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Abstract
Multimodal foundation models that can holistically process text alongside images,
video, audio, and other sensory modalities are increasingly used in a variety of real-
world applications. However, it is challenging to characterize and study progress
in multimodal foundation models, given the range of possible modeling decisions,
tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal
Models (HEMM) to systematically evaluate the capabilities of multimodal foun-
dation models across a set of 3 dimensions: basic skills, information flow, and
real-world use cases. Basic multimodal skills are internal abilities required to solve
problems, such as learning interactions across modalities, fine-grained alignment,
multi-step reasoning, and the ability to handle external knowledge. Information
flow studies how multimodal content changes during a task through querying, trans-
lation, editing, and fusion. Use cases span domain-specific challenges introduced
in real-world multimedia, affective computing, natural sciences, healthcare, and
human-computer interaction applications. Through comprehensive experiments
across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic
skills, information flows, and use cases) that pose challenges to today’s models,
and (2) distill performance trends regarding how different modeling dimensions
(e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction
tuning objectives) influence performance. Our conclusions regarding challenging
multimodal interactions, use cases, and tasks requiring reasoning and external
knowledge, the benefits of data and model scale, and the impacts of instruction
tuning yield actionable insights for future work in multimodal foundation models.

1 Introduction
Building upon rapid progress in large-scale language and vision pretraining [24, 69, 106], the new
generation of multimodal foundation models is increasing adept at learning interactions between
modalities [83], enables both static prediction and dynamic interaction [55], and even shows emergent
properties never seen before in pretraining corpora [60]. Previous standards for benchmarking
multimodal models based on collections of modality and task-specific datasets [8, 57, 29, 66] are
increasingly insufficient in light of these general capabilities. In order to study fundamental questions
regarding why multimodal foundation models exhibit certain behaviors, when they perform well
in the real world, and which modeling paradigms are most effective, there is a need for a holistic
evaluation scheme beyond individual datasets or contexts.

To address this need, we contribute Holistic Evaluation of Multimodal Models (HEMM), visual-
ized in Figure 1. HEMM, as an evaluation framework, goes beyond conventional lists of datasets to
emphasize holistic benchmarking at three levels. The first level benchmarks basic multimodal skills:
fundamental internal abilities required to address multimodal problems, such as interactions between
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Figure 1: HEMM is an evaluation framework that characterizes multimodal models along several dimensions
(size, architecture, pretraining objective, fine-tuning objective, training data) and emphasizes holistic benchmark-
ing of these models at three disentangled levels: basic skills, information flow, and use cases.

redundant, unique, and synergistic features [26, 68], alignment of fine-grained and coarse-grained
information [104], reasoning across compositional features [115], and integration of external knowl-
edge [90]. The second level benchmarks information flow: how multimodal information transforms
during tasks such as querying [98], translation [109], editing [108], and fusion [60]. The third level
benchmarks multimodal use cases: how models perform in real-world challenges across domains,
including multimedia, affective computing, natural sciences, healthcare, and human-computer in-
teraction (HCI). Together, these three levels taxonomize a wide spectrum of 30 image-text datasets,
enabling HEMM to serve as a holistic framework to evaluate multimodal models.

To aid in HEMM evaluation, we also present a new categorization of models spanning key modeling
decisions, such as model size and modality processing (e.g., interleaved inputs), and training deci-
sions, such as pretraining and fine-tuning objectives. We (1) identify key dataset dimensions (e.g.,
basic skills, information flows, and use cases) that pose challenges to today’s models, and (2) distill
performance trends regarding how different modeling and training decisions (e.g., scale, pre-training
data, multimodal alignment, pre-training, and instruction tuning objectives) influence downstream
task performance. Our analysis yields tangible directions for future work, including challenging
multimodal skills, tasks, and use cases, impacts of diversity and scale, and guidelines on modeling ar-
chitectures and training objectives. HEMM is publicly available at anon, and encourages community
involvement in its expansion of datasets, annotations, models, and evaluation metrics.

2 Key Benchmarking Principles and Datasets in HEMM
HEMM includes 30 datasets summarized in Table 1. These datasets require different multimodal
skills to solve, display different types of multimodal information flow, and belong to different
real-world use cases with domain-specific challenges.

2.1 Basic multimodal skills
Multimodal skills are internal abilities required to solve multimodal tasks, such as learning interactions
across modalities, fine-grained alignment, multi-step reasoning, and using external knowledge.

Multimodal interactions study how modality information is integrated for a multimodal task [69, 77,
52, 9], which can be redundant: shared between modalities, such as smiling while telling a humorous
joke [43, 89], unique: present in only one of the modalities [35, 54], and synergistic: emergence
of new information from both modalities, such as conveying sarcasm through conflicting verbal
and nonverbal cues [15, 68]. Datasets with high referential information between modalities test for
redundancy, such as in VQA, and translation on NOCAPS. Tasks with uniqueness or synergy include
understanding movie posters (MM-IMDB), memes (MEMECAP), figurative language (IRFL), facial
expressions (FER-2013), and cartoons (NEW YORKER CARTOON).
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Table 1: HEMM includes a comprehensive suite of 30 datasets to benchmark multimodal foundation models.
We categorize each dataset based on the basic multimodal skills needed to solve them – the type of multimodal
interaction, granularity of multimodal alignment, level of reasoning, and need for external knowledge, how
information flows between modalities, and the real-world use cases they impact.

Dataset # Samples Interactions Fine-grained Reasoning Knowledge Info. Flow Use case

VQA [4] 614K Redundancy Yes Less No Querying Multimedia
VISUAL GENOME [50] 1.7M Redundancy Yes Less No Querying Multimedia
VCR [123] 290K Redundancy Yes Less No Fusion Multimedia
OK-VQA [76] 14K Redundancy Yes Less Yes Querying Multimedia
GQA [42] 22M Redundancy Yes Less No Querying Multimedia
NOCAPS [2] 15K Redundancy No Less No Translation Multimedia
FLICKR30K [119] 30K Redundancy No Less No Translation Multimedia
WINOGROUND [98] 1.6K Redundancy Yes Less No Querying Multimedia
NLVR [93] 92K Redundancy Yes Less No Querying Multimedia
NLVR2 [94] 107K Redundancy No Less No Querying Multimedia
IRFL [117] 3.9K Synergy No More No Fusion Multimedia
MM-IMDB [5] 25K Synergy No Less No Fusion Multimedia
MAGIC BRUSH [124] 10K Synergy Yes Less No Editing Multimedia
LNCOCO [87] 8.5K Uniqueness Yes Less Yes Translation Multimedia
NY CARTOON [37] 364 Synergy No More Yes Fusion Affect
HATEFUL MEMES [46] 10K Synergy No More Yes Fusion Affect
MEMECAP [43] 560 Synergy No More Yes Fusion Affect
MEMOTION [89] 10K Synergy No More Yes Fusion Affect
FER-2013 [32] 30K Uniqueness No Less No Querying Affect
SCIENCEQA [75] 21K Synergy No Less Yes Fusion Science
RESISC45 [18] 31K Uniqueness No Less No Querying Science
UCMERCED LAND USE [114] 2K Uniqueness No Less No Querying Science
INATURALIST [102] 675K Uniqueness Yes Less Yes Querying Science
DECIMER [13] 5K Uniqueness No More Yes Translation Science
PATHVQA [35] 33K Redundancy Yes Less Yes Querying Healthcare
VQARAD [53] 3.5K Redundancy Yes More Yes Querying Healthcare
OPENPATH [41] 218K Redundancy Yes More Yes Querying Healthcare
SLAKE [72] 13K Redundancy Yes More Yes Querying Healthcare
ENRICO [58] 1.4K Uniqueness No Less No Querying HCI
SCREEN2WORDS [103] 112K Uniqueness No Less No Translation HCI

Granularity of multimodal alignment involves identifying alignment across elements in different
modalities. For example, answering a question might require a model to perform fine-grained align-
ment to reference one specific object out of many possible objects in an image. Tasks that explicitly
test for fine-grained alignment include localized reasoning on VISUAL GENOME, WINOGROUND,
while tasks that emphasize coarse-grained alignment (e.g., making a prediction relevant to a whole
image) include interpreting cartoon images [37], movie posters [5], and memes [46, 89, 43].

