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Abstract

Text-to-image generative models are capable of producing high-quality images
that often faithfully depict concepts described using natural language. In this
work, we comprehensively evaluate a range of text-to-image models on numerical
reasoning tasks of varying difficulty, and show that even the most advanced models
have only rudimentary numerical skills. Specifically, their ability to correctly
generate an exact number of objects in an image is limited to small numbers, it is
highly dependent on the context the number term appears in, and it deteriorates
quickly with each successive number. We also demonstrate that models have
poor understanding of linguistic quantifiers (such as “a few” or “as many as”),
the concept of zero, and struggle with more advanced concepts such as partial
quantities and fractional representations. We bundle prompts, generated images
and human annotations into GECKONUM, a novel benchmark for evaluation of
numerical reasoning.

1 Introduction

Recent generative text-to-image models can produce images of impressive quality in a variety of
styles and following the text descriptions provided by users [4, 23, 31]. However, they may still fail
to accurately generate images where the given descriptions contain numbers and quantities (such as
“7 pistachios”, as shown in Figure 1) [20, 22]. While recent work has focused on designing metrics,
benchmarks and methods for evaluating specific capabilities of text-to-image generative models, such
as alignment [33, 15, 9], compositionality [16], or spatial reasoning [13], there is no comprehensive
benchmark for evaluation of numerical reasoning.

We address this gap by proposing GECKONUM, a comprehensive and controlled benchmark of text
prompts aimed at evaluating different aspects of numerical reasoning in text-to-image models. We
formalize evaluation as three tasks: exact number generation, approximate number generation, and
reasoning about partial quantities. For each task, we design various template types to control for
different variables such as sentence structure, the context in which the number words occur in, and
the number of attributes/entities in a prompt. Table 1 shows examples of numerical tasks and the
associated prompt types.

Using GECKONUM, we evaluate twelve models chosen from five different model families (DALL·E
3, Midjourney, Imagen, Muse and Stable Diffusion): we generate images for these models and
collect human annotations to measure whether the images correctly match the prompts with respect
to numerical reasoning. Our benchmark consists of 1386 text prompts, 52,721 generated images, and
a total of 479,570 human annotations that we release.1

1https://github.com/google-deepmind/geckonum_benchmark_t2i

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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Figure 1: Examples of images generated by selected models: DALL·E 3, Imagen-C and Muse-B.
Correctly generated images are marked with a check mark “✓”, and incorrect with a cross mark “✗”.

Overall, our results demonstrate that the recent generative text-to-image models have rudimentary
numerical reasoning skills, and are most accurate when tested for generation of small exact quantities.
We highlight the utility of GECKONUM as an evaluation benchmark: it can discriminate between
models, even the powerful ones, such as Imagen-D [31] and DALL·E 3 [2], that are similar in terms
of high image quality. Finally, we demonstrate that our benchmark can be used to drive progress in
related research areas, such as the development of automatic evaluation metrics and evaluation and
improvement of pretrained vision–language models on counting.

2 Related Work

Text-to-image benchmarking. Benchmarks used for evaluation of text-to-image models typically
consist of a set of text prompts that target a specific capability. Some benchmarks, such as DALL·E 3
Eval [2] are more general and aim to capture real world use cases, while others contain a variety
of challenges, such as prompts in DrawBench [25], PartiPrompts [36], and HEIM [17]. Others are
developed to interrogate models on more specific capabilities such as alignment (e.g. TIFA [15], DSG
[9] and Gecko [33]) or compositionality (e.g. T2I-CompBench [16]).

Often, prompts in such benchmarks are curated from the data harvested from the Web, and they
may include numbers or other numerical concepts relevant to evaluation of numerical reasoning.
However, the number of such prompts in existing benchmarks is often limited, and the complexity
of prompts may not be appropriate to evaluate models on numerical reasoning as a correct machine
interpretation of such prompts often requires a combination of several different reasoning skills. For
example, the understanding of the number “2” in a simple prompt such as “Two zebras in Cape
Town” (from CountBench [20]) also requires an interpretation of a geographical location. For the
correct interpretation of “Two dogs in a grassy field with one dog holding an orange disc.” (from MS
COCO [6]) the model would need to correctly generate several objects (i.e. “dog”, “disc”), relations
between them (“holding”), and correctly bind attributes (“orange”) to objects. While the complexity
of such prompts may be representative of the complexity observed in natural language, it may hinder
our ability to accurately evaluate numerical reasoning in text-to-image models.

