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Abstract

The classical theory of statistical estimation aims to estimate a parameter of interest
under data generated from a fixed design (“offline estimation’), while the contempo-
rary theory of online learning provides algorithms for estimation under adaptively
chosen covariates (“online estimation”). Motivated by connections between esti-
mation and interactive decision making, we ask: is it possible to convert offline
estimation algorithms into online estimation algorithms in a black-box fashion? We
investigate this question from an information-theoretic perspective by introducing a
new framework, Oracle-Efficient Online Estimation (OEOE), where the learner can
only interact with the data stream indirectly through a sequence of offline estimators
produced by a black-box algorithm operating on the stream. Our main results settle
the statistical and computational complexity of online estimation in this framework.

1. Statistical complexity. We show that information-theoretically, there exist
algorithms that achieve near-optimal online estimation error via black-box
offline estimation oracles, and give a nearly-tight characterization for minimax
rates in the OEOE framework.

2. Computational complexity. We show that the guarantees above cannot
be achieved in a computationally efficient fashion in general, but give a
refined characterization for the special case of conditional density estimation:
computationally efficient online estimation via black-box offline estimation
is possible whenever it is possible via unrestricted algorithms.

Finally, we apply our results to give offline oracle-efficient algorithms for
interactive decision making.

1 Introduction

Consider a general framework for statistical estimation specified by a tuple (X, ), Z, K, F), which
we will show encompasses classification, regression, and conditional density estimation. The learner
is given a parameter space JF (typically a function class), where each parameter f € F is a map
from the space of covariates X to the space of values Z. For an integer 1" > 1, the learner is
given a dataset (z*,y*), ..., (z7,y"), where z*, ..., x” are covariates and y*, . ..,y are outcomes
generated via y* ~ KC(- | f*(z*)), where f* € F is an unknown target parameter that the learner
wishes to estimate; here K is a probability kernel that assigns to each value z € Z a distribution
K (- | z) on the space of outcomes ). We adopt the shorthand K(z) = K(- | z) throughout.

The classical theory of statistical estimation typically assumes that the covariates z*, ..., x" are an ar-
bitrary fixed design, and is concerned with estimating the target parameter f* € F well in-distribution
(64140, 162]. Formally, for a loss function D : Z x Z — R>( on the space of values Z, the goal of the

learner is to output an estimator f based on (z*,y'), ..., (z%,y") such that the in-distribution error

Bst"(T) = Y D(F(a). f* (")) M

is small; we refer to this as an offline estimation guarantee. Canonical examples include:

1
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* Classification (i.e., distribution-free PAC learning [38] [63]), where 2 = Y = {0,1},

K(f*(2)) = Lg- (o []and Do (F(2), £*(2)) = 1{f(x) # f*()} is the 0/1-loss.

* Regression with a well-specified model [62,166], where Z = Y = R, K(f*(z)) = N(f*(z),0?),
and Dgq (f(), f*(z)) = (f(z) — f*(2))? is the square loss.

* Conditional density estimation [12], where ) is an arbitrary alphabet, Z = A(}),
K(f*(x)) = f*(x), and D}(, -) is squared Hellinger distance; seefor details.

In parallel to statistical estimation, the contemporary theory of online learning [17, 49] provides

estimation error algorithms that support adaptively chosen sequences of covariates, a meaningful

form of out-of-distribution guarantee. Here, the examples (z*, y*) arrive one at a time. For each step
t—1 t—1 )

t € [T, the learner produces an estimator f': X = Z based on the data (z',y'), ..., (z'"', y'
observed so far. The covariate x* is then chosen in an arbitrary fashion, and the outcome is generated
via y* ~ K(f*(x*)) and revealed to the learner. The quality of the estimators is measured vi

Est"(T):= Y, D(F'(x'). /*(a")). @

We refer to this as an online estimation guarantee; classical examples include online classification in
the mistake-bound model [41]], online regression [S1]], and online conditional density estimation [[L1].
Online estimation provides a non-trivial out-of-distribution guarantee, as it requires (on average) that
the learner achieves non-trivial estimation performance on covariates x* that can be arbitrarily far
from the previous examples x, ..., z*"". This property has many applications in algorithm design,
notably in the context of interactive decision making, where it has recently found extensive use for
problems including contextual bandits [25} 58 24]], reinforcement learning [27, 28], and imitation
learning [56,155].

In this paper, we investigate the relative power of online and offline estimation through a new
information-theoretic perspective. It is well known that any algorithm for online estimation can
be used as-is to solve offline estimation through online-to-batch conversion, a standard technique
in learning theory and statistics [3} (9, 16, 61, 136, [8]]. The converse is less apparent, as online
estimation requires non-trivial algorithm design techniques that go well beyond classical estimators
like least-squares or maximum likelihood [17]. In the case of regression with a finite class F,
least squares achieves optimal offline estimation error EstS" (T') < O(log|F |) and while it is

possible to achieve a similar rate Est3"(7") < O(log|F]) for online estimation, this requires Vovk’s
aggregating algorithm or exponential weights [65]; directly applying least squares or other standard
offline estimators leads to vacuous guarantees. This leads us to ask: Is it possible to convert offline
estimation algorithms into online estimation algorithms in a black-box fashion?

Computationally speaking, this question has practical significance, since online estimation algorithms
are typically far less efficient than their offline counterparts (the classical exponential weights algo-
rithm maintains a separate weight for every f € JF, which is exponentially less memory-efficient than
empirical risk minimization). In fact, at first glance this seems like a purely computational question:
if the learner has access to an offline estimator, nothing is stopping them (information-theoretically)
from throwing the estimator away and using the data to run an online estimation algorithrnE] Yet, for
aforementioned applications in interactive decision making [25} 158,24} 27, 128} 156, |55]], estimation
algorithms—particularly online estimators—play a deeper information-theoretic role, and can be
viewed as compressing the data stream into a succinct, operational representation that directly
informs downstream decision making. With these applications in mind, the first contribution of
this paper is to introduce a new protocol, Oracle-Efficient Online Estimation, which provides an
information-theoretic abstraction of the role of online versus offline estimation, analogous to the
framework of information-based complexity in optimization [43| |60l |48l 2] and statistical query
complexity in theoretical computer science [[13 37,121} 22]].

'We use 1, to indicate the delta distribution that places probability mass 1 on y.

2For technical reasons, it is also common to consider randomized estimators where f’ ~ p', and measure
error by Est3"(T) := >/, Ez ¢ [D (Fi (), f*(«")

3We consider unnormalized estimation error in[Eq. (1)| following the convention of online learning. For
normalized estimation error, we have %Estng(T) < %, following the convention of statistical estimation.

*Related computational questions have already been studied, with negative results [14} 33]).
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Protocol 1 Oracle-Efficient Online Estimation (OEOE)
1: fort=1,...,7 do

2: Learner receives estimator ft = Algog(zt, ...,z 7Yyt ...,y ") from offline est. oracle.

3: Basedon z',...,z' ' and f',..., f', learner produces an estimator f* € Z%, which may
be randomized according to a distribution p*.

4: Based on p*, nature selects covariate z* € X and outcome y* ~ K(f*(x*)), but does not

directly reveal them to the learner.

1.1 Our protocol: oracle-efficient online estimation

In the Oracle-Efficient Online Estimation (OEOE) framework, the aim is to perform online estima-
tion in the sense of [Eq. (2)} with the twist that the learner does not directly observe the outcomes
y', ..., y"; rather, they interact with the environment indirectly through a sequence of offline estima-
tors produced by a black-box algorithm operating on the historical data. We formalize this black-box

algorithm as an estimation oracle Algqq = {Algtoff}tT:1 (e.g., Foster and Rakhlin [26]), which is a
mapping from histories to estimators that enjoy bounded offline estimation error.

Definition 1.1 (Offline estimation oracle). An offline estimation oracle Algqy, = {Algbff}thl
for a statistical estimation instance (X,Y,Z,K,F) and loss D is a mapping Algog : (X x
W)t — (X — Z) such that for any sequence (z',y"),...,(x7,y") with y* ~ K(f*(a")),
the sequence of estimators f* = Algog(z',...,x"7 "y, ..., y"™") satisfies Estgff(t) =
Zi;ll D(f!(z*), f*(z%)) S/\ﬁoff for all t € [T almost surely; we allow x* to be selected adaptively

basedony',...,y"" and f',..., ft7'. We refer to Pog > 0 as the offline estimation parameter.

This definition simply asserts that the estimators f* produced by the offline estimation oracle satisfy
the guarantee in [Eq. (D)} even when the covariates are selected adaptively. Examples include
standard algorithms like least-squares for regression and maximum likelihood for conditional density
estimation, which guarantee Sog < O(log|F|) with high probability whenever F is a finite class; see

Appendix C.1|for further background | Throughout the paper, we assume for simplicity that Sog > 0
is known in advance.

With this definition, we present the Oracle-Efficient Online Estimation protocol in In the
protocol, a learner aims to perform online estimation, but at each step ¢, the only information available

is the covariates z', ..., x'~" and the estimators f*', ..., f* generated by an offline estimation oracle

satisfying the outcomes ¥, ..., y” are not directly observed. Based on this infor-
mation, the learner produces a new estimator f* such that the online estimation error Estgn (T) =
Zthl Erou [D(f(z"), f*(z))] inis minimized@ An algorithm is termed oracle-efficient
if it attains low online estimation error (2) in the OEOE framework. Note that while the learner
cannot directly observe the outcomes y', ..., y”, the covariates x', ..., z” are observed; we prove
that without this ability, it is impossible to achieve non-trivial estimation performance .

The OEOE framework abstracts away the property that oracle-efficient algorithms implicitly interact
with the environment through a compressed, potentially lossy channel (the estimation oracle Algg,).
We believe this property merits deeper investigation: it is shared by essentially all algorithms from
recent research that reduces interactive decision making and reinforcement learning to estimation
oracles [25} 158} 127, 28, 156, I55]], yet the relative power of offline oracles and analogously defined
online oracles is poorly understood in this context. By providing an information-theoretic abstraction
to study oracle-efficiency, the OEOE framework plays a role similar to information-based complexity
in optimization [43, |60} 48, [2]] and statistical query complexity in theoretical computer science
(13} 37, 21} 22], both of which provide rich frameworks for designing and evaluating iterative
algorithms that interact with the environment in a structured fashion. We expect that this abstraction
will find broader use for more complex domains (e.g., decision making and active learning) as a
means to guide algorithm design and prove lower bounds against natural classes of algorithms.

SMost algorithms only ensure that the guarantee inholds with high probability. We assume
an almost sure bound to simplify exposition, but our results trivially extend. Likewise, our results immediately
extend to handle the case in which Sog is allowed to grow as a (sublinear) function of ¢.

8For technical reasons, we allow the learner to randomize the estimator f* via a distribution p.
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Let us first build some intuition. Familiar readers may recognize that the classical halving algorithm
for binary classification (e.g., Cesa-Bianchi and Lugosi [[L7]) can be viewed as oracle-efficient in
our framework. Specifically, for binary classification with Y = Z = {0,1} and loss function
Dos1 (f(x), f*(x)) = 1{f(x) # f*(x)}, the halving algorithm can use any offline oracle with
Bos = 0 to achieve Est3"(T) = O(log|F|), which is optimal. However, little is known for noisy
oracles with Sog > 0, or more general outcome spaces and loss functions (e.g., regression or density
estimation). In addition, the halving algorithm—while oracle-efficient—is computationally inefficient,
as it requires maintaining an explicit version space. This leads us to restate our central question
formally, in two parts:

1. Can we design oracle-efficient algorithms with near-optimal online estimation error @), up to
polynomial factors (for general instances (X,Y, Z, K, F) and Bog > 0)?

2. Can we do so in a computationally efficient fashion?

1.2 Contributions

For a general class of losses D, referred to as metric-like, we settle the statistical and computational
complexity of performing online estimation via black-box offline estimation oracles up to mild gaps,
answering questions [()]and [(Z)] above.

Statistical complexity. Our first result concerning statistical complexity focuses on finite classes
F, where the optimal rates for offline and online estimation with standard losses D(, -) both scale
as O(log|F|). For this setting, we show that there exists an oracle-efficient online
estimation algorithm that achieves EstS"(T) = O((Bog + 1) min{log|F|, |X|}) in the OEOE
framework, and that this is optimal (Theorem 3.2). This provides an affirmative answer to question[(T)}
and characterizes the statistical complexity of oracle-efficient online estimation with finite classes F.

In the general OEOE framework, the learner can use the entire history of offline estimators fl, R ft
and covariates x', ..., z'"" to produce the online estimator f* for step ¢. As a secondary result, we
study a restricted class of memoryless oracle-efficient algorithms that choose f* only based on the

most recent offline estimator f*, and show (Theorem 3.3) that it is impossible for such algorithms to
achieve low online estimation error.

Lastly, we give a more general approach to deriving oracle-efficient reductions that is
based on delayed online learning (67, 142),135,147]]. Using this result, we give a characterization of
learnability with infinite classes for binary classification in the OEOE framework (Theorem D.2),
proving that finite Littlestone dimension is necessary and sufficient for oracle-efficient learnability.

Computational complexity. On the computational side, we provide a negative answer to question
[@)} showing that under standard conjectures in computational complexity, there do
not exist polynomial-time algorithms with non-trivial online estimation error in OEOE framework.
In spite of this negative result, we provide a fine-grained perspective for the statistical problem of
conditional density estimation, a general task that subsumes classification and regression and has
immediate applications to reinforcement learning and interactive decision making [27, [28]. Here
we show, perhaps surprisingly (Theorem 4.2)), that online estimation in the OEOE framework is no
harder computationally than online estimation with arbitrary, unrestricted algorithms. This result is
salient in light of the applications we discuss below.

Implications for interactive decision making. As the preceding discussion has alluded to, our
interest in studying oracle-efficient online estimation is largely motivated by a connection to the prob-
lem of interactive decision making. Foster et al. [27, 28], Foster and Rakhlin [26] propose a general
framework for interactive decision making called Decision Making with Structured Observations
(DMSO), which subsumes contextual bandits, bandit problems with structured rewards, and reinforce-
ment learning with general function approximation. They show that for any decision making problem
in the DMSO framework, there exists an algorithm that, given access to an online estimation algorithm
(or, “oracle”) for conditional density estimation for an appropriate class F, it is possible to achieve
near-optimal regret. The results above critically make use of online estimation oracles, as they require
achieving low estimation error for adaptively chosen sequences of covariates, and it is natural to ask
whether similar guarantees can be achieved using only offline estimation oracles. However, positive re-
sults are only known for certain special cases [18H20, 58], with scant results for reinforcement learning
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in particular. In this context, our results have the following implication (Corollary E.I): Information-
theoretically, it is possible to achieve near-optimal regret for any interactive decision making problem
using an algorithm that accesses the data stream only through offline estimation oracles.

Additional results. Due to space constraints, the following results are deferred to the appendix:
(i) detailed examples for our statistical estimation framework (Appendix Q); (ii) additional results
concerning statistical complexity of the OEOE framework (Appendix D); and (iii) detailed results

for our application to interactive decision making (Appendix EJ).

2 Preliminaries

Unless otherwise stated, our results assume the loss function D has metric-like structure.

Definition 2.1 (Metric-like loss). A loss function D : Z x Z — [0, 1] is metric-like on the set Z if
it is symmetric and satisfies (i) D(z1, z2) > 0 for any z1,22 € Z and D(z,z) =0 forall z € Z; and
(ii) D(z1, 22) < Cp - (D(21, 23) + D(23, 22)) for all 21, 22, 23 € Z, for an absolute constant Cp > 1.

Throughout the paper, we focus on three canonical applications, outlined in the introduction: Classi-
fication with the indicator loss Dg,/; (Cp = 1), regression with the square loss Dgq (Cp = 2), and
conditional density estimation with squared Hellinger distance D, (Cp = 2). See for
detailed examples and discussion. (omitted for space).

Finite versus infinite classes. The majority of our results focus on finite classes F. We believe
this captures the essential difficulty of the problem, but we expect that most of our sample complexity
results (which typically scale with log |F|) can be extended to infinite classes by combining our
techniques with appropriate notions of complexity for the function class (Littlestone dimension for
classification, sequential Rademacher complexity, and sequential covering numbers [50, 41} |52]).
For the canonical settings of classification, regression, and conditional density estimation, there exist
algorithms that achieve Est3" (T') = O(log|F|) and Est9"(T) = O(log|F|) for arbitrary finite
classes; see for details.

We defer additional notation and related work to and [B]

3 Statistical complexity of oracle-efficient online estimation

This section presents our main results concerning the statistical complexity of oracle-efficient online
estimation. In we focus on finite classes F and present an oracle-efficient algorithm
that achieves near-optimal online estimation error (Theorem 3.1). We then provide a lower bound
that shows that our reduction is near optimal (Theorem 3.2)). In|[Section 3.2| we turn our attention to
memoryless oracle-efficient algorithms, proving strong impossibility results (Theorem 3.3).