Reasoning and external knowledge involve the combination of local pieces of information to form
increasingly rich and complex multimodal representations. For example, being able to perform
multi-hop inference from Wikipedia text and images [76] or solving science questions given visual
diagrams and executing multiple logical steps [75]. Tasks like WINOGROUND explicitly test for
reasoning and tasks like OK-VQA are designed to assess external knowledge.

2.2 Multimodal information flow
Multimodal information flow studies how information transforms across tasks, including cross-modal
translation, editing, querying, and fusion.

Cross-modal translation exploits shared information by mapping data in one modality to another. Ex-
amples include translating from text to image for image generation (e.g., LNCOCO) and translating
from image to text for image captioning (e.g., NOCAPS, SCREEN2WORDS).

Cross-modal editing involves semantically editing data in one modality according to another modality
(e.g., given an image, following a natural language instruction to "change the background from day
to night"). The model takes in the original image (with potentially more reference images), along
with a task description specifying the edit, and outputs the edited image. We use the MAGIC BRUSH
dataset to test cross-modal editing.

Cross-modal querying involves a model’s ability to answer natural language questions that query
specific information about an input. The model takes in the original image, a text description, the

3

42901 https://doi.org/10.52202/079017-1358



Table 2: Models used in HEMM, ranked from small to large, and categorized by #Param (model size), Data
Size (pretraining data size), Data Diversity (pretraining data diversity), Training Type (end-to-end training or
frozen alignment), INST (instruction tuning), Modality Proc (interleaved or separate modality inputs).

Model #Param Data Size Data Diversity Training Type INST Modality Proc

KOSMOS-2 [85] 1.6B 90M Yes End-to-end Yes interleaved
OPENFLAMINGO [6] 3.2B 180M No Modular Fine-tune No interleaved
INSTRUCT-BLIP [22] 4.0B 244M Yes Modular Fine-tune Yes separate
LLAMA-ADAPTER [30] 7.0B 567K No Modular Fine-tune Yes separate
MPLUG-OWL [116] 7.2B - Yes Modular Fine-tune Yes separate
FUYU-8B [10] 9.3B - Yes End-to-end No interleaved
BLIP-2 [61] 12.1B 244M No Modular Fine-tune No separate
MINI-GPT-4 [128] 13.0B 5M No Modular Fine-tune Yes separate
EMU [95] 14.0B 82M Yes End-to-end No interleaved
GEMINI - - Yes - Yes interleaved
GPT-4V - - Yes - Yes -

query, and must output the desired answer (typically in natural language). Querying can be done for
visual scenes (GQA), environmental indicators (RESISC45), and medical data (VQARAD).

Multimodal fusion aims to learn interactions to combine information from different modalities, such
as classifying diseases given x-ray images and medical tests, or detecting humor from cartoon images
and captions. Multimodal fusion takes in the image, text, and a description of the task, and then
outputs a prediction, which can include affective states like humor in NEW YORKER CARTOON, hate
speech detection in HATEFUL MEMES, or in science problems (SCIENCEQA).

2.3 Real-world Use Cases
Each use case is drawn from a real-world application with their own specific challenges.

Multimedia includes efficient search, retrieval, indexing, and generation of digital content. Multime-
dia tasks in HEMM include question answering about images and videos (VQA, VCR), multimedia
captioning (FLICKR30K, NOCAPS), compositional visual reasoning (WINOGROUND, NLVR), under-
standing cartoons, movie posters (MM-IMDB), memes (MEMECAP and MEMOTION), and figurative
language (IRFL), and editing images (MAGIC BRUSH).

Affective computing aims to perceive human affective states (emotions, sentiment, personalities,
humor, sarcasm, social interactions) [86], and is important for building emotionally and socially-
intelligent AI [56, 78] and human-AI interaction [55]. HEMM includes NEW YORKER CARTOON
(cartoon images and captions), HATEFUL MEMES (hateful content in memes), FER-2013 for facial
expressions, MEMECAP for meme captioning, and MEMOTION for emotions in memes.

Natural sciences aims to deepen our knowledge of physical, chemical, biological, and environmental
sciences. These can involve satellite images, chemical bonds, land and agriculture use, wildlife,
and specific scientific terminologye [101]. Tasks in HEMM include SCIENCEQA testing different
science topics and RESISC45 for land scene classification.

Healthcare involves integrating multimodal signals such as lab tests, imaging reports, and doctor-
patient interactions to help doctors interpret high-dimensional data and assist them in diagnosis [48,
51]. We include processing text reports and medical images in the form of PATHVQA for pathology,
VQARAD for radiology images, and SLAKE for medical visual question answering.

HCI involves user design, usability, user experience, and other challenges related to humans inter-
acting with computers [81]. HCI tasks can involve visual information such as screen layouts, user
actions, and feedback mechanisms. HCI tasks in HEMM include ENRICO for classifying mobile UI
designs and SCREEN2WORDS for UI screen content summarization.

3 Key Modeling Principles and Models in HEMM
Table 2 summarizes the 11 models we evaluate in HEMM, which span different numbers of parame-
ters, model architectures, training datasets, pretraining objectives, and fine-tuning objectives.

3.1 Modeling decisions
Model parameters Parameters can vary greatly across different multimodal models, from 100M
params to approximately 1000B params. We consider models with total number of parameters less

4

42902https://doi.org/10.52202/079017-1358



Table 3: Performance on different dataset dimensions,
as measured via the mean BARTscore on each dataset
across all 11 tested multimodal models.

Dimension Category Perf (↑)

Real-world
use case

Multimedia 31.30
Affect 30.35
Health 20.24
Science 19.83
HCI 15.70

Multimodal
interaction

Redundancy 29.04
Uniqueness 19.60
Synergy 33.73

Reasoning More Reasoning 27.50
Less Reasoning 26.84

Granularity Fine-grained 26.52
Coarse-grained 27.52

Knowledge External 23.51
None 29.62

Information flow
Querying 25.88
Translation 18.97
Fusion 33.77

Table 4: Performance on different modeling decisions,
as measured via the mean BARTscore for each model
across all 30 tested multimodal datasets.

Dimension Category Perf (↑)

Modeling decisions

Modality
processing

Interleaved 22.94
Separate 28.58

Model size
Small 23.34
Medium 23.87
Large 42.33

Training decisions

Training type Modular 24.92
End-to-end 21.26

Size of
training data

Small 16.80
Medium 30.10
Large 31.77

Diversity of
training data

Non-diverse 21.71
Diverse 30.15

Instruction tuning No 22.49
Yes 29.71

than or equal to 4B (e.g., INSTRUCT-BLIP) as small, whereas those having more than 4B parameters
(e.g., FUYU-8B) are considered medium. GPT-4V and GEMINI are considered large.

Modality processing Some multimodal models (e.g., FUYU-8B) support interleaved inputs like
“<dog_img> This is a very cute dog.<cat_img> This is a very cute cat.”, unlike
models that only support separate image and text queries (e.g., BLIP-2, MINI-GPT-4).

