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Abstract

Prediction is a fundamental capability of all living organisms, and has been pro-
posed as an objective for learning sensory representations. Recent work demon-
strates that in primate visual systems, prediction is facilitated by neural represen-
tations that follow straighter temporal trajectories than their initial photoreceptor
encoding, which allows for prediction by linear extrapolation. Inspired by these
experimental findings, we develop a self-supervised learning (SSL) objective that
explicitly quantifies and promotes straightening. We demonstrate the power of
this objective in training deep feedforward neural networks on smoothly-rendered
synthetic image sequences that mimic commonly-occurring properties of natural
videos. The learned model contains neural embeddings that are predictive, but
also factorize the geometric, photometric, and semantic attributes of objects. The
representations also prove more robust to noise and adversarial attacks compared
to previous SSL methods that optimize for invariance to random augmentations.
Moreover, these beneficial properties can be transferred to other training procedures
by using the straightening objective as a regularizer, suggesting a broader utility of
straightening as a principle for robust unsupervised learning.

1 Introduction

All organisms make predictions, and their survival generally depends on the accuracy of these
predictions. In simple organisms, these predictions are reflexive and operate over short time scales
(e.g., moving toward or away from light, heat, or food sources). In more complex organisms,
they involve internal state (memories, plans, emotions) and operate over much longer timescales.
Prediction has the potential to provide an organizing principle for overall brain function, and a
source of inspiration for learning representations in artificial systems. However, natural visual scenes
evolve according to highly nonlinear dynamics that make prediction difficult. Recent experiments –
both perceptual (in humans) and neurophysiological (in macaques) – indicate that the visual system
transforms these complex pixel dynamics into straighter temporal trajectories [22, 23]. As an
alternative to full temporal prediction, straight representations facilitate predictability through linear
extrapolations (Fig. 1A, red arrows). Yet, the utility of straightening as a learning principle for
organizing representations remains underexplored.

Here, we ask whether straightening is sufficiently powerful to be used as a primary objective in
self-supervised learning (SSL). Our contributions are as follows:

• We developed an SSL objective function that aims to straighten spatio-temporal visual inputs.
We demonstrated on simulated data that this objective, coupled with a whitening regularizer
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Figure 1: Learning straightened representations. A. Illustration of temporal trajectories of four
translating digit sequences, in the space of pixel intensities (left), and in a straightened representation
(right). Color indicates digit identity. B. The actual two-dimensional t-SNE rendering of 20 temporal
trajectories for each of the ten translating digits from our model. Initial (pixel intensity) representation
is highly curved and entangled (left). Although the straightening objective is unsupervised (no object
labels), the learned representation clearly isolates the trajectories corresponding to different digits
(right).

that prevents representational collapse, can successfully straighten visual inputs containing
both geometric and photometric transformations.

• We show that the trained network is effective in extracting and predicting various visual
attributes including object identity, location, size, and orientations.

• We provide geometric intuition for how straightening yields class separability.

• We show that representations learned by straightening are significantly more robust than
those learned by multi-view invariance, when trained on the same model architecture and
dataset. Moreover, straightening can be used as a regularizer to enhance the robustness of
state-of-the-art SSL methods.

The implementation can be found at https://github.com/xyniu1/learning-by-straightening.

1.1 Related work

Temporal invariance. Many successful SSL methods aim to learn representations that are invariant
to simple transformations, with additional regularization incorporated to prevent representational
collapse (e.g. constant response, independent of input). Depending on the exact implementation of
these components, three categories of SSL objectives are identified in a recently published review
[2]: 1) contrastive SSL [7, 11], which encourages representation similarity between two augmented
views of the same image (positive pairs) and dissimilarity of different images (negative pairs); 2)
self-distillation [18, 8, 6], which uses two different encoders to process two views of the same image,
and maps the two representations by a predictive projection; and 3) canonical correlation analysis [3,
35, 14] which aims to whiten the cross-correlation matrix of neural representations estimated over
augmented pairs of the same image. Most of the invariance-based methods subserve tasks that operate
on static images rather than spatio-temporal inputs. This is because invariance is a strict constraint
and equating representations over time necessarily means eliminating the time-varying features in
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the inputs. For example, for a video that contains moving objects, learning invariant representations
across frames may help to encode the identity of the object but not its location or relative size. In
contrast, straightening is designed not only to capture all predictable features in the spatio-temporal
inputs (static and dynamic alike) but also predict their future states using a predefined operator.

