Learning Plaintext-Ciphertext Cryptographic
Problems via ANF-based SAT Instance Representation

Xinhao Zheng, Yang Li, Cunxin Fan, Huaijin Wu, Xinhao Song, Junchi Yan*
Dept. of CSE & School of Al & Moe Key Lab of Al, Shanghai Jiao Tong University
{void_zxh, yanglily, sjtul8017295729,
whj1201, sxh001, yanjunchi}@sjtu.edu.cn

Abstract

Cryptographic problems, operating within binary variable spaces, can be routinely
transformed into Boolean Satisfiability (SAT) problems regarding specific crypto-
graphic conditions like plaintext-ciphertext matching. With the fast development of
learning for discrete data, this SAT representation also facilitates the utilization of
machine-learning approaches with the hope of automatically capturing patterns and
strategies inherent in cryptographic structures in a data-driven manner. Existing
neural SAT solvers consistently adopt conjunctive normal form (CNF) for instance
representation, which in the cryptographic context can lead to scale explosion and
a loss of high-level semantics. In particular, extensively used XOR operations
in cryptographic problems can incur an exponential number of clauses. In this
paper, we propose a graph structure based on Arithmetic Normal Form (ANF)
to efficiently handle the XOR operation bottleneck. Additionally, we design an
encoding method for AND operations in these ANF-based graphs, demonstrat-
ing improved efficiency over alternative general graph forms for SAT. We then
propose CryptoANFNet, a graph learning approach that trains a classifier based
on a message-passing scheme to predict plaintext-ciphertext satisfiability. Using
ANF-based SAT instances, CryptoANFNet demonstrates superior scalability and
can naturally capture higher-order operational information. Empirically, Cryp-
toANFNet achieves a 50x speedup over heuristic solvers and outperforms SOTA
learning-based SAT solver NeuroSAT, with 96% vs. 91% accuracy on small-scale
and 72% vs. 55% on large-scale datasets from real encryption algorithms. We also
introduce a key-solving algorithm that simplifies ANF-based SAT instances from
plaintext and ciphertext, enhancing key decryption accuracy from 76.5% to 82%
and from 72% to 75% for datasets generated from two real encryption algorithms.

1 Introduction

Machine Learning (ML) has shown promise in solving discrete problems such as Mixed Integer
Programming (MIP) [1] and Boolean Satisfiability (SAT) [2]. Meanwhile, ML has also made
significant strides in the field of SAT-based cryptanalysis [3}4]. Neural solvers for SAT [5 16} 7] enjoy
flexibility and automation in handling large datasets through data-driven learning, demonstrating
advantages in prediction speed and adaptive learning. Plaintext-ciphertext cryptographic problems
running in binary variable spaces can seamlessly be transformed into Boolean Satisfiability (SAT)
problems, involving specific cryptographic conditions like plaintext-ciphertext matching. This SAT
representation facilitates the utilization of machine learning methods to automatically learn inherent
patterns and strategies in cryptographic structures in a data-driven manner.

*Corresponding author. This work was supported by NSFC (92370201, 62222607) and Shanghai Municipal
Science and Technology Major Project under Grant 2021SHZDZX0102.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

41649 https://doi.org/10.52202/079017-1317

However, the large scale and complex structure of cryptographic instances pose significant challenges
for previous ML algorithms, which typically rely on conjunctive normal form (CNF) to encode
cryptographic problems and are primarily effective with instances containing relatively small numbers
of variables, usually in the range of tens. Cryptographic algorithms frequently entail constraints like
XOR, modular addition, AND, and OR operations, thus making the logical XOR operator prevalent in
SAT-based cryptanalysis and resulting in the proliferation of XOR clauses. However, XOR operations
are generally challenging to represent in CNF. Converting a clause connected by XOR with £ literals
into CNF is a well-known process that results in nearly 2~ OR clauses, each with k literals. This
could lead to the problem size ballooning considerably, thereby increasing computational complexity,
and such encoding may compromise high-order operational information.

CNF is a conjunction (and-ing) of clauses, with each clause consisting of a disjunction (or-ing) of
positive and negative variables called literals. The innate versatility of "and" and "or" constraint set
of CNF allows for efficient application in SAT solving, yet it often requires introducing additional
variables to represent more complex logical operations like XOR. Therefore, we propose to adopt
an alternative constraint set, Algebraic Normal Form (ANF), to directly represent native XOR
operations in the formulas. In ANF, formulas are expressed as collections of polynomials using
addition (XOR) and multiplication (AND) operations on GF(2). Compared to CNFs, ANFs are
more adept at capturing information about higher-order operations and are more concise in handling
complex operations. This renders ANF a fitting choice for representing the structure and logic of
cryptographic algorithms. However, representing ANF as graphs for efficient learning is challenging,
and its application to existing SAT solvers is not as straightforward as CNF, resulting in obstacles to
applying ANF in subsequent applications in complex scenarios like cryptographic problems.

To organize effective learning-based SAT practices in ANF, we propose an ANF-based graph structure
to represent SAT instances for cryptographic applications. Building upon the graph representations,
we propose CryptoANFNet, which employs a message-passing scheme and is trained as a classifier
to predict satisfiability through dedicatedly constructed data encoded from cryptographic problems.
The introduction of higher-order operations via ANF simplifies the resulting graph problems that
would otherwise require hundreds or thousands of nodes using CNF to merely dozens of nodes. This
simplification not only enhances the effectiveness of learning-based methods but also enables models
to naturally capture higher-order operational information. Compared to learning-based SAT solvers,
CryptoANFNet can handle larger instances with greater accuracy and achieves a 50x speedup over
traditional heuristic solvers. Moreover, for the key-solving problem, we propose a key decryption
algorithm that creates and simplifies ANF-based SAT instances from the plaintext and ciphertext, and
uses the outputs from two derived SAT instances to deduce the correct key bit values. Given an input
plaintext-ciphertext pair and an encryption algorithm, we proceed in three steps: 1) Use the encryption
algorithm and the given plaintext-ciphertext to obtain the original ANF-based SAT instance; 2) For a
specific bit in the key, create two extended SAT instances by assigning O or 1 to the chosen bit; 3) Pass
these instances to CryptoANFNet in corresponding pairs, output paired scores, and determine the bit
value based on which instance has a higher score. In this way, we can further improve the accuracy
on datasets generated from two real encryption algorithms. The highlights of this paper include:

* Based on the Arithmetic Normal Form (ANF), we propose a graph structure to succinctly represent
the excessive XOR operations in cryptographic problems. We then design two ways to encode the
AND operations in the ANF-based graph to represent SAT instances derived from cryptographic
problems. In Tab. [T] our ANF-graph is more efficient than the general graph form for SAT in [5]].