3.2 Training Characteristics
Training type End-to-end training involves fine-tuning unimodal encoders, pretrained LLMs, and
a multimodal model jointly, as seen in EMU, FUYU-8B, etc. Another category operates by freezing
unimodal encoders and LLM, and then training only a mapping that aligns frozen image features with
frozen LLM features. These trainable mappings include Q-former [22] (used in INSTRUCT-BLIP),
linear layers [128, 92] (used in MINI-GPT-4), and attention blocks used in OPENFLAMINGO.

Size of pre-training data We consider the total size of pre-training data used for training, including
instruction and supervised data. EMU has small data scale, with less than 100M training data points.
FUYU-8B has medium data-scale, with more than 100M training data points. While GPT-4V and
GEMINI do not release data sizes, we estimate their size to be much larger than other models and
therefore are considered to have large data scale.

Diversity of pre-training data We consider the diversity of multimodal tasks used for training,
including visual QA, visual conversations, and interleaved images and text. INSTRUCT-BLIP and
EMU are pre-trained on diverse data, in contrast to LLAMA-ADAPTER, OPENFLAMINGO, etc.,
which only use image captioning data for training.

Instruction tuning By transforming supervised tasks into an ‘instruction’ format, instruction tuning
has been shown to benefit performance and improve the controllability of LLMs. MINI-GPT-4 and
INSTRUCT-BLIP include an instruction tuning stage, while models like BLIP-2 do not.

4 Experiments
In this section, we discuss extensive experiments conducted to holistically evaluate the performance
of multimodal foundation models based on HEMM.
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Figure 2: Responses of GPT-4V and GEMINI on samples from the science category. These failure cases show
that the models lack domain knowledge and are unable to correctly translate the images of molecules to the
SMILES notations (a). Example (b) shows that the models struggle on tasks requiring complex reasoning, failing
to comprehend the relation between the force and the size of the magnets. In (c), all models except GPT-4V are
unable to capture the fine-grained details and misclassify the image as an airport instead of a runway.

4.1 Experimental setup
Individual metrics For all text generation tasks, we use the established natural language generation
evaluation metric BARTScore [122], which was found to have the highest correlation with human
judgement [122]. We compute BARTScore(r, c), where r is the reference and c is the candidate. It
can be interpreted as the probability of generating the candidate sentence from the reference. For
example, a model might caption an image with the following generated candidate: A row of violins
hanging on a wall.. The reference (ground truth) of A painting of 5 cello’s with a green background
would be used to compute the BARTScore with respect to c.

Aggregating metrics To aggregate scores across multiple tasks or models, we normalize scores
using min-max scaling. Following Chang et al. [16], min represents the score of the worst multi-
modal model and max represents the identity score BARTScore(r, r), where r is the ground truth.
Subsequently, these normalized scores in the 0 to 1 range can be interpreted as a percentage of model
performance relative to the ground truth.

Computation Since GPT-4V and GEMINI have query limits, we evaluate their performance on 100
random samples for each dataset (2800 total data points). For a fair comparison with other models,
we present the results and findings below based on the performance of those 100 samples per dataset.
In Appendix C we present the results of the other models on the full evaluation sets. We evaluate all
the models on a single NVIDIA A100 80GB GPU with the inference time for a single image-text
pair ranging from 0.1 seconds to 63.7 seconds. We report the average inference times for the models
across all datasets and include additional details on the evaluation protocol in Appendix B.

4.2 Main results
We summarize our main results here and include full details in Appendix C. We first explain
performance trends across the datasets in HEMM, before explaining performance differences across
different multimodal foundation models and their design decisions.

4.2.1 Performance across dataset dimensions
Overall comparisons We summarize overall trends in Figure 3 and Table 3. On average, models
perform better on multimedia datasets, with IRFL (0.58), NLVR (0.50), and WINOGROUND (0.49)
showing the highest scores. The lowest scores are for Healthcare, HCI, and Science use cases, such
as on DECIMER (0.07), INATURALIST (0.08), ENRICO (0.12), PATHVQA (0.15), and MEMECAP
(0.32). For predicting molecular structures on DECIMER, models are not able to generate correct
chemical notations (in Simplified Molecular Input Line Entry System notation) and instead only
generate names of individual atoms or compounds (see Figure 2). Other challenging datasets include
INATURALIST due to fine-grained visual differences between 5000 species of plants and animals,
and healthcare datasets that require intricate analysis of pathology images to identify organs, tissues,
and anomalies (see Figure 8). Datasets related to memes were also challenging (0.32 and 0.38 on
MEMECAP [43] and MEMOTION [89]), requiring knowledge about current events, pop culture, and
metaphors beyond literal meanings.
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Figure 4: Tasks requiring commonsense and compositional reasoning are challenging. In (a), GPT-4V and
GEMINI are unable to employ social commonsense to analyze the relationships between the two people. Example
(b) demonstrates the models’ difficulty in composing information from both modalities, leading to their failure to
comprehend the scenario where a tree smashed into the car (not a car smashed into the tree). In (c), all models
except GPT-4V fail to grasp the visual metaphors and the juxtaposition of the two scenarios.

Figure 3: Average scores are higher for multimedia
datasets as compared to other use cases, and lowest
for healthcare, HCI, and science. The models strug-
gle on INATURALIST, DECIMER, ENRICO, PATHVQA,
and MEMECAP which require external knowledge, fine-
grained alignment, and complex reasoning.

Multimodal skills 1: Interactions The aver-
age scores for redundant, unique, and synergis-
tic interactions are 0.29, 0.20, and 0.33. One
reason for lower uniqueness scores is the pres-
ence of highly challenging visual datasets like
DECIMER and ENRICO. On average, the eas-
iest tasks in redundancy are NLVR (0.50) and
WINOGROUND (0.49). The hardest datasets in
uniqueness are INATURALIST (0.08) and DEC-
IMER (0.07), and in synergy are MEMECAP
(0.14) and MEMOTION (0.21).

Multimodal skills 2: Granularity We do not
find that fine-grained datasets are significantly
harder than those with coarse-grained alignment.
Tasks requiring fine-grained alignment between
image and text like GQA and WINOGROUND
achieve a score of 0.26, while those only need-
ing coarse-grained alignment (e.g., ENRICO,
SCIENCEQA) are still quite challenging (score:
0.27).

Multimodal skills 3: Reasoning We do not
find a significant difference between the perfor-
mance of the models on tasks requiring more (average score = 0.275) or less reasoning (average score
= 0.268). The most challenging datasets requiring less reasoning include INATURALIST (0.08) and
ENRICO (0.12) due to challenges in fine-grained visual perception and external knowledge, while
there are also several challenging datasets requiring more complex reasoning like VCR (0.34) and
MEMECAP (0.14), where the models encounter difficulties with samples requiring commonsense and
compositional reasoning (See Figure 4 for examples).

Multimodal skills 4: External knowledge The average performance on tasks requiring external
knowledge is 0.23, compared to 0.30 for those not requiring external knowledge. For example,
INSTRUCT-BLIP performs well on WINOGROUND and VCR that do not require external knowledge
but struggles more on knowledge-intensive tasks e.g., INATURALIST, which requires knowledge
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about characteristics of a vast number of species, and SLAKE, where medical knowledge is needed to
identify the abnormalities in organs.

Multimodal Skills 5: Information flow Translation has the lowest average score amongst all types
of information flow (0.19), whereas the average scores on querying and fusion are 0.26 and 0.33
respectively. The low performance on translation is due to the presence of challenging datasets like
DECIMER and SCREEN2WORDS requiring mapping images of chemicals and screenshots into text.
Although the average score for fusion is high, the performance on some datasets is still quite low, such
as INSTRUCT-BLIP achieving a score of only 0.04 on MEMECAP and 0.15 on MM-IMDB.