Temporal prediction. Temporal prediction as a fundamental goal for learning visual representations
dates back to [16]. Many theories rooted in predictability have been successful in characterizing
the properties of early visual areas [4, 28, 15]. Invariance is the simplest form of prediction. Linear
predictions have been extensively studied. Notably, [27, 21] achieved great success in unsupervised
object recognition by learning a linear predictor that maps current states to future states for each
step into the future. In [25], this paradigm was extended to allow a context-dependent, dynamic
selection of linear predictors. Straightening differs from these methods in that it is parameter-free and
its predictions can adapt to different contexts, while the previous methods rely on parametrization
that scales quadratically with the feature dimension. The work most similar to ours is [17], which
uses auxiliary architectural elements such as phase-pooling and further relies on an autoencoder
structure and a pixel-level prediction loss to prevent information collapse. Our solution uses a much
simpler architecture, and we also provide a more extensive quantitative evaluation of the resulting
straightened representations.

Straightening and robustness. Although straightening has been documented in human perception
and macaque physiology, it is not an inherent property of deep neural networks [22], including
supervised and self-supervised recognition networks, and video prediction networks [31, 19]. Some
non-parametric formulations of early visual processes demonstrate a degree of straightness, but the
effect does not seem to propagate to downstream layers [22]. Recently, [31, 19] demonstrated that
straightening can be an emerging property of robustified networks: if networks are trained to tolerate
Gaussian noise or adversarial perturbations, they can generate straightened responses without being
explicitly trained to do so. In this work, we provide the complementary observation: if networks
are trained to straighten, the representation is robust to corruptions including Gaussian noise and
adversarial perturbations.

Apart from straightening, other learning objectives that exploit the temporal structures of natural video
statistics have also been shown to improve adversarial robustness, such as temporal classification
(classifying frames to the episode they belong to) and temporal contrastive learning (temporally
adjacent frames are used as positive examples) [26, 29].

2 Straightening videos

Objective function. We aim to learn a representation of video frames that follows a straighter
trajectory over time by transforming each frame, xt, into network response zt = fθ(xt), where
fθ denotes the learned transformation, parameterized by vector θ. We measure straightness of an
output sequence {zt}Tt=1 as the average cosine similarity (normalized dot product) between the
two successive difference vectors of any three temporally adjacent points. Our goal is to optimize
parameters θ to maximize straightness, or minimize the loss:

Lstraightness = −E
[

⟨zt+1 − zt, zt+2 − zt+1⟩
∥zt+1 − zt∥∥zt+2 − zt+1∥

]
. (1)

where the expectation is taken over sequences and time, t. This objective is invariant to rescaling of
responses and is bounded within [−1, 1]. By default, the straightness loss is applied to the output
layer, but it can be applied to any (or several) layer(s) of a network.1 Once straightness is established,
one-step prediction takes the form of linear extrapolation: zt+2 = 2zt+1 − zt.

Straightness alone is not sufficient to learn meaningful representations because it can be minimized
by trivial solutions (zt = ct or zt = c for ∀t). To avoid this form of collapse, we incorporate a form
of regularization borrowed from [3], which essentially aims to statistically whiten the outputs using
two terms. First, a variance term for each output dimension, essentially preventing different inputs
from collapsing to the same output, Lvariance = E

[
1
d

∑d
i=1 max

(
0, 1− S

(
zit, ϵ

))]
, where S(x, ϵ) =√

Var(x) + ϵ, d is the output dimensionality, and ϵ = 10−4 . Second, a covariance term decorrelates

1For intermediate layers, straightness can be computed on the embeddings vectorized over space and channels.
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each pair of output dimensions to minimize redundancies, Lcovariance = E
[
1
d

∑
i ̸=j [Cov(zt)]2i,j

]
.

