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Abstract

We aim to understand the optimal PAC sample complexity in multiclass learning.
While finiteness of the Daniely-Shalev-Shwartz (DS) dimension has been shown
to characterize the PAC learnability of a concept class [Brukhim, Carmon, Dinur,
Moran, and Yehudayoff, 2022], there exist polylog factor gaps in the leading term of
the sample complexity. In this paper, we reduce the gap in terms of the dependence
on the error parameter to a single log factor and also propose two possible routes
towards completely resolving the optimal sample complexity, each based on a
key open question we formulate: one concerning list learning with bounded list
size, the other concerning a new type of shifting for multiclass concept classes.
We prove that a positive answer to either of the two questions would completely
resolve the optimal sample complexity up to log factors of the DS dimension.

1 Introduction

Multiclass learning refers to the problem of classifying an input feature from a set (feature space) X
to a label in a set (label space) ) with || > 2 () can be infinite) [Natarajan, 1989, Ben-David et al.,
1995, Daniely and Shalev-Shwartz, 2014, Brukhim et al., 2022]. When || = 2, the problem is known
as binary classification. Multiclass learning has wide applications to various tasks in machine learning
including image classification [Rawat and Wang, 2017], natural language processing [Kowsari et al.,
2019], tissue classification [Li et al., 2004], etc. For theoretical analysis of multiclass learning, a
probabilistic setting is typically assumed, where all the feature-label pairs in the training sequence are
assumed to be independent and identically distributed (iid) samples from some distribution P over
X x Y. Then, the objective of the learner is to minimize the error rate of the output classifier under
the distribution P. A basic framework in the probabilistic setting is Probably Approximately Correct
(PAC) learning [Valiant, 1984]. Though the characterization of PAC learnability of a binary concept
class with the finiteness of its Vapnik-Chervonenkis (VC) dimension has been proved by Vapnik and
Chervonenkis [1968], the characterization of the multiclass PAC learnability remained open until
Brukhim et al. [2022] showed the equivalence between the PAC learnability of a concept class and
the finiteness of its Daniely-Shalev-Shwartz (DS) dimension (dim, see Definition 1.4) [Daniely and
Shalev-Shwartz, 2014] instead of Natarajan dimension or graph dimension.

However, the problem of establishing the optimal sample complexity or error rate (see Section 1.1 for
formal definitions) for multiclass learning remains unsolved. For binary concept classes, Hanneke
[2016] showed that the sample complexity is in ©((d + log(1/d))/e) where d is the VC dimension
of the concept class. Since DS dimension and VC dimension coincide for binary concept classes,
it is natural to ask if the sample complexity of a concept class H < Y% for |Y| > 2 is also in
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O((d + log(1/6))/e) where d = dim(H) is the DS dimension of . In terms of the upper bound, it
asks if there exists a multiclass learner whose worst case error rate is in O((d + log(1/0))/n) with
probability at least 1 — §, where n denotes the size of the training sequence. However, on the one
hand, an explicit proof of the Q((d + log(1/0))/e) lower bound on the sample complexity is still
missing in the literature. On the other hand, the current best upper bound on worst case error rate to

our knowledge is O ( (a2 log(d)+dlog(1°g(”))) log” (”)Hog(l/&)) [Brukhim et al., 2022], which differs
from the conjectured rate by the factor (log(log( )) + Vdlog(d))log?(n).

In this paper, we step forward towards improved sample complexity and error rate in multiclass
learning. As the concept class is fixed and the sample size increases during an online learning
process, we mainly focus on improving the error rate in terms of the sample size n. Specifi-
cally, for a concept class H = Y with dim(H) = d, we prove an ((d + log(1/4))/e) lower
bound on its sample complexity and construct a multiclass learner whose worst case error rate is
O((d®?log(d) log(n) + log(1/8))/n) with probability at least 1 — &, which implies that the sample

complexity of H is O(d * log(d) log(d/ €)+log(1/ 5)) Our results greatly narrow the gap between the
upper and lower bounds of the sample complexity and the error rate. The dependence of the upper
bound of the error rate on the sample size has also been improved from O(log(log(n)) log?(n)/n)
to O(log(n)/n) (treating d as a constant). The multiclass learner we construct builds upon a list
learner which predicts a list of labels for the test point (see Section 2.1 for a detailed introduction
to list learning). Actually, we prove a reduction from multiclass learning to list learning and upper
bound the error rate of the constructed multiclass learner with some function of the list size and the
expected error rate of the list learner (the probability of excluding the true label in the predicted list).
Moreover, the upper bound indicates that a list learner with size independent of n and expected error
rate scaling linearly in 1/n in terms of the sample size n would imply an O(1/n) error rate (treating
d as a constant). We leave the construction of such list learners an open question.

Furthermore, we also explore an alternative combinatorial approach towards improved sample
complexity in multiclass learning. For a concept class, we can define a hypergraph called the
one-inclusion graph [Haussler et al., 1994] on its projection to a finite sequence of features (see
Section 1.1 for definitions). Then, informally speaking, the “density” (defined through the average
degree of the one-inclusion graph) of a concept class can be used to upper bound the error rate of
multiclass learning [Daniely and Shalev-Shwartz, 2014, Aden-Ali et al., 2023]. Specifically, if we can
upper bound the density of any concept class H by a multiple of its DS dimension, then the sample
complexity is in O((dim(H) + log(1/4))/e), which matches the lower bound we prove. Thus, a
proof of the above upper bound directly leads to a ©((dim(#) + log(1/0))/e) sample complexity for
multiclass learning. When dim(#) = 1, we successfully prove the ©(log(1/4)/e) sample complexity
in Theorem 3.2. For general concept classes, we develop a technique named “pivot shifting” similar
to the shifting operator [Haussler, 1995] on concept classes. We show that if a pivot shifting does
not increase the DS dimension of a concept class, then its density is upper bounded by twice the DS
dimension. We leave the impact of pivot shifting on DS dimension as another open question.

Throughout the paper, we use N to denote the set of positive integers. For any n € N, we define [n] :=
{1,...,n}. For any sets X, ), sequence X = (11, ...,2,) € X", and function f € Y, we define
the subsequence x_; := (1,...,%Ti—1,Tit1,---,2Zp) fori € [n] and flx := (f(x1),..., f(xn)).
The projection of a set F' < Y to x is defined as F|y := {f|x: f € F'} < V™.

Outline In Section 1.1, we introduce the problem of multiclass learning and review some existing
results. In Section 1.2, we summarize the key points of our theoretical results. In Section 2, we
introduce list learning, present the reduction from multiclass learning to list learning, and improve
the sample complexity upper bound of multiclass learning via this reduction together with a boosting
technique for list learners. In Section 3, we prove the optimal sample complexity for classes of
DS dimension 1, introduce the intuition and the definition of “pivot shifting”, and demonstrate its
potential application to the proof of the optimal sample complexity of multiclass learning.

1.1 Multiclass learning

In this section, we formally introduce the problem of multiclass learning [Valiant, 1984]. For any
distribution P over X x Y, the error rate of a classifier h € ¥ under P is defined as

erp(h) := P({(z,y) € X x Y :y # h(x)}).
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In this paper, we focus on realizable distributions: for a concept class H = V¥, a distribution P over
X x Y is H-realizable if inf,ey erp(h) = 0. Let RE(#) denote the set of H-realizable distributions.
Besides, ((z;, ;) € (X x V)™ is H-realizable if 3h € H such that y; = h(z;), Vi € [n].
Definition 1.1 (Multiclass learner). A multiclass learner (or a learner) A is an algorithm which given
a sequence s € UX_(X x V)" and a concept class H = V¥, outputs a classifier A(s, H) € Y.

Then, we can define multiclass PAC learning as follows.

Definition 1.2 (Multiclass PAC learning). For any concept class H < Y%, the (PAC) sample
complexity M 43, : (0,1)? — N of a multiclass learner A is a mapping from (¢,8) € (0,1)* to
the smallest positive integer such that for any m = M 4 %/(e,d) and any distribution P € RE(H),
Pgpn(erp(A(S,H)) > €) < 0, and we define M 4 (e, 0) = 0 if no such integer exists. We say
H is PAC learnable by A if M 4 7(,0) < oo for all (¢,8) € (0,1)2. The (PAC) sample complexity
of H is defined as M(e, ) := inf 4 M4 3 (e, d) for any (¢,6) € (0,1)%

Sometimes it is easier to analyze the expected error rate
eanp:N—[0,1], n— Es.prlerp(A(S,H))] = Pis,x,y)~pr+1 (Y # A(S, H)(X))
for a learner A and distribution P over X x ), or transductive error rate

€A M wans - N — [0,1], n— sup L Do) A(ss 1) (1)

s=((z1,h(x1)),....(xn,h(zn)))E(X XY)":heH
We further define € 4,3 := SUPperE(2) EAH, P> EH = INf A €43, aNd €9y yrans 1= INf A € 4,24, trans-
By a leave-one-out argument [Brukhim et al., 2022, Fact 14], we observe that € 4 3y < € 4,74 trans-
Aden-Ali et al. [2023, Theorem 2.1] upper bounded the high probability error rate using the trans-
ductive error rate, which leads to a guarantee on PAC sample complexity. Based on their result, we
prove the same upper bound up to a multiplicative constant on the high probability error rate using
the expected error rate in Theorem 2.6.

Next, we define pseudo-cubes and DS dimensions of concept classes. Here, we also present their
extensions to the setting of k-list learning for future reference in Section 2.1.

Definition 1.3 (Pseudo-cube and k-pseudo-cube). For any d,k € N, a class H < Y is called a
k-pseudo-cube of dimension d if it is non-empty, finite, and for every h € H and i € [d], there exist
at least k i-neighbors of h in H, where g is an i-neighbor of h if g(i) # h(i) and g(j) = h(j) for all
j € [d]\{i}. A pseudo-cube of dimension d is a 1-pseudo-cube of dimension d.

Definition 1.4 (DS dimension and k-DS dimension, Charikar and Pabbaraju 2023). Forany d,k € N,
we say x € X% is k-DS shattered by H < Y if H|x contains a d-dimensional k-pseudo-cube. The
k-DS dimension dimy,(H) of H is the maximum size of a k-DS shattered sequence. We say X is DS
shattered by H if it is 1-DS shattered by H. The DS dimension dim(H) of H is defined as dim(H).

Now, we introduce some existing results in multiclass learning. Brukhim et al. [2022] proved that
a class H < Y is PAC learnable if and only if d := dim(#) < o, and there exists a multiclass
learner .A which for any P € RE(H),d € (0,1),n € N, and S ~ P", satisfies that with probability
atleast 1 — 0,

erp(.A(S, H)) -0 ((d3/2 log(d)+d10g(log(n)))10g2(n)+10g(1/5)) ’ (1

n

which is also the best upper bound before this paper to our knowledge. In terms of lower bound, it
follows from Charikar and Pabbaraju [2023, Theorem 6] that £4,(n) = € (d/n). Thus, the current
upper and lower bounds of the expected error rate does not match. Moreover, a potentially sharp
lower bound on the sample complexity M is still missing.

The learner A in Brukhim et al. [2022] relies on orienting the one-inclusion graphs defined below as
a building block.
Definition 1.5 (One-inclusion graph, Haussler et al. 1994). The one-inclusion graph (OIG) of
H < Y™ forn € Nis a hypergraph G(H) = (H, E) where H is the vertex-set and E denotes the
edge-set defined as follows. For any i € [n] and f : [n]\{i} — Y, we define the sete; y :== {h € H :
h(j) = f(j), Vj € [n]\{i}}. Then, the edge-set is defined as

E:=A{(eis,i) zi€[n], f:[n]\{i} >V, e # T}
For any (e; f,i) € E and h € H, we say h € (e; ¢,1) if h € e; s and the size of the edge is
[(eig,9)] == leizl-
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Typically, we consider the one-inclusion graph of the projection of a concept class H < Y% to a
sequence x € X™ withn € N, i.e., G(H|x). The “density” of H discussed in Section 3 is defined via
the “maximal average degree” (defined below) of the hypergraph G(H|x).

Definition 1.6 (Degree and average degree). For any hypergraph G = (V, E) and v € V, we define
the degree of v in G to be deg(v; G) := |{e € E : v € e, |e| = 2}|. When the underlying graph is
clear in the context, we simply write deg(v) in abbreviation. If |V | < o0, we can define the average
degree and average out-degree of G to be

avgdeg(G) = (77 X,ey deg(v; G) = [y Yeep.jej>2 el and avgoutdeg(G) := 77 X cp(lel — 1),
For general V, we can define the maximal average degree of G to be md(G) :=

SUPycy . |u| <o avedeg(G[U]), where G[U] = (U, E[U]) denotes the induced hypergraph of G

onUcVwithE[U]:={enU:e€E,enU # J}.

Note that for finite graphs, the average out-degree does not depend on the choice of orientation on G.
Moreover, since |e| = 2 for all ¢ € E,,, we have

avgdeg(G) = (77 Xeepjez2 el < 17 Zeer 2(e] — 1) = 2avgoutdeg(G). )
Now, we can define the density of a concept class as follows.
Definition 1.7. The density of H < Y is defined as ji3,(m) := supye ym md(G(H|x)), Vm e N.

1.2 Main results

In this section, we summarize the key points of our theoretical results. The full versions of some
results are stated in Section 2 and 3. We first need the following definition to rule out trivial concept
classes for which one training point suffices to achieve zero error rate under any realizable distribution.

Definition 1.8 (Nondegenerate concept class, Hanneke et al. 2023). A concept class H € Y7V is
called nondegenerate if there exist h1,hy € H and xo,x1 € X such that hi(xg) = he(xo) and
hi(x1) # ho(x1). H is called degenerate if it is not nondegenerate.

Our main result on the multiclass PAC sample complexity is as follows.