4.2.2 Performance across modeling dimensions
We now compare different modeling decisions and training objectives in Table 4.

Overall comparisons across models GEMINI [97] (0.44), INSTRUCT-BLIP [22] (0.41), BLIP-
2 [62] (0.41), and GPT-4V [1] (0.40) achieve the best average performance across all tasks. The
low scores of GPT-4V as compared to GEMINI and INSTRUCT-BLIP are due to its generation
of keywords like “Indeterminate”, “Uncertain”, and “Unknown” on datasets like VQA and GQA,
perhaps due to its alignment process. Further, on some datasets related to Memes (e.g., HATEFUL
MEMES) and Health (e.g., SLAKE), GPT-4V refrains from answering the questions and instead
generates a response saying Cannot assist with the request. OPENFLAMINGO [6] (0.06), EMU [95]
(0.11) have the lowest average scores. From their generations, we find that these models struggle to
follow the instructions for challenging datasets like DECIMER and ENRICO, and generate hallucinated
responses. Moreover, with relatively easier datasets such as FLICKR30K, the captions produced by
EMU and OPENFLAMINGO tend to fixate on specific objects rather than providing a comprehensive
description of the scene, often leading to instances of hallucination related to these objects. As a
result, these models rank lowest on many datasets, receiving a normalized score of 0.

Figure 5: On average, large models are better than small and
medium models (p-values < 0.001). INSTRUCT-BLIP and BLIP-2
are outliers - despite having fewer params, they achieve relatively
high performance, even close to GPT-4V and GEMINI.

Model scale We find that the perfor-
mance of larger models (both total and
trainable parameters) is significantly
better than the models with a medium
or small number of parameters (Fig-
ure 5). When grouped based on the
total number of parameters, the aver-
age scores achieved by large, medium,
and small models are 0.42, 0.24, and
0.23 respectively. The difference be-
tween the performance of large and
medium models is significant (p-value
for paired t-Test < 0.001). In partic-
ular, large models showed the most
improvement on MM-IMDB, MEME-
CAP, and HATEFUL MEMES datasets,
which fall into the category of tasks
requiring synergistic interactions. On
average, the large models perform the
best on synergistic tasks with a score of 0.53 compared to 0.30 for medium and 0.23 for small
models. For instance, on the MM-IMDB dataset, we observed significant gains in performance when
increasing model size: from 0.15 for INSTRUCT-BLIP (small) to 0.36 for BLIP-2 (medium) and
0.48 for GEMINI (large).

Pretraining data scale Average scores of the models in large and medium data size categories are
0.31 and 0.30 respectively, whereas models with small pretraining data achieve a significantly lower
score of 0.17. We also find that for all datasets, the average score of models with medium pretraining
data is higher than the models with small pretraining data. For instance, on the WINOGROUND
dataset which requires fine-grained alignment between the modalities, the maximum scores achieved
by the models with medium and small pretraining data are 0.45 and 0.80. We also find a significant
gap between the maximum scores achieved by the models in the medium (maximum score - 0.18)
and small categories (maximum score - 0.70), on the NLVR2 dataset for visual reasoning.

Diversity of pre-training data On average, models trained on diverse datasets perform better
(score: 0.30) than models trained only on image captioning datasets (score: 0.21). Diverse training
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data allows the models to share learned knowledge and generalize across different tasks. For example,
models pretrained with diverse datasets perform significantly better on the knowledge-intensive
INATURALIST task, such as BLIP-2 (non-diverse) scoring 0.08 and GEMINI scoring 0.24. For the
MEMECAP dataset which requires external knowledge and complex reasoning, we observe that
BLIP-2 (non-diverse) scores 0.06 and MPLUG-OWL (diverse) scores 0.21.

Instruction tuning vs supervised fine-tuning On average, instruction-tuned models (average
score of 0.30) performed better than the models trained using only supervised fine-tuning (average
score of 0.22). The top 3 tasks with the largest performance gap between instruction-tuned and
non-instruction-tuned models are DECIMER, MEMECAP, and SCREEN2WORDS, with improvements
of 0.15, 0.09, and 0.09 respectively. We also observe that translation tasks (image-to-text) (e.g.,
FLICKR30K, NOCAPS) benefit from instruction tuning, where the models generate more accurate
and detailed captions after human instruction.

4.3 Human evaluation
To assess how well HEMM aligns with human preferences, we performed human preference-based
evaluation, following Chiang et al. [19], where annotators are shown the outputs of two different
models for the same inputs and choose the better output or a tie option. Across 1000 pairwise
comparisons by 5 annotators, the pairwise rankings are used to calculate each model’s average win
rate and Elo rating (see Appendix B.5 for calculation details).

Table 5: Average win rate and Elo Rating of 11 mod-
els calculated based on the human evaluation of 1000
pair-wise comparisons of model responses. Elo rating is
reported as the median over 1000 runs with shuffled bat-
tle sequences and an initial rating of 1000 for each model.
Top 4 and bottom 2 models identified by Elo Rating are
consistent with those found by Average BARTScore.

Model Avg.
Win Rate

Elo
Rating

Avg.
BARTScore

GEMINI 0.73 1074 0.44
GPT-4V 0.68 1057 0.40
BLIP-2 0.52 1033 0.41
INSTRUCT-BLIP 0.60 1032 0.42
MPLUG-OWL 0.45 1010 0.21
LLAMA-ADAPTER 0.45 1008 0.19
FUYU-8B 0.42 992 0.31
MINI-GPT-4 0.38 990 0.20
KOSMOS-2 0.39 968 0.22
EMU 0.20 924 0.11
OPENFLAMINGO 0.17 911 0.06

The models ranked by Elo ratings are GEM-
INI (1074), GPT-4V (1057), BLIP-2 (1033),
and INSTRUCT-BLIP (1032) (see Table 5). The
top 4 models based on the Elo Rating are the
same as the top 4 models ranked by BARTScore.
Elo Rating of GPT-4V is better than BLIP-
2 and INSTRUCT-BLIP. However, the average
BARTScore for GPT-4V (0.40) is lower than
INSTRUCT-BLIP (0.42) and BLIP-2 (0.41). We
also find Elo Rating of bottom two models to
be consistent with BARTScore rankings - EMU
(0.11) and OPENFLAMINGO (0.06).

5 Related Work
Multimodal machine learning brings unique
challenges for ML research due to the hetero-
geneity between modalities and the intercon-
nections found between them [69]. It has in-
spired many theoretical studies in data hetero-
geneity and interactions [25], as well as diverse
applications in multimedia [44, 14, 88], affec-
tive computing [86], robotics [47], finance [39],
HCI [25, 82], education [12] and healthcare [80, 110].

Evaluation frameworks for multimodal models have significantly shaped the multimodal research
landscape, through holistic [57, 66] and domain-specific benchmarks [31, 28]. Recent benchmarks
have focused on testing the capabilities of multimodal foundation models, such as MME [29],
MMBench [73], LVLM-ehub [111], SEED-Bench [59], Touchstone [7], Mm-vet [121], ReForm-
Eval [65], VisIT-Bench [11], FLAVA [45]. Other benchmarks focus on evaluating hallucination [21]
and applications in medicine [113] and autonomous driving [107]. These benchmarks contain many
tasks, but without the systematic taxonomy and comprehensiveness that HEMM provides.