Taken together, the complete learning objective to minimize is given by

L = Lstraightness + αLvariance + βLcovariance, (2)

where hyperparameters α and β control the relative strength of the two regularizers.

Comparing straightening with invariance. To assess the benefits of straightening, we compare it
to the more common invariance objective, which encourages outputs of distinct views of the same
scene to be similar to each other:

Linvariance = E
[
1

d
∥zt − zt0∥2F

]
, (3)

where F denotes the Frobenius norm, t0 is randomly chosen from {1, 2, . . . , T} and independent
of t. As in the straightening case, additional regularization is necessary to prevent collapse. For
a fair comparison, we accomplish this using the same variance and covariance terms used in the
straightening model, and thus the total loss is identical to that used in [3],

L = Linvariance + λLvariance + γLcovariance. (4)

Synthetic video sequences. For training data, we generated artificial videos by applying temporally
structured augmentations, intended to mimic natural transformations, to static images in common
image datasets. The reasons for this choice, as opposed to using a dataset of natural videos, are
multifaceted. First, we want to match other image-based SSL models in terms of training data and
evaluation pipeline for a direct comparison. Second, models trained on natural videos are known to
struggle with image recognition tasks because typical video datasets lack sufficient object class variety
[29] (for example, object-centric natural video datasets such as ImageNet VID [30] or Objectron
[1] contain only 30 and 9 object classes, respectively). Efforts are being made to align the data
distribution of the two domains, but well-accepted benchmarks have not been established yet. Finally,
while data augmentation is widely used for generating distinct views of the same image [7], it is
uncommon to introduce temporal correlations in the applied transformations (since the goal is to
maximize the richness of the training set). This however allows us to create image sequences that
have predictable temporal structure that the straightened representation can latch onto.

To create temporally consistent geometric transformations, we can do either of the following: 1)
construct a cropping window of a pre-determined size, then gradually move the window in one
direction (“translation”), akin to smooth gaze changes; 2) fix the center location of a cropping window,
then monotonically increase or decrease its size (“rescaling”), akin to approaching or receding objects;
3) fix the location and size of a cropping window, and rotate the window (“rotation”). We combine
these with appearance transformations, in which we linearly adjust the photometric parameters
(brightness, contrast, saturation, and hue) across frames within a sequence. This mimics gradual
changes in lighting conditions over time. The rate of these geometric and photometric transformations
is held constant within each sequence, but varies across sequences.

For the first set of experiments, we created a sequential MNIST dataset, in which images of single
digits are transformed according to one of the three geometric transformations (Fig. 2A). Each frame
contains one digit, randomly selected from the MNIST dataset, moving inside a 64 × 64 patch. Each
video is 20 frames in duration. For translations, the digits were placed at random locations initially;
for rescaling and rotation, the digits are always at the center of the patch. Transformations ramp
linearly over time with two exceptions: for translations, digits “bounce” off of the edges, abruptly
changing direction, while for rescaling the direction of enlargement or contraction reverses if the
size exceeds a preset range. These special cases generate motion discontinuities, where prediction is
expected to fail.

For a second set of experiments, we generated a sequential CIFAR-10 dataset, each with a duration of
three frames (Fig. 4A). We eliminated the rotational transformation, as it tends to create boundary
artifacts on the nonzero background. Following standard practice in self-supervised learning [7],
we also included random horizontal flips, grayscale, and solarization to increase dataset diversity.
Horizontal flips, if present, were applied to all frames in the sequence to preserve the frame-to-frame
spatial relationships, while the other transformations were applied independently to each frame.
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Figure 2: Straightening and its benefits, evaluated on a network trained on sequential MNIST.
A. Three example sequences, illustrating the three geometric transformations. B. Emergence of
straightness throughout layers of network computation. C. Accuracy in decoding various (untrained)
variables from the network responses (top). Accuracy in predicting variables at the next time step
(bottom). Identity decoding was not considered for prediction as it is constant over the sequence.
D. Prediction capabilities of the network. Top: example sequence, with dilating/contracting digit.
Middle: reconstructions from simultaneous representation. Bottom: predictions (linear extrapolation)
based on the representation at the previous two time steps.