3.1 Minimax sample complexity for oracle-efficient algorithms

In this section, we present our main statistical conclusion for the OEOE framework: For any finite
class F, it is possible to transform any black-box offline estimation algorithm into an online estimation
algorithm with near-optimal error (up to a logarithmic factor that we show is unavoidable).

Algorithm and minimax upper bound. Our results are achieved through a new algorithm, Version
Space Averaging, described in|Algorithm 1] At each round ¢, the algorithm uses estimators f*, ..., f*

produced by an offline estimation oracle Algqy, along with the previous covariates 2, ..., 27",

to construct a version space F; C F in|Eq. (3)| Informally, F; consists of all f € F that are
consistent with the estimators f*, ..., f* in the sense that for all s € [t], the offline estimation error

relative to fs is small; as long as the offline estimation oracle Algqy has offline estimation error Sogr
(Definition 1.1)), it follows immediately that the construction in satisfies f* € F;. Given the

version space 7, |Algorithm 1|predicts by uniformly sampling: f* ~ u* := Unif(F;), then proceeds
to the next round|’| The main guarantee for|Algorithm 1|is stated in{Theorem 3.1

"For realizable binary classification with Dy /q (f(:r), [ (2) = ]l(f(:v) # f*(x)) and o = 0, the version
space construction in[Eq. (3)| coincides with that of the halving algorithm (e.g., Cesa-Bianchi and Lugosi [17]),
and its estimation error bound matches the halving algorithm up to absolute constants. As such,

[ATgorithm T|can be viewed as a noisy/error-tolerant generalization of the halving algorithm, which may find
broader use.
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Algorithm 1 Version Space Averaging

1: input: parameter space J, offline estimation oracle Algy with parameter Sog > 0.
2: fort=1,2,...,T do

3: Receive f* = Algpg(at, ..., 2"y, .yt h).

4: Calculate version space:

]-"t:{fe]-" ‘ Vselt], Y

5: Predict ft ~pti= Umf(]:t) and receive x*. // Nature draws y' ~ KC(f*(2')) and passes to Alggy.

D(J?S(f%f(f)) < 50fr}- (3)

T8

Theorem 3.1 (Main upper bound for OEOE). For any instance (X,Y, Z,K,F), any metric-like
loss D, and any offline estimator Algqg with parameter Bog > 0, is oracle-efficient
and achieves

Estg"(T) < O(Cp - (Bosr + 1) - min {log | F|, | X|log T'}).

Most notably, |Algorithm 1| achieves EstS™(T) < O(Cp - (Bog + 1) - log|F|); that is, up to a

O(log|F|) factor, the reduction achieves online estimation rates in the OEOE framework that are
no worse than the minimax rate for offline estimation. For classification, regression, and density
estimation with generic finite classes 7 (Appendix C)), the best possible offline estimation error rate
is Bosr = O(log|F]), so this shows that price of oracle-efficiency is at most quadratic.

Minimax lower bound. Next, we show that the upper bound in is nearly tight, giving
a lower bound that matches up to logarithmic factors.

Theorem 3.2 (Main lower bound for OEOE). Consider the binary classification setting with
Z =Y = {0,1} and loss Dy, (-,-). For any N € N and Pogr > O, there exists an instance
(X, Y, 2, K, F) with log |F| = |X| = N such that for any oracle-efficient algorithm, there

is a sequence of covariates (z*,...,x") and offline oracle with parameter Bog such that

E[Est3"(T)] > Q(min {(Bog + 1)N,T}).

This result states that for a generic finite class F and offline estimation oracle Algqy, any oracle-
efficient online estimator must have

E[Est3"(T)] > Q(min {(Bor + 1) log | F, (or + 1)|X], T})

in the worst case. This implies that the log|F| factor we pay for offline to online conversion is un-
avoidable, and that[Theorem 3.1]is optimal up to a log 7" factor, giving a near-optimal characterization
for the minimax rate for online estimation in the OEOE framework. We conclude with two remarks:
(i) The (Boss + 1) scaling (as opposed to say, Sofr) inis unavoidable, as witnessed by the
optimality of the halving algorithm for noiseless binary classification [17]; (ii) if the space Z and the
loss D are convex, then we can change to output a deterministic prediction by using the
average of all parameters in J; rather than the uniform distribution on F;. SeeLemma G.1|for details.

General reductions and infinite classes. [Algorithm I]is somewhat specialized to finite classes. In
(deferred to the appendix for space), we provide a more general approach to designing
oracle-efficient algorithms based on delayed online learning (Theorem D.T), and use it to derive a
characterization of oracle-efficient learnability for classification with infinite classes F (Theorem D.2).

Full memory vs. finite memory. [Algorithm 1]requires full memory of all past offline estimators.
The more general approach proposed in [Appendix D|can use N most recent offline estimators to

obtain an estimation error bound of O(Cp (N + SogT/N) + N - log|F|) (Corollary D.1) for any
integer N > 0.

3.2 Impossibility of memoryless oracle-efficient algorithms

In the general OEOE framework, the learner can use the entire history of estimators f*,..., f* and
covariates z', ..., 2" " to produce the online estimator f* for step ¢; notably the Version Space Aver-
aging algorithm with which our upper bounds in the prequel are derived uses the entire history. In this
section, we show that for memoryless oracle-efficient algorithms that select the esti-

mator f* only as a function of the most recent offline estimator f*, similar guarantees are impossible.
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Definition 3.1 (Memoryless algorithm). An online estimation algorithm is memoryless if there exists
a map F'(-) such that we can write u* = F*(f*), where f* = Algog(x, ..., 2" y", ...,y
and 1" is the randomization distribution for the online estimator f*

Memoryless algorithms are more practical than arbitrary algorithms, since they do not require
storing past estimators or covariates in memory. Our motivation for studying memoryless algorithms
arises from recent work in interactive decision making [25, 27], which shows that there exist
near-optimal algorithms for contextual bandits and reinforcement learning that use estimation oracles
in memoryless fashion. We show that unfortunately, it is not possible to convert offline estimators
into memoryless online estimation algorithms with non-trivial error.

Theorem 3.3 (Impossibility of memoryless algorithms for OEOE). Consider the binary classification
setting with Z = ) = {0,1} and loss Dg,,(:,-). For any N € N and fog > 0, there exists an
instance (X, Y, Z, K, F) with |F| = |X| = N such that for any memoryless oracle-efficient algo-
rithm, there exists a sequence of covariates (x*,...,x") and a (potentially improper) offline oracle
Algqq with parameter Bog such that E[Est3™(T)] > Q(min {N(Bog + 1), T'}). This conclusion
still holds when the online estimation algorithm remembers fl, ceey f"‘l butnotx',..., """,

This result shows that in the worst case, any memoryless oracle-efficient algorithm must have
E[Est3"(T)] > Q((Bo + 1) min {|X], | F|}).

This precludes an online estimation error bound scaling with (Bo¢ + 1) log|F| as in[Theorem 3.1} and
shows that the gap between general and memoryless oracle-efficient algorithms can be exponential.

Interestingly, the lower bound in holds even if the online estimation algorithm is

allowed to remember f*,..., f*~*, butnot z*, ..., z* . The intuition here is that without covariate
information, it is not possible to aggregate the predictions of previous estimators or otherwise use them
to reduce uncertainty. This provides post-hoc motivation for our decision to incorporate covariate

memory into the OEOE protocol in

The proof of uses that the estimators f’ produced by the offline estimation oracle may
be improper (i.e., f* ¢ F). We defer a variant of the result that holds even if the estimation oracle is

proper under additional assumptions as well as the complementary upper bound to

4 Computational complexity of oracle-efficient online estimation

In this section, we turn our attention to the computational complexity of oracle-efficient online
estimation in the OEOE framework. In[Section 4.1 we show that in general, it is not
possible to transform black-box offline estimation algorithms into online estimation algorithms in a
computationally efficient fashion. Then, in we provide a more fine-grained perspective,
showing that for conditional density estimation, online estimation in the OEOE
framework is no harder computationally than online estimation with unrestricted algorithms.

4.1 Computational hardness of oracle-efficient estimation

Our main upper bounds (Section 3.1) show that online estimation error Est3"(T') < O((Bof +
1) log|F|) can be achieved in an oracle-efficient fashion for any finite class F, but the algorithm

(Algorithm 1) is not computationally efficient. We now show that this is fundamental: There exist
classes F for which offline estimation can be performed in polynomial time, yet no oracle-efficient
algorithm running in polynomial-time algorithm can achieve sublinear online estimation error.

Computational model. To present our results, we must formalize a computational model for
oracle-efficient online estimation, and in particular, define a notion of input length for oracle-efficient
online algorithms. To do so, we restrict our attention to noiseless binary classification, and consider
a sequence of classification instances indexed by n € N, with Z = Y = {0,1}, &), := {0,1}",
K(z) = 1., and indicator loss D1 (-, -). We consider a sequence of classes J,, that have polynomial
description lengthi.e. log|F,| is polynomial in n, so that f € F,, can be described in poly(n) bits. In
particular, we assume that f € F,, is represented as a Boolean circuit of size poly(n) so that f(x) can
be computed in poly(n) time for z € X,,; we refer to such sequences as polynomially computable.

8There are many natural variants of this protocol. For example, algorithms could select 1" based on ft and
B bits of auxiliary memory. We hope future work will explore these variants.
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To allow for offline estimators that are improper, we assume that for all ¢ and
all sequences (x',y'),...,(z7,y"), the output f* : {0,1}" — {0,1} returned by
Algog(xt, ..., 27y, ...,y"") is a Boolean circuit of size poly(n); we refer to such oracles
as having poly(n)-output description lengthﬂ Likewise, to allow the online estimation algorithm it-
self to be improper and randomized, we restrict to algorithms for which computing f*(x) for f* ~ p?
can be implemented as f*(z, ) for a random bit string  ~ Unif ({0, 1}7), where B = poly(n); we
refer to the online estimator as having poly (n)-output description length if f*(-,-) is itself a Boolean
circuit of size poly(n). We refer to the online estimation algorithm polynomial time if it runs in
time poly(n) for any sequence of inputs ¢, z*,...,z*"*, and f*,..., f*~*, and has poly(n)-output
description length

Main lower bound. Our main computational lower bound is as follows.

Theorem 4.1 (Computational lower bound for OEOE). Assume the existence of one-way functions.[];r]
There exists a sequence of polynomially computable classes (Fi, Fa,...,Fn,...), along with a
sequence of poly (n)-output description length offline oracles with Bog = 0 associated with each JF,,
such that for any fixed polynomials p, q : N — N and all n € N sufficiently large, any oracle-efficient
online estimation algorithm with runtime bounded by p(n) must have E[EstS"(T)] > T'/4 for all
1 < T < q(n). At the same time, there exists an inefficient algorithm that achieves E[EstS"(T))] <
O(y/n) forall T € N.

Informally, [Theorem 4.1|shows that there exist a class F and offline estimation oracles Algq for
which no oracle-efficient online estimation algorithm that runs in time

~

poly(len(X), len(F), max; len(f*),T)

can achieve sublinear estimation error, where len(X’) and len(F) denote the number of bits required

to describe € X and f € F, and len(f*) denotes the size of the circuit required to compute f*(z).
Yet, low online estimation error can be achieved by an inefficient algorithm, and there exist efficient
offline estimators with Sog = 0 as well. The result is essentially a corollary of Blum [[14]); we refer
to for the detailed proof. We mention in passing that Hazan and Koren [33] also
give lower bounds against reducing online learning to offline oracles, but in a somewhat different

computational model; see for detailed discussion.

is slightly disappointing, since one of the main motivations for studying oracle-efficiency
is to leverage offline estimators as a computational primitive. Combined with our results in
shows that even though it is possible to be oracle-efficient information-theoretically, it
is not possible to achieve this computationally. Nonetheless, we are optimistic that our abstraction
can (i) aid in designing computationally efficient algorithms for learning settings beyond online
estimation, and (ii) continue to serve as a tool to formalize lower bounds against natural classes of
algorithms, as we have done here; see for further discussion.

Remark 4.1. [Theorem 4. 1| relies on the fact that the offline estimator may be improper (i.e., ft ¢ F).

An interesting open problem is whether one can attain poly(log | F,|) - o(T') online estimation error
with runtime poly (log | F,,|) given a proper offline estimation oracle with parameter Sog = 0. <

4.2 Conditional density estimation: computationally efficient algorithms

In spite of the negative result in the prequel, which shows that efficient computation in the OEOE
framework is not possible in general, we can provide a more fine-grained perspective on the com-
putational complexity of oracle-efficient estimation for the problem conditional density estimation,
a general task which subsumes classification and regression, and has immediate applications to
reinforcement learning and interactive decision making [27, 28]].

Conditional density estimation. Recall that conditional density estimation [71} [12] is the special

case of the online estimation framework in in which X’ and Y are arbitrary, Z = A(Y),
and the kernel is /C(z) = z; that is sampling y ~ K(f*(x)) is equivalent to sampling y ~ f*(x). For

°See, e.g., Arora and Barak [6], Definition 6.1

10The precise computational model for runtime under consideration (e.g., Turing machines or Boolean circuits)
does not change the nature of our results.

Existence of one-way functions is a standard and widely believed complexity-theoretic assumptions, which
forms the basis of modern cryptography [30].
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the loss, we use squared Hellinger distance: D3 (f(z), f*(z)) = 3 [(V/f(y | z) =/ [*(y | .1‘))2;
with online estimation error given by Est™(T) = Y1_, D (f*(z*), f*(z")).
Base algorithm. Our result is based on a reduction. We assume access to a base algorithm Acpg for

online estimation in the Conditional Density Estimation (CDE) framework, which is unrestricted in
the sense that it is not necessarily oracle-efficient. That is, Acpg can directly use the full data stream

(zt,9%),..., (z*7 1, y* ") at step t. For parameters Rcpe(7') and Cx > 1, we assume that for any
f* € F, the base algorithm Acpg ensures that for all § € (0,e~!), with probability at least 1 — 4,
Est"(T) < Repe(T) + Cr - log(1/96). 4)

We define the total runtime for Acpg across all rounds as Time(F, T).

Main result. Our main result shows that any algorithm Acpg satisfying the guarantee above can be

transformed into an oracle-efficient algorithm with only polynomial blowup in runtime. For technical

reasons, we assume that V' :=¢e V sup Fof EF zeX yey ff,((";ll@ )) is bounded; our sample complexity

bounds scale only logarithmically with respect to this parameter. In addition, we assume that all
f € Fand z € X have O(1) description length, and that one can sample y ~ f(z) in O(1) time.

Theorem 4.2. Let Acpe be an arbitrary (unrestricted) online estimation algorithm that satisfies
q. (4)\and has runtime Time(F,T). Then for any N € N, there exists an oracle-efficient online
estimation algorithm that achieves estimation error

E[Est3"(T)] < O(CxlogV - BogT /N + N - (Rcoe(T) + Crlog V)

with runtime poly(Time(F,T),log|F|,log|X|,T), where Bog > 0 is the offline estima-
tion parameter.  The distributions u',...,u" produced by the algorithm have support
size poly(log | F|,log|X|,T). As a special case, if the online estimation guarantee
for the base algorithm holds with Rcpe(T) < Cl%logT for some problem-dependent

constant C%» > 1, then by choosing N appropriately, we achieve E[Estgn(T)} <
O((Cx(Cx + C%)Bose) /2 log V - T2 + (Cx + C%) log V).

Note that the estimation error bound in[Theorem 4.2|is sublinear whenever the rate Rcpg(7) is. This
implies that for squared Hellinger distance, online estimation in the OEOE framework is no harder
computationally than online estimation with arbitrary, unrestricted algorithms.

The proof of is algorithmic, and is based on several layers of reductions. The main
reason why the result is specialized to conditional density estimation is as follows: If we have an

estimator f for which D} (f(a:),f*(ac)) is small for some x, we can simulate y ~ f*(z) up to low

statistical error by sampling y ~ f(x) instead, as fand f* are close in distribution. This allows us to
implement a scheme based on simulating outcomes and feeding them to the base algorithm.

5 Discussion

Our work introduces the Oracle-Efficient Online Estimation protocol as an information-theoretic
framework to study the relative power of online and offline estimators and gives a nearly complete
characterization of the statistical and computational complexity of learning in this framework. In
what follows, we discuss broader implications for our information-abstraction of oracle-efficiency.