Multimodal foundation models are promising foundations for the future of AI, with impressive
reasoning [75], interactive dialogue [49], and few-shot generalization abilities [100]. These models
can be pre-trained (typically with image-text self-supervised learning) and fine-tuned for downstream
tasks [63, 74, 91, 67], or based on adapting language models with vision to enable text generation
conditioned on images [61, 105]. Cross-modal transformer architectures have emerged as a popular
backbone due to their suitability for both language and image data [17, 99]. Additionally, composable
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models [96] and mixtures of experts [120] can be used to further generate combinations of output
modalities.

Adapting language models for multimodality is another promising approach where frozen models
are aligned on both vision and language to generate text from multimodal inputs [128, 62, 118, 109].
These approaches typically use parameter-efficient modules like LLaMA-Adapter V2 [30] and
MAGMA [27] for efficient finetuning. Vision-language instruction tuning has also emerged as a useful
technique, as it allows the models to better follow human instructions [112, 128]. Our goal is to make
HEMM the most comprehensive benchmark to study the current and future generation of multimodal
foundation models, and for the community to continuously contribute to its expansion.

6 Conclusion
Holistic Evaluation of Multimodal Models (HEMM) is a framework for benchmarking multimodal
foundation models. Through a new taxonomy of multimodal skills, information flow, and real-world
use cases, HEMM enables comprehensive analysis of multimodal models. HEMM is publicly
available, will be regularly updated, and encourages community involvement in its expansion.

Limitations and social impact The evaluation of multimodal models is done only on a subset of all
possible skills, information, and use cases in the world. Future work can improve the categorization
of datasets into skills, information, and use cases, and discover new dimensions that pose challenges
to multimodal models. Such evaluation is critical to ensure that models are sufficiently robust when
deployed in real-world scenarios, to prevent unexpected and unintended consequences. Future work
should also add new metrics to HEMM measuring real-world societal concerns such as fairness,
robustness, social biases, privacy, and efficiency of multimodal models.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We have included limitations in
Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We have
included potential negative societal impacts in Section 6.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not
present any theoretical results in our work.

(b) Did you include complete proofs of all theoretical results? [N/A] We do not present
any theoretical results in our work, hence there are no proofs.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We have
included code in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We provide the experimental details in Section 4.1 and in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report results with mean and standard deviation from
running multiple times in the appendix. Using multiple runs we also compute statistical
significance for all dataset and model performance comparisons, all the results in the
main paper are only highlighted if they are statistically significant according to p-value.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We provide details about compute
and the type of resources used in Section 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all existing
models, datasets, and work we used in the references.

(b) Did you mention the license of the assets? [Yes] The license of all the assets used in
our work has been mentioned in Appendix A.1 and A.4.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We have included full links to the dataset, models, and code in the supplementary
material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We provide access information of the datasets in Appendix A.1.
To the best of our knowledge, all of these datasets are collected with consent from
participating users, especially in the healthcare domain where user data is sensitive.
Best practices for de-identification of user data were followed by these datasets. The
dataset for facial expression recognition (FER-2013) contains human faces collected
through Google image search queries, so user consent was not directly obtained, but
the authors of FER-2013 have ensured that their dataset follows fair use guidelines and
there is no personally identifiable information released.

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [Yes] Yes, we have included all dataset details
in Appendix A.1 including if the individual datasets in HEMM contain personally
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identifiable information or offensive content. To the best of our knowledge, all poten-
tially identifiable information in all datasets (especially in those from medical settings
or human social data) has been removed and completely de-identified. The dataset
for facial expression recognition (FER-2013) contains human faces collected through
Google image search queries, but does not contain any identifying information about
user identities and backgrounds. Finally, the Hateful Memes dataset contains offensive
content, since that is the goal of the research.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] We provide the instructions regarding annotations in Section 4.3 and
in Appendix A.2.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] Based on direct communication with our
institution’s IRB office, this line of research is exempt from IRB, and the information
obtained during our study is recorded in such a manner that the identity of the human
subjects cannot readily be ascertained, directly or through identifiers linked to the
subjects. There is no potential risk to participants and we do not collect any identifiable
information from annotators.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] We include participant details in Ap-
pendix A.2.
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Appendix

A HEMM Details
A.1 Individual dataset details
In this section we provide the details of the tasks and datasets chosen for the HEMM benchmark: we
describe the split used to evaluate the models, any prepossessing applied to the samples, and their
access restrictions and licenses.

1. VQA dataset consists of samples of an image and a corresponding free-form, open-ended
question. To answer the questions, the models need to perform fine-grained recognition of
objects and activities. Some of the samples require commonsense reasoning to correctly
answer the questions. Most of the samples in the dataset have "yes" or "no" answers.

Split: We evaluate on the real images validation set which comprises of a total of 244,302
questions.

Prompt used: You are given an image and a question. Answer the question in a single word.
Question: <question>

Access restrictions: The dataset is available to download from
https://visualqa.org/vqa_v1_download.html

Licenses: The images in the dataset come with a CC BY 4.0 DEED license
https://creativecommons.org/licenses/by/4.0/deed.en

Ethical considerations: No personally identifiable information or offensive content present
in the dataset.

2. NOCAPS dataset is a large scale image captioning dataset. Training data for this dataset
consists of Image-Caption pairs from COCO dataset [71] as well as images and labels from
Open Images. Many objects seen in the test set have very few associated captions from the
training set making it a robust benchmark for image captioning.

Split: Evaluation is performed on the validation set which consists of 4500 images.

Prompt used: You are given an image. This image might contain a lot of objects. You have
to generate a caption for the image but the caption should just be a single sentence. Please
do not generate more than one sentences. Caption:

Access restrictions: The dataset is available to download from https://nocaps.org/download

Licenses: Images belonging to the dataset are available under CC BY 2.0
https://creativecommons.org/licenses/by/2.0/deed.en license which permits to redistribute
the data.

Ethical considerations: No personally identifiable information or offensive content present
in the dataset.

3. DECIMER dataset is a hand-drawn molecule image dataset consisting of chemical structure
as the images and their SMILES representation as the strings. This SMILES representa-
tion stands for ’Simplified Molecular Input Line Entry System’, which depicts the three-
dimensional structure of the chemical into a string of symbols. In order to solve this task, the
model should have an understanding of structure of the chemical and how these structures
are depicted in the given format.

Split: The dataset consists of 5088 images over which evaluation has been performed.

Prompt used: Simplified molecular-input line-entry system (SMILES) notation of the given
molecule:

Access restrictions: The dataset is available to download from
https://zenodo.org/records/7617107

Licenses: The dataset is available under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/deed.en, which permits use and sharing
of data.
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Ethical considerations: No personally identifiable information or offensive content present
in the dataset.

4. MEMOTION dataset was introduced in the ’Memotion Analysis’ challenge. This task
consisted of three different tasks: sentiment classification, humor classification, and the
scale of semantic classes. In our evaluation, we focus on the scale of humor class which
consists of ’funny’, ’very funny’, ’not funny’, and ’hilarious’. Images in this dataset consists
of memes from the internet, which have been annotated by humans for their class labels.

Splits: A total of 6992 images were used.

Prompt used: Question: Given the Meme and the following caption, Caption:<caption>.
How funny is the meme? Choose from the following comma separated options: funny, very
funny, not funny, hilarious.

Access restrictions: The dataset is available to download from
https://www.kaggle.com/datasets/williamscott701/memotion-dataset-7k

Licenses: The dataset is available under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/deed.en which allows sharing of data.

Ethical considerations: No personally identifiable information is present in the data.
Offensive content is present in the dataset in some meme images.

5. SCIENCEQA consists of multiple choice questions from different science topics consisting
of natural science, social science, and language science. The model has to choose an answer
from the given set of options for a question, by making sense of lecture and explanation
which are optional for a question. Some questions do not consist of an image, however, we
evaluate only on questions that have an image in the data point.