* We propose (supervised) learning to solve (for the first time to our knowledge) the challenging
cryptographic problem: plaintext-ciphertext satisfiability prediction, which could otherwise be
intractable by traditional SAT methods. Our proposed GNN-based classifier CryptoANFNet with
ANF-based SAT instances as input, achieves a 50x speedup over heuristic solvers, and outperforms
the SOTA learning-based SAT solver NeuroSAT [S] by 96% vs. 91% and 72% vs. 55% accuracy
on small and large scale datasets, generated from real encryption algorithms, respectively.

* We extend to the key decryption problem. We propose a key-solving algorithm that derives
ANF-based SAT instances as further simplified by our devised techniques, from the plaintext and
ciphertext, and use the output of two derived SAT instances to infer the key values. It boosts accu-
racy by 76.5%->82% and 72%->75% on datasets generated from two real encryption algorithms.

https://doi.org/10.52202/079017-1317 41650

2 Related Works

Learning for SAT. Learning has shown promise in automatically uncovering heuristics for solving
combinatorial problems in a data-driven manner [8, |9, 10, |11} [12} [13]]. There are primarily two
routes dominating these efforts in SAT solving. Learning-aided solvers replace certain components
in traditional solvers with learning-aided counterparts to enhance performance. The learning uti-
lization encompasses branching heuristics [14,[15]], variable initialization [16} 17, [18], glue clause
prediction [19], etc. End-to-end neural solvers conceive SAT solving as a graph-based prediction
task based on its CNF representation. They utilize neural networks to directly predict satisfiability or
minimal unsatisfied cores via graph massage-passing networks [5, 6] or transformers [20]. These
methods do not rely on handcrafted strategies and demonstrate the potential for magnitude speedup by
circumventing exhaustive search procedures. However, neural networks may struggle with large-scale
problems, posing a significant challenge, particularly in cryptographic applications where the XOR
operation can lead to scale explosion in CNF-based literal-clause graph representations. Besides
solving, there are also learning-based efforts that provide support for problem solving, like generating
pseudo-industrial instances to resolve data bottlenecks [21, 22} 23] [11].

Learning for cryptanalysis. The rise of deep learning has dramatically transformed the ability
to analyze encrypted data in its raw state [24} 25]], particularly for lightweight block ciphers, as
noted in recent studies [26} 27, 28l 29]]. Gohr [30] pioneered the application of learning-based
cryptanalysis on round-reduced SPECK, demonstrating that deep differential-neural distinguishers
could identify features that elude traditional strong distinguishers. This breakthrough highlighted
the potential of neural networks in cryptanalysis. Subsequently, further insights into differential-
neural distinguishers were provided by [31]], showcasing that these networks could learn not only the
differential distribution on the output pairs but also those in the penultimate and ante-penultimate
rounds. Moreover, [32] developed a machine learning-based key-recovery attack that successfully
carried out the first practical 13-round attacks on SPECK, with extensions to 14-rounds subsequently
reported in [33]. However, despite the introduction of neural networks, these methods still fall
within the framework of differential analysis and do not directly utilize machine learning to handle
plaintext-ciphertext satisfiability prediction or key-solving problems.

SAT for cryptanalysis The cryptography community has significantly increased its use of auto-
mated tools for cryptanalysis, specifically in searching for linear and differential trails, leveraging
methods such as the Boolean Satisfiability Problem (SAT)[34} 35l 4, 36] and Mixed Integer Linear
Programming (MILP)[37]]. In SAT-based cryptanalysis, significant strides have been made: [38]
explored differential trails in ARX ciphers using SAT methods, while [39] developed an automated
search technique for ciphers with Sboxes to achieve more accurate and probable differential trails.
Additionally, [40] created an SAT-based automated search toolkit applied to SHA-3. These efforts
essentially involve converting cryptographic algorithms into SAT instances and then conducting
cryptanalysis by searching for differential paths, but they all need handcrafted strategies.

To date, no methods have focused on establishing effective graph representations and developing SAT
solvers based on the XOR-friendly ANF representation. This paper pioneers the utilization of graph
forms to represent the excessive XOR operations in cryptographic problems succinctly. As far as we
know, we are the first to integrate graph neural networks and SAT for encryption algorithms.

3 Preliminaries

ANF formula. Algebraic Normal Form (ANF) is a polynomial representation of Boolean functions,
instrumental in cryptographic applications due to its efficient handling of XOR and AND operations.
Formally, a logical formula can be rewritten as a boolean function: GF5: multiplication in GF3(-)
becomes the AND operation and addition in GIF3(+4) becomes the XOR operation. Then, the SAT
instance constituted by the conjunction of logical formulas can be rewritten as several Boolean
functions equal to 0, i.e., several Boolean equations. Therefore, a standard SAT instance in ANF
form can be described by multiple Boolean equations, as illustrated by the example of an ANF-form
SAT instance shown at the top of Fig. [I] (a).

Here, each variable is referred to as a vanilla literal. In a Boolean equation, the right side is always 0
and the Boolean function on the left side, formed by the XOR connection of monomials, is called a
clause. Each monomial is either a constant term 1, a vanilla literal, or a product of variables. The

41651 https://doi.org/10.52202/079017-1317

X = Z3:am1T0, Y = ysyau1v0, Z = Z3zm2120

T1Ty + T3+ T+ T2+ 23 +1=0

129 + o223 + 21 +23 =10 Y=X<2 Y=X>1 Z=XBY
Zys + 5 +1=0 Yo+z2=0 Yo+z3=0 zZo+xo+yo=0, co+xo-yo=0
y1+z3=0 y1+zo=0 zitzi+yi+e=0, ecit+zi-cotyi-cotar-yr =0
N N\ Y2 +z9=0 Y2 +z1=0 Zot+Tatyat+er =0, c2t+Ta-crtya-cr+aa-y2=0
fz / :\?Z / N ys+z1=0 Yz +za=0 z3+ax3+ys+ea =0 (co,c1,co: the addition carry)
/ * \ i circular left shifts (<<) circular right shifts (>>) modular addition(B Y)
(o) (eres Z=-XoY Z=X-Y
gl z0+xo+yo =0 Z20+ o yo=0
- i z1+®+y1 =0 zit+x-y1 =0
s e - e o a ‘ z+T+y2=0 24Ty y2=0
z3t+ a3 +ys=0 z3+x3-y3 =0
; bitwise XOR(@) bitwise AND(-)
@) (b)

Figure 1: (a) Example ANF formula graph from MQ problem; (b) The transformations to express
the circular left shifts (<), circular right shifts (>>), modular addition (H), bitwise XOR (&), and
bitwise AND (-) operations in ANF.

product of variables is called a literal of different orders based on the number of variables multiplied;
for example, z x5 is called a second-order literal. A literal appears in a clause if and only if that
literal exists in the Boolean function represented by the clause. For simplicity, we will omit the
multiplication operator (-) for the rest of the paper - as long as its use in monomials is implicit.