Theorem 1.9 (Partial summary of Theorem 2.5 and 2.11). For any nondegenerate concept class
H < Y™ withdim(H) = d and any (¢, ) € (0,1)2, we have

Q((d + 10g(1/6))/) < Mu(e,8) < O((d*? log(d) log(d/<) + log(1/5)/e). (3

Our upper bound follows from a reduction to list learning and an improved sample complexity for
list learning summarized below.

Theorem 1.10 (Informal summary of Theorem 2.7 and 2.10). Assume that there exists a list learner
which given a concept class H with dim(H) = d and training sequence of size n € N outputs a menu
of size p(H,n) with expected error rate upper bounded by 3(H,n)/n for some functions p and
nondecreasing in n. Then, there exists a multiclass learner whose error rate is

O((B(H,n) + dlog(p(H,n)) + log(1/6))/n) with probability at least 1 — 4.

Moreover, there exists a list learner satisfying p(H,n) = O((e\/a)‘/glog(n)) and f(H,n) =
O (d*?log(d) log(n)).

We refer readers to Section 2.1 for detailed definitions regarding list learning. Note that if p(#,n)
and B(H,n) of some list learner is independent of n, there exists a multiclass learner with error rate
linear in 1/n. We leave the establishment of such list learners as Open Question 1.

In addition to the above approach, we propose an alternative route toward obtaining the conjectured
O((d + log(1/4))/e) sample complexity, by directly bounding the average degrees of one-inclusion
graphs. In particular, we show in Theorem 3.2 that any H with dim(#) = 1 has My (e,d) =
©(log(1/6)/e), which was not previously known. Moreover, we approach the general case via a new
technique we call “pivot shifting”. Specifically, we obtain the following result, which relies on an
assumption on such pivot shifting. The verification of this assumption is left as Open Question 2.

Proposition 1.11 (Informal summary of the results in Section 3). Assume that for any finite concept
class, there exists a pivot shifting such that the DS dimension of the concept class does not increase
after the pivot shifting, then we have My, (e,8) = © ((dim(H) + log(1/6))/¢e) for any H < Y*.
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2 Multiclass learning via list learning

In this section, we prove a reduction from multiclass learning to list learning in Section 2.2. We
improve the existing list learners using boosting in Section 2.3. Then, using a boosted list learner and
the reduction, we improve the multiclass learning sample complexity upper bound in Section 2.4. We
first present some definitions and results of list learning in Section 2.1.

2.1 List learning

In list learning, the menus defined below serve as classifiers in multiclass learning.

Definition 2.1 (k-menu, Brukhim et al. 2022). A menu of size k € N is a function i : X — {Y <
YV : Y| < k}. A 1-menu can be viewed as a classifier in Y, and vice versa.

For any distribution P over X’ x Y, the error rate of a k-menu p under P is defined as erp(u) :=
P({(x,y) e X x Y :y ¢ u(x)}) which agrees with the definition of the error rate of classifiers when
the size of the menu is 1.

Definition 2.2 (k-list learner). A list learner A of size k € N is an algorithm which given a sequence
s€ UX_ (X x V)" and a concept class H = Y, outputs a k-menu A(s,H). A 1-list learner can
be viewed as a multiclass learner, and vice versa.

Similar to multiclass learners, the expected error rate of a list learner A is defined as
ean,p:N—[0,1], n— Es<pnlerp(A(S, H))] = Ps,x,y)~pr1 (Y ¢ A(S, H)(X))

for any concept class H € V¥ and distribution P over X x ). Restricting to realizable distributions,

we can define
can = sup eapp and &f = inf  ean.
PeRE(H) i k-list learners A

Next, we define list PAC learning.

Definition 2.3 (List PAC learning, Charikar and Pabbaraju 2023). For any concept class H < Y~
and k € N, the (PAC) sample complexity M 4 3, : (0,1)?> — N of a k-list learner A is a mapping
from (g,8) € (0,1)? to the smallest positive integer such that for every m = M 4 (e, ) and every
distribution P € RE(H), Pspn(erp(A(S,H)) > €) < §, and we define M 4.31(¢,0) = oo if no
such integer exists. We say H. is k-list PAC learnable by A if M 4 3(¢,8) < oo for all (¢,6) € (0,1)%
The k-list (PAC) sample complexity of H is defined as M%(s, 0) := inf st teamner A M4 7 (€, 0) for
any (g,6) € (0,1)2

Note that  is PAC learnable by a learner A if and only if # is 1-list learnable by A, and the PAC
sample complexity of H is My = M3,. For list PAC learning, it was proved by Charikar and
Pabbaraju [2023] that a concept class H is k-list learnabale if and only if dy, := dimy(#) < oo, and
there exists a k-list learner A* which for any P € RE(H), 6 € (0,1), n € N, and S ~ P", satisfies
that with probability at least 1 — 6,

erp(A*(S,H)) = O (kﬁdk(mmdmmg(k1og(n)))log2(n)+1og(1/6>) . @)

n

For the expected error rate, the lower bound €%,(n) = € (dx/(kn)) has been proved in Charikar and
Pabbaraju [2023, Theorem 6]. However, a lower bound of the same order on the k-list PAC sample
complexity is still missing in the literature. To establish a lower bound, we also need to rule out trivial
classes in list learning. In analogy to Definition 1.8, we define k-nondegeneracy as follows.

Definition 2.4 (k-nondegenerate concept class). A concept class H € Y is called k-nondegenerate
for k € N if there exist hy, ..., hy11 € Hand xo, x1 € X such that |{hj(zo) : j € [k +1]}| = 1 and
{hj(z1) : je [k + 1]} = k+ 1. H is called k-degenerate if it is not k-nondegenerate.

We claim that only one training point is sufficient for the k-list learning of a k-degenerate concept
class 7. Indeed, H is k-list learnable if || < k. Now, suppose that || > k + 1 and is k-degenerate.
Upon observing any point (z',y') € X x ) realizable by H, if |[{h € H : h(a’) = y'}| < k, then
x— {h(z): h e H,h(z') = y'} is a k-menu which always contains the correct label. If [{h € H :
h(z') = y'}| = k + 1, then, for any z € X\{2'}, we must have [{h(z) : h € H,h(z") = y'}| <k
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because otherwise H is k-nondegenerate. Then, 2 — {h(x) : h € H,h(z') = y'} is a k-list which
always contains the correct label.

Now, we are ready to present the following lower bound on the k-list PAC sample complexity.
Theorem 2.5. For any k € N, k-nondegenerate concept class H < Y% with dimj,(H) = dy € N,

€€ (0, m) and § € (O, ﬁ) we have /\/lé“_[(s, 0) = (dk—1)1106g((}€23r-&1-;1610g(1/5). In particular,
when k = 1, for any € € (0,1/16) and 6 € (0, 1/8), we have
MH(57 6) > (dim(?{)fl)133(62)+410g(1/6) . (5)

The proof of Theorem 2.5 is presented in Appendix A where we construct hard distributions based on
properties of k-pseudo-cubes.

2.2 Reduction from multiclass learning to list learning

We first introduce the theorem that provides a guarantee on PAC sample complexity based on expected
error rate, which will be used frequently in our analysis.

Theorem 2.6. Fix a concept class H = Y and consider a learner A which satisfies € 4 3, p(n) <
M, /n for any n € N and P € RE(H) with M,, nondecreasing in the sample size n. Then, there
exists a learner A’ such that for any P € RE(H), § € (0,1), n > 4, and the training sequence
S ~ P™, with probability at least 1 — 0, we have

erp(A'(S,H)) < 4.82- (8.34M|,, 2 + log(2/9))/n.

The proof of Theorem 2.6 is provided in Appendix B. Now, we consider general list learners whose
sizes may depend on the sample size. The theorem below states our reduction to list learning.

Theorem 2.7. Assume that there exists a list learner Ay which for any H < Y¥ De RE(H),
neN, and S ~ D", outputs a menu Ayst (S, H) of size p(H,n) satisfying € o, u.p < B(H,n)/n
for some function 3 : 2Y" x N — [0, 00). Without loss of generality, we assume that p(H,n) and

B(H,n) are nondecreasing in n. Then, there exist multiclass learners Ayeq (see Algorithm 1) and
AL q which for any concept class H of DS dimension d, D € RE(H), 0 € (0,1), and n > 4, satisfy

Edvea .0 (1) = O ((B(H,n1) + dlog p(H,n1))/n)
where ny :=n — 2|n/3|, and for S ~ D", with probability at least 1 — §,
erp(Aleq (S, 1)) = O ((B(H, n1) + dlogp(H, 1) + log(1/6))/n) . (©)

The proof of Theorem 2.7 is presented in Appendix C. Note that the order of the error rate upper
bound of the constructed multiclass learner is not smaller than that of the original list learner in the
above theorem. Thus, the list learner A* of size k € N developed in Charikar and Pabbaraju [2023]
cannot lead to an improved error rate of multiclass learning using our current result. The construction
of Aeq from Ay is shown in Algorithm 1.

Algorithm 1: Multiclass learner A,.q using a list learner Aj;;

Input: List learner A);5¢, concept class H < Y, training sequence
S =((z1,y1)s- -+ (Tn,yyn)) € (X x V)" for n > 3, test feature z,,11 € X.
Output: A label y € ) for the feature x,, 1.
ny <—n—2|n/3|, n2 < |n/3|;
St ((miayi))ie[nl]’ 52 — ((Sﬁi,yi))?:nﬁp X — ($n1+1,~-~,$m$€n+1);
ﬁ — Alist(sl7 H)a N « Z(m,y)esz ]ly$ﬁ(x)’
Hy «— {hly :he H,|{ie[n+1\[n1]: h(z;) ¢ f(x:)} < N + 1}
Sample (11, ..., I,,) ~ Unif([2ns])"2;
h <« Ag(T, ”HX/)Awhere T ((Ij, yIj+n1))je[n2];
return the label A(2ny + 1).

A N R W N =

~

In step 6 of Algorithm 1, A is a multiclass learner defined in Proposition H.5 in the appendix.
Moreover, we prove in Proposition H.5 that for any D € RE(H), n e N, § € (0,1), and S ~ D™,
with probability at least 1 — §, we have

erp(Ac(S,H)) = O ((dima(H) + log(1/5)) /n)
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where dim¢g (#) is the graph dimension [Natarajan and Tadepalli, 1988] of H (see Definition H.1 in
the appendix). The above bound for classes of finite graph dimensions is also novel in the literature.

We briefly comment on the analysis of Algorithm 1. We first apply the list learner to the first third of
the training samples to obtain the menu /i. Then, we count the number of errors (/N) made by i in
the last two thirds samples. Then, we consider Hy which is a subset of H| such that the number
of errors on x’ is bounded by N + 1. We show in Lemma H.9 that dimg (Hy ) is well controlled.
However, as we do not observe the label of the test point, we can only consider resampling from
elements in S? as the new training sequence fed to Ag together with the concept class Hy . Thus,
there still exist great challenges of upper bounding the error probability for the test point that will
never be sampled. We need to emphasize that the standard leave-one-out argument [Brukhim et al.,
2022, Fact 14] cannot be directly applied as the definition of NV that determines 7, only depends on
5?2 but not the test point (X, 41, Y,4+1). We tackle this challenge by proving that some permutation
of the error event together with the constraint on correctness of /i on the last two points in X’ when
leaving the last element (i.e., the test point) out is a subset of the error event when leaving the previous
element (i.e., the point in S?) out. The details of the proof is presented in Appendix C.

2.3 Sampled boosting of list learners

We now build a list learner whose invocation to Theorem 2.7 yields the upper bound in Theorem
1.9. Brukhim et al. [2022, Lemma 39] proposed a list sample compression scheme of size r =
O(d*?1og(n)) for concept classes of DS dimension d and sample size n. One can show that its error
rate is O ((rlog(n/r) + log(1/6))/n) using standard techniques for sample compression schemes
[David et al., 2016], which however brings the extra log factor log(n/r). Recently, da Cunha
et al. [2024] proposed stable randomized sample compression schemes for binary classification
whose generalization does not induce the extra log factor in n and used this framework to analyze a
subsampling-based boosting algorithm for weak learners. Motivated by its success, we extend their
boosting algorithm [da Cunha et al., 2024, Algorithm 1] for multilclass list learners in Algorithm
2. Before presenting the algorithm, we first need to define the majority vote of menus. For K € N
menus pi1, .. ., ix each of size p, we define their majority vote to be ;1 = Maj(u1, . .., i) with

(@) = Maj(pn, ..., (@) = {y € V' [{k € [K] : y € p()}] > K2}, Var e X,

Note that i has size 2p — 1. For p = 1, the above definition recovers the majority vote of classifiers.

Algorithm 2: Sampled boosting Ay,q0st Of a list learner Aj;gq

Input: List learner A);5¢, concept class H < V¥, training sequence
S={(z1,91), -, (@n,yn)} € (X x V)", 7€ (0,1/2), v € (0,v/18],0 € (0, 1).
Output: Menu pu.
fori=1,...,ndo
| Di({(wi,90)}) < 1/n;

a — zlog (1 +7)/(1 7)), m «— My, n(1/2 = 7,v), K < [4log(n/d)/7];
fork=1,...,Kdo

Draw m samples S ko~ D

e — At (S, H);

fori=1,...,ndo

| Drs1({(@i,90)}) < Di({(zi, y)}) exp (—a (2Ly,ep (o) — 1))
Diy1 < Diy1/ (21;1 Dy ({(xi,y:)}) exp (—a (2lyi€uk(ri) - 1)));

return ;o — Maj ((pk) ke[x])-

Here, v and v are fixed constants, enabling us to invoke weak list learners (of constant error and
confidence levels) to Algorithm 2. Next, we upper bound the error rate of the boosted list learner.