Split: A total of 4.24k questions from the test set.

Prompt used: You are given a question and few choices. There is context provided with
the image which will help you to understand the image. To answer the question, you have
been given lecture notes. You can use these lecture notes, image, and context to answer
the question. There are some choices given to you which are comma-separated. You have
to select which choice best answers the question. Generate choice as it is from the given
choices. lecture: <lecture> question: <question> context: <context> choices: <choices>
Answer:

Access restrictions: The dataset is available to download from
https://huggingface.co/datasets/derek-thomas/ScienceQA

Licenses: Dataset is distributed under the CC BY-NC-SA (Attribution-NonCommercial-
ShareAlike) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en which allows shar-
ing data.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

6. SLAKE is a medical visual question-answering dataset that consists of image and question-
answer pairs. Annotations have been done by experienced physicians and a medical knowl-
edge base for medical visual question answering. The dataset consists of Yes/No type of
questions as well as questions which could be answered with a single word.

Split: We use the test set of this dataset which consists of 2070 questions.

Prompt used: Answer the question in a single word, Question: <question>

Access restrictions: The dataset is available to download from
https://huggingface.co/datasets/BoKelvin/SLAKE

Licenses: Images under this dataset are available in CC-BY-SA 4.0 license
https://creativecommons.org/licenses/by-sa/4.0/deed.en which allows sharing data.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.
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7. VISUAL GENOME dataset is a visual question-answering dataset that grounds visual con-
cepts to language. Visual Genome provides a formal representation of an image, as relation-
ships between objects in the image are depicted with the help of a scene graph. WordNet [79]
is used to canonicalize objects, attributes, and relationships in each image.

Split: We use the splits available from https://homes.cs.washington.edu/ ran-
jay/visualgenome/data/dataset/question_answers.json.zip

Prompt used: You are given an image and a question. Answer the question in a single word
only. Question: <question>

Access restrictions: The dataset is available to download from
https://homes.cs.washington.edu/ ranjay/visualgenome/api.html

Licenses: The data is available under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/deed.en

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

8. PATHVQA is a visual QA dataset based on pathology images, PathVQA consists of images
taken from pathology textbooks and online digital libraries, with question-answer pairs
generated from captions using a question generation pipeline. Each pathology image is
coupled with a question-answer pair.

Split: The test set consists of 6,012 questions.

Prompt used: You are given a radiology image and a question. Answer the question in a
single word. Question: <question>

Access restrictions: The data is available to download from https://github.com/UCSD-
AI4H/PathVQA

Licenses: No licenses are available for this dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

9. UCMERCED LAND USE is another dataset for land use classification which has 21 classes.
Images from the USGS National Map Urban Area Imagery were extracted manually, which
involves various urban areas around the country. We include all the possible classes in the
prompt so the model can choose from them.

Split: We evaluate on the validation split present in
https://www.kaggle.com/datasets/apollo2506/landuse-scene-classification.

Prompt used: Image is given to you. Classify if the image belongs to one of the following
classes: mediumresidential, buildings, tenniscourt, denseresidential, baseballdiamond, inter-
section, harbor, parkinglot, river, overpass, mobilehomepark, runway, forest, beach, freeway,
airplane, storagetanks, chaparral, golfcourse, sparseresidential, agricultural. Choose a class
from the above classes.

Access restrictions: The dataset is available to download
from http://weegee.vision.ucmerced.edu/datasets/landuse.html or
https://www.kaggle.com/datasets/apollo2506/landuse-scene-classification

Licenses: No licenses are available for this dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

10. ENRICO is a topic modeling dataset for mobile UI screens. It is an enhanced version of
RICO dataset [23] where samples were ranked as a good or bad design example by two
human annotators. UI classes in the dataset consist of interfaces such as calculator, camera,
chat, news, profile, etc from which the model has to choose for a particular image.

Split: We evaluate on the dataset provided in
http://userinterfaces.aalto.fi/enrico/resources/screenshots.zip
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Prompt used: Given a screenshot of the user interface of a mobile application. Choose the
most appropriate design topic from the following comma-separated choices: bare, dialer,
camera, chat, editor, form, gallery, list, login, maps, mediaplayer, menu, modal, news, other,
profile, search, settings, terms, tutorial

Access restrictions: The dataset is available to download from
https://github.com/luileito/enrico

Licenses: The dataset comes under MIT license
https://github.com/luileito/enrico/blob/master/LICENSE

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

11. MM-IMDB is a genre prediction dataset that consists of an image of the poster of the movie
along with the plot. Each movie can belong to multiple genre. This dataset was built with
MovieLens 20M dataset [34] which consists of movie ratings. Using this, information such
as genre, plot, year, and additional metadata were collected. For our evaluation, only poster
image and plot is used for genre prediction.

Split: We evaluate on the test split.

Prompt used: Given the movie poster and the corresponding plot of the movie, choose
the appropriate genres from the following comma-separated genres: drama, comedy, ro-
mance, thriller, crime, action, adventure, horror, documentry, mystery, sci-fi, fantasy, family,
biography, war, history, music, animation, musical, western, sport, short, film-noir. Plot:
<plot> Note that a movie can belong to more than one genres, provide all the suitable genres
seperated by commas.

Access restrictions: It is a public dataset free to download by the research community from
http://lisi1.unal.edu.co/mmimdb/ and https://github.com/johnarevalo/gmu-mmimdb/

Licenses: The dataset comes under MIT license https://github.com/johnarevalo/gmu-
mmimdb/blob/master/LICENSE

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

12. VQARAD is a visual question-answering dataset over radiology images. Images are taken
from MedPix* an open radiology database. The dataset is constructed manually by clinical
annotators consisting of medical students and senior radiologists. Ground truth answers for
the questions are related to counting, color, abnormality, and presence of condition among
others.

Split: We evaluate on the test set present in
https://huggingface.co/datasets/flaviagiammarino/vqa-rad/viewer/default/test which
consists of 451 questions.

Prompt used: You are given a radiology image and a question. Answer the question in a
single word. Question:<question>

Access restrictions: The dataset is available at
https://huggingface.co/datasets/flaviagiammarino/vqa-rad/viewer

Licenses: The dataset is available under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/deed.en

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

13. FLICKR30K is an image captioning dataset collected from Flickr* which extends [38]
dataset with similar dataset collection and annotation guidelines.

Split: We evaluate the dataset on the test split.

*https://medpix.nlm.nih.gov/home
*https://www.flickr.com/
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Prompt used: A Picture of

Access restrictions: The dataset is available to download from
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset

Licenses: The dataset is available under CC0: Public Domain License
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

14. FER-2013 is a classic dataset for facial expression recognition, where each image has to
be classified into 7 labels. Images for this dataset were obtained from Google images, by
searching them using Google Search API. OpenCV was used to get bounding boxes for
faces in each of the images.

Split: We evaluate on the test dataset present in
https://www.kaggle.com/datasets/msambare/fer2013

Prompt used: Given the photo of a face, determine the face expression, choose from the
following choices: angry, disgust, fear, happy, neutral, sad, surprise. Answer in a single
word.

Access restrictions: The dataset is available to download from
https://www.kaggle.com/datasets/msambare/fer2013

Licenses: No license is provided with the dataset

Ethical considerations: This dataset contains human faces collected through Google image
search queries but does not contain any identifying information about user identities and
backgrounds. No offensive content is present in the dataset.