The prompt set in GECKONUM is vastly more comprehensive and it systematically covers various
dimensions of evaluation that affect numerical reasoning, such as different number ranges, types
of nouns, different ways of representing numbers, approximations based on linguistic quantifiers,
and reasoning about partial quantities that are missing in other datasets. We show that to evaluate
a specific capability thoroughly requires an extensive, comprehensive dataset. Most similar to our
work is [22], which investigates number generation for text-to-image models. While [31] show
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that number generation improves with larger model sizes, their set of prompts is small (N=59) and
focuses only on the simplest prompt structure. We go beyond this by evaluating a comprehensive
set of model families, considering other properties of numerical reasoning such as estimation and
conceptual quantitative reasoning, and a more comprehensive breakdown of performance based on
how commonplace an entity is.

Measuring counting in image-to-text models. While numerical reasoning has no standardized
benchmark for text-to-image generation, there are some widely accepted benchmarks within the
visual question answering domain. For example, TallyQA [1] and CountBench [20] both measure the
counting ability of question-answering models. CountBench is a small dataset of only 540 images
whereas TallyQA contains approximately 20K images for evaluation. However, despite TallyQA’s
size, the distribution of numbers is highly skewed towards small numbers (e.g. 1, 2); and the quality
of the images and associated labels is mixed.

3 Tasks to Examine Numerical Reasoning

We evaluate text-to-image models on different aspects of numerical reasoning formulated as three
numerical tasks and a set of text prompt types for each task, spanning different levels of difficulty. Our
working definition of numerical reasoning draws inspiration from literature in numerical cognition,
and concerns both the ability to reason in abstract terms and the ability to manipulate such abstractions
across different contexts. Specifically, one fundamental aspect of abstract reasoning is the ability to
form a representation of a set size independently of the identity of objects, known as The abstraction
principle [11]. For example, understanding that “two” refers to the same quantity in “Two apples” as
it does in “Two letters” even though apples and letters are different objects. We first define the tasks
and describe what aspect of numerical reasoning they intend to evaluate, followed by description
of prompts that aim to require those aspects of reasoning. These prompts are generated using
intentionally designed 12 templates where we sweep over combinations of numbers and selected
word nouns, resulting in 1386 prompts in total. The 12 prompt types, including prompts and example
templates used to generate the prompts are shown in Table 1, with further details available in Table A2.

3.1 Task 1: Exact Number Generation

Task 1 examines a model’s ability to correctly generate an exact number of objects. We define
number generation as the correct visual depiction of an entity specified in a prompt and its associated
quantity (e.g.,“2 red cats.” or “One mushroom and 3 koalas.”). To probe how well models capture The
abstraction principle, we vary the context of numerical terms appear in. Then, we investigate whether
and how image generation accuracy changes depending on the prompt structure (e.g., attributes,
and compositionality) enumerated below to give seven different prompt types listed together with
examples in rows “Exact” in Table 1.

Prompt structure: The simplest setting consists of phrases with an object and a number (numeric-
simple). We explore different prompt structure of sentences (numeric-sentence), and also consider
prompts which contain two or three number-noun combinations (2-additive and 3-additive). We
then include color adjectives for both simple prompts with one entity (attribute-color), and two
entities with associated colors (2-additive-color). Finally, we combine number terms with spatial
relationships such as “There are three cats above one manatee.” (attribute-spatial).