Theorem 2.8. Assume that Ay is a list learner with M 4., 11(1/2 — v,v) < oo for some 7y €

(0,1/2) and v € (0,~/18]. Then, for any D € RE(H), n € N, and 6 > 0, sampling S ~ D", with

probability at least 1 — 6, the menu u produced by Aypoosy using Auisy in Algorithm 2 satisfies that
erp(p) = O (MAliSt,H(l/Q*'Y’V) 10g(n/5)) '

yn
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The proof of Theorem 2.8 is a generalization of the proof of da Cunha et al. [2024, Theorem 1.1] and
is presented in Appendix D together with the proofs of other results in this section. Since multiclass
learners are list learners of size 1, we can also boost multiclass learners using Algorithm 2. For
instance, invoking the multiclass learner in Brukhim et al. [2022, Theorem 1] to Algorithm 2 and
applying Theorem 2.6, we achieve the following sample complexity in multiclass learning.

Corollary 2.9. There exists a multiclass learner A with € 4 3(n) = O(w) and

Man(e,d) = O(dg/2 log”(d) logs(d/e)ﬂog(l/é))for anyn €N, (g,6) € (0,1)2, and H < Y™ with
dim(H) = d.

There is an extra log(d) factor in the above upper bound compared to that in Theorem 1.9, which
explains the reason of routing through list learning with our reduction in Theorem 2.7: the list
sample compression scheme in Brukhim et al. [2022] saves a log(d) factor compared to their
sample compression scheme. Therefore, we invoke their list sample compression scheme as A} to
Algorithm 2 and build a list learner whose error rate depends on only one log factor in both n and d.

Theorem 2.10. There exists a list learner Ay, which for any H < Y% with dim(H) = d and sample
size n € N outputs a menu of size 0((6\/@*/3 log(n)) with € 4, 3(n) = O(w).

2.4 Improved upper bounds on sample complexity

Applying the list learner Ay, in Theorem 2.10 to our reduction, Theorem 2.7 immediately implies the
following result.

Theorem 2.11. There exists a multiclass learner Ay such that for any H < y¥ of DS dimension
d, DeRE(H), € (0,1),n>d+ 1, and S ~ D", with probability at least 1 — 0§, we have

3/2 o og(n °
erp(Amuii (S, H)) = O (d log(d) log(n)+1 g(l/é)) , -

n

which implies that

M w8 =0 (d3/2 log(d) 10g(d/6)+log(1/5)) Ve, 8 € (0,1) 8)
multi, ’ £ ’ ) ) .

Furthermore, if there exists a list learner Agooqiist Of size fi(d) and expected error rate
€ Agooaner, (1) < fa(d)/n for some functions fi : N — Nand fo : N — [0,00), then, there
exists a multiclass learner Ay, such that

M 1(:0) = O ((dlog(f1(d)) + f2(d) +log(1/6))/e) , Ve, 6 € (0,1). ©)

The proof of Theorem 2.11 follows directly from Theorem 2.7 and Theorem 2.10 and is provided
in Appendix E. Moreover, observing that dimy(H) > dimy () for k < k', our requirement on
Agoodiist does not violate the lower bound in Charikar and Pabbaraju [2023, Theorem 6].

Compared to the upper bound (1) by Brukhim et al. [2022], (7) improves the dependence of the
error rate on the sample size n from O (log(log(n)) log?(n) /n) to O (log(n)/n), which steps further
towards the goal of O(1/n) expected error rate (treating the DS dimension as a constant). Combining
(5) and (8), we arrive at (3) where the gap has been improved to the factor v/dlog(d)log(d/e).
However, we are not aware of any existing list learner satisfying the requirements of Agoodiist in
Theorem 2.11. Thus, we leave the construction of Agqodiist @S an open question.

Open Question 1. Does there exist a list learner such that given a concept class H < Y7, its
size is f1(dim(H)) and its expected error rate is € a,,_, 31(n) = f2(dim(H))/n for some functions
fi:N—>Nand fo : N —[0,00)?

Ideally, we would expect a list learner with size O(dim(?)) and expected error rate O(dim(#)/n)

as it immediately implies an upper bound My (g,4d) = O((dim(H) log(dim(H)) + log(1/6))/e)
which matches the lower bound in (5) up to the factor log(dim(#)).

3 Density, DS dimension, and pivot shifting

We now introduce an alternative route toward proving the optimal sample complexity of multiclass
PAC learning: bounding the density p3; : N — [0, c0) (Definition 1.7) of concept classes H. The
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following proposition summarizes existing results that illustrate the role of density in multiclass
learning.

Proposition 3.1 (Daniely and Shalev-Shwartz 2014, Charikar and Pabbaraju 2023, Aden-Ali et al.
2023). For any H < Y and n € N, we have

125 (n)/(2€n) Sen < EH trans < UH (n)/n (10)

Assume that p134(n) < f(dim(H)) for some function f : N — [0,00) and all n € N. Then, there
exists a learner A based on orienting the one-clusion graph (Definition 1.5) of the projected concept
class (see Aden-Ali et al. [2023, Appendix A] for the formal definition of the algorithm) with sample

complexity M 4 3(g,9) = O(ww‘or alle, 5 € (0,1)."

In Proposition 3.1, the first inequality of (10) follows from Charikar and Pabbaraju [2023, Theorem
6], the last inequality of (10) follows from Daniely and Shalev-Shwartz [2014, Theorem 2], and
the last paragraph follows from Aden-Ali et al. [2023, Theorem 2.2]. Thus, for sharper multiclass
sample complexity, it suffices to bound the density of a concept class with some functions of its
DS dimension. Furthermore, by Definition 1.7 and (2), it suffices to bound the average out-degree
(Definition 1.6) of finite one-inclusion graphs. In fact, it has been conjectured that p (n) < c-dim(#H)
for some constant ¢ > 0 [Daniely and Shalev-Shwartz, 2014] and the question remained open since
then. A positive resolution of this conjecture would immediately imply that the My (g,0) =
© ((dim(H) + log(1/d))/n) by Proposition 3.1 and Theorem 2.5. It is worth mentioning that for
H < {0,1}, Haussler et al. [1994] proved that p13¢ < 2dim(#) (for binary classes, the DS dimension
is the VC dimension), which also motivates the above conjecture. In this paper, we confirm the above
conjecture for concept classes of DS dimension 1.

Theorem 3.2. Forany H < V¥ withdim(H) = 1, we have ji3(n) < 2, ¥n € N. Thus, My(e,8) =
O (log(1/d)/e) for any positive €, € O(1) and any H with dim(H) = 1.

The above theorem follows from the following fact we prove for one-inclusion graphs of DS dimension
1 concept classes. The proofs of Theorem 3.2 and Proposition 3.3 are presented in Appendix F.

Proposition 3.3. For anyn € Nand V,, € V" with |V,,| < o0 and dim(V,,) = 1, there exists no
cycle (see Definition 3.4) in the one-inclusion graph G(V,,) (see Definition 1.5).

Definition 3.4 (Cycle in finite hypergraph). A cycle of length m € N\{1} in a finite hyergraph
G = (V, E) consists of pairwise different vertices v°, ..., vt € V and pairwise different edges
e, ..., em Y e E such that v7 ,vU+Y) modm ¢ i forall 0 < j < m — 1.

We prove Proposition 3.3 by contradiction and analyzing different cases of the cycle. However, it is
hard to extend such result to classes of higher DS dimensions. For general concept classes, motivated
by the proof for binary classes [Haussler et al., 1994, Lemma 2.4], we also consider proving by
induction on the size of the sequence the class projects to. Though the analysis for binary classes
does not apply to general concept classes, we discover that the analysis in the induction step proceeds
seamlessly for some special concept classes where a common label which we call a “pivot” exists for
each edge in the last dimension of size greater than 1 in its one-inclusion graph. Before summarizing
this result in Lemma 3.6 below, we first introduce the definition of a “pivot” formally.

Definition 3.5 (Pivot of finite concept class). For any n € N\{1} and V,, € V", we define

m(vn) ‘= Yye Yye\{y} {(ylv s 7yn—1) € yn71 : (y17 ce 7yn—17y)3 (ylv s 7yn—1ay,) € Vn} :

Then, a € ) is said to be a pivot of Vy, if (y1,---,Yn—1,0) € Vi, for any (y1,...,yn—-1) € B(V,).
We emphasize that when B3(V,,) = , every a € Y is a pivot of V,.

Then, we can present Lemma 3.6 whose proof is provided in Appendix G.

Lemma 3.6. Assume that for some n € N\{1}, any d € N, any m € [n — 1], and any H < Y™ with
dim(H) < d and |H| < o, we have avgoutdeg(G(H)) < d. Consider an arbitrary set V,, < Y"
such that |V,,| < oo and dim(V,,) < d. If V,, has a pivot, then we have avgoutdeg(G(V,,)) < d.

"In Aden-Ali et al. [2023, Section 2.4], the label space considered is finite. However, extending the
compactness argument in Brukhim et al. [2022, Appendix B], we can prove that there exists an orientation of the
hypergraph with its maximum out-degree upper bounded by the ceiling of the density even when the graph is
infinite, which implies that the above sample complexity of the learner A still holds for infinite label spaces.
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Though it only works for special classes, Lemma 3.6 can serve as a building block in the induction
step for the proof of avgoutdeg(G(#H)) < dim(#H) for finite H S U,en)™. Moreover, the base
case n = d + 1 has been verified in Brukhim et al. [2022, Lemma 13]. Consequently, it suffices
to extend the induction step for concept classes without a pivot. With Lemma 3.6, it is natural to
consider modifying the concept class to create a pivot for it while at the same time preserving the
DS dimension of the modified class nonincreasing. The technique used here is similar to shifting
[Haussler, 1995, Brukhim et al., 2022], though we do not shift the whole edge “downwards” but only
shift the last label in some vertex of the edge to a candidate pivot. The difference is necessary, as
it has already been shown that the DS dimension of a concept class can increase after the standard
shifting [Brukhim et al., 2022, Example 19]. Thus, we name the technique used here “pivot shifting”.

Definition 3.7 (Pivot shifting). For anyn € N\{1}, a € Y, and V,, < Y™ with |V,,| < w, we define

;‘BGU/H) ‘= Uyey {(yla s aynfl) € ynil : (yla <oy Yn—1, y) € Vn’ (yla sy Yn—1, a) ¢ Vn} .
Foranyy = (y1,...,Yn—1) € Pa(Vy) and the edge (en y,n) in G(V,), we define the set

Ly = {y € y: (yla s 7yn717y) € (en,yan)}'

A mapping v : Bo(Vs,) — Y is called a pivot shifting on 'V, to a if y(y) € Ly for all y € Bo(V3,).
Let T, v, denote the set of all pivot shifting on 'V, to a. For any v € I, v, , we define

V)= (Ve \{(y;7(¥)) : y € Ba(V)}) v {(y,a) 1y € Ba(Va)};
i.e., Vi, 4 is obtained by replacing the label v(y) in (y,y(y)) with a for all y € Bo(Vy,).

We prove that the average out-degree does not decrease after pivot shiftings in the following lemma.
Lemma 3.8. Foranyae Y,V € UL V" with |V| < oo, and v € Ty v, we have

avgoutdeg(G(V"7)) = avgoutdeg(G(V)).

The proof is presented in Appendix G. A key observation for the proof is that by definition, only
edges of sizes greater than one contribute to the average out-degree. However, we are not able to
show that the DS dimension does not increase after some pivot shifting, which we leave as an open
question. Thus, whether pivot shifting is applicable to upper bounding density with DS dimension
remains open.

Open Question 2. For any d € Nand any V < U}_; V" with |V| < o0 and dim(V') = d, are
there some a € Y and y € Ty such that dim(V7) < d?

Nevertheless, we have taken a further and specific step toward the verification of the conjecture
that s < 2dim(H): a positive resolution of the above question would lead to the conclusion that
py < 2dim(H) by Lemma 3.6, Lemma 3.8, and Brukhim et al. [2022, Lemma 13].

Acknowledgments and Disclosure of Funding

Shay Moran is a Robert J. Shillman Fellow; he acknowledges support by ISF grant 1225/20, by BSF
grant 2018385, by Israel PBC-VATAT, by the Technion Center for Machine Learning and Intelligent
Systems (MLIS), and by the the European Union (ERC, GENERALIZATION, 101039692). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

References

I. Aden-Ali, Y. Cherapanamjeri, A. Shetty, and N. Zhivotovskiy. Optimal pac bounds without
uniform convergence. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 12031223, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society.
doi: 10.1109/FOCS57990.2023.00071. URL https://doi.ieeecomputersociety.org/10.
1109/F0CS57990.2023.00071.

S. Ben-David, N. Cesa-Bianchi, D. Haussler, and P. Long. Characterizations of learnability for classes
of {0, ..., n}-valued functions. Journal of Computer and System Sciences, 50:74-86, 1995.

https://doi.org/10.52202/079017-1356 42807


https://doi.ieeecomputersociety.org/10.1109/FOCS57990.2023.00071
https://doi.ieeecomputersociety.org/10.1109/FOCS57990.2023.00071

S. Bendavid, N. Cesabianchi, D. Haussler, and P.M. Long. Characterizations of learnability for classes
of {0, ..., n}-valued functions. Journal of Computer and System Sciences, 50(1):74-86, 1995. ISSN
0022-0000. doi: https://doi.org/10.1006/jcss.1995.1008. URL https://www.sciencedirect.
com/science/article/pii/S0022000085710082.

Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff. A characterization
of multiclass learnability. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 943-955. 1IEEE, 2022.

Moses Charikar and Chirag Pabbaraju. A characterization of list learnability. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1713-1726, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399135. doi:
10.1145/3564246.3585190. URL https://doi.org/10.1145/3564246.3585190.

Arthur da Cunha, Kasper Green Larsen, and Martin Ritzert. Boosting, voting classifiers and random-
ized sample compression schemes. arXiv preprint arXiv:2402.02976, 2024.

Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In Conference on
Learning Theory, pages 287-316. PMLR, 2014.

Ofir David, Shay Moran, and Amir Yehudayoff. Supervised learning through the lens of
compression. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/
59f51£d6937412b7e56dedlea2470c25-Paper . pdf.

S. Hanneke. The optimal sample complexity of PAC learning. Journal of Machine Learning Research,
17(38):1-15, 2016.

Steve Hanneke, Shay Moran, and Qian Zhang. Universal rates for multiclass learning. In The Thirty
Sixth Annual Conference on Learning Theory, pages 5615-5681. PMLR, 2023.

D. Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-
Chervonenkis dimension. Journal of Combinatorial Theory A, 69(2):217-232, 1995.

D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on randomly drawn points.
Information and Computation, 115(2):248-292, 1994.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes, and
Donald Brown. Text classification algorithms: A survey. Information, 10(4):150, 2019.

Tao Li, Chengliang Zhang, and Mitsunori Ogihara. A comparative study of feature selection and
multiclass classification methods for tissue classification based on gene expression. Bioinformatics,
20(15):2429-2437, 2004.

B. K. Natarajan. On learning sets and functions. Machine Learning, 4:67-97, 1989.

Balas K Natarajan and Prasad Tadepalli. Two new frameworks for learning. In Machine Learning
Proceedings 1988, pages 402-415. Elsevier, 1988.

Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
comprehensive review. Neural Computation, 29(9):2352-2449, 2017. doi: 10.1162/neco_a_00990.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, November
1984.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Proc. USSR Acad. Sci., 181(4):781-783, 1968.

42808 https://doi.org/10.52202/079017-1356


https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://doi.org/10.1145/3564246.3585190
https://proceedings.neurips.cc/paper_files/paper/2016/file/59f51fd6937412b7e56ded1ea2470c25-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/59f51fd6937412b7e56ded1ea2470c25-Paper.pdf

A Lower bound

Before proving Theorem 2.5, we first introduce two lemmas regarding k-pseudo-cubes that will be
used in the proof.

Lemma A.1. For any positive integers k,d, any label class Y, any k-pseudo-cube H < V¢ of
dimension d, any j € [d], and any label y € Y, define i) := {h € H : h(j) = y}. Then, we have

o H]

H)| < ——.

|| kE+1

Proof. When d = 1, the result follows trivially from the definition of k-pseudo-cubes. We prove the
result for d > 2 by contradiction. Suppose on the contrary that there exist some j € [d] and y € Y
such that |HJ| > % The definition of pseudo-cubes implies that | H| > k + 1. Then, there exist
h,h' € H; with h # B'. Let {f1,..., fx} and {f1, ..., f.} denote the set of j-neighbors of h and
h' in H respectively. Since h # h' and h(j) = y = h/(j), there exists some ;' € [d]\{j} such that
h(y") # R'(j"). It follows that f;(j') = h(j') # h'(j') = f/(j’) and thus f; # f] for any 7,1 € [k].
Then, we have

heH:h > k|H)| > —
[{he H:h(j) # y}l = klH]| > 7
and
[H| = [{he H:h(5) # y}| + [H;| > |H],
which is a contradiction. Thus, we must have |HZ| < % O

Lemma A.2. Foranyintegerk >1,d>2,ne[d—1],and1 < j1 < -+ < j, < d, any label class
Y, any k-pseudo-cube H < Y% of dimension d, and any hypothesis g € H, define J := (j1,...,7,)
and K = (ky1,..., kg—n) suchthat 1 < ky < - < kq_p < dand {j1,...,5n k1, -, ka—n} = [d].
Then, Hy y := {h|c : h € H,h(j;) = g(j;), Vi € [n]} is a k-pseudo-cube of dimension d — n.

Proof. Forany f € H, j, there exists some h € H such that f = h|k. Then, for any ¢ € [d—n], there
exists k distinct hy, ..., hy € H such that h,, (k;) # h(k;) and h,,, (1) = h(l) forall [ € [d]\{k;} and
m € [k]. Since k; ¢ {j1,...,jn}, we have h|y = hp,|y = gy and thus f,,, := h,, |k € Hy,y for all
m € [k]. Then, we have f(i) = h(k;) # hm (ki) = fin(d) and f(1) = h(k;) = hp (ki) = fin () for
any [ € [d—n]\{i} and m € [k], which implies that H, ; is a k-pseudo-cube of dimension d —n. [

Proof of Theorem 2.5. Consider an arbitrary k-nondegenerate concept class H < Y for some k € N.
Let xg,x1 € X and hy, ..., hg11 € H witness the k-nondegeneracy as specified in Definition 2.4.
Forany e € (0,1/2(k+1))and d € (0,1), let I ~ Bernoulli((k +1)e) and J ~ Unif([k + 1]). Then,
forany j € [k + 1], (z1, hj(xr)) follows the H-realizable distribution P. ; over X x ) defined by
P&j({(l‘o, hj(l‘o))}) =1- (k + 1)6 and P57j({(|r17 hj(llil))}) = (k + 1)8 Sample (Il, ey In) ~
Bernoulli(e)™ independent of (I, J) and define S = ((xr,, hs(z1,),..., (25, ,hy(zr,)) and S’ =
((xo, hy(zo), ..., (zo, hs(x0)). Then, for any k-list learner A, we have

P(hy(z;) ¢ A(S,H)(zp)|I; =0,...,1, =0)
>P(hy(x) ¢ AS",H)(x1),] =1)
=P(I =1)P(hy(z1) ¢ A(S/,'H)(xl))
=(k + 1)eE[P(h (1) ¢ A(S", H)(x1)[A(S, H))]

>,
where the last inequality follows from the facts that h s (xg) = h1 (o), |[{h1(x1),. .., hg+1(z1)}| =
k+1, hy(z1) ~ Unif({h1(z1), ..., hrt1(z1)}). Since J ~ Unif([k + 1]), there exists j € [k + 1]

such that

P(hj(.%‘[) ¢ A(SJ7H)($])|11 = 0,...,In = 0)
Z]P(ht](l‘f) ¢ ‘A(S7H)(II>|J = j?I]. = 07"'aln = 0) =2 €,
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where 57 := ((x1,, hj(x1,)), ..., (x1,, hj(x1,))) ~ P2 is independent of (x1,h;(zr)) ~ P ;.

. 1 1—(k+1) 1 log(1/6)
Since 5tz < (k+1)56 < “ermrmo for e € (0,1/2(k + 1)), if n < 2(i+1)€ <
10g(9) we have

Tog(1—(k+1)e)’
P(11:O77In=O):(1_(k+1)€)n>6

Then, with probability greater than 6, we have erp_ (A(S7, 1)) = e, which implies that

log(1/9)

k

0) = ————.

Mi(2,0) 2(k + 1)e

Next, consider an arbitrary concept class H S Y7 such that dimy(H) = di. € N\{1} for some
k € N. Then, there exist a sequence X := (x1,...,74,) € X% and a k-pseudo-cube H < H|y of
dimension dy. Denote the elements in H withy' = (y{,...,95, ), - ylHl = (yllHl, . ,y(‘iHl) For

any € € (0,1/8(k + 1)), consider the categorical distribution Q. over [d] defined by Q.({1}) =
1-4(k+1)e and Q. ({i}) = 24+1= fori e [di]\{1}. Let J ~ Unif([|H|]). Forany i € [d)]\{1} and
Z=(i1,--,im) € ([de]\{i})™ withm € [dr, — 1] and i1 < -+ < iy, define T’ := (i, ... ,i:irm)

such thatd} < --- < z'firm and {i1,. .., 0m, 4], .. ,i:irm} = [d]. Then, we have that conditional
on (i1,y7),..., (im,y; ), y'|z follows the uniform distribution over the set Hys 7 which is a
k-pseudo-cube by Lemma A.2. Consequently, we can apply Lemma A.1 to conclude that

|Hys 7]

(Hyr )| < 2

for any y € Y and ¢’ € [d), — m], which immediately implies that
k

k1 (n

Py € {or,. o l(i1,97)s s (im,97,) <

for any distinct vy, ...,v; € V.

Let (I,1y,...,1,) ~ Q2! for n € N be independent of .J. Define S := ((x1,,47,),. .., (z1,.y{)).
For any k-list leaner A, by (11), we have

>P(y] ¢ AS,H)(z7), I # 1,1 #1,,...,1#1,)

dp,

=2

dj
= Z ]E[Il-lﬁﬁi ----- In#:ip(y%] ¢ A(Sa H)(xl)a I= Z|A(53H)a (IlayLlll)’ EERE) (InvyLI],,))]

=2

If
/Z ) P(L #1i,...,1, #1)

(k: +1)e\"
=4 l1l- — .
c ( dp — 1
Since J ~ Unif([|H|]), there exists j = j(A, H) € [|H|] such that

Pl € A M) (o)1 #1) = Pl € ASH) e 2117 = ) > ae (1= 2FEE)

where S7 := ((zy,, y}l )y (2L, ygn)) Note that if we define the distribution P, ; over X x Y by

Ps,j({:cl,y{}) =1—4(k+ 1) and

Pui(fri i) = ““—*1) Vi e [de\ (1},

42810 https://doi.org/10.52202/079017-1356



(de—1) log(2)
8(k+1)e

log(1/2)
Tog(1—4(k+1)e/(dr—1))°

then, we have (S, (z7,v})) ~ ngj*l. For any n < we have

(1 — 74(&?1)5) > % and

<

P(y] ¢ A(S7, H)(xr), I # 1) > 2.
Now, we define the algorithm A’ by
Al(s, M) (21) := {y]} and A'(s, H) () := A(s, H)(), Vo € X\{a1}
forany s € U _o(X x Y)™. Then, we have
Elerp, , (A'(87,1)] >P(y; ¢ A'(S7, H)(wr), 1 # 1)

=Py} ¢ A(S", H)(wr), I # 1)

>2¢. (12)
On the other hand, the definition of A’ yields that v} € A’(S7, (21)) and hence

erp., (A'(S7,H)) < Poj(X\{z1}) = 4(k + 1)e.

Suppose the following holds

1
4(k+1)

Plerp, , (A(S7,H)) > ¢) < (13)

Since erp_, (A'(S7,H)) < erp,,(A(S?,H)), the above inequality implies that

1 Qj 1
Plerp, ;(A'(S?,H)) > ¢) < 1k+1)

and therefore
E[erps,j (-A/(Sja H))] e+ E [erpe,j ('A/(Sjv H))]ICFPE’]. (A/(Sj,H))>6]

<e +4(k + 1)eP(erp, ,(A'(S7,H) > ¢)
<2e,

which contradicts (12). Thus, we can conclude that (13) is false, i.e.,

Plerp, ,(A(S7,H)) > ¢) > m

forn < %. For § € (0,1/4(k + 1)], we have P(erp, , (A(S7,H)) > ¢) > J and thus

d, — 1) log(2)
K - (dx —1)log(2)
Mj,(e,0) = Shr)e
In conclusion, for £,0 = O(1/k), we have
log(1
Mk (2,6) = Q (W) _

B Proof of Theorem 2.6

Proof. Consider an algorithm A : (U2, (X x Y)¥) x 2Y ¥ — Y% which for any hypothesis class
H < V¥, H-realizable distribution D, and n € N, satisfies that

Per(xyy~pme (AT H)(X) #Y) < —= (14)

where M, is nondecreasing in the sample size n.
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For an arbitrary sequence S = ((21,%1), -+, (ZTn, Yn); (Tnt1,Yni1)) € (X x V)T, define S_; to
be the subsequence of S excluding (z;,y;) for any i € [n + 1]. Let (T, (X,Y)) ~ Unif(S)™+!
where m € N, Tp, € (X x Y)™ and (X,Y) € X x Y. Moreover, for any i € [n + 1], let
Ti ~ Unif(S_;)™. Then, for any algorithm A : U, (X x V)* x 2Y" — Y and concept class
H < YV, we have

3
T
p

1

P(A(Tm, H)(X) #Y) =

P(A(T, H) (z:) # yi)

—_

<
Il
—_

E []]'(wi7yi)¢Tm ]IA(TWHH)(Ii)¢Z/i]

\Y
S
+ | =
—_
[ ngk

—
3

P((zi,yi) & Ton)P(A(Ton, H) (@0) # yil(zi,9:) ¢ Tim)

S

_|_

-
i

1 n+1

Jn+l-m P(A(T, 1)) # 4il (21, :) ¢ Ton)
=1

n+1 n+1

1 n+1

D P(A(TS, H) () # ui)- (15)

i=1

n+l-m 1
n+l n+1
Note that if S is consistent with 7, then Unif(S) is H-realizable.
Next, define the algorithm Angaj.m : (U (X x V)F) x 2Y% — Y¥ by
Antajm (R, H) := Majority ((A(r, H))rerm), VYVRe (X x V)", VneN.
By the definition above, for any permutation R, of R € (X x )))™, we have
Antaj,m (Re, M) = Asajm (R, H). (16)
Moreover, for any i € [n + 1], the above definition yields that
Ltssasm (S0 @) 2ws ST e (sesm: 465,10 (@) 20} |2 5
<2 lise ST+ Als H)(wi) # i
—P(A(TE,, H) (w:) # ).
Then, by (15), we have

1 2(n +1)

n+1 2 D sntag.m (S—i 1) (@) ys S
i=1

T PAT H)(X) £ Y).

Choosing m = [(n + 1)/2] and defining Anpaj := Awpaj,|(n+1)/2)» for any H-realizable sequence S,
by (14) and the above results, we have

Tilll _ 2(n + 1)2 M| (n11) /2]
Aves (S M)y = (01 (e + 1)/2])[(n + 1)/2]

i=1

< 8-34M[(n+1)/2j a7

for any n > 4. (16) and (17) imply that the algorithm Ay, satisfies Assumptions 2.1 and 2.3 in
Aden-Ali et al. [2023].