Oracle-efficient learning as a general framework for analysis of algorithms. One of the most
important contributions of this work is to formalize oracle-efficient algorithms as mappings that act
upon a sequence of estimators but do not directly act on historical outcomes. While the computa-
tional lower bounds we provide for oracle-efficient learning are somewhat disappointing, we are
optimistic that—similar to statistical query complexity in TCS and information-based complexity
in optimization—our abstraction can (i) aid in designing computationally efficient algorithms for
learning settings beyond online estimation, and (ii) continue to serve as a tool to formalize lower
bounds against natural classes of algorithms, for estimation and beyond. That is, we envision oracle-
efficient learning as a more general framework to study oracle-based algorithms in any type of
interactive learning problem. We remark that one need not restrict to offline oracles; it is natural to
study oracle-efficient algorithms based on online estimation oracles or other types of oracles through
our information-theoretic abstraction as well. For concreteness, let us mention a couple of natural
settings where our information-theoretic abstraction can be applied.
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Oracle-efficient interactive decision making. For interactive decision making problems like bandits
and reinforcement learning (more broadly, the DMSO framework described in[Appendix E.T)), it is
natural to formalize oracle-effiicent algorithms as algorithms that do not directly observe rewards
(bandits) or trajectories (reinforcement learning), and instead must select their decision based on an
(online or offline) estimator (e.g., regression for bandits or conditional density estimation for RL). Fos-
ter and Rakhlin [25]] and Foster et al. [27] et seq. provide algorithms with this property for contextual
bandits and RL, respectively, but the power of offline oracles in this context is not well understood.

Oracle-efficient active learning. For active learning, it is natural to consider algorithms that decide
whether to query the label for a point in an oracle-efficient fashion (e.g., Krishnamurthy et al. [39]).
For concreteness, consider pool-based active learning [32]. Suppose the learner is given a pool
P ={x1, ...,z } of covariates and a parameter space .F. The learner can repeatedly choose z* € P

and call the offline oracle to obtain an estimator f* such Est3" (¢) := >t D (ft (%), f* (x)) <

Bosr (in contrast to an unrestricted algorithm that observes y* = f*(z*)). The aim is to learn a
hypothesis with low classification error using the smallest number of queries possible. Can we design
oracle-efficient algorithms that do so with near-optimal label complexity?

5.1 Further Directions

We close with some additional directions for future research.

Refined notions of estimation oracles. This work considers generic offline estimation algorithms
that satisfy the statistical guarantee in[Definition I.1|but can otherwise be arbitrary. Understanding
the power of offline estimators that satisfy more refined (e.g., problem-dependent) guarantees is an
interesting direction for future research.

Open questions for proper versus improper learning. Our results leave some interesting gaps in
the power of proper versus improper oracles. First, the computational lower bounds in
leave open the possibility of attaining poly(log |M,,|) - o(T") online estimation error with runtime
poly(log |M,,]) given access to a proper offline estimation oracle with parameter So¢ = 0. Second,
our results in leave open the possibility of bypassing the Q(|X|(SBos + 1)) lower bound
for memoryless algorithms under the assumption that the offline oracle is proper.
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Part I

Additional discussion and examples

A Additional notation

We denote R>o = [0, 00). Forany a,b € R, a A b := min {a, b} and a V b := max {a, b}. For any
integer N > 0, [N] = {1, ..., N}. For any set X, A(X) is the space of all distributions on X'. For
any integer T, the notation " will be the shorthand notation for the sequence x*, ..., z”. For any
real number = € R, denote by |z | the largest integer that is smaller than or equal to  and by [x]
the smallest integer that is greater than or equal to . The indicator function is denoted by 1(-). We

define O(-), Q(:), o(-), ©(-), O(:), Q(-), ©(:) following standard non-asymptotic big-oh notation.
We use the binary relation 2 < y to indicate that 2 < O(y).

B Additional related work
In this section we discuss related work not already covered in detail.

Computational lower bounds for online learning. Beyond Blum [[14]], another work that considers
computational lower bounds for online learning is Hazan and Koren [33]]. This work proves lower
bounds for online learning in a model where the learner has access to an ERM oracle that can
minimize the training loss for an arbitrary dataset (z*, y*), ..., (7, y"). Their lower bound does not
fit in our computational model due to details around the way description length is formalized. In
particular, the main focus of [33] is to obtain a lower bound on the number of oracle calls any online
learning algorithm must make to an ERM oracle.

Similar to the setup for [Theorem 4.1 Hazan and Koren [33] consider a sequence of classification
instances with X,, = {0,1}" and classes F,, of the size of Q(2V|*2l), and show that any online
learning algorithm requires §2(1/|X},|) oracle calls to achieve low regret for this class. However, the

estimators f € F,, returned by the oracle in their construction have 2(y/|X,,|) description length
themselves, meaning that they do not satisfy the poly(n)-description length required by the model
described in (in other words, the result is not meaningful as a lower bound on runtime,
because simply reading in the output of the offline oracle takes exponential time). For completeness,
we restate the example proposed by Hazan and Koren [33, Theorem 22] in our framework below.

Hard case from [33|]. For any integer n > 1, consider a binary classification problem with Xy, =
{0,1*", 2 =Y ={0,1},D = Do/1 and K(z) = 1. Let N := 22", and let S be the collection
of all sets S = {s1,...,50n} C {0,1}*" where {0,1}*" is also treated as the integer set of
{0,...,2%" — 1} in left-to-right order and s; € {2"(i — 1),...,2" — 1} foreach i = 1,...,2".
We define a class Fa,, = {fs,: S € S,7 < 2"}, where

0 ifzxeSandz > s,
1 otherwise.

fs,r(l”) = {

For this class, we reduce back to the Theorem 22 of Hazan and Koren [33]] which states that any
algorithm with runtime o(v/N ) has to suffer online estimation error at least t/2 for all 1 < ¢ < 2.

The issue with this example for our computation model is that | Fy, | = Q(2V¥22]) Any sufficient
description for this parameter space in bit strings (or, e.g., boolean circuits) will scale with (/| X2y, |).

Thus, the description length required to return ft is too large (already larger than the lower bound
obtained).

Online learning with memory constraints. A number of recent works focus on memory-regret
tradeoffs in online learning [59} 45| 44, [1} [68]. Here, the learner can observe the full data stream
(z*,9%),..., (2", y"), butis constrained to B bits of memory. This framework is incomparable to the
OEOE framework, but it would be interesting to explore whether there are deeper connections (e.g.,
any memoryless OEOE algorithm inherently has memory no larger than that of the offline oracle).
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Gaps between offline and online. A long line of work aims to characterize the optimal regret for
online learning, developing complexity measures (Littlestone dimension, sequential Rademacher
complexity) that parallel classical complexity measures like VC dimension and Rademacher com-
plexity for offline learning and estimation [10, 153|154, [7]. It is well known that in general, the optimal
rates for online learning can be significantly worse than those for offline learning. Our work primarily
focuses on finite classes F, where there is no gap, but for infinite classes, any conversion from
offline to online estimation will inevitably lead to a loss in the estimation error rate that scales with

appropriate complexity measures for online learning (cf. [Appendix D.T).

Other restricted computational models. Our information-theoretic formulation of oracle-
efficiency is inspired by statistical query complexity in theoretical computer science and information
complexity in optimization, both of which can be viewed as restricted computational models with
an information-theoretic flavor. The statistical query model is a framework in which the learner can
only access the environment through an oracle that outputs noise estimates (“statistical queries”) for
a target parameter of interest [[13} 137, 21-23]]. Information complexity in optimization is a model in
which algorithms can only access the parameter of interest through (potentially noisy) local queries
to gradients or other information [43\ 160, 48l 2} |5]].

C Examples of estimation problems and loss functions

In what follows, we give detailed background on three canonical examples of the general estimation
framework discussed in Binary classification, square loss regression, and conditional
density estimation.

Classification [38,(63]. For binary classification, we take Z = ) = {0, 1} with the binary loss
Doy1(21,22) = 1(21 # 22) for 21,22 € Z and kernel K(z) = 1., which is noiseless. The binary
loss is metric-like with Cp = 1.

For offline estimation, observe that with covariates x?, ..., z” and outcomes y* = f*(z*) for all
t € {1,...,T}, any empirical risk minimizer f that sets f(x") = y* obtains

T
> Do (Fat). s () = 0. )
t=1

For online estimation, the halving algorithm [17] achieves

T
Bt (7) = > Do (F(@), /7 (a") ) < log(|F]). (©)
t=1

We mention in passing that another natural classification setting we do not explore in detail in
this paper is noisy classification, where the setting is as above, except that we set Z = [0, 1],
K(f*(x)) = Ber(f*(z)), and take Daps(21, 22) = |21 — 22| as the absolute loss for all z1, 25 € Z.

Square loss regression [62,166]. For real-valued regression, we take Z = ) = R with the square
loss Deq(21,22) = (21 — 22)? for 21,22 € Z and the kernel K(f*(z)) = N (f*(x), 1) or another
subGaussian distribution. Note that the square loss is a metric-like loss with Cp = 2.

For offline estimation, with covariates z',...,2” and outcomes y' ~ f*(z*) + ¢ for all ¢ €
{_17 ..., T'}, the classical Empirical Risk Minimization (ERM) f := arg min s » ZtT:l(f(a:‘) —y)?
gives

T
Est (T) = Y Dug (fla), /(")) < log(1F07), ™
t=1
with probability at least 1 — ¢ (cf. Cemma C.Ipelow).

For online estimation, the exponential weights algorithm [[17], with decision space F and the loss at
each round chosen to be ¢*(f) = (f(z*) — y*)?, achieves

T
Estd(T) = > D f'(2"), *(a")) < log(|FI5™), ®)
t=1

with probability at least 1 — § (cf. Foster and Rakhlin [25] for a proof).
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Conditional density estimation [12]. For conditional density estimation, we consider an arbitrary
outcome space ) and take Z = A(Y) with squared Hellinger distance D}, given byE]

D3 (F(a), 1*(x)) = /(x/ o) - W)dy ©)

and KC(z) = z for all z € Z. Note that squared Hellinger distance is a metric-like loss with Cp = 2.

For offline estimation, with covariates ', ..., z” and outcomes y* ~ f*(x ) forallt € {1,...,T},
the classical Maximum Likelihood Estlmator (MLE) f := arg max feF Zt log f(y* |« ) gives

Bet9"(1) = 3 0 (F@) s (@) < 1og(1Fl571), (10)
t=1

with probability at least 1 — ¢ (cf. CLemma C.2pelow).

For online estimation, the exponential weights algorithm [17]], with decision space F and the loss at

each round chosen to be ¢*(f) = —log f(y* | «*), achieves
T
Estd"(T) = > D& (F' (), £*(")) < log(1F15~"), (11)
t=1

with probability at least 1 — § (cf. Foster et al. [27] for a proof).

C.1 Examples of offline oracles

For completeness, below we prove the offline estimation (fixed design) guarantees for square loss
empirical risk minimization and maximum likelihood estimation mentioned in the prequel.

Empirical risk minimization for square loss regression. For any square loss regression instance
(X, Y, Z,K,F) defined as in|Appendix C| The Empirical Risk Minimizer (ERM) estimator f is
defined as
= argmin
YU
We have the following bounds on the offline estimation error for the squared loss.

Lemma C.1. For any target parameter f* € F, with probability at least 1 — 9, we have,
T

S (Ft) — 7)) < 8los((F1/6).

t=1

Proof of[Lemma C.1I} Observe that the ERM estimator satisfies

T T
S ) = F@)? =Y ((Fla) = )2 = (@) = '+ 2(fa) = @)y = (@)
t=1 t=1
T -~
<2 (f@) = f*(a))e", (12)
t=1
where the last inequality is by the definition of f and e := y' — f*(z') is a standard normal

distribution for all ¢ € [T]. Then by the Gaussian tail bound, we have with probability at least 1 — d,

T

T
STt = )t < (| 2D (Fat) = fx(x1)2 log(|F|/6).

t=1 t=1

2More generally, if v is a common dominating measure, then DH ]P’ Q =3 f (, / % — 4/ dQ) dv, where

%—V arﬁd‘% afre Radon-Nikodym derivatives. The notation in|Eq. (9)|reflects that this quantity is invariant under
the choice of v.
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Plug the above inequality back into and reorganize, we obtain the desired bound of

T

D (Fa') = f4(x%)? < 8log(|F]/d).

t=1

O

Maximum likelihood estimation for conditional density estimation. For any conditional density
estimation instance (X, Y, Z, K, F) defined as in|Appendix C} The Maximum Likelihood Estimator

(MLE) f is defined as

T

f = argmaleogf y' | xt).

feFr o
We have the following bounds on the offline estimation error for squared Hellinger distance.

Lemma C.2. For any target parameter f* € F, with probability at least 1 — 9, we have,
ZD?( "(a")) < log(|F1/9).

Proof of For any parameter f € F, define

7=~ g [*(y' | ) ~log f(u' | 29)

Then for any f € F, by Lemma A.4 of Foster et al. [27]], with probability at least 1 — ¢ /|.F|, we have,

T t t
Z 110gf (y" | =) —log f(y* | «*)) Z ( EiCALIY

=1 Pt Iyl a)

) + log(|F1/9).
We further have by the inequality of log(1 + z) < z that
[y =) fly' )
log| Ef/ -———= <E|/-———= —-1].
g( l Fatan]) =\ P

Since y* ~ f*(z*), we have by standard calculus and the definition of the squared Hellinger distance
that

gl [ S 1)
[y | =)
Altogether, we have obtained for any f € F, with probability at least 1 — §/|.F|

>

t=1

- 1] = —Di(f*(="). f(a"))-

N)\»—l

T
(log f*(y* | #*) —log f(y" | ) < =Y DR(f*(x"), f(=")) + log(|F]/5).

Thus, by union bound, the above inequality holds for all f € F with probability at least 1 — . Thus
the MLE f satisfies

T T
A 1 N t t
>0k (£7@).f@") < 30 Flog (' | 2) —log fly' | 2")) + log(|F1/9)
t=1
< log(|F1/9),
where the second inequality is by the defintion of MLE. O
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Algorithm 2 Reduction from OEOE to Online Learning with Delayed Feedback

1: input: Offline estimation oracle Algqg with parameter Sof > 0, delay parameter N € N,
delayed online learning algorithm Apg, for class F.

2: fort = 1,2,.A..,Td0

3: Receive f* = Algog(a?t, ...,z Ly .,y h).

4: if t > N then

~ t ~

5: Let ff™V =% 3 fi.
i=t—N+
6: Let 0=~ ( D( f (xt*N)) and pass '~V (-) to ApoL as the delayed feed-
back.
7: Let " = Apg, (¢4, .., £ 7) be the delayed online learner’s prediction distribution.
8: Predict with f* ~ p* and receive z'.
Part I1

Omitted results

D General reductions for oracle-efficient online estimation

The oracle-efficient online estimation algorithm in[Section 3.1} [Algorithm I} is somewhat specialized
to finite classes. In this section, we provide a more general approach to designing oracle-efficient
algorithms based on delayed online learning, and use it to derive a characterization of oracle-efficient
learnability for classification with infinite classes F.

For the results in this section, we assume that Z and D are convex, which covers regression and
conditional density estimation; variants of our result for classification are given in|Appendix G.3

Online learning with delayed feedback. Before introducing our algorithm, we first introduce an
abstract delayed online learning framework [67, 142} 35, 147]. In our framework, the learner is given a
class F C Z¥. Their goal is to choose a sequence of parameters f*, ..., f7 that minimizes regret
against the class F for an adversarially chosen sequence of loss functlons £ ... 07, with the twist
being that the loss ¢' is not revealed immediately at step ¢, and instead becomes available at step
t + N for a delay parameter N € N.

In more detail, the interaction between the learner and the environment proceeds as follows:
e Fort=1,...,T:
e The learner picks f* ~ u' € A(Z%).

e Learner incurs loss £( f*) and adversary reveals loss function £~ : Z¥ — [0, 1] for round
t — N (if t < N + 1, nothing is revealed).

The goal of the learner is to minimize regret in the sense that

T
Rpoo(T, N, 7) Z]EftN,u ATBIEEE ?gng"(f)
t=1

is small, where v > 1 is a parameter. For v = 1, this definition coincides with the standard notion
of regret in online learning (e.g., Cesa-Bianchi and Lugosi [[17]), but allowing for v > 1 will prove
useful for our technical results.

Algorithm and online estimation error bound. describes our reduction from oracle-
efficient online estimation to delayed online learning. In addition to an offline oracle Algqy, the
algorithm takes as input a delay parameter N € N and a delayed online learning algorithm .Apo, for
the class F (Algorithm 2]does not explicitly take the class F as an argument, as the algorithm only
implicitly makes use of F through ApoL).