Exact number generation: For the simplest setting (numeric-simple), we additionally examine the
role of three other factors: (i) Number magnitude for which we generate text prompts with numbers
ranging from 1 to 10. (ii) Number representation where we consider prompts that represent digits
with both Arabic numerals (e.g., 1, 2, 3) or words (e.g., “one”, “two”, “three”). (iii) Noun frequency
in English for which we select nouns (i.e., entities) to cover both frequent and rare words.2

2We use the wordfreq Python library [28] to determine word frequency. Our vocabulary in this task consists
of approx. 40 words from four common categories: food, animals, nature, and objects. See Appendix A for
more details.
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Table 1: Twelve prompt types, example prompts and templates to probe different aspects of numerical
reasoning in text-to-image models.

Task Prompt Type Prompt Template / Example Prompts
E

xa
ct

numeric-simple
<num> <noun>
One pistachio.
7 kangaroos.

numeric-sentence
There <verb> <num> <noun> in this image.
There is 1 fish.
An image showing 1 fish.

2-additive
<num1> <noun1> and <num2> <noun2>.
3 durians and three bonsais.
Four axolotls and three cookies.

2-additive-color
<num1> <color> <noun1> and <num2> <color> <noun2>.
Four red cats and four red mushrooms.
One black cat and 1 black apple.

3-additive
<num1> <noun1>, <num2> <noun2> and <num3> <noun3>.
2 parsnips, 3 coconuts and one seahorse.
Two manatees, 2 burgers and 1 okra.

attribute-color
<num> <color> <noun>.
One black koala.
4 green bottles.

attribute-spatial
There <verb> <num1> <noun1> <rel> <num2> <noun2>.
There are three cats above one manatee.
There are three coconuts to the left of 5 burgers.

A
pp

ro
x.

approx-1-entity
An image of <noun>. There <verb> <quant> <loc>.
An image of a shelf. There are many books on the shelf.
An image of a watermelon. There are no seeds in the watermelon.

approx-2-entity

An image with some <noun1> and <noun2>. There <verb> <quant>
<noun1> <quant> <noun2>.
An image with some tables and some pencils. There are fewer tables
than pencils.

An image with some bottles and some apples. There are as many bottles
as apples.

Q
ua

nt
ita

tiv
e

fractional-simple
There <verb> <num> <noun> and <frac> of another <noun>.
A pizza cut into 3 slices.
There are three apples and quarter of another apple on the table.

fractional-complex
A <noun> is cut into <num> pieces. One piece is twice the size of the other.
An image of a pencil where one half of it is red and the other half is blue.
A banana is cut into two pieces. One piece is twice the size of the other.

part-whole
There <verb> <num> <noun>, but one <noun> is broken into two pieces.
There are 2 forks on the table, but one fork is broken into two pieces.
There are 5 pencils on the table, but one pencil is broken into two pieces.

3.2 Task 2: Approximate Number Generation and Zero

In Task 2, we evaluate models on their ability to correctly depict entities with quantities expressed
in approximate terms by means of linguistic quantifiers (e.g., “many”, “a few”, or “more”). Such
quantity terms are ubiquitous in ordinary language use and may denote a range of numbers thus
carrying a more fuzzy interpretation of quantities. However, people tend to be relatively consistent
when using such terms, as shown in Figure A16. We expect that models that correctly depict
approximate quantities align with human perception of these quantities. We also examine how well
models interpret the concept of zero, which we evaluate separately as it represents a challenging
milestone in number learning in children [32].

4
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How many dogs are 
in the image?

Which line describes the image the best?
○ An image with no books and no cats.
○ An image with some books or some cats, but not with both 

books and cats.
○ An image with some books and some cats. There are fewer 

books than cats.
○ An image with some books and some cats. There are as many 

books as cats.
○ An image with some books and some cats. There are more 

books than cats.

Is there a cake?
o  YES    o  NO
Is the cake cut into 
pieces?
o  YES    o  NO
Are there 5 pieces?
o  YES    o  NO
Is the cake cut?
o  YES    o  NO

Annotation Task 1 Annotation Task 2 Annotation Task 3

Figure 2: Three types of annotation templates used to collect data for the evaluation of text-to-image
models on three numerical reasoning tasks.