Now, we can define the randomized algorithm Ag,, which given a sample S € (X x V)" withn e N
and a concept class H, outputs the classifier Anraj(S, H) if n < 3 and outputs a random classifier
following the uniform distribution over the sequence (Awmaj(S<t, H))|n/a)<t<a|n/a]—1 if n = 4, ie.,
1
P(ARan(S, H) = AMaj (Sgt, H)) = m, Vt e [[n/4j, 4|_7’l/4J — 1],

where S<; denotes the subsequence of S consisting of the first ¢ elements in S. Then, by Aden-Ali
et al. [2023, Theorem 2.1], for any n > 4, H-realizable distribution D, and confidence parameter
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0 € (0,1), given a training sample S ~ D", we have

4|n/4]—1

1
/] t%]/4j erp(Amaj(S<t, H))

8.34M,,, 1 2
<4.82 ([/QJ + —log ())
n n 0

with probability at least 1 — §. O

erp (ARan(S; H)) =

C Proof of Theorem 2.7
The following proof requires several lemmas from Appendix H.

Proof of Theorem 2.7. Assume that we have access to a list learning algorithm Aj;s, which for any
concept class H < Y& of DS dimension d, any H-realizable distribution D, any n € N, and
(S,(X,Y)) ~ D", outputs a menu Ajis; (S, H) of size p(n) € N satisfying

P(Y ¢ Ajt (S, H)(X)) < B(#H,n)

n
for some function 3 : 2¥" x N — [0, o).

For ny,ny € N, let (S, 52, (X,Y)) ~ Dm1+2m2+1 where St e (X x V)™, §% € (X x V)?"2, and
(X,Y)e X x Y. Let i = Ayt (S, H). According to the property of Ay, the size of [i is p(n1)
and we have

P(v ¢ a(x)) < 2L,
ny

For notational convenience, define §” := (52, (X,Y)), S” := (S, 5%,(X,Y)), and enumerate the
elements of S’ as
(X1, Y1)s oy (Xo2na+15 Yano+1))

where (X25,+1, Yon,+1) denotes (X,Y). We now define
Ni= > lygax,)
i€[2n2]
and
Hsr ::,H(Xlwaznngl%@N

- {h|(xl,___7x2712+1) cheH, |{ie[2ns + 1] h(X:) ¢ A(X)} < N + 1} .

It follows from the property of i and Lemma H.9 that
_ 2”2/8(7-[7 nl)

ni

E[N] (18)

and, conditional on S,
dimg(Hs) < (2logy e + 4)(5d1ogy (p(n1)) + 2N + 2).

Sample (I, 1) ~ Unif([2n2 + 1])"2"! independent of S” where I = (I1,...,I,) € [2ng + 1]™
and I € [2ny + 1]. Then, we define the sequence T'(S",1) := (({1,Y1,),- .-, (In,, Y1,,)) and the
classifier

hsix = Ag (T(S',1), Hs)

for any ¢ € [2ng + 1], where A is the algorithm specified in Proposition H.5. Since conditional on
S”, the distribution of each element in T'(.S, ) is H g/-realizable, by Corollary H.6, there exists some
constant C’ > 0 such that

C’dimg(’Hs/) < Cldlog(p(nl)) + Co9N + (3
N9 = N9 ’

P(hs (1) # Y7]S") < (19)
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for some constant C, Cs, C's > 0.

For I' = (If,...,I! ) ~ Unif([2ns])"* independent of all other random variables, define

. ) TNy .
TS Y) = ((pa(11), Yyuap))s -+ (pi(I0,), Ypu(ry, ) Where p; = [2n2] — [2ng + 1]\{i},
k— klp<; + (k + 1)1, for all s € [2ny + 1]. Consider the classifier
hsipi = Aa(T'(S', 1), Hy)

for each i € [2ny + 1]. Since Y; is not used in the construction of h 5.1 ,i» We can also denote h AR
as hs | x, v where S, = ((X1,Y1),..., (Xi-1,Yi-1), (Xit1, Yit1), - -+, (X2n,+15 Yon, +1))-
Thus, treatmg S = (81,82) ~ D™t2n2 ag the training sample, we can define the classifier
hS € yX by

hs(@) := hg2 o v 2ny11 (202 + 1),
where we emphasize that the RHS depends on S* through the construction of /i. Then, recalling that
(X,Y) ~ D is independent of S, our task is to upper bound the expectated error rate of hg:

P (ﬁS(X) ” Y) .

We first relate ?LS/,I to ?LS/’I/J- fori € [2ny + 1]:

2na+1
IP’(fAls',I(I) # Y71S") 22112 1 § E []1i¢1]lﬁsl$l(i#n‘5”]
1 27:+1
ey S RGEUB [ty i ]
1 2n2+1
2% _21 ]E[]lﬁsav,i(i)#mw”]v
which implies that
~ 1 2n2+1
P(hs 1(I) # Y7|S") > o 7D E[nﬁsw(i#n‘sl]
1 27Z+1 o
T202my+ 1) A ]E[E []lﬁsf,y,i(i)#mw ’I] S ]

Conditional on I and S*, for any i € [2ny + 1] and any sequence s € (X x Y)2r2+l we let %S’I/)i

denote the classifier when replacing S’ with s in hS, V> 1.€., hs vi = Ag(T(s,1'),Hs). For any
i € [2n2 + 1], define the set

Bi:= {S = ((T1,Y1)s -+ (T2ng 11, Y2ns41)) € (X x Y22t :Es,l’,i(i) 7 yz}
and the permutation

7Ti : (X X y)2n2+1 - (X X y)2n2+17 (Zla c '722n2+1) g (Zlv‘ sy Ri—1y R2ng+15 Ziy - - ‘72277,2)'

We also define the set
B := {S = ((xlvyl), sy (x2n2+17y2n2+1)) € (X X y)2n2+1 :

Yon, € ﬁ(xQng)a Yono+1 € ﬁ($2n2+1)7 and hs,l’,2n2+1(2n2 + 1) #* y2n2+1}~

We would like to show that 7“(B) < B; for all i € [2np]. For any s =
((®1,91), -+ (T2ny 41, Y2ny +1)) € B, we let (27, y%) € X x Y denote the j-th element of 7°(s) for

each j € [2nz + 1]. By the definition of ¢ and 7", we have
T2n2+1(s71/) = ((Iiu yli)a R (I;Lny;L )) and
TH(n'(s),X) = ((pi(11) s yry)s -+ (pilLny) ry, )

no
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Define

Z lyﬁéu ()"

jE€[2n2]

Since yan, € [i(T2n,) and Yon,+1 € A(Z2n,+1), We have

2 ]ly HZCH 2 Ly ¢n(a;) = M

Jje[2n2] Je[2n2+1\{2n2}
and therefore,

Hai(s) =H(as

i S s
17"'7m2n2+1)’p"n7ﬂ(s)

_ {h|(7m+m) chet,|{j e [2ne + 1] : h(z)) ¢ fla;)}] < ns + 1}
={k;(h) : h € Hs}
where for any h € Y2721k, (h) € Y?"2*1 is defined by
ri(h)(5) := h(p; 1 (1) Ly + h(2n2 + 1)1, Vj € [2n9 + 1],
ie, h(j) = m(h)( i (1)) for j € [2n2] and h(2n2 + 1) = k;(h)(4). Note that «; is a bijection from
Hs to Hri(s)- Thus, for any h € H i), we have
h(pi(17)) = w7 (R)(I}), ¥j € [n2], and h(i) = k7" (h)(2n2 + 1).
Similarly, for any h € H, we have
h(IJ’) = r;(h)(p;i(I )) Vj € [na], and h(2n9 + 1) = k;(h)(4).
Given the above analysis, we have
,NLS,I/,27L2+1(277'2 + 1) :AG(T2n2+1(Sa I/)aHs)(QTLQ + 1)
:AG(Ti(Wi(S)vI,)7Hﬂ'i(s))(i)
=hri(s)r,i(i),

which immediately implies that

~

hﬂ'Z(S) | R ( ) = hs r 2n2+1(2n2 + 1) 7 Yono+1 = yz

and thus 7(s) € B;. Since i € [2n,] and s € B is arbitrary, we have 7'(B) < B; for any i € [2n,].
Then, conditional on I’ and S!, we have

D2n2+1(Bi) > D2n2+1(7ri(B)) — D2n2+1(B)
Since B < By, +1 holds trivially, we have

2no+1

1
> 1 ‘ gt I']
2(2”2 + ]_) ;1 ]E I:]E [ hs/y]l,i(l)#yi| )
1

§E []ly%zeﬁ(Xz"?)1Y2"2+1eﬁ(X2"2“)lﬁs',l/,zmﬂ(2n2+1)¢y2nz+1

P(hs 1(I) # Y7|S")

s

=

st
Taking expectation on both sides and applying (18) and (19), we have
Chdlogp(ni) + 2C28(H,n1)ne/n1 + Cs
N2
_ Cldlogp(nl) + CQE[N] + Cs
N2
>P(hg 1(I) # Y1)

> ~ ~ .
= 2E |:]]‘Y2n2EH(X2n2)]lY2n2+le/»¢(X2n2+l)]]'hs/’l/‘2"2+1(2n2+1)#Y2n2+1:|
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which leads to
P (?LS (X) # Y)
P

(hS'7I’,2n2+1(2n2 +1) # Y2n2+1)

<E [1 - I]‘Y2n2€ﬁ(X2nz)]]‘Y2n2+1eﬁ(xzn2+1)]

+E [lmgemxzw) 1Y2n2+1eﬁ<xan2+1>]1;:5,‘,,,%%1(2n2+1>¢y2n2+1]

<P (YQnQ ¢ ﬁ(Xan)) +P (Y2n2+1 ¢ ﬁ(X277«2+1))
(Crdlogp(ni) + 2C25(H,n1)na/ny + Cs)
n2
<2(ﬂ(7—[, ny)ng/n1 + Cidlog p(ny) + 2C28(H, n1)ne/ny + Cs)

n2

Now, for any n € N such that n > 3, setting n; = n — 2|n/3|, na = [n/3], (S, (X,Y)) ~ D1
with S € (X x V)" and (X,Y) € X x ), we have

p (hs(x) £ V) =0 (6(7{,711) + dlogp(m)) .

n
Then, when $(#,n) and p(n) are nondecreasing in n, by Theorem 2.6, there exists a learner A’ such
that for any n > 4 and J € (0, 1), with probability at least 1 — § over S ~ D™, we have

20t,m) + dcg )+ log1/))

n

2
+

erp(A'(S,H) = O (

D Proofs of the results in Section 2.3
In this section, we provide the proofs of Theorem 2.8, Corollary 2.9, and Theorem 2.10 in Section 2.3.

Proof of Theorem 2.8. Assume that Aj;s, satisfies that M 4, #(1/2 — v,v) < oo for some 7 €
(0,1/2) and v € (0,/18]. Define the random variable Ji, := Lerp, (uy)>1/2—4 for any k € [K].

Then, we have
E[Jk] =P(Jy =1) <.

Define the event £ := {Zszl Jip = 20K } By the multiplicative Chernoff bound, we have

K
P(E) =P (Z Ty = 2VK> <eVEB <6
k=1

as K > ?’ILV(MS). Define Zj, := >, | Di({(zs,4:)}) exp (— (21y,e 1 (ar) — 1)) forall k € [K].
Since Dy 41 is a probability distribution over .S, we have

1= Z Drcv1({(wi, 4:)})
& Di({(i, ) }) exp (= (2Lyep () — 1))
— 2 7

i=1
1 n
n i=1

K
exp (_a D1 (2Lyepn(an) — 1)>
H}Ic<=1 2,

)

which implies that

K n K
n ]2k =>]exp <a Ly — 1)) . (20)
k=1 i=1

i = k=1
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For any k € [K], we have

n

Zk = 2, Del{(@is i)} exp (—a 2Ly ey — 1)

i=1

= Y Dl{ny)Pe ™+ > Di({(miy)}e”

ie[n]iyiepr (x:) ie[n]:yi¢ur (z;)
=(1 —erp, (ux))e”* + erp, (uk)e” = erp, (ux)(e® —e ) + e~
If J,. = 0, we have

Zk <ye* 4+ (1 —7y)e”® =+/1—~2
If J, = 1, we have

7
— <1+ 4.
Yo it

Then, under the event £¢, we can upper bound

]_[ Zi <(1 —~4?)W2=E (] 4 oaqy K

2 Orv)
< —_
xp ( (2 o+
< 5
ex —
P 4 n’
where the second last inequality follows from v < & < W and the last inequality follows from
K> 41%(””). By (20) and the above inequality, we have that on £€,

K

2( 033 o 1>) <4
=1

which implies that exp (—a S (2L e () — 1)) < & for all i € [n]. It follows that

exp(—f(xs,y:)) < 67K

for f(z,y) := & S| (2Lyep () — 1) s V(2,y) € X x V. Thus, we have

log(1/0) _ 2log(1/6)
aK log (}gfl) [41log(n/d)/v]

f(ziyi) = >0, Vi e [n].

Since by definition,

f(z,y) >0 yep(z), Viz,y) e X x Y,

we can conclude that on £¢,
yi € (), Vi€ [n],

i.e., with probability at least 1 — §, y; € p(z;) for all i € [n]. Moreover, by da Cunha

et al. [2024, Lemma 3.3], the randomized compression scheme S — (S1,...,SK) is stable.