MQ problem. Encryption algorithms, like SPECK, typically use a set of simple and efficient
operations, including circular left shifts (<), circular right shifts (>>), modular addition (H),
bitwise XOR (@), and bitwise AND (-) operations. The algebraic properties of these operations
allow them to be converted into systems of boolean polynomial equations. In the examples shown in
Fig.[I(b), circular shifts, XOR, and bitwise AND operations can be directly expressed in polynomial
form, while modular addition can be represented through quadratic equations. These equations
consist solely of variables, second-order products of variables, and the Boolean constant term, which
means the encryption process can be transformed into a Multivariate Quadratic (MQ) problem.

In practice, for example, consider the toy formula for the 8-bit plaintext in one round shown below:

X = T3T2T1 70, Y = y3y21190, K = kskakiko
Z = 23222120, W = W3wW2wW1Wo
Z=(X>2)BY)® K, W=YVx1)-X
where K represents the key for the encryption algorithm, X and Y represent the high and low bits of

the round function’s input, respectively, and Z and W represent the high and low bits of the round
function’s output. It can be transformed into several standard multivariate quadratic equations:

T2a+yo+s0=0, wyo+co=0, x3+y1+co+s1=0, w3c0+yico+x3y1+c1=0
Toty2+tcr+s2=0, moct+ysc1+woy2+ca=0, x1+yzstcat+s3=0
z3+83+hk3=0, z+s2+ke=0, z1+s1+k =0, zo+so+ko=0
wg +x3y2 =0, wa+x2y1 =0, w1 +z1yo =0, wo+zoyz =0
where x;, y;, 2i, Wi, S;, and ¢; are all Boolean variables and each equation has its right side equal to

0. Thus, by using these transformations, we can convert the encryption process into an MQ problem
in ANF, and in the following section, we will only address solving the MQ problem.

4 Model

4.1 Approach Overview

ANF-based Graph Structures Given the ANF formula of an MQ problem, we propose a graph-
based representation for ANF. First, we categorize clause nodes into positive and negative based on
whether they contain a constant term. We then directly encode ANF formula into an undirected graph
for representing variables and second-order literals: We encode the ANF as an undirected graph
with one node for every independent literal and second-order literal, two complementary nodes for
every clause with the same set of literals, an edge between every literal and every second-order literal

https://doi.org/10.52202/079017-1317 41652

it corresponds to, an edge between every second-order literal and every clause it appears in, and a
different type of edge between each pair of complementary clauses.

General Architecture Similar to NeuroSAT [5]], we employ a message-passing neural network to
derive clause and literal embeddings by executing a specified number of iterations. Then, we use these
embeddings to predict a satisfiability vote through classification multilayer perceptrons(MLPs). Note
that we have two key differences: 1) We only retain embeddings for vanilla literals and clauses. The
second-order literals’ embeddings are derived by concatenating first-order literals’s embeddings. 2)
We only use clause embeddings and apply two separate classification MLPs for positive and negative
clause embeddings to predict the satisfiability vote, respectively.

Key-solving Algorithm With the model CryptoANFNet, we can evaluate the satisfiability of an
individual ANF instance individual. Due to the uniqueness of solutions in key-solving problems, we
propose an algorithm to determine the value of a specific bit in a key. Given a plaintext-ciphertext pair
and an encryption algorithm, our approach derives an ANF-based SAT instance from the input data,
generates two derived SAT instances for a specific bit by assigning 0 or 1, and then uses a scoring
model to evaluate and determine the most likely value for the bit.

4.2 ANF formula Graph

Similar to CNF, the literal-clause structure in an ANF formula has inherent permutation invariance,
making it compatible with graph-based representations. However, unlike in CNF, there are no negated
literals in ANF. Instead, due to the constant term, there are complementary relationships between
clauses that contain the same literals but have different constant terms. Additionally, compared to
CNEF, the clauses in ANF formulas exhibit internal asymmetry, where high-order literals, created by
combining vanilla literals with AND operations, form a special structure within the clause and require
further decomposition. Note that in the MQ problem, the ANF formula has at most second-order
literals. To represent second-order literals, we directly encode an ANF into an undirected graph G,
which can directly be derived from an ANF formula as follows:

* Each vanilla literal z; and second-order literal ;2 ; (including z;x;) in the ANF becomes a vertex
in graph G.

 Each clause becomes two vertices (¢; and ¢;) in graph G according to the set of literals it contains,
where ¢; denotes clauses with constant term 0, called the positive clause, while ¢; denotes clauses
with constant term 1, called the negative clause.

* An edge between second-order literal z;x; and clause ¢ is in g if and only if x;x; appears in
clause ci. Especially, an edge between second-order literal x;x; and clause ¢ is in G if and only
if x; appears in clause cy.

* A different edge between each clause vertex c; and its complementary clause vertex c;.

* A special edge between vanilla literal ; (and ;) and second-order literal z;z; is in G.

Fig.[T] (a) shows an example graph derived from an ANF formula. The graph is a tripartite graph with
three columns of nodes from top to bottom: vanilla literals, second-order literals, and clauses. Nodes
at each level are connected to related nodes at the next level, and clauses are additionally connected to
their complementary clauses. Besides, we introduce another graph structure that transforms ANF into
a bipartite graph by replacing second-order literals with independent variables. This facilitates the use
of networks designed for the CNF formula but introduces more nodes. Please refer to Appendix [B]
for more details.

4.3 Model Architecture

Given the ANF formula graph, we propose the neural network model, CryptoANFNet, which first
extracts the embedding of vanilla literals and clauses from the ANF graph and then predicts the
satisfiability vote based on the embedding of clauses. CryptoANFNet uses a message-passing neural
network to iteratively refine a vector space embedding for nodes in the graph. Here, different
from NeuroSAT, at each time step ¢, we only save the embedding of vanilla literals and pairs of
complementary clauses.

In each iteration, the model aggregates information from neighboring nodes to update the embeddings.
First, each clause receives information from associated literals and its complementary clause and
updates its embedding accordingly. We obtain the second-order literal embedding by concatenating

41653 https://doi.org/10.52202/079017-1317

the vanilla literals. Each clause then receives messages from neighboring second-order literal nodes
and its complementary clause based on the graph’s connectivity. Next, each literal updates its
embedding by receiving messages from associated clauses. Specifically, this information transfer
occurs in two rounds: first from the clause to the intermediate second-order literal and then from the
second-order literal to the vanilla literal.

Formally, at every time step , we have a matrix L(¥) € R™"*¢ whose i-th row contains the embedding

for the vanilla literal /; and two matrices 0533, Céei e R™*4 whose j-th row contains the embedding
for the positive clause c; and the relevant negative clause ¢;. We initialize these matrices by tiling

LO), C’poS , C’égg) € R?, respectively. Then, a single iteration consists of the following two updates:

First, each clause receives messages from associated literals and its complementary clause and
updates its embedding accordingly.