Prompt types. We design two prompt templates for this purpose: approx-1-entity and approx-2-entity,
as shown in Table 1. The former tests for approximate generation of one entity in the prompt (e.g., a
few candles); the latter includes two entities with quantities expressed in relation to each other (e.g.,
more books than cats), as existing studies indicate poor performance on this prompt type [18].

3.3 Task 3: Conceptual Quantitative Reasoning

In this task we evaluate models on prompts that require a conceptual understanding of objects and their
parts and are thus more challenging compared to the previous tasks. Notions of “parts”, “proportion”
and “fractions” tend to be concepts that are harder to acquire for both children and animals [26, 34].
For example, when a fork is broken into two parts, three- to four-year-old children count each discrete
physical object as a separate fork [26].

Prompt types. Three prompt types are used in this task (the row “Quantitative” in Table 1): the
fractional-simple category includes notions of a one whole, and basic fractions such as ½ and ¼ (e.g.,
“A cake cut into quarters.”); the fractional-complex prompts include notion of fractions in relation
to another attribute such as color or size (e.g., “one piece is twice the size of the other”). Finally,
inspired by the fork experiment with children [26], we include part-whole prompt type where an
object such as a fork, pencil or a plate is split into pieces.

4 Human Annotations of Images

We evaluate text-to-image models based on annotations collected from study participants who
completed three different tasks, where each task corresponds to one of the three numerical reasoning
tasks discussed in Section 3. An example template used for each annotation task is shown in Figure 2.

To evaluate models on Task 1, we ask participants to count the number of objects in a generated
image. Specifically, we pair each generated image with an automatically generated question How
many <obj> are in the image?, where <obj> refers to the noun in the source prompt used to
generate the image. We ask one question for each noun in the prompt. Participants responded with a
number representing the count of objects entered in free-form text format; where relevant, they were
instructed to provide number ranges (e.g. 1–2, 2.5) or “10+” labels (see Appendix C.1 for detailed
annotation instructions).

For Task 2, an image is paired with 3–5 lines of text describing the image. The number of lines
depends on the original prompt, for approx-1-entity there were three lines, and for approx-2-entity
there were 5 lines. Participants were asked to select the line that describes the image the best. The
suggested lines were derived from the text prompt used to generate the image (see Figure 2 for an
example).

Finally, to evaluate models on Task 3, we generate a series of short questions covering the words in
the prompt words using automatic question generation approach based on Davidsonian Scene Graph
(DSG) [9]. The questions appeared next to the image. DSG generates prompt-specific questions so
that the answer to all of them should be “yes” if the model accurately depicted contents of the prompt.
In analyses, we excluded all numerically irrelevant questions (i.e. Is this an image?, Is there
a table?, Are/is <obj> on the table?). There are between two and six generated questions
per each prompt.

We do not show the original prompt (used to generate a given image) to participants in any of the
tasks, as we want to collect unbiased estimates of generated quantities. Example screenshots showing
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the web interface participants were seeing for each annotation task are available in Figures A6-
A8. Twenty-five participants have been recruited through a crowd-sourcing platform and provided
informed consent to participate in the study. Our institution’s independent ethical review committee
reviewed and approved details of the study design, including working conditions and minimum hourly
compensation of £15. Each image was annotated by five participants, and we observe a high level of
inter-annotator agreement as in over 96% of cases at least 3/5 annotators provided the same rating
(see Appendix C.2 for details).

Processing human annotations. Number annotations for object counts in Task 1 are first pre-
processed by removing typos and standardizing the format (see Appendix C.2 for details on text
preprocessing). The mode of the five numbers (i.e. the most frequent number) for each image–
question pair is considered as the numerical “label” (i.e. model response) used to calculate model
accuracy. When calculating accuracy, the ground-truth number is the original number in the text
prompt used to generate the image. If the two numbers match, the accuracy is “1”, otherwise it is “0”.

In Task 2 each original prompt template is encoded as a number (e.g., “no <X>” would be encoded
as “0”, “many <X>” as “4” etc., see Appendix A.3) taken to be the ground-truth number. Each
participant response, a radio-button selection, is also encoded as a number on the same scale. If the
two numbers match, the accuracy is “1”, otherwise it is “0”.