Network architecture. The network architecture is dataset specific. For sequential MNIST, we
instantiated fθ as a 7-layer convolutional neural network with simple half-wave rectifier (ReLU)
nonlinearities and no skip connections. For sequential CIFAR-10 we used ResNet-18 [20] as the
model backbone and attached to the end a projector with 3 fully-connected layers, following the
standard practice in [3]. Throughout the experiments we used the same model architecture for the
straightening objective (2) and the invariance objective (4); the hyperparameters were optimized
separately for each loss so that both models achieve their best recognition performance.

3 Straightening learns meaningful representations

How straight can the representations become, and how is straightening achieved? To answer these
questions, we trained fθ on sequential MNIST and measured the straightness of embeddings at
each stage of the network (Fig. 2B). Embeddings learned by the straightening objective (2) are
progressively straighter throughout the network, with the largest increases occurring near the last
layer (on which the loss function is imposed). In contrast, those learned by the invariance objective
(4) initially increase in straightness but then decrease, ending at a value slightly more curved than the
pixel-domain input, consistent with observations in [22]. All linear operations (convolutions, spatial
blurring, and fully-connected linear projections) contribute to increasing straightness, whereas the
rectifying non-linearities usually reduce it. Geometrically, this is because the rectifiers project the
embeddings onto the positive orthant, bending temporal trajectories that cross rectifier boundaries.

To better understand the nature of the representations, we visualized the temporal trajectories of digit
sequences using a 2D t-SNE embedding [32]. Fig. 1B shows 200 trajectories from the translation
subset, in both the pixel domain (left) and the learned representation (right). Even in this non-linear,
low-dimensional projection space, the individual representation trajectories are noticeably straighter
than their pixel-domain counterparts. Furthermore, the representations clearly separate the digit
classes, despite the fact that training was unsupervised, with no explicit knowledge of digit identity.
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Decoding untrained visual features. Ideally, straightened representations should encode all
predictable information in the input video and nothing more. Explicit predictions can be made in the
representation space by linear extrapolations. The design of our dataset ensures that visual features
such as location, size, and orientation of the digits are predictable, and therefore, should be preserved
in straightened representations. On the contrary, representations learned by the invariance objective
should be agnostic to any temporally-varying information, including these features. To test this
hypothesis, we trained a support vector machine (SVM) regressor with radial basis kernels (RBF)
to read out those attributes from the learned representations. We also trained a linear classifier to
decode digit identity. Fig. 2C shows that digit identity can be read out from both models, while
only the straightened representations maintain the dynamic features of the inputs. Notice that
respecting temporal order is critical for straightening to learn anything meaningful – training the same
objective on temporally shuffled frames gives poor decoding performance. This demonstrates another
distinction between straightening and invariance: the latter is, by definition, agnostic to temporal
ordering.

To test predictability, we used the same decoder to read out location, size, and orientation in the
next frame from the linearly extrapolated (predicted) representations. We compared this prediction
performance against a naive control that simply uses representations of the previous frame. The
performance of the straightening predictor is found to be substantially better than the control, and
nearly as good as the decodability of the current frame. To further examine the image information
contained in the straightened representations, we froze the representations and trained a decoder
network (another 7-layer convolutional neural network) to reconstruct frames at the pixel level. We
then used the same decoder to visualize the predicted responses given by linear extrapolation. We
found that this enables accurate prediction of future frames (Fig. 2D, bottom; additional examples
in Appendix), despite the fact that our learning objective did not explicitly optimize for such re-
construction error. Exceptions occur when transformations change direction: switching between
expansion/contraction; or bouncing off of boundaries. In particular, the predicted “7” continued to
expand when the actual inputs suddenly began to contract. This shows that the representation is able
to capture smooth transformations in the input, but not the macro-structure of the transformation
statistics.