15. NY CARTOON is collected from the weekly New Yorker magazine cartoon captioning
contest *, where readers are tasked to give a humorous caption for a cartoon image and the
funniest captions are selected based on public votes. The dataset is formulated based on
taking in the image and caption to predict how funny the pair is based on the normalized
number of votes. Given an image and its caption, we ask the model if the caption is humorous
or not. Each image has multiple caption choices with votes for the caption being not funny,
somewhat funny, funny. We select the funniest caption to have a ground truth answer as
’yes’ when prompted for evaluation. The next four funniest captions are selected to have
ground truth answers as ’no’ when prompted for evaluation.

Split: We use the data available on https://github.com/nextml/caption-contest-data

Prompt used: You are given a cartoon image and a caption. start the answer with yes if the
caption is funny or No if the caption is not funny. Caption: <caption>

Access restrictions: The dataset is available to download from
https://github.com/nextml/caption-contest-data

Licenses: No license is provided with the dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

16. OK-VQA is a visual question-answering task that requires outside knowledge and reasoning
to answer questions. Images for this dataset are taken from the COCO dataset[71] and
MTurk * is used for labeling questions. A specific instruction is given to the workers to
label questions that require knowledge outside the image. In this dataset, questions are of
open-ended type.

Split: We use the test set available here https://okvqa.allenai.org/download.html

Prompt used: You are given an image and a question. Answer the question in a single word.
Question: <question>

*https://www.newyorker.com/cartoons/contest
*https://www.mturk.com/
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Access restrictions: Dataset is available to download from
https://okvqa.allenai.org/download.html

Licenses: Dataset consists of images which have CC BY 4.0 DEED
https://creativecommons.org/licenses/by/4.0/deed.en

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

17. MAGIC BRUSH is an instruction-based image editing dataset consisting of manually anno-
tated images consisting of single-turn and multi-turn instruction-guided editing. Images are
sampled from MS COCO [71] dataset and are annotated using DALL-E 2 * with the help
of crowdworkers from Amazon Mechanical Turk (AMT)*. For our evaluation, we follow a
single-turn instruction editing.

Split: We evaluate on the test set available from https://osu-nlp-group.github.io/MagicBrush/

Prompt used: Edit the given image based on the provided instruction. Instruction: <in-
struction>

Access restrictions: The dataset is available to download from https://osu-nlp-
group.github.io/MagicBrush/

Licenses: The dataset comes under CC BY 4.0 license
https://creativecommons.org/licenses/by/4.0/deed.en

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

18. MEMECAP is a meme captioning dataset, whose images have been taken from the subreddit
r/memes *. The captions for these images are generated in a two-round process by human
annotators using Amazon Mechanical Turk. For our evaluation process, we provide the
model with the image description and title of the meme and ask what the meme is trying to
convey.

Split: We evaluate on the test set from https://github.com/eujhwang/meme-cap/tree/main

Prompt used: This is a meme with the title <title>. The image description is <im-
age_description>. What is the meme poster trying to convey? Answer:

Access restrictions: The dataset can be downloaded from
https://github.com/eujhwang/meme-cap/tree/main

Licenses: No license is available for the dataset.

Ethical considerations: No personally identifiable information is present. However, offen-
sive content may be present in the images due to the dataset containing meme data.

19. HATEFUL MEMES was a challenge hosted by Meta to classify if a meme image along
with its text caption describes hateful intentions. Images were obtained from Getty images*

annotated by a third-party annotation platform. Here, an image and text are provided to the
model to ask if the image promotes hateful sentiments.

Splits: We use the ’dev’ split from https://www.kaggle.com/datasets/parthplc/facebook-
hateful-meme-dataset/data

Prompt used: You are given an image. In the image, the text phrase that you will be given
and the image are innocuous when considered by themselves. The semantic content of the
meme becomes mean only when the text phrase and image are considered together. Text
phrase: <text_phrase> You have to judge if the combination of image and text is hateful or
not. Always begin your answer with either ’yes’ or ’no’ with ’yes’ indicating that the meme
is hateful and ’no’ if it is not hateful. Answer:

*https://openai.com/dall-e-2
*https://www.mturk.com/
*https://www.reddit.com/r/memes/
*https://www.gettyimages.in/
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Access restrictions: The dataset is downloaded from
https://www.kaggle.com/datasets/parthplc/facebook-hateful-meme-dataset/data

Licenses: Authors of the dataset have Getty image license https://www.gettyimages.in/eula.

Ethical considerations: No personally identifiable information is present. However, offen-
sive content may be present in the images since it is the goal of the dataset to train a detector
for offensiveness given multimodal meme inputs.

20. INATURALIST is an image classification dataset for 5000 wildlife species of plants and
animals. Images and labels are sourced from iNaturalist website *. We evaluate the models
by asking them to identify the species present in the given image. We do not provide it with
possible classes as the dataset spans over a set of 5000 species.

Split: We evaluate the model on the validation split provided in the 2021 edition of the
dataset.

Prompt used: The scientific species name of the species present in the image is:

Access restrictions: We use the dataset available at https://ml-inat-competition-
datasets.s3.amazonaws.com/2021/val.tar.gz

Licenses: Work is available under MIT license
https://github.com/visipedia/inat_comp/blob/master/LICENSE

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

21. NLVR consists of image-text pairs for visual reasoning. Images are created by generating
objects and their properties randomly. These images are then given to a crowd worker to
describe the image in a sentence.

Split: Data is evaluated on the dev split from https://github.com/lil-lab/nlvr

Prompt used: Given this image along with a question about the image, please answer the
question with only the word ’true’ or ’false’. Question: <question>

Access restrictions: The dataset is downloaded from https://github.com/lil-lab/nlvr

Licenses: No license is provided.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

22. NLVR2 extends NLVR to real-world photographs, and captions for these photographs.
Images are retrieved using search queries from the ILSVRC2014 ImageNet challenge *.
Crowdworkers are used to write the captions for the images. For this dataset, each data point
has two images and a sentence that talks about the images. We concatenate the two images
so that we pass a single image in the model.

Split: Evaluation is performed on the dev split from https://github.com/lil-
lab/nlvr/tree/master/nlvr2

Prompt used: You are given an image and a related text, use the image as context and reply
with true or false only Text: <text> Answer:

Access restrictions: The dataset is downloadable from https://github.com/lil-lab/nlvr.

Licenses: Images have licenses CC BY-SA 2.0 https://creativecommons.org/licenses/by-
sa/2.0/deed.en, CC BY 3.0 https://creativecommons.org/licenses/by/3.0/deed.en,
CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/deed.en,
CC0 1.0 https://creativecommons.org/publicdomain/zero/1.0/deed.en,
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/deed.en,
CC0 https://creativecommons.org/public-domain/cc0/ and Pixabay
https://pixabay.com/service/terms/

*https://www.inaturalist.org/
*https://www.image-net.org/challenges/LSVRC/2014/
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Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

23. VCR tests commonsense reasoning skills in question answering over images. Still images
are extracted from movie clips, and annotations are crowdsourced using Amazon Mechanical
Turk where each worker is provided an image along with detailed video captions to collect
questions, answers, and rationales for an image

Split: ’val’ split is used from https://visualcommonsense.com/download/

Prompt used: Question: <question> Choose from the below choices: <choices>

Access restrictions: The dataset is available to download from
https://visualcommonsense.com/download/

Licenses: The dataset is provided in license as https://visualcommonsense.com/license/

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

24. WINOGROUND is a dataset for visual linguistic compositional reasoning involving images
from Getty Images and annotations given by four expert annotators. The original task
consists of matching images and captions for a pair of two images and captions. We
transform this task by creating a total of four data points for each pair by pairing each
caption, with each image which leads to two correct and two wrong pairs per data point. We
then ask the model to see if the caption matches the pair or not.

Split: Test set from https://huggingface.co/datasets/facebook/winoground is used.