In Task 3 the “yes”/“no” responses given by participants are coded as binary values 1/0 representing
accuracy on the question. We aggregate all binary responses and to obtain the average accuracy for a
given prompt–image pair.

5 Evaluating Text-to-Image Models

Text-to-image models. We study 12 different text-to-image models across five different model
families: DALL·E 3 [2], Midjourney, Imagen-based models [25, 31], Muse [4] and Stable Diffusion
(SD) models [21, 23, 24]. The models we evaluate cover a wide span of model architectures, including
pixel-based (e.g. Imagen) and latent-based (e.g. Muse, SD) models. Specifically, the Muse family
uses a different generative approach based on predicting masked image patches.

Models within each family may differ in their size, architecture and training data. For models that
have been trained on internal data sources we use letters of the alphabet to refer to earlier versions of
models (i.e. Imagen-A is an earlier version of Imagen-B, and Imagen-D is a recent version referred to
as Vermeer [31]). Generally, the core components of earlier Imagen models have fewer parameters
compared to later models (e.g. 600M for Imagen-A, 2B for Imagen-B and Imagen-C, and 8B for
Imagen-D). Imagen A, B and C models have been trained on internally curated versions of WebLI
dataset [7], while Imagen-D has been trained on CC12M [5]. In all our experiments, for each model
we generate five images using five different seeds.
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Table 2: Per task accuracy and the standard error of the mean, with percentage point difference from
the baseline in brackets. Accuracy of the best performing model on a task is highlighted in bold, and
that of the best model within a family is underlined.

Task 1
Exact Number

Generation

Task 2
Approximate Number
Generation and Zero

Task 3
Conceptual

Quantitative Reasoning

DALL·E 3 45.2± 0.5 (+35.2%) 48.7± 2.7 (+24.1%) 48.8± 1.1 (−1.2%)

Midjourney v6 42.5± 0.5 (+32.5%) 35.0± 2.3 (+10.4%) 48.9± 1.1 (−1.1%)

Imagen-A 26.3± 0.4 (+16.3%) 20.0± 2.2 (−4.6%) 41.1± 1.3 (−8.9%)
Imagen-B 27.0± 0.4 (+17.0%) 24.6± 2.3 (+0.0%) 42.9± 1.4 (−7.1%)
Imagen-C 34.9± 0.4 (+24.9%) 27.0± 2.4 (+2.4%) 50.6± 1.2 (+0.6%)
Imagen-D 28.5± 0.4 (+18.5%) 28.7± 2.4 (+4.0%) 43.8± 1.3 (−6.2%)

Muse-A 34.8± 0.4 (+24.8%) 21.0± 2.2 (−3.6%) 45.1± 1.2 (−4.9%)
Muse-B 39.8± 0.5 (+29.8%) 24.6± 2.3 (+0.0%) 46.2± 1.2 (−3.8%)

SD1.5 20.3± 0.4 (+10.3%) 20.6± 2.2 (−4.0%) 44.6± 1.2 (−5.4%)
SD2.1 25.8± 0.4 (+15.8%) 27.9± 2.4 (+3.3%) 43.5± 1.1 (−6.5%)
SDXL 22.8± 0.4 (+12.8%) 31.2± 2.5 (+6.6%) 43.8± 1.1 (−6.2%)
SD3 40.0± 0.5 (+30.0%) 33.9± 2.6 (+9.3%) 47.8± 1.0 (−2.2%)

Random Chance 10.0 24.6 50.0
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48 32 19 16 29 22 21 21 28 25 31 32 50

                      Task 1                        
  Task 2  

      Task 3      

Figure 3: Accuracy of models on each prompt
type for a subset of prompts that contain small
numbers (i.e. 1–4) and a smaller subset of
nouns.
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Figure 4: Top: The confusion matrices for A)
DALL·E 3 and B) Midjourney v6 on numeric-
simple prompts. Bottom: The effect of C) number
representation and D) word frequencies in Task 1.
95% bootstrap confidence intervals are shown.
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5.1 Task 1: Exact Number Generation