4 The geometry of straight representations

To understand how straightening enables class identification, we analyzed the representation geometry
induced by the straightening loss. The t-SNE embedding in Fig. 1B implies that the temporal
trajectories of images with the same digit and transformation type are more parallel than expected by
chance. To verify this intuition, we computed the cosine similarity of velocity (difference) vectors
drawn from trajectories of the same digit and the same transformation (Fig. 3A). This is compared
to the equivalent measure for the representation obtained via the invariance objective, and to the
distribution expected for random vectors in the output space (d = 128).

For comparison, we also measured the cosine similarity of trajectories from different classes. Com-
pared with the random distribution, and the values computed from the invariant representations, the
straightened representations showed a substantial bias toward parallelism for trajectories within the
same [digit, transformation] class, and toward orthogonality for trajectories across different classes.
We hypothesize that trajectories from the same [digit, transformation] class are more likely to have
samples that are close to each other in the representation space; these proximal points may have
similar local gradients since the model architecture is composed of locally affine operations. When
the straightening loss straightens trajectories from the same class, it does so in similar directions,
resulting in a larger cosine similarity. On the other hand, the whitening regularizer tries to fill the
output space, which encourages orthogonality of trajectories from different classes in order to achieve
a high variance in every output dimension. This leads to a cosine similarity for across-class vectors
that is more concentrated at zero than expected by chance.

We further corroborated this finding by quantifying the dimensionality of the within-class and
across-class network responses. Specifically, we quantified “effective dimensionality” using the

participation ratio, R =
(
∑

i λi)
2∑

i λ
2
i

, where {λi} are the eigenvalues of the covariance matrices of
responses in each condition. It is clear from Fig. 3F that representations from the same [digit,
transformation] class are much more compact under straightening than under invariance, although the
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straightened representations exhibit a higher effective dimensionality overall.
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Figure 3: Geometric properties of the straightened repre-
sentation. Panels A-E show histograms of cosine similarity
(normalized dot product) between pairs of difference vectors,
zt − zt−1. Insets show example trajectories in each scenario,
where color indicates digit identity. A. same digit and trans-
formation type; B. same digit and different transformation; C.
different digit and same transformation; D. different digit and
transformation; E. all difference vectors vs. digit classifier
vectors. F. Average effective dimensionality, measured with
participation ratio, of the set of responses zt in each group.

How can this geometry give rise to
class separation? We argue that if the
representations of images in the same
class lie in a low-dimensional space,
then a classifier can be constructed by
projecting out this subspace, and thus
eliminating the within-class variation.
To test this hypothesis, we computed
the cosine similarity of the classi-
fier’s decision axis and the trajectory
velocities (Fig. 3E). Compared with
the distribution of random vectors
and the invariance case, the straight-
ened trajectories are more orthogo-
nal to the classifiers, confirming our
intuitions. Thus, information about
other visual features is preserved in
the null space of the decision axis for
digit identity.

5 Straightening increases
recognition robustness

While typical recognition models do
not naturally yield straight represen-
tations, explicitly training such mod-
els for noise robustness can increase
straightness as a by-product [31, 19].
Here, we show that the converse is
also true: straightening makes recog-
nition models more immune to noise.
Unless specified otherwise, for these
experiments we focused on the se-
quential CIFAR-10 data (Fig. 4A)
and used ResNet-18 as the backbone
representation network. Following

the standard practice in [3], we attached to the end of the backbone a projector with the training loss
applied to its output. The outputs of the backbone were taken as the primary representations and used
for the downstream recognition task. Representations were learned by applying the self-supervised
learning objective to clean image sequences. After learning, the network parameters were frozen,
and linear classifiers were trained to identify the corresponding image class. Hyperparameters were
chosen to yield the best clean image recognition performance, individually for each objective. We
used an adapted version of the solo-learn library to train all models in this section [10].