LY =Ly ([LO[1], LOLJ]))
[CD o5y CD gl =M Lung (Li2))

m,pos’ ~ m,neg
(C(H—l C(t+1)) <_Cu pos([Ch pos? Cézy ny?pos})

pos h,pos

1
(CLED, O 4 Cluneg([Cf e CS, CO,)

ey

where I = [0,1,--- ,n—1,0,1,--- ,n—2,n—1] € R™ and J = [0,0,---,0,1,1,-- ;'n—1,n—
1] € R represents the row and column index respectively. Mo, is the adjacency matrix defined by
M (4, j) = 1(the i-th second-order literal appears in the j-th clause). L2, Lmsg are two MLPs and

Cu,poss Cuneg are two layer-norm LSTMs [41] with hidden states C © o)

mxd :
h,pos? Choneg € R respectively.

Next, each literal updates its embedding by receiving messages from associated clauses.

L£t2)l = MlQCCmSg([Cposﬂ Crget:g]) 2
Lg,tl) - Ml2lLl2m(L,(;2)l) (3)
@, L) Lz L) 4)

where My; is the the adjacency matrix defined by M (4, j) = 1 (the i-th vanilla literal appears in
the j-th second-order literal). L2y, Cnmsg are two MLPs and L,, is a layer-norm LSTMs with hidden

states Lg) € R4,

After T iterations for updating clause and literal embeddings, we use these embeddings to predict the
satisfiability of the ANF formula. This prediction process involves a feedforward neural network that
combines the embeddings of clauses to output a satisfiability vote representing whether the formula
is satisfiable or not. The feedforward neural network consists of two MLPs, which are designed for
the positive and negative clauses respectively, and they compute each clause’s satisfiability score for
the SAT instance based on its embedding. Then we sum up the votes of all the clauses and output
the final satisfiability vote. This architecture is designed to be flexible and scalable, accommodating
various ANF graph sizes and complexities.

Formally, the feedforward neural network outputs the satisfiability vote based on the clauses’s
embedding (Cpos, Cneg € R™*?) as follows:

V — C\}ote(cpos) V — Ovote(CHEg) (5)
s+ o(sum(Vi +V,))

where V., V., € R™*! represent the satisfiability score of positive and negative clauses, respectively.
Cl ., C2,. denote two MLPs. sum(V, + V,)) € R represent the sum of the clause votes, and o ()
represent the sigmoid funtion. s € [0, 1] represents the output prediction. We train the network to
minimize the binary cross-entropy loss between the output prediction s and the true label y.

4.4 Key-solving Algorithm

While we train CryptoANFNet as a classifier to predict satisfiability, we can also use CryptoANFNet
for key solving. Given a plaintext-ciphertext pair and an encryption algorithm, we can transform

https://doi.org/10.52202/079017-1317 41654

Input: Key K bit ID: i Output:

(O ANF SKi=t > SKi=o
= 2 [(Ki=1) Ki=1
.515;; ANF "
encryption algorithm E) ANF Ski=1
‘—’ Ki=0

8 = ':E:' ANF formula generator Key bit guessor CryptoANFNet otherwise

plaintext-ciphertext pair

Figure 2: The pipeline of the key-solving algorithm. Given a plaintext-ciphertext pair and an
encryption algorithm, we first transform them into an ANF-based instance of an MQ problem. Then,
for a specific key bit K; (the i-th bit of key), we guess its value as either O or 1 and generate two
derived SAT instances. We then employ CryptoANFNet to predict the satisfiability of each instance.
The final determination of K; is based on which instance receives a higher satisfiability score.

them into an ANF-based instance of an MQ problem. Since key solutions are typically unique, a
natural idea is to assign values to each bit of the key one by one, derive extended instances from the
original ANF instance, and then use CryptoANFNet’s prediction results to determine each bit’s value.
For example, consider a 4-bit key K = kskok1ko. We could guess K = 1kokq kg to get a derived
ANF instance and then let CryptoANFNet predict whether the derived ANF instance is satisfiable. If
it is, we conclude k3 = 1 otherwise, k3 = 0.

In essence, it is not necessary to obtain exact classification probabilities for individual samples.
Instead, we only need to compare the satisfiability votes for samples generated by making two
different guesses for the same bit. Based on this idea, we propose the key-solving algorithm to
determine the value of a specific bit in the key. The algorithm consists of three steps. First, we obtain
the original ANF-based SAT instance from the encryption algorithm and the plaintext-ciphertext pair.
Second, for a specific key bit, we create two derived SAT instances by assigning either O or 1 to the
selected bit. Third, we use CryptoANFNet to predict the satisfiability votes of these two instances
and determine the bit’s value based on which instance scores higher. Fig. 2] provides a high-level
illustration of the algorithm.

Besides, in this algorithm, we use the derived SAT instances in pairs to train the network, Cryp-
toANFNet, by minimizing the loss function, as follows.

2N N
Leas = Y _BCE(0(s:),i), Leomp = »_ CE(softmax([s2;, spi+1]), [y2i: Y2i+1]) (6)

Lfinal = Leis + A X Lcomp @)

where s; € R denotes the satisfiability vote of the i-th instance, y; € {0, 1} denotes the corresponding
label. BCE(-), CE(+), o(-) and softmax(-) represent the binary cross-entropy loss, the cross-entropy
loss, the sigmoid function, and the softmax function. Especially, so; and s9;41 are two corresponding
votes for derived SAT instances, generated by assigning either O or 1 to the selected bit of the key in
the same original ANF instance.

5 Experiments

5.1 Datasets

For both training and test datasets, we evaluate our approach on two types of synthetic datasets.

For the first synthetic dataset, we use a similar approach to NeuroSAT to generate instances of the
MQ problem. These instances consist of the dataset called SR(n), where n is the number of variables
in the instance. The distribution SR(n) contains pairs of n variables of stochastic SAT instances in
the ANF formula. The pair of instances have the following properties: one of them is satisfiable and
the other is unsatisfiable, and the difference between the two instances is only in the constant term in
one of the clauses. To generate a clause ¢; of an SAT instance in ANF with n variables, we randomly
sample a number k (3 < k < 2n) as the clause’s length. Then, from all n? second-order polynomials,

41655 https://doi.org/10.52202/079017-1317

Table 1: Parameters of SAT problems in CNF and ANF

Duses [sk swas S S Sl S Sk Sk
\ #Literals \ 6 424 25 49 49 97 57 129
CNF \ #Clauses \ 75 5492 195 225 735 1519 336 921
| #Nodes | 87 6340 245 323 833 1713 450 1179
| #Literals | 5 25 24 48 48 96 56 128
ANF \ #Clauses \ 11 26 24 48 48 96 64 136
\ #Nodes \ 27 77 72 144 144 288 184 400

Table 2: Performance of different learning-based solvers on synthetic datasets

Scipher Scipher Scipher Scipher Speck Speck
3-8-16 3-16-32 6-8-16 6-16-32 3-8-16 6-8-16

NeuroSAT | 91.0% 57.0% 740% 727% 53.0% 51.0% 550% 52.5%
CryptoANFNet | 96.0% 72.0% 76.5% 75.6% 69.0% 66.5% 72.0% 68.5%

Datasets SR(5) SR(25)

we sample k to include as literals in the clause. Polynomials of the form x? are regarded as producing

vanilla literal z;, while those of the form z;z;(i # j) are considered as producing second-order literal
x;2;. Additionally, there’s a 50% probability of adding a constant term of 1 to the clause. Based on
this, in the approach, we continue generating clauses adding them to the SAT instance, and then using
a traditional ANF-accessible solver, WDSat [42], to check the satisfiability until adding clause c,,
finally made the instance unsatisfiable.