The basic premise behind [ATgorithm 2]is that for any sequence of consistent offline estimators, we can
average to improve the predictions. Consider a step ¢ € [T]. Suppose f*, ..., f are produced by an
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offline oracle Algqq with parameter Sogr > 0, where we augment the sequence by setting f”s = fT
for all s € N. Then we can use an argument based on convexity (cf. proof of to show
that for any N € N, the averaged parameters

=Y F (13)

satisfies
T—N t+N

SO(FE) @) <N+ LT S o(Fe). £w)

t=1 t=1 i=t+1

= NZZ (ft )><N+50ffT/N
t=2 i<t
In particular, as we increase N, the quality of the predictions increases, and we achieve sublinear
estimation error as soon as N = w(T'). Of course, the catch here is that f* depends on the predictions

of future estimators, and cannot be computed at step . However, f * can be computed at step t+ N 41,
with a delay of N. This leads us to appeal to delayed online learning. In particular, at each step

t>N+1, Aléorithm 2| proceeds as follows. Using the new offline estimator f‘ from Algqy, the

~ t —~
algorithm computes the averaged estimator f*~~ := ‘ t%ﬂ J* corresponding to the estimator in
i=t—
[Eq. (13)|for step t — N. The algorithm then defines a loss function

() = D(F @), fat )

and feeds it into the delayed online learning algorithm Apo, as the feedback for step ¢ — V. Finally,
uses the prediction distribution u* produced by ApoL to sample the final estimator f*,
then proceeds to the next step. Our main theorem shows that as long .Apo| achieves low regret for
delayed online learning, this strategy leads to low online estimation error.

Theorem D.1 (Reduction from oracle-efficient online estimation to delayed online learning). Let D

be any convex, metric-like loss. Suppose we run with delay parameter N € N and a
delayed online learning algorithm Apoy for the class F. Then for all v > 1, [Algorithm 2| ensures
that
E[Est3"(T)] < O(Cpy(N + BosT/N) + Roo (T, N, 7)), (14)
with any offline oracle Algqg with parameter Bog > 0, where
T
Rpo (T, N Ez - 1mi A 15
poL (T, N, ) Z froopt [0 (F)] =7+ min 2 (f) (15)

is the regret of ApoL for the sequence of losses constructed in
The parameter N controls a sort of bias-variance tradeoff in The first term in [Eq. (14)]

(corresponding to the bias of the averaged estimators) decreases with the delay NV, while the second
term (corresponding to the regret of Apo ) increases; the optimal choice for N will balance these
terms. To make this concrete, we revisit finite classes as a warmup.

Example: Finite classes. Delayed online learning is well-studied, and optimal algorithms are
known for many classes of interest [67, 42,135, 147]]. The following standard result (a proof is given in
for completeness) gives a delayed regret bound for arbitrary finite classes.

Lemma D.1. Consider the delayed online learning setting with a delay parameter N. There exists
an algorithm that achieves

T
RpoL(T, N, 2 Z]EftN# -2 ;rgg 0'(f) < 2N - log | F|
t=1

Sor any sequences of losses (*, ... T € [0, 1].
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Combining [Theorem D.I| with [Lemma D.I| we can obtain the following upper bound for oracle-
efficient online estimation.

Corollary D.1 (Oracle-efficient online estimation for finite classes via delayed online learning).
Consider an arbitrary instance (X,), Z,K, F) and metric-like loss D, and assume Z is convex. By
choosing Apoy as in[Lemma D. 1| [Algorithm 2|ensures that for any N > 1,

E[Est3"(T)] < O(Cp(N + BogT/N) + N -log | F]).

with any offline oracle Algqg with parameter Bog.

By choosing N = “cgﬁio% VvV 1, |Corollary D.1{ gives an upper bound of
O(+/CpBost(Cp + log|F|) - T + log \}"|) While the rate in [Corollary D.1] is worse than [The;

1|{in terms of dependence on 7', the reduction has two advantages: (1) It does require a-priori

CD-T ]
Cotlog 171 V 1, [Corol

lary D.1| obtains O((Bosr + 1)(1/Cb(Cb + log|F|) - T + Cp + log|F|)); (2) The reduction by

|ATgorithm 2]is more flexible, and allows for guarantees beyond finite classes, as we now illustrate.

knowledge of the offline estimation parameter Sog: If we choose N = \/

D.1 Characterization of oracle-efficient learnability for classification

As an application of |[Algorithm 2|and [Theorem D.1} we give a characterization for oracle-efficient
learnability in the OEOE framework. To state the result, we define Ldim(F) as the Littlestone
dimension for a binary function class F (e.g., Ben-David et al. [10]).

Theorem D.2 (Characterization of oracle-efficient learnability for binary classification). Consider a
binary classification instance (X,Y, Z, K, F) with Z = Y = {0,1}, D = Dy /y and K(z) = 1.. For
any class F and Pog > 0, there exists an oracle-efficient algorithm that achieves online estimation
error O(+/BogLdim(F) - T'log T + Ldim(F)logT). On the other hand, in the worst-case any
algorithm must suffer at least Q(Ldim(F)) online estimation error.

The main idea behind this result is to show that we can create a delayed online learner for the
reduction in|Algorithm 2| that achieves low regret for Littlestone classes@

D.2 Additional lower and upper bounds for memoryless oracle-efficient algorithms

The proof of uses that the estimators f’ produced by the offline estimation oracle may

be improper (i.e., f* ¢ F). We next provide a variant of the result that holds even if the estimation
oracle is proper, under the additional assumptions that (i) the learner is itself proper in the sense

that u* € A(F), and (ii) the learner is time-invariant (i.e., the learner sets p* = F'(f*) for all ¢).

Theorem 3.3’ (Impossibility of memoryless algorithms for OEOE; proper variant). Consider the
binary classification setting with Z =) = {0, 1} and loss Dy 1 (-, -). For any N € N and fog > 0,
there exists an instance (X,Y, Z,KC, F) with |F| = |X| = N such that for any memoryless oracle-
efficient algorithm that is (i) proper, and (ii) time-invariant, there exists a sequence of covariates
(', ...,27) and a proper offline oracle Algyg with parameter [Sog such that E[Estgn (T)] >
Q(min {N(fos + 1), T})

A complementary upper bound. For completeness, we conclude by showing that the (large) lower
bound in[Theorem 3.3|can be achieved with a memoryless oracle-efficient algorithm. We consider
the “trivial” algorithm that outputs the estimators produced by the offline oracle as-is.

Proposition D.1 (Upper bound for memoryless OEOE). For any instance (X,Y,Z,K,F),
metric-like loss D, and offline oracle Algqy with parameter [og, the algorithm that returns

fro= F o= Alghe(a’,..., " y',...,y'"") has online estimation error Est3"(T) <
O((Bosr +1)|X|log T).

Formally, to handle the fact that Z = {0, 1} is not convex, this result requires a slight modification to Line
4in that replaces the average with a majority vote. See the proof for details.
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E Application to interactive decision making

In this section, we apply our techniques for oracle-efficient online estimation to the Decision Making
with Structured Observations (DMSO) framework for interactive decision making introduced by
[27). First, in we use our reductions to provide offline oracle-efficient algorithms
for interactive decision making. Then, in we focus on reinforcement learning and
show that it is possible to bypass the impossibility results for memoryless oracle-efficient algorithms
for instances (X, Y, Z, K, F) corresponding to Markov decision processes that satisfy
a structural property known as coverability.

E.1 Offline oracle-efficient algorithms for interactive decision making

In this section, we introduce the setting of Decision Making with Structured Observations (DMSO)
and the applications of our results to this setting.

Decision Making with Structured Observations (DMSQO). The DMSO framework [27]] captures
a large class of interactive decision making problems (e.g. contextual bandits and reinforcement
learning). In this framework, the learner is given access to a model class M that contains an unknown
true model M* : IT — A(R x O), where II is the decision space, R C R is the reward space and O
is the observation space. Then the interaction between the learner and the environment proceeds in T'
rounds, where for eachroundt =1,...,7"

1. The learner selects a decision ©* € 1I.

2. Nature selects a reward r* € R and observation o' € O based on the decision, where the
pair (r¢, 0*) is drawn independently from the unknown distribution M*(x*). The reward
and observation is then observed by the learner.

Let g™ (m) := E"™[r] denote the mean reward function and ,, := arg max_ . g™ () denote the
decision with the greatest expected reward for M. The learner’s performance is evaluated in terms of
regret to the optimal decision for M*:

T
Regpu(T) = > Ertmpe [¢" () — g™ ()], (16)
t=1

where p* € A(II) is the learner’s distribution over decisions at round t.

Background: Reducing DMSO to online estimation. Any DMSO class (M, II, O) induces an
instance (X, ), Z, K, F) of the estimation framework in as follows. We associate F = M,
X=ILY=0xR,Z=A(0 xR),and K(M*(7)) = M*(r). That is, we have a conditional
density estimation problem in which the covariates are decisions 7 € II and the outcomes are
observation-reward pairs drawn from the underlying model M* (7). In particular for a sequence of

decisions 7', ..., 7" and a sequence of estimators M', ..., M”, we define the online estimation
error for a loss D as

Est3"(T) = Y D(M'(n'), M*(n")). (17)
t=1
We refer to any algorithm Alg,, that ensures that Est3"(T') < S0, almost surely given access to
{(n*, 0", r‘)}f:1 with (o', 1) ~ M*(x*) as an online estimation oracle with parameter So,.
Foster et al. [27, 28] give an algorithm, Estimation-to-Decisions (E2D), that provides bounds on the

regret in|Eq. (16)|given access to an online estimation oracle Algg,,. The algorithm is (online) oracle-
efficient and memoryless, in the sense that the decision 7* at each step ¢ is a measurable function of

the oracle’s output M*. To restate their result, we define the Decision-Estimation Coeficient for the
class M as

decs(./\/l,JW) = inf sup Erep|g™(ma) — g™ (m) — - D(M(ﬂ'), M(ﬂ')) (18)
PEA(I) MeM

for a reference model M and any losses D. We further define decg (M) = supzze g decs (M, M).
With this notation, the main regret bound for E2D is as follows.
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Algorithm 3 Estimation to Decisions Meta-Algorithm with Offline Oracles (E2D.Off)
1: parameters:

Offline estimation oracle Algqe with parameter Sog.
Oracle-efficient online estimation algorithm Algoeog.
Exploration parameter y > 0.

2: fort=1,2,--- ,T do

3: Compute estimate M = Algog (wl, R (SR LI ot*).
4: Feed M to OEOE algorithm Algogop and obtain p*.
5: Let

o= argmin sup B 5o [QM(WM) —gM(m) =y D(J\//.T(w), M(w))}. (20)
peE

6: Sample decision ¢ ~ p* and o ~ M*(7*) and feed 7* to OEOE algorithm Algoeog-

Proposition E.1 (Theorem 4.3 of [27]]). For any model class (M, 11, O) and metric-like loss D, any
v > 0, and any online estimation oracle Algq, with parameter Bon > 0, the E2D algorithm ensures
that

Regpy(T) S sup dec (M, p)-T + 7 Bon. (19)

T neam
For the case of squared Hellinger distance where D = D2, the Decision-Estimation Coefficient

decD(M) was shown to be a lower bound on the minimax optimal regret for any class M. Hence,
shows that it is possible to achieve near-optimal regret for any interactive decision
making problems whenever an online estimation oracle is available. However, it was unclear whether
similar results could be achieved based on offline estimation oracles.

Making E2D offline oracle-efficient. (E2D.Off) invokes the E2D algorithm of Foster
et al. [27] with any oracle-efficient online estimation algorithm Algogoe (Which can be any of the

algorithms we provide, e.g. [Theorems 3.1]and 4.2)), along with an offline estimation oracle Algqg, to
provide offline oracle-efficient guarantees for interactive decision making. Invoking the algorithm

with Version Space Averaging (via[Theorem 3.1)) leads to the following corollary.

Corollary E.1. Consider any DMSO class (M, 11, O) and metric-like loss D. |Algorithm 3| with
exploration parameter v > 0 and Algqeog chosen to be|Algorithm 1| ensures that

E[Regpu] < O(logT) - max{decs(./\/l) T, v (Bosr + 1) log |M|},

for any offline estimation oracle Algqg with parameter PBogs.

This result shows that information-theoretically, it is possible to achieve low regret in the DMSO
framework with offline oracles, though the result is not computationally efficient.
As an example, in the case of square loss regression which is used for contextual bandits,

an offline guarantee of Sosr = O(log | M|) is achievable. Meanwhile, it is known that decssq (M) S

| A| /v [27]. Thus|Corollary E.1|achieves a bound of O(+/[A[T -log | M|) with an appropriate choice
of 7. The best know regret guarantee for contextual bandit is O(/|A|T log | M]) [58] [70]. The
bound from [Corollary E.1|matches the state-of-the-art result up to a factor O(4/log |M]). How to
remove this suboptimality is an interesting direction for future work.

Naturally, the other reductions for oracle-efficient online estimation developed in this paper can be

combined with [Algorithm 3]as well. In particular, by combining with we derive the

following corollary for squared Hellinger distance.

Corollary (Informal). Whenever online conditional density estimation can be performed efficiently
with access to the full history, and whenever the minimax problem in[Eq. (I8)|can be solved efficiently,
there exists a computationally efficient and offline oracle-efficient algorithm with near-optimal regret
in the DMSO framework.
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E.2 Bypassing impossibility of memoryless algorithms via coverability

Recall that our results in show that in general, it is impossible to obtain low online esti-
mation error through memoryless oracle-efficient algorithms. In this section, we revisit memoryless
algorithms for the Markov decision processes a particular type of class (M, II, O) (or equivalently,
(X, ¥, Z,K,F)). We prove that for any class of Markov decision processes for which a structural
parameter called coverability [69] is small, any offline estimator can be directly converted into an
online estimator.

Markov decision processes. We consider classes (M, II, O) that correspond to an episodic
finite-horizon reinforcement learning setting, following Foster et al. [27]. With H € N denoting
the horizon, each model M € M specifies a non-stationary Markov decision process as a tuple
M = {{SpHL |, AP {RY}YL  di}, where S), is the state space for layer h, A is
the action space, P : S, x A — A(Sp41) is the probability transition kernel for layer A,
R} S x A — A(R) is the reward distribution for layer h, and di € A(Sy) is the initial state
distribution. We allow the reward distribution and transition kernel to vary across models in M and
assume that the initial state distribution is fixed.

We set II C IIgrns, which denotes the set of all randomized, non-stationary policies 7 =
(m1,...,7q) € Hgrns, where 7, : S — A(A). For a fixed MDP M € M and 7 € II, the
observation o ~ M () is a trajectory (s1,a1,71),...,(Sg,an,rH) that is generated through the
following process, beginning from s; ~ d;. Forh =1,... H:

* ap ~ mp(sh)-

* rp ~ Ry (sn,an) and sp1 ~ B(- | sp,ap).
So the obseravtion space O = S; X A X R x --- x Sy x A x R. For notational convenience, we
take sy 11 to be a deterministic terminal state. We use P*™ and E™ ™[] to denote the probability
law and expectation over trajectories induced by M (7). In addition, we define P, (- | s, az) as the

conditional distribution on spy1, 7, given sy, ap, under M for h € [H].

The guarantees we provide apply to any loss that has a particular layer-wise structure tailored to
reinforcement learning.

Definition E.1 (Layer-wise loss). For any sequence of losses {Dy,} ne(w) bounded by [0, 1], where
DhE:]A(S;I x R) x A(S, x R) — [0, 1] for all h € [H], we define the layer-wise loss DRt on A(O)
as

H

DR (M () [ M (m)) = 3B [Dn (P (| s an) [PV (- | snan)) .
h=1

Sor any pair of MDPs M, M’ € M and policy & € H.E]

Examples of the layer-wise loss are scaled reverse KL-divergence (which is bounded by [0, 1]
whenever the density ratios under consideration are upper and lower bounded with an appropriate
scaling) [27]] and the squared Bellman error [29]]. Another useful example is the the sum of layer-wise
squared Hellinger distances given by

H

DE(M (m) ' (m)) = 3B [DA(PY(- [ snyan), P (- Lsman)) | @D
h=1

This loss coincides with the global squared Hellinger distance D (M (), M’(7)) up to an O(H)
factor.

"“The ordering of M and M’ on the right-hand side of the definition is due to the following technical reason:
only works when the expectation on the right-hand side to be taken with respect to M * (), which
shows up as the second argument in the offline oracle guarantee (??).

SFor the results in this section, it will be useful to work with asymmetric losses, and in this case we use the
notation D(- || -) instead of D(-, -).

42864 https://doi.org/10.52202/079017-1357



Coverability. We provide memoryless oracle-efficient algorithms for online estimation for any
layer-wise loss DR- when the underlying MDP M * has bounded coverability [69].

Definition E.2 (Coverability). For an MDP M* and a policy w, we define dj(s,a) =
EM" " [1(sp, an, = s, a)]. The coverability coefficient Ceo, for a policy class I1 for the MDP M* is
given by

dj,

Vp

Ceov(M™) = inf sup
Vi, VHEA(SXA) nell, he[H]

o

It is immediate to see that C,, < |II|, but in general it can be much smaller. Examples of MDP
classes with low coverability include Block MDPs, Low-Rank MDPs, and exogenous block MDPs
(69 4].