As a variation of the original learning setup, we added a second straightening loss, Eq. (1), to the
outputs of the first ResNet block. The two straightening losses were equally weighted and averaged,
while the whitening regularizer was only applied at the last layer. We empirically found that using
straightening at multiple stages of the processing hierarchy can further improve robustness.

Fig. 4B shows the straightness level of embeddings across every transformation of the network.
Similar to the sequential MNIST case, straightness increased sharply near the layer where the
straightening loss was applied, and gradually elsewhere under convolution, spatial pooling, and fully-
connected linear layers. In contrast, representations optimized for invariance were not straightened
across processing stages. Examples of image sequences that produced the straightest trajectories
(Fig. 4C, left) show clearly identifiable object contours and temporal transformations, while those
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Figure 4: Effect of straightening on representational robustness. A. Two example synthetic sequences
from on sequential CIFAR-10 dataset. Top: translation and color shift. Bottom: rescaling (contraction)
and color shift, last frame randomly grayscaled. B. Emergence of straightness throughout layers of
network computation. Top arrows mark the stages of representation directly targeted for straightening
(blue) and invariance (orange). C. Example sequences illustrating successes (left) and failures (right)
of straightening. Numbers indicate straightness level ∈ [−1, 1]. D. Noise robustness: classification
accuracy as a function of the amplitude of additive Gaussian noise injected in the input. E. Adversarial
robustness: classification accuracy as a function of attack budget (see text). F. Relative classification
accuracy of straightened network compared to invariance-trained network for various degradations.
Color indicates the objective with better performance.

that had the most curved trajectories (Fig. 4C, right) appear fuzzy with little identifiable structure and
are inherently less predictable.

Straightening is more robust than invariance. First, we assessed network robustness by evaluating
recognition performance for images with increasingly larger levels of i.i.d. Gaussian noise added to
the pixels (Fig. 4D). We found that the straightened representations proved substantially more robust
over a wide range of noise levels with negligible degradation in noise-free recognition performance.
Second, we tested robustness to adversarial perturbations, which are considered a hallmark failure
of artificial vision models [12]. Not only are these models highly susceptible to small amounts of
adversarial noise, but the adversarial examples are barely visible to humans, a notable discrepancy
between artificial and biological perception. Therefore, adversarial robustness is an important metric
of how brain-like the representations are. We used untargeted projected gradient descent (PGD) with
the L2 norm constraint to generate adversarial perturbations [13]. For all attack budgets, we chose a
step size that is 1/10 of the budget and set the number of PGD steps to be 500 to ensure that the attack
optimization procedure had fully converged. We found that the straightening objective substantially
increased the robustness to white box attacks over all attack budgets without degrading performance
on clean images, as shown in Fig. 4E.

We also tested recognition robustness on a composite of corruptions. We used the CIFAR-C dataset
[24], which defines 18 types of corruptions coarsely grouped into “noise”, “blur”, “weather” and
“digital” categories and evaluated the models on corruptions of the highest intensity. Fig. 4F shows
the relative performance of straightening versus invariance. Straightened representations were
again more robust than those optimized for invariance for many forms of image corruption, most
notably those in the noise category. All corruption types for which invariance proved superior to
straightening were directly (brightness, saturate, and contrast) or indirectly (fog, as a specific form
of contrast degradation) included as augmentations in the training set, and thus their robustness
was a natural consequence of the invariance objective. Overall, these results demonstrate that
learning by straightening brings with it a systematic benefit in robustness to a wide variety of input
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Figure 5: Augmentation of other SSL objectives with a straightening regularizer. A. Straightness
of representations learned by four different SSL objectives (gray), and their augmentation with a
straightening regularizer (blue). B. CIFAR-10 classification accuracy as a function of adversarial
attack budget, for the original and straightening-regularized version, for the same four SSL objectives.

degradations, without the computational costs and complexity associated with directly optimizing for
such robustness.