For the second synthetic dataset, we utilize instances generated from the real encryption algorithms
to construct the dataset. Specifically, we use a lightweight and popular block cipher (for certain
reasons, we do not disclose the specific name of the encryption algorithm, referred to as Scipher; for
its detailed encryption process, please refer to Appendix [C) and the SPECK algorithm. Given the
length k of the seed key, the length n of the plaintext, and the number of encryption rounds r, we
randomly generate the seed key and plaintext to generate an SAT instance in ANF corresponding to
the encryption algorithm. Then, in each round, we use the seed key to encrypt the plaintext and obtain
the final ciphertext. Based on the generated plaintext-ciphertext pairs and the encryption process,
we obtain the original ANF instance. Then, we select a random bit of the seed key and modify it
with 0 and 1 to obtain the corresponding satisfiable and unsatisfiable instances, thus forming the final
dataset. Depending on the differences in the encryption algorithms used, the datasets generated by
this process are called Scipher-r-k-n and Speck-r-k-n.

5.2 Satisfiability Prediction

Complexity of SAT instances. To compare the solving efficiency of CNF solvers and ANF solvers,
we first conduct complexity comparison experiments on SAT instances. By representing the same
data set using CNF and ANF, we compare the number of variables, the number of clauses, and the
number of parameterized nodes in the constructed graphs in the learning-based solvers. Table [I]lists
the parameters of SAT instances for each dataset under CNF and ANF. Our ANF graph is more
efficient than the CNF graph, which is a general graph previously used to represent SAT problems.
In datasets containing XOR operations, CNF typically requires transforming logical expressions
into conjunctive normal form, which may increase the number of literals and clauses; whereas ANF
directly represents logical functions using polynomials, thus potentially having fewer literals.

Evaluation on different datasets. To evaluate the performance of our proposed CryptoANFNet,
we conduct a series of experiments comparing it against the state-of-the-art model, NeuroSAT [5]].
The primary focus of these experiments is solving SAT instances derived from the real encryption
algorithms. For each dataset, we use Bosphorus [43] to convert (without simplification) the ANF-
based SAT instances in our dataset into CNF-based SAT instances, resulting in a CNF form of the
same dataset. We then train CryptoANFNet on the CNF-form dataset and compared its results
with those of NeuroSAT, which was trained on the ANF-form dataset. Table [2|lists the results of

https://doi.org/10.52202/079017-1317 41656

Table 3: Performance for key-solving algorithm in solving MQ problems on synthetic datasets.

Scipher Scipher Scipher Scipher Speck Speck

Datasets 3.8-16 3-16-32 6-8-16 6-16-32 3-8-16 6-8-16
NeuroSAT | 740% 727% 53.0% 510% 550% 52.5%
CryptoANFNet | 765% 75.6% 69.0% 665% 72.0% 68.5%

CryptoANFNet+ key-solving | 820% 784% 700% 69.0% 75.0% 71.0%

Table 4: Comparing the efficiency of different solvers for solving the MQ problem on synthetic
datasets. (Average runtime: (SAT, UNSAT) ms/instance)

Scipher Scipher Scipher Scipher Speck Speck

Datasets SR(5) SR(25) 3.8-16 3-16-32 6-8-16 61632 3-8-16 6-8-16
NeuroSAT [3] 3.3) (20,20) 77 (0,10) (77 (1414 (13.13) (18.18)
CryptoANENet | (2.2) .5 88) (99 (1010) (88) (L1 (14.14)

CryptoMiniSat [44] 4.4 (13491,35912) (44 (7,9 (8,9) (410,1354) (5,5) (6,8)
Kissat [45] (2,2) (4922,14856) (2,2) (2,2) (5,8) (219,464) (3.3) 4.5)

|
|
WDSat [42] | (3634) (2470,5662) (3838) (3939) (4037) (86,150) (44.47) (46,46)
|
\

NeuroSAT and CryptoANFNet on synthetic datasets of different scales. On small-scale datasets, both
models achieve high accuracy, but CryptoANFNet still outperforms NeuroSAT, such as 96% vs. 91%
accuracy on the SR(5) dataset. On large-scale datasets, like SR(25), NeuroSAT can hardly predict
the satisfiability of instances, with its prediction accuracy hovering around 50% and CryptoANFNet
significantly outperforms NeuroSAT, such as 72% vs. 57% accuracy on the SR(25) dataset and 72%
vs. 55% accuracy on the Speck-3-8-16 dataset.

5.3 Key Bit Prediction

In addition to evaluating the satisfiability of individual ANF instances with the model CryptoANFNet,
we conduct a comparative experiment to validate the key-solving algorithm. We assess the effec-
tiveness of the key-solving algorithm in determining specific bit values in cryptographic keys by
testing on datasets generated from real encryption algorithms, such as Scipher-r-k-n and Speck-r-k-n.
For each dataset, we use the associated SAT-UNSAT instance pairs generated by the key-solving
algorithm to train CryptoANFNet. In this experiment, we set A = 0.1. Table[3]lists the comparison
of results before and after using the key-solving algorithm. As shown, the key-solving algorithm
somewhat improves performance on the tested datasets. Notably, it boosts the accuracy from 76.5%
to 82% and from 72% to 75% on the Scipher-3-8-16 and Speck-3-8-16 datasets, respectively.

5.4 Comparsion with Heuristic SAT solvers

In this section, we evaluate the efficiency of our proposed model, CryptoANFNet, in comparison with
traditional heuristic SAT solvers. These experiments focused on assessing the efficiency of solving
SAT instances derived from real encryption algorithms. We compare CryptoANFNet to the following
solvers: the best currently available implementation of CryptoMiniSat [44]] (a CNF-based solver
specifically designed for handling complex problems in cryptanalysis), Kissat [43]] (a highly efficient
CNF-based solver that has demonstrated its ability to solve challenging SAT instances in the SAT
competition), and WDSat [42] (an ANF-based solver for instances in algebraic normal form).