Number magnitude. We find that number magnitude strongly affects model performance in number
generation, consistent with existing work in the multimodal and generative models [22, 20]. Figure 4
shows normalized confusion matrices for DALL·E 3 and Midjourney v6, the two strongest models
on this task. Even for DALL·E 3, the accuracy drops substantially with each successive number (18
p.p. decrease for 1 → 2, 9 p.p. for 2 → 3, and 23 p.p. for 3 → 4). All models have a tendency to
overestimate numbers (i.e. they tend to depict a higher number of entities than what is specified in the
prompt), as shown by the non-zero entries over the “10+” label on the x-axis in the figure. With the
exception of DALL·E 3, we also see underestimation, including instances where models fail entirely
to generate the entity in the prompt (non-zero entries over the “0” label).

Number representation (digits vs. words). Based on numeric-simple prompts and the small number
range where models have higher accuracy (1–4), we find that 10 out of 12 models are significantly
more accurate when numbers in text prompts are represented with words as opposed to digits, with
the exception of DALL·E 3 and SD1.5, where there was no significant difference. Figure 4C) shows
accuracy for a subset of best performing models in each family for Task 1.

Noun frequency (frequent vs. rare words). Nine out of 12 models were more accurate when the
nouns associated with numbers in text prompts were frequent words, as opposed to rare words, for
numeric-simple prompts. The only exceptions were DALL·E 3, Imagen-D and SDXL, where there
was no significant difference in accuracy. While this finding may indicate that these three models
are better at abstracting the notion of a number as opposed to memorizing frequently occurring
number-noun combinations, we note that this finding is based on a small set of words (N = 40) that
may or may not generalize for a greater sample size. The comparison of accuracies for a subset of
models is shown in Figure 4Ḋ).

Prompt structure. Compositional prompts types with more than one number-noun combination, such
as 2-additive and 3-additive, were on average more difficult compared to prompts with a single noun
and a number (i.e. numeric-simple) (c.f. Figure 3). With the exception of DALL·E 3, performance
of all other eleven models was also significantly lower when numbers appeared in the same context
with spatial relationships as in attribute-spatial prompts, as those prompts were significantly harder
when compared to 2-additive prompts that did not include spatial relationships. Adding color terms
to numbers significantly reduced accuracy in Imagen-C, SD1.5 and SD3 models. These results
indicate that prompt complexity, such as including additional prepositions or numbers in the text,
can dramatically impair the ability of models to correctly generate images containing even a small
numbers of entities. In Section B.2 in the Appendix we discuss different types of model failures in
Task 1, and in Section C.3.1 we discuss the occasional cases of disagreements in human annotations
with several qualitative examples.

5.2 Task 2: Approximate Number Generation and Zero
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Figure 5: Accuracy for approx-1-entity
and approx-2-entity prompts.

When testing for approximate number generation, simi-
larly to Task 1, we observe that prompts with fewer entities
(i.e. approx-1-entity) are on average easier than prompts
with two entities (i.e. approx-2-entity), as seen in Figure 3.
Figure 5 shows a further breakdown of accuracy per spe-
cific prompt template. For approx-1-entity (first 3 rows
containing only “X”), Eleven out of 12 models were the
most accurate in generating “many” objects, and all mod-
els were least accurate in generating images with zero
objects (i.e. “There is/are no X”). For approx-2-entity (last
3 rows, with both “X” and “Y”), 8 out of 12 models have
highest accuracy when generating images from prompts of the “more X than Y”-type and lowest
accuracy when generating “as many X as Y”. Our results highlight that understanding of linguistic
quantifiers, even as simple as the word “no”, can still be challenging for generative models. Sec-
tion C.3.2 in the Appendix shows qualitative examples including images and annotations in Task
2.
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5.3 Task 3: Conceptual Quantitative Reasoning

Task 3 is the hardest, as most models perform close to or below the random chance baseline
(c.f. Table 2). All twelve models had the highest accuracy on fractional-simple prompts, followed by
part-whole and fractional-complex for 10 out of 12 models, consistent with intuitions regarding the
prompt difficulty. The last column in Figure 1 shows images for a prompt in the fractional-simple
category, where many models failed to correctly depict “one apple and half of another apple”. Further
examples, including images and annotations, are shown in Table A15.