Thus, we can apply da Cunha et al. [2024, Theorem 1.2] with compression size s,, = mK =

O <M.A“st,9~t(1/2_%”) log(n/d)
v

) to conclude the proof. O

For the proofs of Corollary 2.9 and Theorem 2.10, we will need the following Lemma.
Lemma D.1. Ifx > 0 satisfies x < alog(xz/a) + b for some a,b > 0, then, we have x < 2a + 2b.
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Proof. Define f(z) := x — alog(xz/a) — b for > 0. Then, we have f'(z) = £=2, which implies

x
that f decreases with = for € (0, a) and increases with x for z > a. Since 2a + 2b > a, it suffices

to prove that f(2a + 2b) > 0. Indeed,
f(2a+2b) = (2—log2)a+b—alog((a+b)/a) > a((a+b)/a—log((a+0b)/a)) = 0.
O

Proof of Corollary 2.9. By Brukhim et al. [2022, Theorem 36] (choosing t = [+/d]), there exists an
n — r sample compression scheme Ay for any H < V¥ of DS dimension dim(H) = d < oo where

r = O((d*? + dlog(p)) log(n)) with p = O((e\/g)‘/alog(n)). (21)
Then, by David et al. [2016, Theorem 3.1], there exists a universal constant C' > 0 such that for
any D € RE(#), § € (0,1), n € N large enough, and S ~ D", letting hg := A/ (S, H) denote the
output classifier of the above n — r sample compression scheme .A4j,, we have that
C(rlog(n/r) +log(1/4))

n
with probability at least 1 — §. Thus, for any € € (0, 1), if
Clog(1/0 C C C Clog(1/0
| Clog(1/o) _Cry (n) 9T g () ;. Clog(1/6)
3 € Cr/e € € 3

we have erp(hg) < e with probability at least 1 — 0. By Lemma D.1, it suffices to require

n = &log <C6> + 201og(1/9) = £ (rlog (C6> + log <1)> .
€ € € € € o

erp(hs) <

b

n > % log(n/r)

Applying the upper bound of r in (21), it suffices to require
d3? +dl log(1 log(1/5
ns (( + dlog(p)) log(1/¢) log(n) + 261/ ))

€ €
for some universal constant C’ > 0. By Lemma D.1 again, it suffices to require

"> 20" (d3? + dlzg(p))log(l/e) log (eC”(d3/2 + dlzg(p))log(l/z—:)) N 20" logg(l/é).

Since log(log(1/¢)/e) = log(1/e) + loglog(1l/e) < 2log(1/e), it suffices to require
3/2 3/2
s o (L RO Iog) (£ +dlog)) , )

€ €
for some universal constant C” > 0. Applying the upper bound of p in (21), it suffices to require that

—— <(d3/2 log(d) + dl(;g log(n)) log(1/c) log <d3/ % log(d) ﬁ;dlog 10g(n)> N log(€1/5)>

for some universal constant C" > 0. For ¢ = 1/6 and § = 1/54, we require that
n = C1(d*?log(d) + dloglog(n)) log (d3/2 log(d) + dlog log(n))
for some universal constant Cy > 0. If Cy(v/2C7 + 1)d*/? log(d) log ((v/2C1 + 1)d%/? log(d)) <
n < e®’" we have \/2C1d%/? log(d) > dloglog(n) and
C1(d*?1og(d) + dloglog(n))log(d*?log(d) + dloglog(n))

<C1(v/2C; + 1)d*?log(d) log ((\/201 +1)d3 log(d)) <n.
If n > e we have log(log(n)) > +/2C1dlog(d), log(log(n))? > 2Cidlog*(d) >
2C4 (dlog(2d) + d), and

C1(d*?log(d) + dloglog(n))log(d*?log(d) + dloglog(n))
<2C1dlog(log(n))log(2dloglog(n))
=2C1dlog(2d) log(log(n)) + 2C1dlog(log(n)) log(loglog(n))
<log(log(n))?log(loglog(n))) < n.
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Therefore, we can conclude that if n > C; (v/2C1 + 1)d*?log(d) log ((+/2C7 + 1)d*?log(d)) =
O(d*?log?(d)), we have P(erp(hs) > 1/6) < 1/54, i.e.,
Mape 1(1/2 = 1/3,1/54) = O(d*? 1og?(d)).

Let Ap denote the multiclass learner output by A}qest in Algorithm 2 using Aj; as the weak list
learner of size 1. Then, by Theorem 2.8, we have

/2 o 2 os(n
eapnu(n) =0 <d3 log?(d) log(n)

n
Next, by Theorem 2.6, there exists a multiclass learner .4 such that for any D € RE(H), § € (0,1),
n € N, and S ~ D", with probability at least 1 — J, we have

d*21og?(d) log(n) + log(1/5)) _

),VneN.

erp(A(S,H)) = O <
Setting § = 1/n and observing that erp € [0, 1], it follows that £ 4 % (n) = O ( m

d®/? log?(d) log(d/e)+log(1/5)
€

d®/?10g?(d) log(n) )

Moreover, by Lemma D.1, for any ¢ € (0,1), n = O (
erp(A(S,H)) < e with probability at least 1 — ¢. Thus, we have

d3/2 log?(d) log(d/<) + log(1/5)) .

) implies that

My (e,8) =0 (

O

Proof of Theorem 2.10. By Brukhim et al. [2022, Theorem 39] (choosing ¢ = [\/8]), there exists an
n — r list sample compression scheme Aj;q; of size p = O((e\/a)*/alog(n)) for any H < Y of
DS dimension dim(#) = d < oo where

r = O(d*?log(n)). (22)
Define the following loss function for menus p,

5(/% (x,y)) = ly(é,u(z)v V(x,y) €& x y

Then, we can apply the proof of David et al. [2016, Theorem 3.1] with the loss function ¢ to show
that there exists a universal constant C' > 0 such that for any n — r list sample compression
scheme Ay sc for H, any D € RE(H), 6 € (0,1), n € N large enough, and S ~ D", letting
s = Arsc(S, H) denote the output menu, we have

erp(Assc(8, H)) = Ex ) -plflduse (S, 1), (X)) | 5] < S8/ +0s0/0)

with probability at least 1 — 8. Thus, for any ¢ € (0, 1), if
n = or log(n/r) + Clog(1/0) _or log <n ) + or log (C> + 7C10g(1/5),
€ 5 € Cr/e € € 5

we have erp(Arsc (S, H)) < e with probability at least 1 — §. By Lemma D.1, it suffices to require

n = ylog (Ce) + 2Clog(1/9) = 2 (rlog (Ce) + log (1)> .
€ € € € € 0

Since Ajs¢ is an n — 7 list sample compression scheme for H with r bounded in (22), The above
results imply that in order for P(erp (Ajist (S, H)) > €) < 0, it suffices to require

e <d3/2 g1/ ) 8L

€ €
for some universal constant C’ > 0. By Lemma D.1 again, it suffices to require

1.73/2 ’.73/2 !
. 2C"d 8log(l/s) log (eC’ d Elog(l/s)) N 2C 105(1/6).
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Since log(log(1/¢)/e) = log(1/e) + loglog(1l/e) < 2log(1/e), it suffices to require
S o <d3/2 log(d/e)log(1/¢) + 10g(1/5)>

=
3

for some universal constant C” > 0, which implies that
Moy, n(1/2 —1/3,1/54) = O <d3/2 log(d)> .

Now, we can define Ay, to be the list learner output by Ap st in Algorithm 2 using Aj;st as the weak

list learner of size O((ev/d)Y%log(n)) for training sample size n € N. Then, by Theorem 2.8, we
have that for any training sample size n € N,

carn(n) =0 (

and the size of A is also O((ev/d) Y4 log(n)).

d*?log(d) log(n)>

E Proof of Theorem 2.11

Proof. By Theorem 2.10, there exists a list learner Ay, with p(H,n) = O((e\/E)‘/E log(n)) and
B(H,n) = O(d*?*log(d) log(n)) for any n € N and concept class H = V¥ with dim(H) =d e N
in the context of Theorem 2.7. Thus, by Theorem 2.7, there exists a multiclass learner Ay, ; = A’red
such that for any D € RE(H), any § € (0,1), S ~ D", and n; = n — 2|n/3|, with probability at
least 1 — 6,

erD(Amulti(S, H)) =O <

o <d3/2 log(d) log(n) + d*?log(ev/dlog(n)) + log(1/ 5)>

n

B(H,n1) + dlogp(H,n1) + log(1/5)>

n

_0 (d3/2 log(d) log(n) + 10g(1/6)> .

n
For any ¢ € (0, 1), by Lemma D.1, if

3/2
n 272d iog(d) <1 + glog(d/f:)) + 2log1/0) 10g€(1/5)

3/2
22d log(d) < N 21og(1/6)
€

1+ glog(d) + loglog(d) + log(l/e)) 5

3/2 3/2
>2d log(d) log (ed log(d)) N 2log(l/5)’
5 £ 5

then, we have

3/2], log(1
"> d*/*log(d) log(n) + og(s/é)
ie.,
d*?log(d)log(n) + log(1/6) .
n ~
It follows that

d*?log(d)log(d/c) + log(1/8) )
€

Miponled) =0

(9) follows directly from (6) by plugging in p(H,n) = f1(d) and 8(H,n) = fa(d) for d = dim(H)
and any n € N.

O
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F Classes of DS dimension 1
In this section, we present the proof of Proposition 3.3 and Theorem 3.2.

Proof of Proposition 3.3. Let E,, denote the edge set of the hypergraph G(V;,). Suppose on the

contrary that there exists a cycle consisting of pairwise different vertices y*, ...,y ! € V,, and
pairwise different edges €° = (es, f5,%0)s---,€™ L = (€ | .. 1sim—1) € E, for some m €
{4,...,|Vy|} such that y7, yUttimedm ¢ (¢, . .) forall 0 < j < m — 1. Since the edges are

pairwise different, by the definition of Ey,, we have i # ;1) moam forall0 < j <m — 1.

Define a := iy,—1 € [n], b :=ig € [n], po := y) =y, p—1 ==y~ ! # po,and qp := y}) = y;”_l
Then, we have a # b.
For any k € N, we define

Jrr=max{jeNg:j<m—1yl =py_1},

pp = y T MmO and g, = yir = ylgj’“ﬂ)mdm because i;, = a. Define

K :=min{keN:p,=p_1}.
By definition, we have py, ..., px are pairwise different. There are two cases depending on the
values of q1, . .., ¢k as follows.

1. Suppose that there exists some k € [ K] such that g, # qo. Define [y := 0 and
ly =min{k e [K]: k> ly_1,qk # q1y_,}
for all w € N with the convention that inf ¢ = +0c0. Define
v :=max{w € N : [, # +w0}.
We have v € [K] and ¢q;,, # q;,,_, for all w € [v]. Note that

por=px =yl q=y ",

Plo = Do = Yo, Qo =40 =Yy,

P =y =
s =
P, = yi““ﬂ q, = yilw-FI
for all w € [v], and
pr =po1 =Rt g =yl

Since it always holds that gk = ¢, , there are two cases depending on the value of ¢;, and
qo as follows.

1.1 Suppose that q;, # qo. Then, V;, |, 3 contains the following pseudo-cube of dimension
2:

(P1,-1,90),

(P1 -1, 1),

(pl2—17 qll)a

( )

Piy—1,415 ),

(Pr,—1, @y )
(pr,-1:q,),
(p-1.a,),

(P-1, ),
which contradicts the assumption that dim(V,,) = 1.
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1.2 Suppose that g, = go. Then, V;,|(, 5 contains the following pseudo-cube of dimension

T~ N~

Pi-1,490),
DL —1,41,),
Pl—1,41, )
Piy—1, QZ2)7

(plvfl? qi,_, )7
(plq,fl, q, = QO)»

which contradicts the assumption that dim(V,,) = 1.

Thus, Case 1 does not exist.

2. Suppose that g, = qo for all k € [K]. Since 40 = po = plt, y) = qo = 1 = pil, and
y # y7t, there must exist some c € [1]\{a, b} such that y7"~ rZ =yl =90 # ylt =yl
We define g := y° and 1, := yJ* = yI**1 for k € [K]. There are two cases depending on

the value of r, for k € [K] as follows.

2.1 Suppose that there exists some k € [ K| such that r, 5 7. Similar to Case 1, we define

lo :=1and

ly :=min{k € [K]: k> ly—1,7% #71,_,}

for w € N. Define v := max{w € N: [,, # +o0}. Wehavev € [K]and r;, # 1, _,

for all w € [v]. Note that

for all w € [v], and

Since it always holds that rx = 7,
and qq as follows.

PK =P-1 =Ygy

m—1 m—1

P-1 =PK = Y, ) To =Y. )

0
7"0 = yc’

Ty =T1 = yglv

Jz 1+1 Jly—1+1
v 9 rlw 1 yC v )
a _ Ji
w7 lw wav
JK+1 yJKJrl

there are two cases depending on the value of ¢,

2.1.1 Suppose that r;, # 9. Then, V;|(4,) contains the following pseudo-cube of

dimension 2:

(poﬂ“o)
(Pos 71, = 71),5
(pl1 17%)
(Pr—15 91, )5

(Pl 15Ty )
(Pr,-1,71,),
(p-1.71,),
(P—lﬂ"o)a

which contradicts the assumption that dim(V,,) = 1.
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2.1.2 Suppose that 7;, = 7ro. Then, V,|(,, ) contains the following pseudo-cube of
dimension 2:

(po, o),

(po, 71, = 71)5
(pll 177“10)
(P, -1, a1,),

(plvflv rlv,1 )7
(plv—lyrlv = 7’0)7

which contradicts the assumption that dim(V},) = 1.
2.2 Suppose that ry, = rq for all k € [K]. Then, we have

por =yl =y,
po=yl To=1y.,

Po = y(]1'1’ T = yg17

p_i = y§K+17 _ yZK+1

which implies that V, |4,y contains a pseudo-cube of dimension 2.