Offline-to-online conversion under coverability. Our main result shows that under coverability,

the outputs of any offline estimation oracle Algqy satisfy an online estimation guarantee as-is.

Theorem E.1 (Offline-to-online conversion under coverability). For any layer-wise loss DR- and
MDP class (M, 11, O) and M* € M, the sequence of estimators (M*, ..., M™) produced by any
offline estimation oracle Algqg for DRC with parameter Bog satisfy

S o (3 (x") M (x')) < O(VHCeos(M*)BorT 10 T + HCeo\(M") ).

This result is based on a variant of the proof technique in Theorem 1 of Xie et al. [69]]. An important
application of the result, which can be applied in tandem with the guarantees in Foster et al. [27],
concerns squared Hellinger distance.

Corollary E.2. For any MDP class (M,I1,0) and M* € M, the sequence of estimators

AMI, ey AMT roduced by any offline estimation oracle Alg ‘or squared Hellinger distance D?
p Off q 8 H
with parameter Bogs satisfy

T
EstQ™(7) = 3D} (1\7 (1), M*(w‘)) < O(H\/CCOV(M*)Bofleog T+ HQCCO\,(M*))
t=1

This result follows by using that the layer-wise squared Hellinger distance in|Eq. (21)|is equivalent to
D3(M (m), M'(r)) up to O(H) factors.

Application to interactive decision making. We apply to decision making via
[Algorithm 3

Corollary E.3. Consider any layer-wise loss D = DR' and MDP class (M, 11, O), and let Cro, :=

sup e s Ceov(M). [Algorithm 3|with exploration parameter v > 0 and Algogog chosen to be the
identity map ensures that

E[RegDM] < O(IOg T) : max{ sup decs (Mv U) ' Tv v (\/HCCOVBOfFT IOgT + Hccov) }7
HEA(M)

Sfor any offline estimation oracle Algqg with parameter Bogs.

Contextual bandits and optimality of offline-to-online conversion. Another implication for
concerns the special case of contextual bandits (that is, MDPs with horizon one).
For the contextual bandit setting we abbreviate S = Sy, and refer to d; € A(S) as the context
distribution. We define g" (s, a) = E, a5 4)[r] as the expected reward function under a model
M, and following Foster and Rakhlin [25], use the squared error between mean reward functions as
our divergence:

DCB(M(TF)v M/(W)) = ESNdl,awﬂ'(s) [Dsq (gM (57 a)a gM/ (57 CL))] . (22)

For this setting, the coverability coefficient Cc,, is always bounded by the number of actions |.A|,
which leads to the following corollary.
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Corollary E.4. For any contextual bandit class (M, I1, O) and M* € M, the sequence of estimators
(M*, ..., M7™) produced by any offline estimation oracle Algq for Dcg with parameter Bog satisfy

T
EStgn(T) = Z DCB <M\t(77t),M*(7Tt)) S O(\/ |A|Tﬁoff 10gT+ |.AD,
t=1

Recall that Foster and Rakhlin [25]] show that any algorithm for online estimation with the divergence
in [Eq. (22) with Estg”(T) < Bon can be lifted to a contextual bandit algorithm with regret

O(\/ |A|T - ﬁon) via the inverse gap weighting strategy, even if contexts are chosen adversarially.
Subsequent work of Simchi-Levi and Xu [58] shows that for stochastic contexts, the inverse gap

weighting strategy also yields regret O (/] A|T - ﬁoff) given access to an offline oracle with parameter
Bofr- On the other hand, combining [Corollary E.4| with the guarantee from Foster and Rakhlin [25]]
gives regret O (|A|Y/4T3/4 Bos ! *). This does not recover the result from Simchi-Levi and Xu [58],

but nonetheless gives an alternative proof that sublinear offline estimation error suffices for sublinear
regret.

The guarantee in [Theorem E.1|leads to a degradation in rate from Sog to /1 Bof (suppressing

problem-dependent parameters). Our next result shows that this is tight in general.

Proposition E.2 (Tightness of offline-to-online conversion). For any integer T' > 1 and Bog > 0,
there exists a contextual bandit class (M, Tl = A®, O) with |A| = 2, a distribution d, € A(S),
a sequence (', ..., n") and an offline oracle Algyg for Dcg with parameter Bog such that the

oracle’s outputs (M*, ..., M7) satisfy

Estp"(T) = ZT: Dcs (ﬁt(ﬂt),M*(WtD > Q(\/%)
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Part I11
Proofs

F Technical tools

Lemma F.1. For any non-increasing sequence x1 > xo > -+ > Tr41 > 1,
T -
I gy,
t=1 Lt
Proof of|[Lemma F.1} Since log(1 + a) < a forall a > —1, for any ¢ € [T, we have

—log(zt/x111) = log (1 + (xtH — 1)) < (xtﬂ B 1>.
Tt Ty

Summing up over ¢ € [T, we obtain

T

Xt — T X
Z LS Zl - il < Zlog ri/xiq1) = log(x1/zri1) < log(xy).
=1

O

The following lemma gives an improvement to Lemma A.13 of Foster et al. [27] that removes a
logarithmic factor. This shows that up to an absolute constant, squared Hellinger distance obeys a
one-sided version of the chain rule for KL divergence.

Lemma F.2 (Subadditivity for squared Hellinger distance). Let (X1, 71),..., (X, #,,) be a se-

quence of measurable spaces, and let X' = [[._, X, and F' = Q._, F. For each i, let P*(- | )

and Q(- | -) be probability kernels from (X~ F'7*) to (X;, F;). Let P and Q be the laws of

X1,..., Xy under X; ~Pi(- | X1.;-1) and X; ~ Q'(- | X1.5—1) respectively. Then it holds that
Di(P,Q) < 7-Ep|» DR(P'(- | X1:i-1), Q'(: | Xm_l»].

i=1

Proof of We appeal to the cut-and-paste property of [34]], defining a collection
of distributions indexed by a hypercube {0, 1}™ with the property that the vertices (0,...,0) and
(1,...,1) correspond to the distribution P and Q. Concretely, for any vertex v € {0,1}" of the
hypercube, we define a probability distribution

Pl( | Xl-ifl) lf’UZ = 0,
=TT Ro.(- | Xvioa), here Ry (- | X1._1) =4 : :

H L iz where Ry, (- Xiz1) {Q( | X1.4-1) ifv; =1
Observe that B, o) = P and Py, = Q. Now, consider any four vertices a, b, c,d € {0,1}"
with the property that {a“ b} = {c,, d } for each i € [n] (with {-} interpreted as a multi-set). Then
for any measure v := ]\, v;(-|X1.;—1), where v;(+| X1.,_1) is any common dominating conditional

measure{E] for P(-| X1.,—1) and Q*(:|X1.,_1), by the definition of squared Hellinger distance we
have

dv

ﬁ AR, (- | X1:i—1) dRp, (- | X1:-1)

0 (%, ) = 1 - o o

i=1

_ AR, (- | Xvio1) dRa, (- | X1:im1)
=1 / H dUi dl/i dv

=1
= D (Be, Pa)- (23)

'SFor example, we can take v;(-| X1.;) = (P*(-|X1.6-1) + Q*(-|X1.4-1))/2. for P’ and Q'. The result is
independent of the choice of v.
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Let k be the maximum integer such that 2¥ < n. Then since [Eq. (23)|holds, by Theorem 7 of Jayram
[34] applied with the pairwise disjoint collection A; = {i <n[i mod 2% = j} forall j € [2]
where |A;| < 2 for all j, we have

n 2k
DA(P,Q) - [Tt —1/2) < Y DR | P, [T @1 Xuaa) JT PG 1 Xuw—a)
j=1

i=1 lEA; U¢A,

<2Ep| Y DE(P(- | X1:im1), Q- | X1i1)) |-
i=1

To conclude, we note that [}, (1 — 1/2%) > 2/7.

G Proofs from Section 3
G.1 Proofs from Section 3.1

Theorem 3.1 (Main upper bound for OEOE). For any instance (X,Y, Z,K, F), any metric-like

loss D, and any offline estimator Algqg with parameter Bog > 0, [Algorithm 1)is oracle-efficient
and achieves

EstS"(T') < O(Cp - (Bog + 1) - min {log | F|, |X|log T}).

Proof of Our main technical result is the following lemma, which is proven in the
sequel.

Lemma G.1. Consider any instance (X,Y, Z,K, F) and a metric-like losﬂ Don Z. Let f* € F
be the target parameter, and consider a sequence of sets F = F1 2 Fo 2 -+- 2 Fr 2 {f*} and
sequence of covariates x*, ..., x" € X with the property that for all t € [T, all f € F; satisfy the
following offline estimation guarantee:

t—1
> D(f(a), £*(z7)) < Bos- (24)
s=1

Then, by defining 1t = Unif (F;), we have that

T
D Egmpue[D(f ("), f*(x*)] < O((Bosr + 1) - min {log | F], |X|log T}).
t=1

To invoke [Cemma G.T] we observe that the version space construction in [Algorithm T|ensures that for
allt € [T, all f € F; satisfy

> D(f). @) < Zc (O(#(@), @) +D(F (@), £*(2")) < 2CoPon.

In addition, it is immediate to see that F = F; 2 F, D --- D Fyp. Thus, by invoking[Cemma G|
with parameter Bog’ = 2CpBosr, we have that

T
Estg"(T) = > Egu[D(f(2"), f*(2))] < O((Cofor + 1) - min {log| F], [X|log T}).

To simplify, we note that (CpSBogr + 1) < Cp(Bosr + 1), since Cp > 1.
O

'"For this lemma, D need not be a metric-like loss; it suffices that D is bounded and has D(z, z) = 0 for all
z€Z.
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Proof of [Lemma G.1, We begin by proving that Est3"(7) < O(Cb - (Bog + 1) - log | F]). Let
us adopt the convention that Fr; = {f*}, so that 1 C Fr C --- C F;. For any parameter
f e F\{f*}, define ty := min{t: f ¢ F;11}. It is immediate to see that for all f € F\ {f*},
1<ty <Tandforallt e [T], |{f:ty =1t} =|F \ Fit1|. Using that D(f*(z), f*(z)) = 0 for
all x € X, we re-write the online estimation error as

T T
S B D) Zm S D( - =Y D))

feF: t fEJ"'t’f#f*
T
DI IP M LUENAE
t=1 =t s<t

Using that Fr C Fpr_; C --- C Fj, we can upper bound this quantity by

ZZZ‘ ZZ T 20 DU ). F @)

t=1 frtp=t s<t t=1 t—t s<t

To proceed, observe that for any function f € F,if ty = ¢, then f € F;. It follows from the assumed

bound inthat if ty = ¢, then
> D(f(), f*(x°) =D(f(a"), f* (=) + Y D(f(a*), f*(x*))

s<t s<t—1
< 1+ Bor,
where we have used the fact that the loss D is bounded by 1. Using this fact, and recalling that for all
eI, {f :ty =t} =|F
T
Fi \ Fi
S 3 o 0 S < Gor + )Y X ok < Gor + Y T
t=1 f:t t| t| <t t=1 [ | Fe]
= RYES s Jitp=t

Finally, by [Cemma F.1} we have that

T
|Fe \ Fit |Fe| — | Feyal
< log | Fi| = log | F|.
E 7 E 7 < log | F1] g | F|

‘We conclude that

Z]Efw ), F*(@))] < (Bos + 1) log | Fl.

We now prove the bound Est3"(T) < O(Cp - (Bos + 1) - |X|log T). For each z € X, define
-1
Ni_1(x) = Z 1(z* = x). Then we can write the online estimation error as

ZEM ZZ &=z T gy [(Nemi (2) V 1DD(f (), ().

t= 1x€X

From the definition of u*, we have that
E ey [(Nioa(2) VDD(F(2), £ (2))] = 2 Y (Neea(2) V1)D(f (), f*(x))
(Ni—1(z) + 1)D(f (), f*(2)).

Now, from the offline guarantee assumed in[Eq. (24)] we have forall z € X and f € F,
(Nea(@) + DD(f(e), () < 3 D), (@) + D(f(x), £*(x)) < o + 1.

s<t—1
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Combining these observations, we have

T
D B D(f(a"), ()] < (Bos + 1) ZZ Ntsi_x

t=1xeX

Now, for each « € X, define ¢, = min {t < T : x* = x} if this set is not empty, and set t,, = T
otherwise. From this definition and the fact that 1 + 1/2 + --- + 1/T < 1 + log T, we have that

>3 do=a) Z<2Ntx_x ZN_>

zeX t=1 wEX
Nrt_ 1(x)
<> 1+ Z
reX
<2|1X| 4 | X|log T < 3|X|logT.

‘We conclude that
T
D Epu D(f (), f*(2))] < 3(Bos + 1) - [X|log T
O

Theorem 3.2 (Main lower bound for OEOE). Consider the binary classification setting with
Z =Y = {0,1} and loss Doy (-,+). For any N € N and Pog > O, there exists an instance
(X, Y, Z2,K,F) with log|F| = |X| = N such that for any oracle-efficient algorithm, there
is a sequence of covariates (x',...,x") and offline oracle with parameter Bog such that

E[Est3"(T)] > Q(min {(Bos + 1)N, T}).

Proof of[Theorem 3.2} Let N > 1 be given, a consider the model class where X = {x1,...,zn}is
an arbitrary discrete set, Z = Y = {0,1}, F = {0, I}X, D(z1,22) = Doj1(21, 22) = 1{z1 # 22},
and £(z) =1

We first specify the offline estimation oracle, then specify an adversarially chosen covariate sequence.

Fix T € N, and for any 1 < ¢ < T and sequence of covariates z',...,z* define N;(z) :=
22:1 1(z* = x). For any target parameter f* € F and offline estimation parameter Sog > 0, we
consider the oracle Algng(-; f*) for the sequence 2*, ..., x" that returns
D 0 if Ni_1(z) < Borr,
Fay=19,,, bl
f*(z) otherwise.

To complete the construction, we consider sequence (z', ..., x") in which

' = Tmin{ [t/ [Bor] 1N}
Equivalently, and perhaps more intuitively, we set

(', 2T) = (X1, T, @2y ey Ty e ey BNy e s BN N, TN - - - )
——— —_——

[Borr ] [ Borr | [ Borr |
stopping earlier if T < N[ Bosf].

For any f*, we now show that Algog(+; f*) is an offline oracle with parameter Sof on the sequence

a',...,z". This is because for any ¢ < min {[¢/[Bos|], IV}, the covariate x; is repeated [ Bos| >

Bosr times. Thus ft(xz) = f*(x;). This implies for t < N - [Bos] that

t—1 -1
ZDO/l(Ja(xS%f*(xs)) = > Do/1 <J?t($)af*($)) < [Bosr] —1 < Bor-
s=1 s=t—[t/[Bor1-[Bor]
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If ¢ > N - [Bof], then all the covariates are repeated for more than [Sog]| times, thus ft = f*
Overall, we have shown that Algne(+; f*) is an offline oracle with parameter Sos.

Now, fix any oracle-efficient online estimation algorithm, and consider the expected regret under
f* ~ Unif(F) (with Algog(+; f*) as the oracle). If T > N[Bos], then regardless of how the
algorithm chooses p', since for any block of x;, f*(z;) is independent of p*(z;), the expected regret
is lower bounded as

ZEf*~Unif(F> E ;i [Doj (F(@), £*(2))]

[Bost]

MZH

E f+ ntmit(F) Efopitsor+s [Doj1 (F(:), £*(:))]

.
Il

1 j=1

N[Bos| = QN (Bosr + 1)) = Q(min {(Bosr + 1) log | F|, (Bosr + 1)|X]}).

l\D\»—l

G.2 Proofs from Section 3.2

Theorem 3.3 (Impossibility of memoryless algorithms for OEOE). Consider the binary classification
setting with Z = ) = {0,1} and loss Dy, (:,-). For any N € N and fog > 0, there exists an
instance (X, Y, Z,KC, F) with |F| = |X| = N such that for any memoryless oracle-efficient algo-

rithm, there exists a sequence of covariates (x*,...,x") and a (potentially improper) offline oracle
Algog with parameter Bog such that E [Est(D)”( )] > Q(mln {N(ﬂoff +1),T}). This conclusion
still holds when the online estimation algorithm remembers f yee ft ! but not x* , i

Proof of Given a parameter Sof > 0 and an integer N, assume without loss of
generality that K := T/(|Bos| + 1) is an integer. Consider the instance (X,Y, Z, K, F) with
X =[N],2=Y={0,1},D = Dg/1, K(2) = 1., and parameter space F = {fi} |y is defined

fi(z) = H{z = i}.