However, evaluating models on Task 3 prompts was more challenging due to the question-based
method used—for some prompts, the DSG method generates only two relevant questions out of which
one asks about the presence of an object in the image (e.g. Are there apples?) and thus answering
“yes” yields the baseline of 50%, without necessarily capturing the nuance between whole apples,
sliced apples or thirds/quarters of an apple. Further methodological challenges related to evaluation
of models on this task are discussed in Appendix C.4.

6 Measuring What Counts: Challenges in Evaluation of Numerical Reasoning

Table 3: The ability of auto-metrics to dis-
criminate between correct and incorrect im-
age generations. (✓ indicates p < 0.05 using
Mann-Whitney U test)

CLIP TIFA Gecko DSG VNLI

DALL·E 3 = = ✓ ✓ ✓
Midjourney v6 = ✓ ✓ ✓ ✓
Imagen-C = ✓ ✓ ✓ ✓
Muse-B ✓ ✓ ✓ ✓ ✓
SD3 = ✓ ✓ ✓ ✓

We explore the utility of GECKONUM for two re-
lated areas of research, developing automatic evalu-
ation metrics and evaluating vision–language models
(VLMs) with respect to numerical reasoning

Evaluating auto-eval metrics. Developing metrics
that can reliably replace human evaluation is an ac-
tive area of research. In particular, a recent line of
work proposes auto-eval metrics for measuring text-
to-image alignment by using pretrained language
and/or VLMs [14, 15, 33, 9, 35]. Here, we eval-
uate such auto-eval metrics on their ability to capture
exact number generation by examining how well they distinguish between correctly and incorrectly
generated images for numeric-simple prompts containing small numbers (i.e. 1–4) in Task 1.

We consider five different auto-eval metrics: CLIPscore [14], a metric based on computing similarity
between the text and an image, question-answering (QA) based metrics such as TIFA [15], Gecko [33],
DSG [9], as well as VNLI [35], a metric fine-tuned to predict alignment between images and text. We
divide images generated by DALL·E 3, Midjourney v6, Imagen-C, Muse-B, and SD3 into two groups
each based on whether the image was generated correctly or not. Then, we statistically test whether
the distributions of scores in the two groups is identical. If there is a statistically significant difference
between the two distributions, and if the correct generations have a higher score, we mark that case
with a ✓ in Table 3. Gecko, DSG and VNLI are able to reliably distinguish between correct and
incorrect image generations for all models. Upon manual inspection of generated questions for each
QA method, we observed that Gecko and DSG generate similar questions, while TIFA occasionally
generates questions about concepts that do not exist in the prompt. Following the approach in [33],
we use a Wilcoxon signed-rank test to test whether there is a significant difference in average scores
between pairs of models for the same metric. Only VNLI and Gecko were able to correctly order
models in pairwise comparisons, in 8/10 and 7/10 cases, respectively. We also note that this analysis
is based on simple prompts which trigger simple questions and thus most of the heavy lifting in
performance of an auto-metric is delegated to the underlying VQA model.

Evaluating counting in vision-language models (VLMs). While counting is known to be chal-
lenging for VLMs, only a few datasets and benchmarks exist to train and evaluate VLMs on
counting [1, 29]. We explore if GECKONUM, which VLMs have never been explicitly trained
on, can be used as an evaluation task by curating a VQA benchmark. We evaluate the accuracy of
PaLIGemma [3], a state-of-the-art open-source VLM, on counting. Technical details about the setup
and more detailed results of experiments in this section are available in Appendix D.