Thus, Case 2 does not exist either.
In conclusion, there exists no cycle in the hypergraph G(V;,) = (V,,, E,,). O

Proof of Theorem 3.2. 1t suffices to show that the for any n € N and V,, < V", the average degree of
G =G(V,,) = (Vp, E,) with |V,,| < o0 and dim(V,,) = 1 is at most 2.

We prove by induction on |V;,|. When |V;,| = 1, we have E,, = ¢J and avgdeg(G) = 0 < 2. When
[Va| = 2, we have 3 . ./>0 6| < 2 and avgdeg(G) < 1 < 2. Suppose that avgdeg(G) < 2
for any V;, of size |V,,| < m with some m € N. When |V,,| = m + 1, since there is no cycle in G

according to Proposition 3.3, the set of vertices of degree 1 (V,! := {y € V,, : deg(y) = 1}) is not
empty. Define V,? := V,,\V,! and E? to be the edge set such that (V,2, E2) is the one-inclusion graph

on V2. Then, we have |V,2| = |V,,| — |V,}| < m and
Dl X lel 2V
eeE,:|e|=2 ecE2:|e|>2

because deleting a vertex of degree 1 decreases the total degree by at most 2. By the induction
hypothesis, we have . |e| < 2|V;2|. Thus,

Yl <20V + VD) = 2(Val
eeE,:|e|=2
which implies that avgdeg(G) < 2. By induction, avgdeg(G) < 2 for any V,, with |V,,| < oo and
dim(V;,) = 1. O

G Pivot shifting

In this section, we present the proofs of Lemma 3.6 and Lemma 3.8.

Proof of Lemma 3.6. For notational convenience, we let V,!_; denote B(V;,) which is defined in
Definition 3.5. Define

Vo= J{ o un1) €Y7 (01 yn1,y) € Vi
yey

https://doi.org/10.52202/079017-1356 42823



and
Vi1 = Va1 \Vo1

Let FE,, denote the edge set in G(V;,) and E,,_; denote the edge set in G(V,,_1). For any y € ),
define

Vn,y = {(ylﬂvyﬂ) € ‘/71, ‘Yn =Y, (y17~--;yn—1) € VTIL—l}'

By the assumption on a € Y, we have [V,.| = [Vi'y | + 35 ) [Vay |, [Vi_1| = [Vi,al, and [Vi| —
[Vi-1] = 23 (ay |Viny |- Defining
E; = {(ei i) € E, 11 =n},
we have
D0 (el = 1) = [Val = Vol
eeEn
For any y € ), we define
E,,:={(ei,i)eE,: f(n)=y,ie[n—1]}
and let £}, , denote the edge setin G(V;, ,); for any e = (e; y,4) € E), ,, we define
si(e) == [{yeeiy:yeVay}l and so(e):=[{yeeis:y¢ Vil
Then, we have |e| = s1(e) + s2(e), By, = (Uyey En,y) v B}, and
>, (el=1)
eEEn_l
SDCESE i (D N CEN RIS W)
e€E, o yeV\{a} \e€E, ,:s1(e)=0 e€FE, y:s1(e)=1

Note that by the induction hypothesis, we have

Y, (el =1) < d|Va

eEEn,1

and by definition, we also have

> (el =1)= IR CIOR]

eckE;] e€EE, 4:51(e)=2

We claim that dim(V,, ) < d —1 forally € Y\{a}. Suppose on the contrary that dim(V}, ,,) > d —1.
Since dim(V;,) = d, we have dim(V}, ;) = d and there exists a set i := {i1,...,i4} < [n] with
i1 < 19 < --- < 14 such that Vn,y|i contains a pseudo-cube H, of dimension d. Since for any
(Y1, -+, Yn) € Vp y, we have y,, = y, it must hold that ig < n — 1. Now, we can define

Hy,a ::{(yilw"vyidva) € yd+1 : (yn?vyld) € Hy}
U{(yiu---ayiday) € yd+1 : (yi1""7yid) € Hy}

By the assumption that |V, ;| = |V}, 4|, we have |H, | = 2|H,| and H, o S Vy.|(;,,... i4n)- For
any k € [d] and any (yi,, ..., Y., Y), (Yirs .-+ Yiz @) € Hy 4, since there exists an k-neighbor
of (Yiy,---,Yi,) denoted by (i, -, i s+ Yig) 0 Hyy (Yirs- o Yhs oo o5 Yins YY) € Hy o is a k-
neighbor of (yi,,...,v:,,y’) in Hy, o fory’ =y, a. Moreover, (y;,,. .., Yi,,y) is a (d + 1)-neighbor
of (Yi,,-..,¥i,,a) in Hy , and vise-versa. Thus, H, , is a pseudo-cube of dimension d + 1, which
contradicts the assumption that dim(V;,) < d. Therefore, we must have dim(V,, ,,) < d — 1. Then,
by the induction hypothesis, we have for any y € Y\{a},

Y (el = 1) < (d=1)Vayl.

’
eEE”,y
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Summarizing the results above, we have

2 (el =1)

ecE,
= Z (le] = 1) Z Z (le] — 1)
eeEn yeY eeE, 4
=2 (el =D+ > (el =D+
eeED €€En q
> ( Y @O-D+ X s+ D (sa(e) +(sule) - 1)))
yeY\{a} €FEn, y:51(e)=0 e€eF, 4:s1(e)=1 eEE, :51(e)=2
=2 (el=D+ X (el=D+ ] ( Y (2(0-D+ ) 82(6)>
ecEn e€Ey o yeY\{a} €E, 4:51(e)=0 eEFE, yis1(e)=1

Y Y m@-D

yeV\(a} eeEn yi51(e)>2

Vol = Vaal+ D0 (lel=1)+ > > (lef—1)

e€En_1 yeV\{a} ecE], |
Vol = Vacal +dVaa|+ D) (d=1)|Vay
yeV\{a}
=Val = Vaz1l + d|Voa| + (d = )(|Va| = [Va—al)

=d|V,.
O

Proof of Lemma 3.8. Consider arbitrary n € N\{1} and V,, € Y. By the definition of 3, (V},), we
have VY| = |V, |. Let E,, denote the edge set of G(V,,) and E,, -, denote the edge set of G(V7). I
suffices to prove that 3. (le] —1) < 5 i (le] = 1). Define

E! = {(ex,s,k) € E, : k =i} and Efm = {(ex,r, k)€ Ep : k=1}
for all i € [n]. By the definition of V7, we have

Diel=1)= > (le|—1). (23)

ee B ee B -y

For any i € [n] and f : [n]\{i} — ), we define
eif =AW - yn) € Vo sy = f(k) VE € [n]\{i}} and

el = {1, yn) €V yw = f(k) VE & [n]\{i}}

to distinguish edges in E,, and E,, .. Forany y € Y, i€ [n— 1], and f : [n — 1]\{i} — J, define
fy + [n]\{i} — Y such that f,|j,—17\(;y = f and f,(n) = y. Then, we have

> (leif, | =1) = > (led sl —1)

yed\{a}:(ei s, i)EER yeV\fa}i(e] ; i)EER 5
<7, iema, (el ] = 1) = Ly, irer, (leis.] —1)
which implies that

S Y -0<S X (-,

1=1 ecE} i=1 eeE}

and from (23),
Yo lel =1 < > (el = 1)
eeE, eeEn,'y
Thus, we can conclude that avgoutdeg(G(V,))) = avgoutdeg(G(V,,)) for any v € 'y v, . O
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H Lemmas regarding graph dimension

In this section, we provide the technical lemmas on learning with finite graph dimension and bounding
the graph dimension of certain classes. Those lemmas are used in the proof of Theorem 2.7.

H.1 Learning algorithm for classes with finite graph dimension

We first provide the definition of graph dimension.

Definition H.1 (Graph dimension). For H € Y* andn e N, x = (21,...,7,) € X™ is said to be
G-shattered by H is there exists [ : [n] — Y such that for any i < [n], there exists g € H satisfying
g(x;) = f(i) foralli€iand g(x;) # f(i) for all i € [n)\i. The graph dimension of H, denoted as
dimg (H) is the maximum size of a G-shattered sequence.

Define Log : [0,00) — [1,00), = > log(x v e) where x v e = max{z,e}. Forany H < Y,
n € [dimg(H)], and x = {z1,...,z,} S X thatis G-shattered by H, there exists f : [n] — Y such
that for any i < [n], there exists g € H satisfying g(x;) = f(i) forall i € i and g(z;) # f(¢) for all
i € [n]\i. Thus, we can define

H(x) := {h ] = 0,1} i Ly | B e %} .
For general n € N, x € X with |x| = n, and f € V", we define
Hy(x) = {h ] > {0, 1} i > Ly, | B 7—[} and

Tn(n):= sup  sup [Hy(x)].
XCX:|x|=n feyn

Note that 74, (n) = |H(x)| = 2" for any n € [dimg(H)]. We have the following lemma.
Lemma H.2. For any H € Y with dimg(H) = d, we have t3(n) < Z?:o (). In particular, if
n = d, then 7 (n) < (en/d)%.
Proof. We first prove by induction on n that for any x = {x1,...,2,} € X and f € V",
[H(x)| < [{x < x: H G-shatters x'}|. (24)

For n = 1, it is obviously that |H(x)| < 2 and |{xX’ € x : H G-shattersx'}| > 1. If |{x' < x :
M G-shatters x'}| = 1, then x is not G-shattered by #, which implies that | ;(x)| < 1. Thus, (24)
holds. Now, suppose that (24) holds for any k < n. Consider X := {xa,...,Z,},

YO:i={(y2,...,4n) € {0, 1}" 1 1 (0,92,...,yn) € Hp(x) or (1,y2,...,yn) € Hs(x)}, and
Y = {(yo,...,un) € {0, 1} (0,92,...,yn) € Hy(x)and (1,y2,...,9n) € Hy(X)}.
We have |H¢(x)| = |Y°| + |Y'!| and |[Y°| = |H#(X)|. Then, by the induction hypothesis, we have
VO < {x' € X : # G-shatters x'}| = |{xX < x : 21 ¢ X’ and H G-shatters x}|.
For any y € ), define
HY :={heH:3Ih' € Hs.t h|xand | differs only at 1 and y € {h(z1), ' (x1)}}.

Then, HY G-shatters X' < X implies that  G-shatters x' U {x1}. We also have Y'! = 7—[;(1) (x). It
follows from the induction hypothesis that

Yl = |’Hj§(1)(i)| < |{x = x: #HW G-shatters x'}| < [{X' < x : ; € X’ and H G-shatters x'} .
In conclusion, we have
My (x)|
—[¥O]+ ¥
<|{x' = x: 21 ¢ X' and H G-shatters X'}| + |{x'  x : 21 € X' and H G-shatters x'}|

=|{x' = x: H G-shatters x'}|,
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which is exactly (24). By (24), we have

d
1 (n) < |{x’ € x : H G-shatters x'}| < Z (?)
i=0

For any (measurable) classifier A : X — ), define
ER(R) := {(z,y) € X x Y : h(z) # y}.
Then, for any probability measure D over X x ), we can define
erp(h) i= DER()) = P(x.y)-p(h(X) # V).

Definition H.3. S € X x Y is said to be a an e-net (¢ € (0,1)) for H < Y with respect to a
distribution D over X x Y if for any h € H,

erp(h) 2e = ER(h) n S ={(z,y) € S : h(x) #y} # &.
For any integer n € N, set Z, and T = (21,...,2,) € 2", we say z € T if z = z; for some i € [n]
and use |T'| to denote the length of the sequence T'. For notational convenience, we use ¢ to also

denote an empty sequence (a sequence of length 0). For any subset £ € Z,weuse Tn E=EnT
to denote the subsequence of T consisting of all elements in F, i.e., for I := {i € [n] : 2; € E},

TﬁE=EﬁT=<ZZ‘)iEI.
Then, we have |T N E| = |EnT| = |I|.

Proposition Hd4. For any H < Y% with dimg(H) = d, any H-realizable distribution D, any
0 € (0,1], any n € N, and any ERM algorithm A, consider S, ~ D™. With probability at least 1 — 6,

we have
2 2en 2
erp(A(Sy, H)) < - [d v (dlog2 (d)) + log, <5>] )

Proof. Forany n > 2 and € € [2/n, 1], define
B:={Se (X xY)": Fhe Hst erp(h) =cand ER(h) n S = &} and
B :={(S,T) e (X x Y)* :|S| = |T| = |n|, I e H s.t.
erp(h) = ¢, ER(h) n S = &, and [ER(h) n T| > en/2}.
Let (S,T) ~ D?" with S, T € (X x Y)". Since (S,T) € B’ implies that S € B, we have
P((S,T) € B') = E[l(s,r)ep Lsen] = E[1lsesP((S,T) € B'|S)].

On S € B, there exists h € H such thaterp(h) = e and ER(h)nS = . Then, |[ER(h)nT| > en/2
implies that (S, T") € B’. It follows that
L1sepP((S,T) € B'|S) = 1sesP(|[ER(R) N T'| > en/2|S).

Since T is independent of S, h is determined by S, and D(ER(h)) = erp(h) = con S € B, we
know thaton S € B, |[ER(h) n T'| follows the Binomial distribution B(n, erp(h)) conditional on S,
and

1segE[|ER(R) N T||S] = erp(h)nlsep = enlgep.