We consider a sequence of covariates (z', ..., 2") divided into K blocks, each with length | Bofr ] + 1.
In each block, the covariates will be chosen to be the same, i.e., ' = .- = glforl+l pllorl+2 —

- = g?lPorl+2 We define 7, = [t/(|Bosr| + 1)] as the index of the block the step ¢ belongs to, and
we adopt the convention that z, € & is value of the covariates for block 7, i.e., * = z,, for all ¢.
We leave the precise choice for x1, ..., Tk as a free parameter for now.

Fix any memoryless oracle-efficient online estimation algorithm defined by a sequence of maps

{Ft}te[T] (cf. [Definition 3.1). We set the true target parameter to be f* = f;«, where the index

i* € [N] will be chosen later in the proof (in an adversarial fashion based on the algorithm under
consideration); for now, we leave i* € [N] as a free parameter.

We first specify the offline estimation oracle under f;«. For each block index 7 = 1,. .., K, define
AT =X\ ({2} < (r—1)((por)+1) Y TE7Y)

as the set of covariates in X'\ {i* } that have not been observed before block 7, and let X7 := X"U{i*}.
We define

Fi(z) =z € X}

as the estimator returned by the oracle at round £. It is immediate from this construction that regardless

of how z', ..., 2" are chosen, the offline estimation error is bounded by
vee[T], > D0/1< ), ['(x )) > Do/1 (f*(xs)a ft(xs)) < | Borr] < Borr,
s<t s=(re—1)(LBorr] +1)+1

since the value of ft differs from f;» only for covariates that have not been observed before block ;.
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It remains to lower bound the algorithm’s online estimation error. To start, note that D /1 coincides
with Dgq on the set {0, 1} and Dy, is convex. Hence, by Jensen’s inequality, it suffices to lower bound

T

S (@) — fir (@),

t=1
where f*(x') is the mean under f*(x') where f' ~ pu' = Ft(fl7 .. .,]?t*l,ff).

To proceed, we specify the sequence z', ..., z”, choosing z* as a measurable function of X'* and i*
(recall that ¢* itself has yet to be chosen). Fix a round ¢, and suppose that X* # &. We choose x*
to lower bound the estimation error by considering two cases. In the process, we will also define a

function j7 : (2IN)®7 — [N] U {L} for each 7 € [K], where (2[N)®7 = o[V 5 ... » o[N] Let
S ——

T copies
€ [K] be fixed.
| Bosr | +1 5 1 o
o If > 1(fWorltbir(x) < 1/2) > % forall x € X7, we set z, = i* (equiva-
p=1
lently, z7(Porl T+ = ¢* forp = 1,..., | Bor] + 1), so that
(r+1) (1 Borr ] +1)

t( .t t))2 I_BOfF_J +1
Z Hf}x(f (z*) = fir(2"))" > s

t=7(|Borr|+1)+1
In this case, we define ;7 (X*,...,X7) =L.

[Bos | +1
. ote i e YT - . |Bor | +1
If there exists j € X such that pz—:l L(fritontvtr(5) < 1/2) < H0H==, we set
x; = j (equivalently, x7(WPorl+D+r = jforp = 1,..., | Bos| + 1) for the least such j, so

that
(t+1)(LBorr | +1)
Y max(fe) - () >

t=r(|Bor]+1)+1 "

> Lot £y (5 ).

In this case, we define ;7 (X*,...,X") = j as well.

Note that since f* is a measurable function of X, 31,. LA 3” is well-defined.

Combining these cases, it follows that for any choice of ¢*, choosing x1, ...,z in the fashion
described above ensures that
T K
o . 50ff +1 =,
> (@)~ fie (@) = Sa{i@,. a2 £
t=1 =1

We now state and prove the following technical lemma, which asserts that there exists a choice of ¢*
for which the right-hand side above is large.

Lemma G.2. For any algorithm, there exists a choice for i* € [N] such that

min{T :3’(?1,...,./\?*) = i*} > Q(N).

Proof of Consider a more abstract process, which we claim captures the evolution of
X7. Leti* € [N], and let A' = [N]. We consider a sequence of sets {A7}_; evolving according to

the following process, parameterized by a sequence of functions {g" : Q[N her - [NJu {J_}}T>1
and index ¢* € [N]. -

For 7 > 1:
s Ifg(A',...,A") =1, A"+ + A",

s Ifg (A, ..., A7) #L let A7 = A"\ {g"(A',..., A7) }if g (A',..., A7) # ¢*, and let
A7t «+ A7 otherwise.
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We claim that there exists i* € [N] such that g*(A"', ..., A®) # i* for all s < N under this process.
To see this define a set X~ inductively: Starting from X* = [N],set X ™™ < X7\ g"(X",..., X")
ifg"(X",...,X7) #L, and set X" "' < X" otherwise; note that this process does not depend on
the choice ¢*, since g itself does not depend on 7*.

For any 7, observe that for any ¢ € X, if we set ¢* = 4, then g*(A*,..., A®) # ¢* forall s < 7, and
so A” = X". It follows that as long as X~ # &, we can choose ¢* such that g*(A*, ..., A*) # i* for
all s < 7. Since X" shrinks by at most one element per iteration, it follows that this is possible for
all 7 < N.

O
It follows immediately from that by choosing ¢* as guaranteed by the lemma, we have

T
o . |Bose| +1
> (fi(a) = fir(@))? >

B > Q(min {N(Bogr +1),T}).

-Q(min {N, K})

O

Theorem 3.3’ (Impossibility of memoryless algorithms for OEOE; proper variant). Consider the
binary classification setting with Z =) = {0, 1} and loss Dy 1 (-, -). For any N € N and fog > 0,
there exists an instance (X,Y, Z,KC, F) with |F| = |X| = N such that for any memoryless oracle-
efficient algorithm that is (i) proper, and (ii) time-invariant, there exists a sequence of covariates
(', ...,27) and a proper offline oracle Algyg with parameter [Sog such that E[Estgn (T)] >
Q(min {N(fos + 1), T})

Proof of [Theorem 3.3", Given a parameter N € N, we consider the instance (X,), Z, K, F)
givenby X = {zi};c(nj 2 = Y = {0,1}, D = Dy,; and K(2) = 1., with parameter space

F = {fi};e[n given by

filzj) = 1(j = 4).
Let any memoryless oracle-efficient algorithm defined by prediction map F* = --- = F* = F be
given. We lower bound the algorithm’s online estimation error by considering two cases.

Case 1: There exists a parameter f; such that the distribution ; = F(f;) satisfies p;(f;) < 1/2. We
consider two sub-cases of Case 1. The first subcase is where p;({f; : 7 > i}) > 1/4. In this case,
we choose the sequence of covariates as ' = - -+ = 27 = z;, set f* = f;, and choose Algq to be

the offline estimation oracle that sets f* = --- = f7 = f;. With this choice, the offline estimation
error for the oracle satisfies

vie (1), 3 Do (7). Fi(e)) = 30 Do (i), fi*)) = 0.

s<t s<t

However, the online estimation error satisfies

T T
ZEf’NHt [D0/1(f*(35t)a f(xt))] = ZEfNM [DO/l(fi(l'i)v f(ffz))}

t=1

T
>3 walf)Dosp (filwa), f(x:)

t=1 j>i

T
— Z Z 1i(f;)Doy1 (fi(wi), fir1(xi))

t=1 j>i

T
> 13" Dojalilai) fiva () = T/4,
t=1
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The second sub-case of Case 1 is where y;({f; : j > i}) < 1/4. This, combined with the fact that
wi(fi) < 1/2, gives p;({f; : 7 < i}) > 1/4. In this sub-case, we choose the sequence of covariates

asz' =--- =a" = 2,1, set f* = f;, and choose Algy to be the offline estimation oracle that
sets f1 =--.- = fT = f;. In this case, the offline estimation error is zero:
vt e (1], Y Doj(f*@), @) = Y- Dop(fila), fila")) =
s<t s<t

In addition, the online estimation error is lower bounded by
T

T
ZEf~ut [D0/1 (f*(xt)» J?(xt))] = Z]EfNM [DO/l (fi(xzeﬂ» Jz(xzq))]

t=1

T
>3 > wilf)Bopr (filwio), fi(i1))

t=1 j<i

T
- Z Zui(fj)DO/l(fi(xi—1)7 fi1(xiiy))

t=1 j<i
iZDou (fi(wi1), fima(zi1)) = T/4.

Case 2: For all parameter f; € F, the distribution p; = F(f;) has p;(f;) > 1/2.

In this case, we choose z', ..., x” by repeating each of the covariates | Sos | + 1 number of times in
increasing order by their index, and choose the offline estimation oracle Algq to return fi, ..., fx
in the same block-wise but with the index offset by 1.

Formally, let 7; = [t/(|Bosr] + 1)] denote the index of the block that round ¢ belongs to, so that
L= = T Bog)+1 = L T\ Bog]4+2 = * = T2|Boxr|+2 = 2 and so on. We choose T° = Tpinfr, N}

and choose the offline oracle Algyg to set f* = fiin(r,,n}- Finally, we set f* = fxn.
‘We have that for all ¢, the offline estimation error of the oracle is bounded as.

Z DO/l (.f/‘\t(xs)v f*(xs)> = Z DO/l (fN(xmin{‘rs,N})v fmin{‘rt,N} (xmin{rs,k}))

s<t s<t

= > 1< |Bor) < Bow.
s<t,Ts=T¢
However, the online estimation error is lower bounded by
T T

- 1
ZEfN/ﬁ [DO/l (f*(xt): f(xt))] > 5 Z DO/l (fN(xmin{Tt,N})v fmin{n,N}(irmin{n,N}))

t=1 t=1

> Q(min {7, N (Bog + 1)}).

O

Proposition D.1 (Upper bound for memoryless OEOE). For any instance (X,Y,Z,K,F),

metric-like loss D, and offline oracle Algqg with parameter Bog, the algorithm that returns

ft = ft = Algog(at, ...,z 7ty ...,y'™") has online estimation error EstO"(T) <

((50ff + 1)|X[log T)
Proof of [Proposition D.1} The proof is very similar to the second part of the proof of [Lemma G.1I]

For each z € X, define N;_1(z) = Z 1(x® = x). Then we can write the online estimation error as

ia(mt () = ZZNt“x (Nia(@) V1) - (1 (@). £ ().

t=1 t=1zeX

42874 https://doi.org/10.52202/079017-1357



As a consequence of the offline estimation guarantee for f*, we have that

(Ni-1(2) v 1D(F (@), f*(2)) < (Z D(ﬁ(a:s),f*(xs))) V1< for+1.
s=1

Combining this with the preceding inequality gives

zT: ( )) (Bosr + 1) ZZNtx_x

t=1 t=1zeX

Now, for any x € X, define ¢, := min {t < T : a* = x} if this set is not empty, and lett, = T
otherwise. From this definition and the fact that 1 +1/2 4 --- + 1/T < 1 4 log T, we have that

>3 do=a) Z<2Ntx_x ZNtx_x>

zeX t=1 zeX t=t,+1

Nrt_ 1(1)

<Zl+z

reX
<2|1X| 4 | X|log T < 3|X|logT.
We conclude that

Z D(f*(xt), f/‘\t(azt)) < 3(Bos +1)-|X]|logT.

t=1

G.3 Proofs from Appendix D

Theorem D.1 (Reduction from oracle-efficient online estimation to delayed online learning). Let D

be any convex, metric-like loss. Suppose we run with delay parameter N € N and a
zleé?yed online learning algorithm ApoL for the class F. Then for all v > 1, [Algorithm 2| ensures
E[Est5"(T)] < O(Coy(N + forT/N) + Rool (T, N, 7)), (14)
with any offline oracle Algqg with parameter Bog > 0, where
T
RpoL(T, N, 7) ZE,W — 7 min 2 () (15)

is the regret of ApoL for the sequence of losses constructed in

Proof of [Theorem D.1} Using the metric-like loss property, we can bound the online estimation
error of |Algorithm 2]by

ZEfN,u ) f*( ))]

< Cp- ZEW (7). F'(@))] + Co- XT; D(fi(a), /(")

By the regret guarantee for the delayed online learning algorithm Apg, we have

ZEfw { < ), [*(x )} <7 ZD( ))+RDOL(TN7)
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since f* € F. Combining these observations, we have that
T B T }
> g [P, £(2))] < Coly +1) Y- D(F (&), £*(#")) + Roow (T, N, 7).
t=1 t=1

Finally, from the definition of f “ and the convexity of the loss D, we have

T—N t+N

ZD( @) <N+ > 3 D(FE), )
t=1 i=t+1
=N+J§§;§D(ﬁ<mi>,f*<xi>)
<N+53<;T

where the final line uses the offline estimation guarantee for Algq. This completes the proof.

O

Lemma D.1. Consider the delayed online learning setting with a delay parameter N. There exists
an algorithm that achieves

T
RpoL(T, N, 2 Z]Ef,w [e(f)] —2- %122£‘(f) < 2N - log | F|
t=1

Sor any sequences of losses (*, ... 7 € [0, 1].

Proof of This result follows using[Cemma G.3|with v = 2, choosing Ag_ to be the
exponential weights algorithm described in Corollary 2.3 of Cesa-Bianchi and Lugosi [17], which has

Rou(T,v) < O(log | F])
forallT € Nand v > 1.
O

Theorem D.2 (Characterization of oracle-efficient learnability for binary classification). Consider a
binary classification instance (X,Y, Z, K, F) with 2 = ) = {0,1}, D = Dy, and K(z) = 1.. For
any class F and Bog > 0, there exists an oracle-efficient algorithm that achieves online estimation
error O(y/BogLdim(F) - Tlog T + Ldim(F)logT). On the other hand, in the worst-case any
algorithm must suffer at least Q(Ldim(F)) online estimation error.

Proof of For the lower bound we recall that for Sog = 0, Lemma 21.6 of [57] states
that any algorithm (oracle-efficient or not) has to suffer Q(Ldim(F)) online estimation error in the
worst case.

For the remainder of the proof, we focus on establishing the upper bound. For any set of parameters
F : X — A({0,1}), define the majority vote function Majority(F) for a class F via

Majority(F)(z) =14 > f(1]2) =Y f(0|z)

fer fer

for all x € X'. We will show that|Algorithm 4|(a variant of [Algorithm 2|that replaces averaging with
a majority vote), with a properly chosen delayed online learning algorithm .4po|, can obtain

o) <\/ﬁofFLdim(}") TlogT + Ldim(F) log T)

online estimation error.
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Algorithm 4 Reduction to delayed online learning for binary loss

1: input: Offline estimation oracle Algqg with parameter Sof > 0, delay parameter N € N,
delayed online learning algorithm Apg, for class F.
fort=1,2,...,Tdo
Receive f* from offline estimation algorithm.
if t > N _then
Let f*=N = Majorlty({f M _i_n+41)- 7/ This is the only different step compared
to

6: Let é‘*N(f) = Do/1 (f‘*”(x‘*N),f(x‘*N)) and pass ¢!~V (-) to ApoL as the delayed
feedback.

7: Let u* = Apg, (', .., £*~) be the delayed online learner’s prediction distribution.

8: Predict with f* ~ p* and receive z°*.

Let v > 1 be fixed, and consider any delayed online learning algorithm Apgy that achieves
T

> Ege ()] =7 min :lf (f) < RooL(T, N, 7).

for any sequence of losses in the delayed online learning setting with delay NV (i.e., where we receive
loss ¢* at time ¢ + IV for some N > 0).

We proceed to bound the regret of [Algorithm 4] Since the loss Dy, is metric-like, the online
estimation error is upper bounded by

ZEW [Doj (F(a), f*(a))] < ZEW (Do (F(@), ()] + Z Doy (F(@), *(@"))

Next, the guarantee of Apg ensures that

T
> B [Dopi (Fa), F(@))] <4 Z Doy (F("), (")) + Roor (T, N, 7),
t=1
since f* € F. Combining these observations, we have that
T ) T )
"B [Dop (F), 7)) < (v +1) 32 Doga (7). () + Roon (T, N, ).
t=1 t=1
Finally, we observe that for each step ¢, if Dy /; (ft(a:t), f*(a:t)) = 1, it means that least N/2 of the

redictors ft“, e f“” must have predicted f*(z*) incorrectly. This implies that
p

t+N
e * (ot 2 i
Doy (f(a"), £*(2)) < = D Dopa (F(a), £(@))-
i=t+1
But since the offline estimation assumption states that

ZDO/I (ft(x),f*(a:)) < Poff,

i<t

this implies that

T 2T N t+N

> 0o (F1@), @) SN+ = 30> Doy (Fla), ()

t=1 t=1 i=t+1
—N+E;ZD0/1( (t)>
< 4 2orl.
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‘We conclude that

T
> Efimp [Doi (1 (@), 1*(2))] < O(Y(N + BowT/N) + RooL (T, N, 7).