To fairly compare the efficiency of solvers, we test the unit solving time (ms/instance) for UNSAT and
SAT instances for each dataset. For the ANF-based solver, we directly test the instances in ANF form.
For CNF-based solvers, we use Bosphorus [43] to convert the ANF instances (without simplification)
to CNF form for testing. We test all solvers on an AMD Ryzen Threadripper 3970X 32-Core
Processor and an NVIDIA GeForce RTX 3090 GPU. Table |4 lists the results of different solvers
and more results are shown in Appendix [A] We find that the learning-based model CryptoANFNet
and NeuroSAT solve SAT instances derived from cryptographic problems much more quickly and
CryptoANFNet achieves a 50x speedup on average over traditional heuristic solvers. These results
make it possible to apply learning-based solvers in practice.

41657 https://doi.org/10.52202/079017-1317

6 Conclusion and Outlook

In this paper, we propose a graph structure based on Arithmetic Normal Form (ANF) to efficiently
handle XOR operations in cryptographic problems. We also design an encoding method for AND
operations within these ANF-based graphs, demonstrating improved efficiency over traditional
graph forms. Building on this, we introduce CryptoANFNet, a graph learning framework for SAT-
based cryptanalysis utilizing ANF. CryptoANFNet addresses the challenging problem of plaintext-
ciphertext satisfiability prediction and achieves a remarkable 50x speedup over heuristic solvers.
It also outperforms the state-of-the-art learning-based SAT solver, NeuroSAT. Furthermore, we
introduce a key-solving algorithm that simplifies ANF-based SAT instances derived from plaintext
and ciphertext, enhancing key decryption accuracy. In this way, future research could explore further
optimization of the ANF-based graph structures and the integration of more advanced neural network
models to push the boundaries of cryptographic problem-solving.

References

[1] J. Zhang, C. Liu, X. Li, H.-L. Zhen, M. Yuan, Y. Li, and J. Yan, “A survey for solving mixed
integer programming via machine learning,” Neurocomputing, vol. 519, pp. 205-217, 2023.

[2] W. Guo, H.-L. Zhen, X. Li, W. Luo, M. Yuan, Y. Jin, and J. Yan, “Machine learning methods in
solving the boolean satisfiability problem,” Machine Intelligence Research, 2023.

[3] L. Sun, D. Gerault, A. Benamira, and T. Peyrin, “Neurogift: Using a machine learning based
sat solver for cryptanalysis,” in Cyber Security Cryptography and Machine Learning, S. Dolev,
V. Kolesnikov, S. Lodha, and G. Weiss, Eds. Cham: Springer International Publishing, 2020,
pp. 62-84.

[4] S. Nejati and V. Ganesh, “Cdcl (crypto) sat solvers for cryptanalysis,” arXiv preprint
arXiv:2005.13415, 2020.

[5] D. Selsam, M. Lamm, B. Biinz, P. Liang, L. de Moura, and D. L. Dill, “Learning a sat solver
from single-bit supervision,” in International Conference on Learning Representations, 2019.

[6] Z. Li, J. Guo, and X. Si, “G4satbench: Benchmarking and advancing sat solving with graph
neural networks,” arXiv preprint arXiv:2309.16941, 2023.

[7] C. Cameron, R. Chen, J. Hartford, and K. Leyton-Brown, “Predicting propositional satisfiability
via end-to-end learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 3324-3331.

[8] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a
methodological tour d’horizon,” European Journal of Operational Research, vol. 290, no. 2, pp.
405-421, 2021.

[9] Y. Li, J. Guo, R. Wang, and J. Yan, “T2t: From distribution learning in training to gradient
search in testing for combinatorial optimization,” in Advances in Neural Information Processing
Systems, 2023.

[10] X.Li, F. Zhu, H.-L. Zhen, W. Luo, M. Lu, Y. Huang, Z. Fan, Z. Zhou, Y. Kuang, Z. Wang et al.,
“Machine learning insides optverse ai solver: Design principles and applications,” arXiv preprint
arXiv:2401.05960, 2024.

[11] Z. Guo, Y. Li, C. Liu, W. Ouyang, and J. Yan, “Acm-milp: Adaptive constraint modification
via grouping and selection for hardness-preserving milp instance generation,” in The Forty-first
International Conference on Machine Learning, 2024.

[12] H. Geng, H. Ruan, R. Wang, Y. Li, Y. Wang, L. Chen, and J. Yan, “There is no silver bul-
let: Benchmarking methods in predictive combinatorial optimization,” Advances in Neural
Information Processing Systems, 2024.

[13] Y. Li, J. Guo, R. Wang, H. Zha, and J. Yan, “Fast t2t: Optimization consistency speeds up
diffusion-based training-to-testing solving for combinatorial optimization,” in Advances in
Neural Information Processing Systems (NeurIPS), 2024.

[14] D. Selsam and N. Bjgrner, “Guiding high-performance sat solvers with unsat-core predictions,”
in International Conference on Theory and Applications of Satisfiability Testing, 2019.

https://doi.org/10.52202/079017-1317 41658

[15] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Can g-learning with graph networks learn a
generalizable branching heuristic for a sat solver?” Advances in Neural Information Processing
Systems, vol. 33, pp. 9608-9621, 2020.

[16] H. Wu, “Improving sat-solving with machine learning,” in Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, 2017, pp. 787-788.

[17] H. Duan, S. Nejati, G. Trimponias, P. Poupart, and V. Ganesh, “Online bayesian moment match-
ing based sat solver heuristics,” in International Conference on Machine Learning. PMLR,
2020, pp. 2710-2719.

[18] Z.Liand X. Si, “Nsnet: A general neural probabilistic framework for satisfiability problems,”
Advances in Neural Information Processing Systems, vol. 35, pp. 25 573-25 585, 2022.

[19] J. M. Han, “Enhancing sat solvers with glue variable predictions,” arXiv preprint
arXiv:2007.02559, 2020.

[20] Z. Shi, M. Li, Y. Liu, S. Khan, J. Huang, H.-L. Zhen, M. Yuan, and Q. Xu, “Satformer:
Transformer-based unsat core learning,” in 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). 1EEE, 2023, pp. 1-4.

[21] J. You, H. Wu, C. Barrett, R. Ramanujan, and J. Leskovec, “G2sat: Learning to generate sat
formulas,” in Advances in neural information processing systems, vol. 32, 2019.

[22] Y. Li, X. Chen, W. Guo, X. Li, W. Luo, J. Huang, H.-L. Zhen, M. Yuan, and J. Yan, “Hardsatgen:
Understanding the difficulty of hard sat formula generation and a strong structure-hardness-
aware baseline,” in ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2023.

[23] X. Chen, Y. Li, R. Wang, and J. Yan, “Mixsatgen: Learning graph mixing for sat instance
generation,” in The Twelfth International Conference on Learning Representations, 2024.