Thus, by Lemma H.8, since ne > 2, we have
1
1sesP(JER(R) n T| < en/2|S) < P(|ER(R) n T| < erp(h)n/2|S)lsep < 5]1563,
which implies that

P((S,T)e B') > %]P’(S € B).
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By the definition of B’, we have

P((S,T)e B') =R :ufa ]lerp(h)ZS]lER(h)mS—Q]1|ER(h)mT>sn/2:|
€

=E 2115 lerD(h)ZalER(h)mS®1|ER(h)m(S,T)>an/2:|
€

<E |sup ]lER(h)mS=®1|ER(h)m(S,T)|>en/2] :
L heH

Foranyme N, r = ((x1,91), -+, (T, Ym)) € (X x V)™, and h € Y, we define
he t[m] — {0, 1}, i — Lpya,)=y,
and H, := {hy : h € H}. Note that Hy = H(y, ..y, ((T1,. .., T)), which implies that
[He| < 7oe(m). (25)

Forany k€ [m]and 1 < iy < --- < i, < m, we use (i, ,...i;) to denote a permutation of r where
(w;,y;) appears in the i;-th position for all j € [k], specifically, ry;, ;3 = (Zo(i), Yo())icn]
where o (i) := j forall j € [k] and (o(1))ie[n]\(i1,....ir} = (kK + 1,...,m). Then, for any i < [2n]
with |i| = n, we have

sup Ler(n)ns=g LIER(h)n(5,T)|>en/2 < Z Lniy=1, vieln) 13, (5, h(i) <(2—¢/2)n
heH heH(s 1)

= Z Ln(iy=1, vieils, . h(i)<(2—¢/2)n-
hEH(S,T)i

Since (S, T) ~ D", we also have

E Z Lniy=1, vieily, ) h(i)<(2—/2)n | = E Z Lngiy=1, vieily, ) n(i)<(2—</2)n
heH (s, 1y, heH (s 1)

Thus,

E [SUP ]lER(h)mS®1|ER(h)m(S,T)>en/2]
heH

1
< &) Yo E| D L=y, viely,,, ro<G-</2)n
ic[2n]:li|=n heHt (s,1) -

1
=E Z ]lZie[zn] h(i)<(2—5/2)nﬁ 2 ILh(z’):l7 Viei

_hE'H(S’T) n/ ic[2n]:li|l=n

[(2=</2)n))
<E| ] ﬂzig[zn]huk(z—e/z)nw

_he?—L(S’T) n
<o—en/2p he%m Ly, 0y h()<(2—e/2)m (26)
<27"’R [|H(S,T) |]
<2727, (2n), (27)
where (26) follows from Lemma H.7 and (27) follows from (25). Finally, we have proved that
D"(B) = P(S € B) < 2P((S,T) € B') < 213(2n)275"/2, (28)

Since D is H-realizable and A is an ERM algorithm, we must have A(S,,,H) € H and
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almost surely. Moreover, by the definition of B, if S, ¢ B, then ER(A(S,,H)) n S, = & implies
that erp(A(Sp,H)) < €. Thus, we have

P(erp(A(Sn, H)) <e) =2P(S, ¢ B) =1—D"(B).

Solving 273,(2n)275"/% = §, we get

2 (ot s (2))] < 2 [o (e (20) e (2)]

where the last inequality follows from Lemma H.2. Note that 1 A [ 2 (logy(73(2n)) + log, (2))] =

%, which implies that the above choice of ¢ is legitimate. Applying (28), we can conclude that with
probability at least 1 — 6,

erp(A(Sy, H)) < % [d v (dlog2 (22”» +log, <§>] .

Proposition H.5. There exists a learning algorithm Ag such that for any H < Y with dimg(H) =
d, any H-realizable distribution D, any ¢ € (0,1], and any n € N, given S,, ~ D™, it holds with
probability at least 1 — § that

nttsntty -0 (1 (i 108 (1)), "

Proof. The algorithm Ag is the algorithm .S,, — Majority(ERMy (A(S,; &))) defined in Hanneke
[2016], where ERMy, denotes an ERM algorithm on the concept class . Applying the error rate of
ERM algorithms proved in Proposition H.4 in the proof of Hanneke [2016, Theorem 2], we establish
(29). O

O

The above proposition immediately implies the following corollary on the expected error rate of the
learning algorithm Ag.

Corollary H.6. There exists a learning algorithm Ag such that for any H < Y with dimg(H) = d,
any H-realizable distribution D, and any n € N it holds that

d
Es,~pn [erp(AG(Sn, H))] = E((s,.(x,v)~Dr+1 [Ac(Sn, H)(X) # Y] =0 (n) . (30)

Proof. According to Proposition H.5, there exists some constant C' > 0 such that for any 6 € (0, 1],
it holds with probability at least 1 — ¢ that

erp(Ac(Sn, H)) < % (d+ log ((15 v e)> 7

which implies that for any ¢ > @,

P (erp(Ac(Sn, H)) > t) < e €+,

Since erp(Ag(Sn, H)) is nonnegative, we have

E [erp(Ac(Sp, H))] = LOOIP(erD(AG(Sn,H)) > ) dt
_Cld+1) +J°° o Bd gy

<
n C(d+1)

Cld+1+e 1
n

o)
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Lemma H.7. For any n € Nand m € N n [n, 2n], we have
()
2n
G

< 2m72n. (31)

Proof. Note that

(™) _m(m—1)---(m—n+1)
(2;:) 2n(2n—1)---(n+1) °

We prove by induction on m. When m = 2n, we have
)

Suppose that (31) holds for some m € N n [n + 1, 2n]. Then, we have
(") _m-n(}) _1

(27;) T (27;) Sg- gm—an — gm-—1=2n,

n n

=1=2m"2"

Thus, by induction, (31) holds for any m € N n [n, 2n]. O
Lemma H.8. For X ~ B(n,p), ifnp = 2, then
P(X < np/2) < 1/2.
Proof. If np > 8, since E[X] = np, by the multiplicative Chernoff bound, we have
P(X <np/2) <e ™ <l <1/2.

For 2 < np < 8, we have

P(X < np/2) = lnim <n> P — ).

For 6 < pn < 8, we have 6/n < p < 8/n and n > 6. Thus
3
P(X <np/2) = Z (n)p
i=0
Consider
fa(x,p) :=log(z(x — 1)(x — 2)) + (z — 3)log(1 —p), =6, 1 = p > 6/z.
Fixing p € (0, 1], we have « > 6/p and for x = 6/p,

0 1 1 1 1 1 1

Tt Sy 4= 4tlog(l— 4= 4=

5y 3@ =~ 4 g Flog(l—p) <o+ —— + ——5 —p
p, P p

<= + + —p<O.
6 6-p 6-2p 7

Thus, fixing p € (0, 1], f5(-,p) is a decreasing function on [6/p, ). Therefore, we have
f3(:r7p) < f3(6/p7p)a

which implies that
g3(w,p) < g3(6/p, p)

for

z(z—1)(x—2) 4

gB(CU?p) = 6 p (1 _p)a:—37 pe (07 1]7 T = 6/p
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Since log z—z+1 < 0forz € (0,1] and ¢/(z) = log z—z+1for g(z) := zlog(2)+1—2z—3(1—2)?
defined on z € (0, 1], we have

0=9(1) <g(z) < lim g(z) =1/2

z—04

for z € (0, 1]. Thus, we have

(1-2)01-5%)

log(z) + > 0.

Plugging in z = 1 — 6/t for t > 6, we have

6/t -3/t) _

log(1 —6/t) + 16/t

Then, defining
f(@t) :=1log(t) + log(t — 1) + log(t — 2) — 3log(t) + (t — 3) log(1 — 6/t), ¢t > 6,

we have

f’(t)=1+t_11+1:;)+log(16/t)+6/t1(1_6;/ﬂ>0,

which implies that f(¢) increases with ¢ for t > 6. Since

93(6/17,19) _ 6/p(6/p _é)<6/p - 2)p3(1 _ p)G/p—S

and
FO =t — 1)t —2)t73(1 — 6/t)" 2,
we know that g3(6/p, p) decreases with p € (0, 1]. Thus,

t(t — 1)(t — 2)
6

f3(6/p,p) < lim g5(6/p,p) = lim (6/t)°(1 —6/t)' = 36e°.

Following the above steps, for

z(z—1) 4

g2(w,p) i= ———p°(1 —p)* 2,
g1(x,p) := ap(1 —p)*~', and
go(l“,P) = (]— _p)$a

where p € (0,1], = = 6/p,
it is easy to prove that for any i = 0,1, 2, and p € (0, 1],
gi(z,p) < 9i(6/p,p) < lim gi(6/p,p)-
—0+
Specifically, we have

@(6/@2(1 —6/t)!72 = 18¢76,

g(@.p) < A £(6/t)(1 —6/t)" " = 6e~°, and

g2(w,p) < lim

t—ao0

go(w,p) < lim (1 -6/t)" = e™°.
0

t—

Then, we can conclude that

3
P(X <np/2) <) sup  gi(z,p) = (36+18+6+ 1) <
i=0 P€(0,1],z=6/p

DN | =
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Next, we consider the regime that 4 < np < 6. Now, we have
2 o\ ‘ 2
P(X <np/2) = ), ( .)pl(l —p)"'< Y, sup  gi(@,p)
i=0 ? izope(o,l],aj24/n
Following the procedures in the previous case, it is not hard to verify that for i = 0, 1, 2,

4t oqt
su i(x,p) = lim g;(4/p, = lim —(1 —4/t)t7" = —¢e 4.
pe(o,l],5>4/ng( p) = lim g;(4/p,p) = lim — (1 —4/1) i

It implies that

l\JM—\

P(X < np/2) = 2 ()= 2 Lt <

i=0
Finally, we consider the regime that 2 < np < 4. Now, we have

1

P(X <np/2) =(1—p)"+np(l—p)" ' <>, sup  gi(z,p).
i—0 PE(0,1],2=2/n

Following the previous procedures, it is not hard to verify that for ¢ = 0, 1,
. .20 i
sup  gi(w,p) = lim g;(2/p,p) = lim (1 -2/t)""" = Se
pe(0,1],2>2/n p—0 t—0o0 4! !

It implies that

1 o6
P(X < np/2) < ;)3!6_2 < %
In conclusion, if np > 2, then
P(X <np/2) < 5.
O
H.2 Bounding the graph dimension
For any H < Y% of DS dimension dim(#) = d < o, sequence S = (z1,...,7,) € X", menu

pw: X >{Y cY:|Y| <p}ofsizepe Nwithn e N, and d’ € [n], define
M = {hls : h e 1, |{i € [n] : hlws) ¢ p(z)}] < d'}
Hspi=1{hls:heH, {ie[n]:h(zx;) ¢ plx;)} <i}, and
Ho i i= (R (i = Vi o> B[ o€ Houa}

forallie 2([;] which denotes the collection of all subsets of [n] of size d’. We have the following
lemma.

Lemma H.9. dimg(Hs ,,a) < (2logy(e) + 4)(5dlog, (p) + 2d') for any d’ € [n].

Proof. For any i € 2", by Bendavid et al. [1995], Daniely and Shalev-Shwartz [2014], we have
dimg(’H'S’#yi) < 5log, (p)dim v ( {S,u,i) < 5logy(p)dim(H) = 5dlog,(p).

For any j < [n] that is G-shattered by Hsg ,, i, define j := j\i. We have that |j'| > |j| — d’ and
j' is G-shattered by Hs , ;, which immediately implies that |j'| < dima(#,;) < 5dlog,(p) and
il < || + d < 5dlogy(p) + d'. It follows that

dimg(Hs,ui) < bdlogy(p) +d' =: dy.
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Forany m e Nand j = {ji,...,jm} S [n] that is G-shattered by H s ,, &, there exists f : [m] — Y
such that for any K < [m], there exists g € Hg,, o satisfying g(jix) = f(k) for all k € K and
9(jr) # f(k) forall k € [m]\K. It follows that |Hg .« (j)| = 2. If m > d’, by Lemma H.2, we

have
m em\ ™
‘HS;,Ld’ Z | HS7;4 Z THs;“ < (d/> <2d1 vV <dl) ) s

162' 162'

which implies that

m < dy <1 v logy (edn:>) + log, (d’> dq (1 v log,y (ZT)) + d' log, (ed—ﬂ;b)

By Lemma H.11, we have
m < (2logy(e) +4)(dy + d') = (2logy(e) + 4)(5dlogy(p) + 2d'),
which implies that
dime(Hspua) < (2logy(e) + 4)(5dlog,(p) + 2d').
O
Lemma H.10. If z > 0 satisfies x < alogy(x/a) + b for some a,b > 0, then, we have x < 2a + 20.

Proof. Define f(x) := x — alogy(x/a) — b for z > 0. Then, we have f/(x) =1 — TTog(zy» Which

implies that f decreases with z for x € (0, a/log(2)) and increases with z for x > a/log(2). Since
2a + 2b > a/log(2), it suffices to prove that f(2a + 2b) > 0. Indeed,

f(2a+2b) =a+b—alogy((a+b)/a) =a((a+b)/a—1logy((a+b)/a)) =0
O

Lemma H.11. If x > 0 satisfies © < alogy(x/a) + blog,(z/b) + c for some a,b,c > 0, then, we
have x < 4a + 4b + 2c.

Proof. Since

x <alogy(z/a) + blogy(x/b) + ¢

T a a b b
= b)log, —— — b 1 1
(a+)og2a+b+c (aJr)[a+b0g2a+b+a+b0g2a+b]

<(a+b)log2ai+b+c+a+b,

by Lemma H.10, we have
r<2(a+b)+2(a+b+c)=4a+4b+ 2c
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In our abstract and introduction, we make the main claims that this paper
reduces the gap between the lower and upper bounds of the multiclass PAC sample com-
plexity and propose two possible routes towards completely resolving the optimal sample
complexity, which are the paper’s major contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: As is shown in Theorem 1.9, though we have reduced a log factor, there is still
an O(V/dlog(d) log(d/c)) gap between our upper and lower bounds of the multiclass PAC
sample complexity. We leave the development of sharper sample complexity upper bound in
Open Question 1 and Open Question 2.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each of our theoretical results, we provide the full set of assumptions in its
statement as well as a complete and correct proof in the appendices.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

4.1 If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

4.2 If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

4.3 If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

4.4 We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not include experiments and poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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