To complete the proof, we set v = 2 and choose Aq to be the algorithm described in Theorem 21.10
of Shalev-Shwartz and Ben-David [57]], which (by incorporating the same techmque{];g] as Corollary
2.3 of Cesa-Bianchi and Lugosi [[17]), ensures that

RoL(T/N,2) < O(Ldim(F) log T).
Then by [Lemma G.3| with v = 2, we have
Rpou(T, N,2) < O(N - Ldim(F) log T).
Setting N = \/BoxT/(Ldim(F)log T) V 1, this yields

ZEMN ), f*(2")] < O<\/ﬁofFLdim(]-') “Tlog T + Ldim(F) 1ogT).

G.3.1 Supporting Lemmas

Algorithm 5 Reduction from delayed online learning to non-delayed online learning

1: input: Delay parameter N € N, base online learning algorithm Agy .
2: Initialize N copies A, , ..., A of the base algorithm.
3. fort=1,...,7T do

4: if t < N then

5: Let p* = A, (2).

6: else

7: Leti =¢ mod N wherei € [N].
8: Receive loss ¢:=V.

9: Feed ('~ to A5,

10: Let put = Ab (€1, 0N ... 0N,
11: Play f*' ~ pu'.

The following lemma is a standard result [67, 142,35, /47]] which shows that the delayed online learning
problem setting in can be generically reduced to non-delayed online learning. The idea
behind the reduction, which is displayed in is as follows. Given a delay parameter
N € N, we run N copies A, , . .., A5, of a given “base” online learning algorithm Ao, for a class
F over disjoint subsequences of rounds. The following lemma gives a guarantee for this reduction

Lemma G.3 (Delayed online learning reduction). Let Ao be a base online learning algorithm for
the class F with the property that for any sequence of losses (', ... (T in the non-delayed online
learning setting and any v>1,

Z]EftNM f —7 manﬁt < Ro(T, 7).

If we mnwnh delay parameter N € N, thenfor all v > 1, the algorithm ensures that

N [T/N T/N
RDOL(T7 N, '7) < Z Z ]EfH—N G+ [[H—N J(fl+N J)] —- melg pitN: J(f)
=1 \ j=1 j=1

< N - ROL(T/Na 7)
for online learning with delay N.

18The algorithm described in Theorem 21.10 of Shalev-Shwartz and Ben-David [57]] applies the exponential
weights algorithm to a specialized class of experts, and the guarantee obtained is for RoL (7', 1). The analysis
from Corollary 2.3 of Cesa-Bianchi and Lugosi [17] shows that for v > e/(e — 1), the same algorithm obtains
RoL (T, 2) scaling with O(Ldim(F) log T"). We omit the details here since it is a standard argument.
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Proof of By the guarantee of .Ag, we have that for all ¢ € [N],

TN T/N
D Efienpiin [V ()] =y min > L#9(f) < Rou(T/N, 7).
Jj=1 j=1

Summing up over all ¢ € [N], we obtain

N T/N n
N-Rol(T/Nv) =33 Efioniopions [(FV3(FHY)] - %1}1 £’+N'«7(f)
=1 j=1
AREIEY N T/N
= Z Z Efinmpiens [(FNI(FH)] =y }5%122 S ()
- i=1 j=1
T _ T
:Z ftoopt Vt(ft)] — 7y - min e (f).

fer i

~
Il
-

H Proofs from Section 4

H.1 Proofs from Section 4.1

Theorem 4.1 (Computational lower bound for OEOE). Assume the existence of one-way functions
There exists a sequence of polynomially computable classes (Fi, Fa,...,Fn,...), along with a
sequence of poly (n)-output description length offline oracles with Bog = 0 associated with each F,,
such that for any fixed polynomials p,q : N — N and all n € N sufficiently large, any oracle-efficient
online estimation algorithm with runtime bounded by p(n) must have E[EstS"(T)] > T /4 for all
1 < T < q(n). At the same time, there exists an inefficient algorithm that achieves E[Est3"(T))] <

O(y/n) forall T € N.

Proof of [Theorem 4.1, We frame the example proposed by Blum [14] in their Theorem 3.2 (see also
Bun [15]) in our settlng For any integer n > 1, let the covariate space X,, be X,, = {0,1}", and set

Z=)Y={0,1} and K(z) = 1,. We define a class F,, = {fs s € {0, 1}f} with

1 ifx €cs,
0 otherwise,

o= {

for a certain collection of subsets {¢; € X}, } se{0,1}vF defined in Definition 2 of Blum [14], which is

constructed based on cryptographic functions using the assumption of existence of one-way functions.
The precise definition will not be important. The properties we will use are:

1. The value f,(z) can be computed in poly(n) time for any z € X,,.

2. For any polynomials p(n), ¢(n), any (possibly randomized) online estimation algorithm
(oracle-efficient or not) which runs in time p(n), and any time step T < ¢(n), for

sufficiently large n where ¢(n) < 2‘/ﬁﬂ there exists s € {0, 1}‘/ﬁ and a sequence

xl ,xff 1?2 2" (the specific definition of this sequence can be found in Blum [14])

such that the onhne estimation error under this sequence when f* = f, is at least T'/4
in expectation. Our lower bound construction for any oracle efficient online estimation
algorithm with runtime bounded by p(n) in time step bounded by 1 < T' < ¢(n) will choose
the aforementioned covariate sequence as the covariates revealed with the aforementioned
function as the true parameter, i.e., x™ = z] for 7 € [T] and f* = f.

Existence of one-way functions is a standard and widely believed complexity-theoretic assumptions, which
forms the basis of modern cryptography [30].

The argument is essentially asymptotic, since the choice of 7 is determined by the power of the one-way
function.
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It is straightforward to see that the sequence (F1, Fa..., Fn, ...) admits polynomial description length
as claimed, since log | F,,| = 1/n. We are left to verify that there is an offline oracle that achieves
Bosr = 0 with poly(n)-output description length, yet does not provide any information not already
available to the learner in the setting of Blum [14] (recall that in the protocol of Blum [[14]], the learner
gets to see the covariates x',...,x" and the true labels y',...,y""" at time step ¢ before making their
prediction, but does not receive any other feedback).

Consider the following offlines oracle Algge(x', ..., z'~", y*, ..., y*~"). The oracle output f* is a
circuit that, on input , compares x sequentially with z*,... z*. If z is ever equal to =7 for some
T € [t — 1], the circuit will output y™. If  is not equal to any z” for 7 € [t — 1], the circuit outputs 0.
Such a Boolean circuit can be constructed with polynomial size in n because each =7 has length n
forr € [t—1]and t < T < g(n) by assumption. It is easy to see that this oracle achieves Sof = 0,
yet does not provide any additional information about target parameter f* beyond what is available
in the model of Blum [[14]]. Combining all the above, we complete our lower bound proof.

Lastly, we observe that since the setting we consider is an instance of noiseless binary classification,
the classical halving algorithm achieves an online estimation error bound of O(log | F,,|) = O(y/n)
[17].

O

H.2 Proofs from Section 4.2

In this section, we prove [Theorem 4.2] through four layers of reductions through different variants
of the online estimation setting. In[Appendix [H.2.1} we first introduce the relevant settings and the
describe reductions through them. We then combine these reductions to prove Finally,
in[Appendix|[H.2.2] we prove each of the four reduction results.

H.2.1 Proof of Theorem 4.2

Theorem 4.2. Let Acpe be an arbitrary (unrestricted) online estimation algorithm that satisfies
q. (4) and has runtime Time(F,T). Then for any N € N, there exists an oracle-efficient online
estimation algorithm that achieves estimation error

E[Est3"(T)] < O(CxlogV - BogT /N + N - (Rcpe(T) + Crlog V)

with runtime poly(Time(F,T),log|F|,log|X|,T), where Bog > 0 is the offline estima-
tion parameter.  The distributions u',...,u" produced by the algorithm have support
size poly(log | F|,log|X|,T). As a special case, if the online estimation guarantee
for the base algorithm holds with Rcpe(T) < C'logT for some problem-dependent

constant C'> > 1, then by choosing N appropriately, we achieve E [Estﬂ“ (T)} <
O((Cx(Cx + C%)Bose) /2 log V - T2 + (Cx + Cl) log V).
Proof of The proof of [Theorem 4.2 is algorithmic, and is based on several layers of

reductions.

* First, using the scheme in we reduce the problem of oracle-efficient
online estimation to delayed online learning with the loss function ¢~V (f) =

D(ft*N(gct*N), f(z*~")) defined in [Algorithm 2| where fry = + Zf:t,NH fisan

average of offline estimators and NV € N is a delay parameter.

* Then, using a standard reduction [67, 42, 35 47]], we reduce the delayed online learning
problem above to a sequence of N non-delayed online learning problems, with the same
sequence of loss functions; both this and the preceding step are computationally efficient.

* To complete the reduction, we argue that the base algorithm can be used to solve the online
learning problem above in an oracle-efficient fashion. To do this, we simulate interaction
with the environment by sampling fictitious outcomes y* ~ f*(z*) from the averaged offline
estimators and passing them into the base algorithm. We argue that the fictitious outcomes
approximate the true outcomes well through a change-of-measure argument.

Combining the above, we conclude that given any base algorithm that efficiently performs online
estimation with outcomes sampled from the target parameter f*, we can efficiently construct a
computationally efficient and oracle-efficient algorithm. In more detail, we introduce four layers of
reduction in reverse order from CDE to OEOE.
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Conditional Density Estimation with Reference Outcomes (CDEwRQO). The bottom-most
reduction we consider is from a setting we refer to as Conditional Density Estimation with Reference
Outcomes (CDEwRO) to the (realizable) CDE setting. CDEwWRO is similar to CDE, but with the
following difference. Instead of receiving outcomes y*, . .., y* sampled from the true model f*(x*)
directly, in CDEwRO, the outcome is sampled from a reference parameter f*(x*) which is guaranteed
to be close to f* in a certain sense. Moreover, the covariates and the reference parameters f*,...,f"
are selected obliviously (i.e. the entire sequence is chosen by the adversary before the online learning
protocol begins).

Algorithm 6 Reduction from CDEwRO to CDE

1: input: Time 7" € N, base algorithm Acpe.

2: Nature selects 7" covariates =', . .., x” along with the reference parameters f R f T
3:fort=1,...,Tdo _

4: Learner predicts f* ~ u* = Acpe(zt, ..., 271yt ..,y h).

5 Outcome y* ~ f t(x*) is sampled and revealed to the learner with the covariate x*.

Our reduction from CDEwRO to CDE is given in The main guarantee for this reduction
is as follows.

T ~
Lemma H.1. For any fixed ¢ > 0, suppose . D, (ft(rt), f*(zﬂ) < (. Let
t=1

Repewro (T,¢) :=3CrlogV - ( + Rcpe(T) + 2Cr - log(CxT), (25)
where Rcpe(T) is defined as in by the assumption on Acpe. Then[Algorithm 6|achieves an

expected online estimation error upper bound of

T
ZE[Da(ft(x‘),f*(xt))] < Repewro (T €)
=1

in the CDEwRO setting, and has runtime poly(Time(F,T),T) .

The key technique in the proof of this lemma is a change of measure argument based on Donsker-
Varadhan [46]].

Conditional Density Estimation with Reference Parameters (CDEwWRP). The next reduction in
our stack is from a setting we refer to as Conditional Density Estimation with Reference Parameters
(CDEwRP) to the CDEwWRO setting above. CDEwRP is identical to CDEwRO, except that in

the former setting, the learner directly observes the reference parameter f* instead of observing
y' ~ f*(z') as in CDEwWRO.

A second difference is that we allow the adversary in the CDEwRP setting to be adaptive , while our
definition of the CDEwWRO setting only allows for oblivious adversaries. Thus, the reduction we
consider serves two purposes:

» Simulating the CDEwWRO feedback model through sampling.
* Reducing the adaptive adversary to an oblivious one.

The reduction from adaptive adversaries to oblivious follows and improves upon the result from [31]],
and may be of independent interest.

Our reduction from CDEwWRP to CDEwRO is displayed in and takes as input an
algorithm Acpewro(+; -) for the CDEWRO setting, where A¢pe,ro(Z; -) denotes the algorithm’s
output at round ¢ < T as a function of the history. The main guarantee for the algorithm is as follows.

T .
Lemma H.2. For any fixed ¢ > 0, suppose _ D, (ft(a:t), f*(mﬂ) < (. Let
t=1

Recpewrr (T, ¢, €) := 2Rcpewro (T, C) + €, (26)
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Algorithm 7 Reduction from CDEwRP to CDEwRO
1: input: Time 7" € N, accuracy parameter € > 0, algorithm Acpgwro-
2: Let L = O(T log(T|F||X])/¢).
3: fort=1,...,7do

4 fori=1,...,Ldo

5 fors=1,...,t—1do y

6: Learner samples ;" ~ f*(x*).

7 Learner computes f! = Acpewro (T2}, .. xi "yt oy ™).

8 Learner predicts via f* ~ u' = Unif({f;}ie[L]). )

9 Nature selects and reveals the covariate z* and the reference parameter f* based on pu'.

where Rcpewro (T, Q) is defined as in|Eq. (25) Then|Algorithm 7\with parameter € > 0 achieves an
expected online estimation error upper bound of

T
Z E[Da (ft<xt>7 f*(xf))] < RCDEWRP(Ta Cv E)
t=1
in the CDEwWRP setting, and runs in time poly(Time(F,T), T, log|F|,log|X|,1/¢) . The distribu-
tions u*, ..., u* produced by the algorithm have support size poly (log | F|,log |X|, T, 1/¢).

Conditional Density Estimation with Delayed Reference Parameters (CDEwDRP). Our next
reduction is from a setting we refer to as Conditional Density Estimation with Delayed Reference
Parameters (CDEwDRP) to the CDEwWRP setting. CDEwDRP is identical to CDEwRP, except that
the reference function f* is revealed only at round ¢ + N instead of at round ¢, for a delay parameter
N eN.

Algorithm 8 Reduction from CDEwDRP to CDEwRP

1: input: Time T" € N, delay time NV € N, algorithm Acpgwrp-

2: Initialize N copies of the algorithm Acpewre as A¢pg,rp: - - - » ALDEWRP-

3: fort=1,...,Tdo

4: Learner predicts f* ~ pu* = Atperp(T/N, /Nyt a8 oo ot =N fi N o fr)
where i =t mod N. -

5: Nature selects and reveals the covariate z* and the reference parameter f*~" based on .

Our reduction from CDEwDRP to CDEwRP is displayed in and takes as input an
algorithm Acpewrp (+; -) for the CDEWRP setting, where A e, rp (1), €; ) denotes the algorithm’s
output at round ¢ < 7" with accuracy parameter ¢ > 0 (cf. [Algorithm 7)), as a function of the history.
The main guarantee for the algorithm is as follows.

T ~
Lemma H.3. For any fixed ¢ > 0, suppose . D, (ft(zt), f*(zt)> < (. Let
t=1

N
Repewore (T, N, () == sup > Repewre (T/N, G, 1/N), 27
N -
G20, 30 G<¢ T

where Rcpewrp (T/N, (i, 1/N) is defined as in|Eq. (26)| Then|Algorithm 8|achieves an expected

online estimation error upper bound of

T
Z]E[Dﬁ (f*(="), f*(z"))] < Recpewore (T, N, ()
t=1

in the CDEwDRP setting, and has runtime poly (Time(F,T), T,log|F|,log |X|). The distributions
u', ..., u" produced by the algorithm have support size poly (log | F|,log |X |, T).
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Algorithm 9 Reduction from OEOE to CDEwDRP

1: input: Time T' € N, offline estimation oracle Algqq with parameter Sog > 0, delay parameter
N € N, CDEwDRP algorithm AopgwDRp-
2: fort=1,...,T do

3: Receive f* = Algog(x?t, ..., 2"y, ..,y 7).
t
. fe-n _ 1 7
4: Learner computes reference parameter f*V = & >
i=t—-N+1 .
5: Learner predicts f* ~ u* = Aopewpre (T, Nt 22, ...zt f* f% .., 7).
6: Nature selects and reveals the covariate z* based on u*.

Oracle-Efficient Online Estimation (OEOE). Our final reduction reduces the Oracle-Efficient
Online Estimation setting (OEOE) to the CDEwDRP setting described above. This reduction, which

is displayed in is a variant of the approach used in The reduction takes

as input a CDEwDRP algorithm Aopewprp (- -), Wwhere Agpe,orp (1 IV; -) denotes the algorithm’s
output at round ¢ < 7" with delay parameter IV, as a function of the history.

Lemma H.4. achieves an expected online estimation error upper bound of

T

ZE[Da (f* ("), f*(="))] < Reoewore(T, N, N + BogT/N)
=1

in the OEOE setting, and has runtime poly(Time(F,T), T, log|F|,log|X|). The distributions
u', ..., u" produced by the algorithm have support size poly (log | F|,log |X |, T).