Comparing the base PaLIGemma model to a checkpoint that has been fine-tuned for counting on
TallyQA (train) [1], we find that the fine-tuned model performs better (73.3±0.4%) on GECKONUM
when compared to the base model (68.4±0.4%). We observe that the base model already performs
well on small numbers (up to 4), but fine-tuning on another counting dataset (i.e., TallyQA) improves
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accuracy on higher counts ( ≥ 5), a pattern we also observe with GECKONUM. We also briefly
investigate the utility of GECKONUM as synthetic training data: we fine-tune base PaLIGemma on a
mixture of TallyQA (train) and images from all Imagen models, and evaluate it on TallyQA (test)
and Muse-B images (see Appendix D for setup details). We find that including Imagen data does
not significantly change performance on TallyQA (test) but vastly improves performance on Muse-B
(by more than 20 p.p. in some cases). This is still true when we test on a set of held-out Muse-B
classes that we removed from the Imagen fine-tuning data. These preliminary results highlight that:
1) training VLMs with synthetic data can improve results on other benchmarks; 2) there is great need
for more public high-quality datasets and benchmarks that evaluate counting and numerical reasoning.

7 Discussion and Conclusion

Most work on evaluation of text-to-image models uses generic prompts—manually written or har-
vested form the Web—as a starting point to generate images. For example, recent research has focused
on designing comprehensive prompt sets that measure text-to-image alignment [33, 15, 9, 16, 30, 13].

In this work, we propose GECKONUM, a benchmark that specifically focuses on measuring numerical
reasoning capacity through three tasks: (i) exact and (ii) approximate number generation, and (iii)
conceptual reasoning about quantities. We define various prompt types within these tasks to better
control for the effect of factors such as the context of the number in the sentence and the sentence
structure. We use GECKONUM to evaluate twelve different text-to-image models from five different
model families (DALL·E 3, Midjourney v6, Imagen, Muse and Stable Diffusion) by collecting human
annotations for the generated images. We find that DALL·E 3 has the highest overall accuracy on exact
and approximate number generation, while being the least impacted by some prompt manipulations
we investigate (e.g. numbers represented as words vs. digits, frequent vs rare words); however, its
performance on these tasks is still close to or under 50%. Depiction of approximate quantities and the
concept of zero was also a weak point in all models. For example, even DALL·E 3 would consistently
fail to correctly generate “a watermelon with no seeds” or “a cake with no candles”. We also find
that the task requiring reasoning about parts and fractions was challenging for all models as their
performance was close to the baseline.

We used GECKONUM to show that only some auto-eval metrics can reliably differentiate between
correct and incorrect images on simple numerical prompts—among metrics we tested, our preliminary
experiments show that VNLI [35] and Gecko [33] are the only two metrics capable of such differenti-
ation, including the ability to rank models in pairwise model comparisons. We also demonstrated
that our benchmark could be used to study and potentially improve the performance of pretrained
vision–language models on counting.

Our approach relies on human annotators to provide counts of objects in an image, as is often the gold
standard in evaluation of text-to-image models. However, such annotation process is laborious, costly
and does not scale. We expect that the rapid improvement of pipelines and frameworks for evaluation
of text-image alignment will reduce the need for manual annotation [10, 35, 13]. In addition, we
identified three important numerical capabilities for which we have manually designed human
annotation templates, but numerical cognition in humans spans a wide set of gradually developing
capabilities that might require additional evaluation templates. As discussed in Section 5.3, the design
of protocols for evaluation of more complex aspects of numerical reasoning remains an important
open challenge with rapid advancements in models.

Overall, our results indicate that the current text-to-image models do not form abstract representations
of numbers as their ability to reason about numbers is rudimentary: it is limited to depiction of exact,
small quantities in images, and models frequently fail to generate approximate quantities and zero.
We highlight the effectiveness of numerical reasoning as an open challenge in evaluation, since even
in the large-scale training regime, due to the large combinatorial space of numbers, it is challenging
to mitigate models’ weaknesses with more training data. Future modeling innovations—and not only
better training data—might be needed to improve model performance on numerical reasoning. Our
results show that most models are sensitive to the number representation in a given prompt (words vs
digits). This showcases another interesting challenge involved in evaluating for numbers: they can
occur in various formats (e.g., dates, phone numbers, or expressions such as “4k”) and representations.
Also, effective ways of tokenizing numbers, again due to the vast space of possible numbers, is an
open problem in language modeling [27] and an interesting direction for future research.
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