[24] E. Wenger, M. Chen, F. Charton, and K. E. Lauter, “Salsa: Attacking lattice cryptography with
transformers,” Advances in Neural Information Processing Systems, vol. 35, pp. 34 981-34 994,
2022.

[25] C.Li, E. Wenger, Z. Allen-Zhu, F. Charton, and K. E. Lauter, “Salsa verde: a machine learning
attack on Iwe with sparse small secrets,” Advances in Neural Information Processing Systems,
vol. 36, pp. 53343-53361, 2023.

[26] A. Singh, K. B. Sivangi, and A. N. Tentu, “Machine learning and cryptanalysis: An in-depth
exploration of current practices and future potential,” Journal of Computing Theories and
Applications, vol. 2, no. 1, pp. 27-42, 2024.

[27] J. So, “Deep learning-based cryptanalysis of lightweight block ciphers,” Security and Communi-
cation Networks, vol. 2020, pp. 1-11, 2020.

[28] A. Baksi and A. Baksi, “Machine learning-assisted differential distinguishers for lightweight
ciphers,” Classical and Physical Security of Symmetric Key Cryptographic Algorithms, pp.
141-162, 2022.

[29] Z. Hou, J. Ren, and S. Chen, “Cryptanalysis of round-reduced simon32 based on deep learning,”
Cryptology ePrint Archive, 2021.

[30] A. Gohr, “Improving attacks on round-reduced speck32/64 using deep learning,” in Advances in
Cryptology—CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I 39. Springer, 2019, pp. 150-179.

[31] A.Benamira, D. Gerault, T. Peyrin, and Q. Q. Tan, “A deeper look at machine learning-based
cryptanalysis,” in Advances in Cryptology—-EUROCRYPT 2021: 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17-21, 2021, Proceedings, Part I 40. Springer, 2021, pp. 805-835.

[32] Z. Bao, J. Guo, M. Liu, L. Ma, and Y. Tu, “Enhancing differential-neural cryptanalysis,” in
International Conference on the Theory and Application of Cryptology and Information Security.
Springer, 2022, pp. 318-347.

[33] Z.Bao, J. Lu, Y. Yao, and L. Zhang, “More insight on deep learning-aided cryptanalysis,” in
International Conference on the Theory and Application of Cryptology and Information Security.
Springer, 2023, pp. 436-467.

41659 https://doi.org/10.52202/079017-1317

[34] F. Lafitte, “Cryptosat: a tool for sat-based cryptanalysis,” IET Information Security, vol. 12,
no. 6, pp. 463-474, 2018.

[35] M. Soos, “The cryptominisat 5 set of solvers at sat competition 2016,” Proceedings of SAT
Competition, p. 28, 2016.

[36] J. Lu, Y. Liu, T. Ashur, B. Sun, and C. Li, “Improved rotational-xor cryptanalysis of simon-like
block ciphers,” IET Information Security, vol. 16, no. 4, pp. 282-300, 2022.

[37] N. Mouha, Q. Wang, D. Gu, and B. Preneel, “Differential and linear cryptanalysis using
mixed-integer linear programming,” in Information Security and Cryptology: 7th International
Conference, Inscrypt 2011, Beijing, China, November 30—December 3, 2011. Revised Selected
Papers 7. Springer, 2012, pp. 57-76.

[38] N. Mouha and B. Preneel, “Towards finding optimal differential characteristics for arx: Applica-
tion to salsa20,” Cryptology ePrint Archive, 2013.

[39] L. Sun, W. Wang, and M. Wang, “More accurate differential properties of led64 and midori64,”
IACR Transactions on Symmetric Cryptology, pp. 93—123, 2018.

[40] J. Guo, G. Liu, L. Song, and Y. Tu, “Exploring sat for cryptanalysis:(quantum) collision attacks
against 6-round sha-3,” in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2022, pp. 645-674.

[41] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization
with reinforcement learning,” 2017.

[42] M. Trimoska, S. Ionica, and G. Dequen, Parity (XOR) Reasoning for the Index
Calculus Attack. Springer International Publishing, 2020, p. 774-790. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-58475-7_45

[43] D. Choo, M. Soos, K. M. A. Chai, and K. S. Meel, “Bosphorus: Bridging anf and cnf solvers,”
in Proceedings of Design, Automation, and Test in Europe(DATE), 3 2019.

[44] M. Soos, K. Nohl, and C. Castelluccia, “Extending sat solvers to cryptographic problems,” in
International Conference on Theory and Applications of Satisfiability Testing. ~ Springer, 2009,
pp. 244-257.

[45] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the SAT Competition 2022,”
in Proc. of SAT Competition 2022 — Solver and Benchmark Descriptions, ser. Department of
Computer Science Series of Publications B, T. Balyo, M. Heule, M. Iser, M. Jdrvisalo, and
M. Suda, Eds., vol. B-2022-1. University of Helsinki, 2022, pp. 10-11.

[46] B. Selman, H. A. Kautz, B. Cohen e al., “Noise strategies for improving local search,” in AAAI,
vol. 94, 1994, pp. 337-343.

[47] 1. Elffers and J. Nordstrom, “Divide and conquer: Towards faster pseudo-boolean solving.” in
1JCAI vol. 18, 2018, pp. 1291-1299.

[48] A. Kyrillidis, A. Shrivastava, M. Vardi, and Z. Zhang, “Fouriersat: A fourier expansion-based
algebraic framework for solving hybrid boolean constraints,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 1552-1560.

https://doi.org/10.52202/079017-1317 41660

http://dx.doi.org/10.1007/978-3-030-58475-7_45

1% + 123

tzy+xat+z3+1=0

12y +Tox3 + a1 +23=0
Ty +23+1=0

Uy = X1X2 Uy = X1X3 Uz = XzX3
Uz = X1X2 Us = X1X3 Ug = XpX3
Uz = X1Xp Us = X1X3 Ug = XpX3

Ut Uptuz < 1

up+ustuzt+us+1=0
w7 +uz +ug +us =0
u+us+u;+1=0

Uyt ustug < 1

Uzt Ugt Ug <

uy +uz +ug +ug =0
uy +uz +uzy +ug =0
ugst+us+ur+ug=0

up +uz+uz +us+1=0

ur +uz +ug+us =0
utustu;+1=0

[

—
1
'

uy +ug+ug+ug=0
Uy +us+ur+ug=0
ug+us +ur+ug =0

ey

@ (b)

Figure 3: (a) A example ANF formula for changing the original ANF formula to a formula without
AND operation; (b) Example ANF formula graph focusing on second-order literals

A Efficiency of incomplete solvers

Table 5: Comparing the efficiency of incomplete solvers for solving the MQ problem on synthetic
datasets. (Average runtime: (SAT, UNSAT) ms/instance)

buwes | sRe skey SENSEM S sw sk S
WalkSAT [46] | (3,640) (762,744) (4,6) (10,12) (289.26) (831,899) (39,480) (482,538)

RoundingSAT [@7] | (3,3) (36758,50122) (3.5) (7,10) (2820) (664,1801) (23,.24) (29,35)
FourierSAT [48] | (12758670) (9620,9687) (983426) (1779,459) (8163,416) (8830,8862) (8733,8689) (8799,8912)

B ANF Graph Structure focusing on second-order literals

This ANF graph structure retains only second-order literals and regards them as independent vanilla
literals, representing original literals through these new literals and adding additional constraint
equations. In this case, the graph has a node for every literal and every clause, an edge between every
literal and each clause in which it appears, a different edge for each pair of complementary clauses,
and a special edge between corresponding sets of literals.