Completing the proof of To prove[Theorem 4.2} we compose all of the preceding
reductions, with [V left as a free parameter temporarily. We first apply [Lemma H.4|to reduce from

the OEOE setting to the CDEwDRP setting, with the guarantee that

ZE[DE, (f*(="), f*(z"))] < Recoewore(T, N, N + BogT/N).

t=1

Then by we can reduce the CDEwDRP setting to the CDEwRP setting, with the
guarantee by [Eq. (27)|that

N
Repewore (T, N, N + BogT/N) = sup > Repewre(T/N, G, 1/N).
Ci<N+BorT/N =1

M=

i

I
—

Then apply N times with T, ¢, and ¢ in the Lemma chosen to be T'//N, (;, and 1/N
respectively for each ¢ € [N], we can reduce the CDEwRP setting to the CDEwWRO setting with

guarantee by [Eq. (26)| that

N N
sup > Reoewre(T/N, G, 1/N) =1+ sup 2 Repewro(T/N, G:).
. N .
Ci<N+BorT/N =1 5 G<N+BorT/N =1

I
-

M2
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Consequently, apply N times with T and ¢ in the Lemma chosen to be T'/N and ¢; for
each i € [N], we can reduce the CDEwWRO setting to the CDE setting with guarantee by [Eq. (25)| that

N
sup > Repewro(T/N, ()
Ci<N+BogT/N =1

M

=1

N
sup > (3CrlogV - G + Repe(T) + 2C - log(C#T))
Ci<SN+BorT/N =1

BorT'
N

IN
o8

1
< CrlogV - <N—|—

PosT

<
Il

)+ N+ (Reoe(T) + Ci  log(C#T)

=CrlogV

+ N - (Rcpe(T) + CF - log(VCET)). (28)

; _ CrBosT log V ion i
By choosing N = \/RCDE(T)+C]:~10g(VC}-T) V 1, we can bound the expression in (28) as

E[EStH(T, ﬂoff)] S \/C]:ﬂoffT(RCDE(T) + CF - 10g(VC]:T)) logV + RCDE(T) + CF - lOg(VC]:T)

< VCrBowTRepe(T) log V + Cr/BogT log(VCFT) log V
+ RCDE(T) + CF - IOg(VC]:T).

Finally, under the assumption that Rcpe(7') < C’% log T', the bound above can be further simplified
as

E[Esty(T, forr)] S (Cr(Cr + C%)Bos log V1og(VCET))V*TY? + (Cr 4 C%) log(VCFT).
O

H.2.2 Proofs for supporting lemmas
Proof of[Lemma H.1| For|Algorithm 6| denote the randomness of the sequence (y"*, ") under

f* e Fand (f7) by P/" and Pf " respectively. The data generating process for (™", y"") in the
CDEWRO setting implies that

T

S E iy [DA(F (). ()]

t=1

Epir =E

38 R 0.6

By Donsker-Varadhan [46]], we have that for all n > 0

1T * ) 2
%DKL(]P’f | B ) > Epjpir lZEfw [Da(f‘(xt)j*(xt))}]

t=1

T
— %longf* exp{nZEﬁwt [DE(f ("), £*(2")] } (29)

t=1

For any random variables X, Y, Z, we denote by D (Px || Py | Z) = Ez[Dki (Px|z || Py|z)]. We
further note that by the chain rule for KL divergence,

T
FLT * FLT *
Dk (Pf || P/ ) = E E]Pf"lzT |:DK|_ (P(fif‘;yt) H P(fﬁ,yt) ‘ xl:t_l,yl:t_l)}

3 0 (F@) @),

where the second equality holds because y* follows f*(z') and f*(z) respectively, and because
the conditional distribution of =* is identical under both laws due to the oblivious assumption of the
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covariates in the setting of CDEwRO. Then by the relation between KL and Hellinger (Lemma A.10
of [27]]) and that 1 < log V, we have

T T T
> D (F1 @)1 7)) < (2 +10gV) - Y DE( (@), f7(2)) < 3log V- > DE(F (), /7 (a")),
t=1 t=1 t=1
where the last inequality is by V' > e. Combining all of the results so far and using (29), we have

L 9/ 7 3logV a o (=
> o [DH(f%xf),f*(xf))]] < SN DR(Fa) 1)

t=1 n t=1

E

T
+ %longf* exp{nZEftNHt [Da (fi (), f*(="))] }
t=1

To proceed, using that for any postive random variable X, E[X] = fooo P(X > t)dt, we have

%ngW* exp{nZ]E]aNut [Da (f"(xt), f*(acf))] }
T
= Repe(T) + %logEPf* eXp{’l](Z Efe [Da (f‘(xt), f*(w’))] — RCDE(T)> }
T
< Repe(T) + %longf* exp{n(Z Eze e [Da (ft(w"), f*(gc’))] — RCDE(T)> }
t=1 +

= Repe(T) + 71710g/0OO P <<;Efq~“t [DE(f (z"), f* ()] - RCDE(T)>+ > 717logt> dt.

T -
Recall the assumption . D3 (ff(x*), f*(xt)> <(andletn = Cl—f We have
=1

3logV & . 1 r _
S DU DR(F ), ) + ) Tog e exp{nZEfw (D (F" (=), f*(mf»]}
t=1 t=1
< 3log V - ¢+ Repe(T)

1 > * = 2 (Ft( .t * (ot
+;log/0 P/ <<;Eft~m [DZ(f ("), f*(2")] _RCDE(T)>

1
> logt>dt
N n

Cr-T
¢ 1
§3C’;logV~C+RCDE(T)+C’flog<1+/ tdt)
1

<3CrlogV ¢+ Rcpe(T) + 2Cx - 1log(CxT).
where the second inequality uses the assumption[Eq. (4)]on the algorithm.
O

Proof of Our result improves uses the proof technique from the adversarial-to-oblivious
reduction in Lemma 11 of Gonen et al. [31]], but improves the result by a O(log T") factor.

Consider the CDEwRP setting. Let E[] := E[ | a™ ', f*]. Let p* :=
E[Acpewro (U], - y5 M@y, . a7 )] forall 1 < s < ¢ < T where the expectation is
taken over all the random variables y;°*, ..., y; " 2y, ... 2y o

Then by Bernstein’s concentration inequality applied to 41 (interpreted as an empirical approximation
to p"*), conditioned on z'*~*, f**~', we have with probability at least 1 — 5=, for all ' € X" and
frerF,

Bl [DA(f(@), f'(@))] < 2B} [DA(f(2), 1'(@))] +£/(2T). (30)
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For any fixed t € [T] and all ¢ such that ¢t < ¢ < T, the different trajectories

ot eyt gt are iid. conditioned on !, f1*~*. Thus, we have
E[Efw;ﬁt[ a(f(xt)af*(xt))]] E[E;tlut t+1 [Da(f(xt)vf*(xt))” (31)
=... (32)
= E[E]..x [DR(/ (), £ ()] (33)

Finally, for [Algorithm 7 we have by the guarantee of Acpgwro.

ZE[EfNHt r D (f(xY), f*(mt))” < Rcpewro (T, ).

Combining the three results above, we have

| /\

\Mq HMH

ZJE E% . [DA(f(a"), f Ef e [DR(f (), f*(2))]] +¢

[ T er DA ). P @] 4+

< 2RCDEWRO(T7 ¢)+e,

where the first equality is by [Eq. (30)] the second equality is from [Eq. (31)] and the final inequality is
by the guarantee of Acpewro-

O

to squared Hellinger distance, and the proof here will use the same idea as

Proof of Note that[Algorithm §]is a variant of the reduction in specialized

For each i € [N], let ¢; = Z;‘Fzﬂl\[ D} (f“NJ( N (x ‘+N‘j)). Then by the guarantee of
Acpewrp, We that for all ¢ € [N],

T/N

> Efuiens [DA(F(@7), f*(27)] < Reoewre(T/N, G, 1/N),
j=1

Summing up over all ¢ € [N], we obtain

T - N T/N ~
Y Ere [DR(F(a), £7(@))] = D0 D Bpepens [DA(F@), f*(2N7))]
t=1 i=1 j=1

Z Rcpewrp(T/N, G, 1/N).

T -
By the assumption on >~ D3 (ft(xt), f* (xt)) , we have
=1

N N T/N
> 6= Y BR(F @) @) = YDA (F ). () <<
i=1 i=1 j=1 t=1

Finally, we conclude

T N
ZEfNut (DA (f(z), f*(2))] < sup ZRCDEWRP(T/Na Gi, 1/N).
= % ¢i<¢ =l
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O

Proof of This reduction is arguably the most interesting one. This reduction is by
noticing that averaging across the outputs of the offline oracle will generate reference parameters
(although delayed) with small online estimation errors as shown later in By the guarantee
of AODEWDRP, we have

ZEJW a(f(@), f*(2))] < Repewore (T, N, (),

T -
where ¢ can be chosen to be any upper bound of 3 D, ( i), f*(a:‘)) since it is unknown to the
t=1

learner in the setup where we augment the sequence of fl,. .. ,fT by setting f” S = fT forall s € N

and define ft = % Zfii\j_l fl fort =T — N, T — N +1,...,T. Furthermore, by the definition of

f*, we can obtain

T ) T-N t+N
STOA(F). £ 6) = Nt 3 3 DR, 1)
t=1 t=1 i=i+1
=N+~ ZZ D} (F' ("), f*(2"))
f 2 i<t
<N+ Por T (34)
Thus, we conclude obtains
T
Z]Efw;ﬁ [Df (f(z), f*(2"))] < Rcoewpre (T, N, N + BogT/N).
O

I Proofs from Appendix E

Theorem E.1 (Offline-to-online conversion under coverability). For or any layer—wzse loss DRt and
MDP class (M,II,O) and M* € M, the sequence of estimators (M , M T) produced by any
offline estimation oracle Algqg for DRE with parameter Bog satisfy

ZT: DR (M () [M* (7)) < O/ HCoor(M*)Bon Tlog T + HCooy(M")).

t=1

Proof of This proof closely follows the proof of Theorem 1 in Xie et al. [69]. Define
the shorthand dj, (s, a) = d;{t (s,a) and Ceoy = Ceoy(M™), and define

T

a) ::Zd;(s,a), and pf := argmin sup

fnEA(SxA) meIl m

From the definition of the layer-wise loss, we have

ZDRL(M’ || M*( ) ZZ 3 d;(s,a)Dh(Ff*(s,a)||Fft(s,a)).

h=1t=1 (s,a)ESx.A

We define a “burn-in” phase for each state-action pair (s,a) € S x A by defining

h(5,a) = min {t | di,(5,0) > Ceoy - 115 (5, a)} .

https://doi.org/10.52202/079017-1357 42887



Let h € [H] be With this definition, for we can write

T At
> Y dilsanu(P) alPy (s.0))

t=1 (s,a)eSx.A

= > Y dsab (P ol o)+ Y Y dilsaDu(Py (s,0)P (s.0))

(s,a)eSXAt<Ty(s,a) (s,a)eSXAt>T)(s,a)
For the first term above, we have

>y d;L(s,a)Dh(FZI*(S,Q)HF?(S,a))§ Yo A U(s,0) < 200 Y

(s,a)ESXAt<Th(s,a)

,U,;: (87 a) = 26vcova
(s,a)ESXA (s,a)eSxA
where the last inequality holds because

Yoo e sa) = >0 AT (s,a) + O (s, 0) < 20ey - i (5. 0).
(s,a)eSxA (s,a)ESX.A

The remaining term is

Z Z Z dy,(s,a Dh(Ph (s, a)||Ph (s a))
h=1

(s,a)eSxXAt>T(s,a)

- d;( ,a) v HM* HM*
_ Z DO A1 (e S R R Th(s,a)}Dh(Ph (s, a)|| Py (s,a))
h=1t=1 (s,a)ESx A dj,(s,a)
-\ (Lt > (s, 0))d} (5,00 |« . S
>0 X > Y dilsau(P) (5.0l P (5,0).
h=1t=1 (s,a)eSxA ( ) h=11t=1 (s,a)eSx A

Following the derivation in Theorem 1 of Xie et al. [69], we have

ZT: Z (1(t > ThN(s a))d;, (s, a) S 22 Z dj,(s,a) - dj(s,a)

t=1 (s,a)eSx.A d;l( ,a) =1 (s,a)eSx.A d;l(s, a) + Ceoy - ,UZ(Sa a)
d: (s,a)
<2 Z max dj (s,a) - = A
; (s,a) eSxAtle[T] dz(& a) + CCOV ’ MZ(Sva)

dj (s,a)
max : max dj, (s, a)
< $,a Z dt 8 Cl) +Cov /J'h(s a)) (s,a)gs'XAtE[T]
S Ceovlog T,

where the last inequality follows from Lemmas 3 and 4 of Xie et al. [69]]. For the second term, as a
consequence of the offline estimation assumption, we have that for all ¢ € [T]

H

> Y dilsaDu(P (5. a)IP) (s.a)) = ZDRL(M‘ )M (7)) < Bor.
h=1(s,a)eSx.A

Altogether, we conclude that

XT: DR (M ()M (7)) < O(v/HCoonBor T1og T + HCoeoy ).

t=1
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Corollary E.2. For any MDP class (M,I1,0) and M* € M, the sequence of estimators

(JT/[\ o, M ) produced by any offline estimation oracle Algqg for squared Hellinger distance D,
with parameter Bog satisfy

T
Est"(T) = > D (]\7 (1), M*(w)) < O(H\/C’COV(M*)ﬂofleog T+ HQC’COV(M*)>

Proof of|Corollary E.2| By[Lemma F.2| for any two MDP models M and M’ and any 7 € A(IIgns),
we have

H
D&(M (), M'(m)) = DA(M'(m), M(r)) < 7- > B [DR (P (sns0), Py (snsan) ) |-
h=1
(35)

On the other hand, for any h € [H|, we have from Lemma A.9 of Foster et al. [27] that
BV [DF (P3 (snan). Py (sn,an) ) | < 4D3(M (), M (),

by choosing X = (sp,ap) and Y = (rp, sp41) in the aforementioned lemma. Summing up over A,
we conclude that

H
S BT DR (P (snan), Py (snsan) )| < 4H - DR(M (), M'(m)). (36)
h=1

Consider any sequence of policies 7', ..., 7" and outputs M", ..., M™ from an offline oracle with

parameter Sof for squared Hellinger distance. By [Eq. (36)| we have that for all ¢ € [T,

t—1 H

Z ZEM*”TT [D2H (Ff*(s,a), FfT(s,a))} < 4H§ Df, (M\T(WT)7 M*(Wf)) < 4fBor H.
=1

T=1h=1

[Theorem E.T|thus implies that
T H ) . .
>SS E T [DE(PY (5,0). Py (5,0))] S HV/CeBorT10g T + H*Ceon.
t=1 h=1

Finally, using [Eq. (35)} we can convert the inequality above into a bound on the square Hellinger
distance:

iE ™3 (P) (5,00, P} (s,0))]

1 h=1

CeovBoseT log T+ H? Ceov-

A
[M]=

503 (37 )

t=1

~
Il

AN
T

O

Proposition E.2 (Tightness of offline-to-online conversion). For any integer T" > 1 and Bog > 0,
there exists a contextual bandit class (M, Il = AS,O) with |A| = 2, a distribution d, € A(S),
a sequence (m',...,n") and an offline oracle Algyg for Dcg with parameter Pog such that the

oracle’s outputs (]/\4\1, cee J/W\T) satisfy
EstQ(T Z Des (M‘ ), M*( )) > Q(\/Tﬁoff).

Proof of Let Sos > 0 and T be given, and let N € N be chosen such that 7" =
N - | NBo |; we assume without loss of generality that IV is large enough such that N Sog > 1, which
implies that | NBos| > NBof/2). Define A = {ag,a1}, S = {s0,...,5n_1},and g™ (s,a) =0
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forall s € S,a € A. Let d; = Unif(S) be the context distribution. For any ¢ € {1,...,T}, consider
the deterministic policy 7* : S — A and the offline estimator M* defined via

Wt(sn) _ {(11, ifn= Lt/LNﬂoffH, and gm(&a) _ {

ag, otherwise.

1, ifSZSLt/LNBOfrJJ’a:ah
0, otherwise.

We first verify that M R M7 satisfy the offline oracle requirement. For any ¢ € {1,...,T}, we
have

S By [Daa6 (5,77 (), 6™ (5,77 ()]

1 t—1
— N Z ]l{WT(SLt/NJ) = al}
T=1

= - (£~ Lt/|NBon) | - LNBor)) < Por.
However, the online error is
T
> Eia |:Dsq (gM(Syﬂt(S))agW (Saﬂt(s)))} = Z% = [NBos| = %\/ T Bofr-
t=1 t=1
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are validated by detailed proofs.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes] .
Justification: See[Section 1.2
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .
Justification: The paper provides detailed assumptions and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theoretical work. There is no societal impact on the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: This paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: This paper does not release new assets.
Guidelines:
» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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