Straightening also improves representational robustness for natural temporal transformations. Specifi-
cally, we used the same training procedure on the EgoGesture video dataset [5, 36] for egocentric
hand gesture recognition. For simplicity, we used the depth channel as input, which circumvents the
need for modeling the background. To preserve the motion structure we did not apply any frame
augmentations. For this dataset, we found that the straightened representations were more robust
than invariance-based solutions across a wide range of corruptions. See Appendix for results and
implementation details.

Straightening improves robustness in other SSL models. In principle, straightening can be
incorporated into any SSL learning objectives as long as the inputs are a temporal sequence of at least
three frames. Can straightening robustify representations when combined with other SSL losses?
To answer this question, we regularized several existing SSL objectives using our straightening loss
(1), trained the models on sequential CIFAR-10, and tested their recognition performance under
adversarial attacks. In all cases, the straightening loss was added to the outputs of the projector
as well as the first ResNet block, with the weight chosen from a parameter sweep that optimizes
recognition performance. Other hyperparameters of the SSL models, including weights of other terms
in the objective, and the architecture of the projector, were kept to their original values/setup.

None of the original SSL models demonstrate straightening in their representations (Fig. 5A, gray),
but modest amounts of straightening regularization can significantly improve straightness beyond the
pixel level (blue). Fig. 5B compares adversarial robustness under the original SSL loss [35, 7, 14, 6]
and the corresponding variant regularized by straightening. For all objectives tested, straightening
systematically improved representational robustness, even though the original training was already
heavily tuned to optimize performance. We repeated the same robustness test on pixel-level white
noise (see Appendix) and observed the same benefits of adding the straightening loss. This suggests
that the idea of representational straightening and the use of temporally smooth image augmentations
may prove of general practical utility for robust recognition, and makes straightening an important
new tool in the SSL toolkit.

6 Discussion

We have shown that a biologically-inspired SSL objective that promotes straightening in the rep-
resentation of image sequences leads to predictive neural representations that factorize geometric,
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photometric, and semantic attributes of the input. These embeddings also prove more robust to various
forms of noise and other degradations, compared to SSL methods that optimize for augmentation
invariance. Moreover, incorporating straightening as a regularizer extends these benefits to other SSL
training procedures, suggesting a broader utility for straightening as a cost-effective mechanism for
robust unsupervised learning.

Directly improving robustness to adversarial attacks via optimization is difficult and computationally
costly [12]. In contrast, our solution achieves similar results in an easy and computationally less
demanding manner. The key ingredient for its success is having meaningful temporal structure in the
input sequences. This could either come naturally through the use of video (although good datasets
for that are scarce [29]) or, more practically, can be artificially enforced by temporally correlated
image augmentations. Thus, our results highlight a new useful form of data augmentation in support
of learning predictive representations.

In contrast to invariance, which aims to map all elements of a semantic class into unique points
in representational space, discarding all within-category variability, straightening strives to encode
all structured across-frame variations in the input. In doing so, it produces rich image embeddings
containing structured information about class identity, as well as various transformations which
are represented in different subspaces, and thus easy to decode. Geometrically, this means that
straightening leads to overall higher dimensional embedding spaces but the individual semantic
components (image class, or class × transformation) are much lower dimensional. This joint
increase in embedding dimension and reduction in manifold dimensionality increases the model’s
representational capacity [9, 33], which may explain its increased robustness.

