
model for feature lifting, which can increase GPU memory requirements during training, especially
when the integrated 2D model has a large number of parameters. Additionally, the need for ground-
truth depth maps, although there are millions of multi-view datasets annotated with them, could limit
its scalability for internet-scale video applications.

Our research enables efficient, real-time 3D scene-level reconstruction and understanding, which
is advantageous for applications such as end-to-end robotic learning, AR/VR, and digital twins.
However, there is potential for misuse, such as the arbitrary distribution of digital assets or privacy
leakage related to building structures. These risks can be mitigated by embedding watermarks into
the 3D assets [65].
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Technical Appendices

We have included visualizations of rendered new views, visualized features, and the final language-
based segmentation videos can be seen from our webpage.

Training/Testing Split. Similar to NeRF literatures, we select one image out of four as test images,
and the rest ones used as training for Feauture-3DGS and NeRF-DFF. For pixelSplat and ours, we
directly use the rest ones as source-view images to reconstruct the 3D representation. We use the last
checkpoint for evaluation.

How to Derive Camera Parameters from Normalized Point Maps. We obtain pixel-aligned
point map at where we can build the mapping from 2D to the camera coordinate system. We can first
solve the simple optimization problem based on the Weiszfeld algorithm [66] to calculate per-camera
focal, the same as DUSt3R [20]:

f∗ = argmin
f

W∑
i=0

H∑
j=0

Oi,j

∥∥∥∥(i′, j′)− f
(P i,j,0,P i,j,1)

P i,j,2

∥∥∥∥ (8)

where i′ = i− W
2 and j′ = j − H

2 denote centered pixel indices. Assuming a single-camera setup
similar to that used in COLMAP for a single scene capture, we propose stabilizing the estimated
focal length by averaging across all training views: f̄ = 1

N

∑N
i=1 f

∗
i The resulting f̄ represents the

computed focal length that is utilized in subsequent processes. Relative transformation {T = [R|t]}
can be computed by RANSAC [67] with PnP [68, 69] for each image pair.

Additional Model Details. We utilize the initial geometry prediction from DUSt3R, which provides
pixel-aligned geometry as the starting point. The subsequent point-wise aggregation is implemented
using Point Transformer V3 [54]. The 2D-trained model, LSeg, is employed to provide multi-modal
feature embeddings through its tokenization module, using the feature from the second-to-last layer
of the DPT head. Additionally, the last layer of the ViT encoder is integrated into the feature space of
Point Transformer. The fusion is carried out by a single standard attention block, facilitating cross-
model information flow. We will release the code. The middle two layers of the Point Aggregation
Module are utilized for this fusion. Both Feature-3DGS and NeRF-DFF models are trained with
5,000 iterations to prevent overfitting on real-world outward-facing scenes, and they also lift features
from LSeg for the creation of a 3D feature field. The point-wise aggregation module consists of four
encoder blocks with progressive downsampling, and four decoder blocks with upsampling operators.
The depth of each block is configured as {1, 1, 1, 1} for the encoders and {1, 1, 1, 1} for the decoders,
respectively.
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