For this type of graph, we focus on the unified representation of the vanilla literal and second-order
literal. Note that we can represent all the vanilla literals with the second-order literals and their
negations. For example, the vanilla literal x1 can be represent as z; = z1x2 + x1%2. Based on this
idea, we introduce the negations of a second-order literal (e.g. T1x3, 1T of 1x2) as the new vanilla
literals and we update the original ANF formula, where every three corresponding literals consist of a
literal subset. Then, the ANF instance of an MQ problem with n variables is represented as the ANF
instance of a linear problem with 3n(n — 1) variables.

Since the newly introduced variables are independent of each other except for the atomic clauses, to
ensure that the original problem doesn’t become too relaxed due to the increase in variables, we add
the following two types of constraints: 1) The new vanilla literal combinations must represent the
same literal in the original ANF instance; 2) At most one of the three new vanilla literals derived from
the same second-order literal in the original ANF instance can be true. Notably, the second constraint
is not presented in the form of an ANF formula but as an inequality, represented as a special type of
edge in the graph construction. As the toy example shown in Fig. 3(a), the redefined vanilla literals
U] = X1Ty, Uy = T1T2, U3 = 1Tz and uy = x1x3, us = T1x3, U3 = r1x3 have the constraint
urtugtust+ug =0dueto xr;y = r129+ 21T = T1T3+21T3 = u1 +usz = uys+ug. Besides, since
uy,ug, ug and uy, us, ug belong to the same literal subset respectively, we have u; + us +u3z <1
aHdU4+U5+U6 S 1

Then, an undirected graph is derived from an updated ANF formula as follows and Fig. [3[b) shows
the graph derived from the ANF formula in Fig. [3a).

 Each vanilla literal u; in the ANF becomes a vertex in graph G.

41661

https://doi.org/10.52202/079017-1317

* Each clause becomes two vertices (¢; and ¢;) in graph G according to the set of literals it contains,
where c; denotes clauses with constant term 0, called the positive clause, while ¢; denotes clauses
with constant term 1, called the negative clause.

* An edge between literal u; and clause cy, is in g if and only if x;2; appears in clause c,.
» A different edge between each clause vertex ¢; and its complementary clause vertex c;.
» Two special edges between each literal u; and other literals in their common literal subset.

C Encryption Process of Scipher

Scipher has the following encryption process. Given the length & of the seed key, the length n
of the plaintext, and the number of encryption rounds r, Scipher consists of multiple rounds of
transformations. Each round uses a round key that is derived from the original key through specific
linear transformations, with a length equal to half of the input and output lengths of that round. The
input for the first round is the plaintext, and the output of the r-th round is the ciphertext. For the i-th
round, we have the following round function:

Th= (L Ka)&(L; «b), Th =L, K ¢
i=TroT®K;
Liyzv=T30R;

Riy1=1L;

where K; represents the round key for the i-th round; a, b, c are constants representing the number of
shifted bits; L; and R; represent the high and low parts of the -th round function’s input, while L;
and R, represent the high and low parts of the output.

D Limitations

The primary limitation of this paper lies in our focus on plaintext-ciphertext cryptographic Problems,
while not fully exploring other cryptographic issues. On the one hand, our objective is to introduce
a novel graph construction approach by leveraging the commonly encountered XOR operation in
cryptographic problems, thereby proposing a graph structure based on the Arithmetic Normal Form
(ANF). This allows plaintext-ciphertext cryptographic Problems to be conveniently transformed into
ANF-based SAT instances. On the other hand, plaintext-ciphertext encryption algorithms are built
on the hardness of the MQ problem, and thus the SAT instances derived from plaintext-ciphertext
problems are also instances of the MQ problem. This provides a basis for exploring various aspects of
the MQ problem. Consequently, we have chosen the widely studied plaintext-ciphertext cryptographic
Problems for comprehensive decomposition and investigation. We believe that our exploration of
ANF-based SAT instances will offer valuable insights and reference points for the field of SAT-based
cryptanalysis. Furthermore, the proposed model can be adapted to other cryptographic problems that
require the transformation of the original problem into an instance of the MQ problem.

E Impact Statements

The proposed CryptoANFNet, a novel graph learning framework for SAT-based cryptanalysis utilizing
Arithmetic Normal Form (ANF), presents a fresh approach to tackling the challenging task of
predicting plaintext-ciphertext satisfiability. Its speed improvement, surpassing heuristic solvers by
a remarkable 50x and outperforming advanced learning-based SAT solvers like NeuroSAT, marks
a significant advancement in cryptographic problem-solving. These strides not only enhance the
efficiency and accuracy of cryptographic solutions but also open up new avenues for optimizing
learning-based SAT solvers, advancing decryption algorithms, and ultimately fostering the refinement
of encryption techniques.

https://doi.org/10.52202/079017-1317 41662

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the contributions of this paper in both the abstract and the
concluding paragraph of the introduction. Each claimed contribution is supported by explicit
results presented within the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Appendix D]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

41663 https://doi.org/10.52202/079017-1317

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the dataset settings in Section[5.1} and detailed experimental
settings in Section[5.2]and Section[5.4]

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

https://doi.org/10.52202/079017-1317 41664

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The source code will be made publicly available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the dataset settings in Section[5.1} and detailed experimental
settings in Section[5.2]and Section[5.4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We keep the same setting as the previous works.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

41665 https://doi.org/10.52202/079017-1317

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the dataset settings in Section 5.1} and detailed experimental
settings in Section[5.2]and Section[5.4]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the potential impacts of the paper in Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

https://doi.org/10.52202/079017-1317 41666

https://neurips.cc/public/EthicsGuidelines

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the assets used in the paper in Section Section [5.2] and
Section[5.4]

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

41667 https://doi.org/10.52202/079017-1317

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Currently, the paper does not release new assets. New assets, including
code and toolkit, will be released upon the acceptance of the paper with comprehensive
documents.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

https://doi.org/10.52202/079017-1317 41668

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41669 https://doi.org/10.52202/079017-1317