We have advocated for the replacement of hand-selected augmentations with the readily available
temporal structure of natural visual experience [37, 29]. However, the predictable structure of natural
videos evolves at multiple timescales. It is not clear whether a feedforward architecture that operates
on one frame at a time and makes predictions at a single temporal scale is enough to fully exploit
such structure. As the predictable horizon of different elements in our visual input varies across levels
of abstraction, a natural extension would be to enforce straightening at multiple time scales and in
multiple network stages. More work is needed to determine how to best incorporate a hierarchical
temporal structure in the straightening loss to accommodate long horizon predictions, but we expect
this type of hierarchical prediction to play a central role in developing models for both biological and
machine vision.
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Appendix

A Pretraining details for sequential MNIST

To find the optimal weights in the loss function (2), we used a parameter sweep to choose the
(α, β) pair that gives the best clean image recognition performance, with resulting choices α = 1.0,
β = 0.25. For the invariance objective, a similar parameter search yields λ = 0.125, γ = 0.5. The
detailed architecture of the encoder is described by the sequence of transformations in Fig. 2B.

B Pretraining details for sequential CIFAR-10

For data augmentation, each frame has an independent probability to be grayscaled (p = 0.1) or
solarized (p = 0.1). Each sequence has a probability of p = 0.5 to be horizontally flipped. For the
straightening objective we set α = 15

9 and β = 1
9 . For the invariance objective, we used the reported

weight parameters from [3]. When straightening was added to the main SSL objective as a regularizer,
we kept the default optimal weight parameters taken from solo-learn [10] in the main objective and
only tuned the weight of the straightening loss. We set this weight to 3 for barlow twins, 0.1 for
SimCLR, 0.2 for W-MSE, 0.005 for DINO.

We used the LARS [34] optimizer with learning rate 0.3, weight decay 1e − 4, batch size 256 to
train our straightening model. For all other models we used the default setting given in the solo-learn
library. All pretraining was run for 1000 epochs, which takes roughly 5 hours on 4 A100 Nvidia
GPUs.

C Additional pixel-level reconstruction and prediction results

Here we provide more reconstruction and prediction examples for translation, rotation, and rescaling.
The full sequence is shown here (t = 20) in the same format as in Fig. 2D.

decenc

enc

enc

dec

D Straightening robustifies other SSL models on white noise

Here we additionally show CIFAR-10 classification accuracy as a function of the intensity of white
noise added to the pixel input. Adding the straightening regularization to the main objective function
improves recognition robustness under white noise for all four existing SSL models we tested.
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E Straightening natural temporal transformations

Pretraining details We used ResNet-18 as the backbone architecture together with a projector
with 3 fully-connected layers, but modified the first convolution to accept the single channel input.
We applied either the straightening objective (2) or the invariance objective (4) to the outputs of the
projector. The models are trained from scratch with no pretrained weights. No data augmentation is
applied, so models can only rely on the natural frame-to-frame variations. We choose 6 frames with a
fixed interval (4∆t) from each gesture clip. While this might not be the optimal setting if the goal is
to optimize performance on gesture recognition, our purpose is to compare the straightening and the
invariance learning objective in exactly the same setup.

Evaluation pipeline For gesture classification we freeze the model and concatenate the outputs
of the backbone of all 6 frames to train the linear classifier. To test robustness we add Gaussian
noise of various levels to pixels. The straightened representations are more noise robust than the
invariance-based solutions.
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Figure 6: A. Example gestures. Some gestures can be classified by a single frame (pause), while
others must observe multiple frames to recognize the motion (scroll hand backward, zoom in with
fists). B. Gesture recognition performance as a function of noise level.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract are the same as those in the introduction,
which are addressed in order by each of the result section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation is discussed in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not cover theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper is on a new learning objective, which is clearly stated in its math-
ematical form. Experiment details are also provided. We will release the code and all
checkpoints before the meeting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will publish all the data, code, and checkpoints before the meeting (github
link included). In the meanwhile, I believe the information we provided in the main text
should be sufficient to reproduce our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Major settings (model architecture, data generating process) are described in
the main text; more details on hyperparameters are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are expensive to run for a sufficient number of times to
provide error bars at this point.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Relevant information is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Those points are addressed in the Discussion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To our best knowledge, this work poses no risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Credits are given properly in the main text and in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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