Prompt used: You are given an image and a text. Answer yes if the text matches the image
and no if the text does not match the image. Text: <text> Answer:

Access restrictions: The dataset is downloaded from
https://huggingface.co/datasets/facebook/winoground

Licenses: Authors of the dataset have Getty image license https://www.gettyimages.in/eula.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

25. RESISC45 is a land use dataset that involves land scene classification of images over 45
classes. The images for this dataset have been taken from Google Earth by experts in remote
sensing image interpretation. We add all 45 classes to the prompt and let the model choose
the class from the prompt itself.

Split: We use the dataset from https://www.kaggle.com/datasets/happyyang/nwpu-data-set

Prompt used: Image is given to you. Classify if the image belongs to one of the following
classes: ’basketball_court’, ’overpass’, ’ground_track_field’, ’church’, ’chaparral’, ’forest’,
’parking_lot’, ’golf_course’, ’baseball_diamond’, ’meadow’, ’beach’,’sparse_residential’,
’desert’, ’terrace’, ’palace’, ’bridge’, ’commercial_area’, ’stadium’, ’runway’, ’lake’, ’rail-
way’, ’tennis_court’, ’ship’, ’intersection’, ’river’, ’freeway’, ’airplane’, ’industrial_area’,
’mountain’, ’storage_tank’, ’cloud’, ’roundabout’, ’wetland’, ’mobile_home_park’, ’island’,
’harbor’, ’railway_station’, ’medium_residential’, ’sea_ice’, ’thermal_power_station’, ’snow-
berg’, ’circular_farmland’, ’airport’, ’dense_residential’, ’rectangular_farmland’. Choose a
class from the above classes.

Access restrictions: The dataset is available to downloaded from
https://www.kaggle.com/datasets/happyyang/nwpu-data-set

Licenses: No license is provided with the dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

26. GQA builds up on Visual Genome scene graph structures for reasoning questions. It
consists of real-world reasoning, scene understanding, and compositional question answering.
Questions are generated using a robust engine which makes sure that the questions are
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grounded in the image. Each question is associated with a series of steps that need to be
followed to get the answer as well as a scene graph that captures objects, attributes, and
relations in the image

Split: We use the test split available from https://cs.stanford.edu/people/dorarad/gqa/download.html

Prompt used: You are given an image and a question. Answer the question in a single word.
Question: <question>

Access restrictions: The dataset is available to download from
https://cs.stanford.edu/people/dorarad/gqa/download.html

Licenses: The images in the dataset come with a CC BY 4.0 DEED license
https://creativecommons.org/licenses/by/4.0/deed.en

27. OPENPATH is a dataset created from Twitter and other public sources. Each image has
a natural language description, and the dataset is sourced from tweets across 32 hashtag
sub-specialty categories in pathology.

Split: We use the test split for evaluation.

Prompt used: Choose from the below choices, Given image is a hematoxylin and eosin
image of: cancer-associated stroma, adipose tissue, debris, lymphocytes, mucus, background,
normal colon mucosa, colorectal adenocarcinoma epithelium, smooth muscle

Access restrictions: The dataset is available to download from huggingface datasets
https://huggingface.co/datasets/akshayg08/OpenPath

Licenses: The dataset is available under CC BY-NC 4.0 license.
https://creativecommons.org/licenses/by-nc/4.0/

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

28. IRFL is an image-text dataset for figurative language. The dataset consists of three
broad categories: idioms, similes, and metaphors. Metaphors and similes were collected
from online lists whereas idioms were collected from MAGPIE corpus[33]. Since the
MAGPIE corpus did not contain definitions for idioms, definitions were crawled from online
dictionaries to search for figurative images. Google images were used for searching the
images for idioms using these definitions. For similes and metaphors, annotators were used
for definitions, and images were searched on the internet. For our evaluation, we use simile
categorization. For each data point, one simile and four images are given. We modify this
task to evaluate one image at a time, so a pair of an image and similes are passed to the
model to see if they match or not.

Split: We use the Simile understanding task for evaluation.

Prompt used: You are given a simile and a picture along with the simile. You have to say if
the simile matches the given picture. Answer the following question in a single word with a
yes or no. Simile: <simile> Answer:

Access restrictions: Dataset is available for download from https://github.com/irfl-
dataset/IRFL

Licenses: No license is provided with the dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

29. SCREEN2WORDS is a mobile UI summarization dataset consisting of images from Rico-
SCA[64] dataset. A total of 85 annotators were used to describe the image.

Split: We use the test split from https://github.com/google-research-
datasets/screen2words/tree/main

Prompt used: You are given a phone UI screen. Describe the screen in one sentence.

Access restrictions: The dataset is available to download from https://github.com/google-
research-datasets/screen2words
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Figure 6: Multimodal skills are the basic building blocks central to solving problems, spanning information
integrated across modalities at different granularities, different ways modalities might interact to create new
information, reasoning, and external knowledge.

Figure 7: Multimodal information flow studies how the content changes across the two modalities for the task,
such as through cross-modal translation, editing, querying, and fusion.

Licenses: No license is provided with the dataset.

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

30. Localized Narratives (COCO subset) (LNCOCO) was built on images from COCO[71],
Flickr30k[119], and ADE20K[127] datasets by annotating these datasets with localized
information. We use this dataset for the task of image generation.

Split: We use the COCO subset from the Localized Narratives Dataset [87] containing
8,573 samples. The ground truth images are used from the MSCOCO (17) validation set.

Prompt used: Generate an Image based on the provided caption. Caption:

Access restrictions: The dataset is available to download from
https://google.github.io/localized-narratives/

Licenses: The dataset is available under CC BY-NC 4.0 license.
https://creativecommons.org/licenses/by-nc/4.0/

Ethical considerations: No personally identifiable information or offensive content is
present in the dataset.

A.2 Dataset Categorization
For categorizing the datasets, we follow a three-stage approach with the majority of the categorizations
done using human annotators versed in machine learning, followed by using multimodal large
language models to alleviate any annotator disagreement issues, and performing a final check by the
authors of this work who are experts in multimodal machine learning.

A.2.1 Categorization stage 1: Human annotation of dimensions
In the first stage of the annotation process, we sample five data points from each dataset, for a total of
145 data points spread out across 10 sets. Each set was evaluated by two annotators each. Annotators
for this task were from the machine learning research community. For each data point, we provide
the image, prompt, and the ground truth answer followed by five questions which the annotator has to
answer. These questions span across various dimensions which we consider for datasets, which are
the following: 1) Does answering this question require you to use external knowledge? [Options: Yes,
No] 2) Does answering this question require you to use reasoning? [Options: Less Reasoning, Neutral
Reasoning, More Reasoning] 3) Which information flow does the data use? [Options: Querying,
Translation, Fusion, Editing] 4) Does the data use fine-grained interactions? [Options: Yes, No] 5)
What type of interactions does the data have? [Options: Redundancy, Synergy, Uniqueness]. We
calculate inter-annotator agreement for the annotators and present them in Table 6.
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Table 6: Inter-Annotator agreement scores for stage 1 annotation.
Set

number Knowledge Info. Flow Interactions Fine-grained Reasoning

1 0.242 0.407 0.156 0.375 0.375
2 0.364 0.115 0.102 0.286 0.461
3 0.250 0.640 0.019 0.571 0.333
4 0.708 0.299 0.286 -0.024 0.186
5 0.500 0.190 0.166 0.143 0.4
6 0.192 0.045 -0.037 0.017 0
7 0.473 0.171 0.204 -0.153 -0.296
8 0.439 0.469 0.067 -0.365 0.313
9 0.032 0.419 0.464 -0.029 -0.105
10 0.472 0.417 0.097 0.286 0.151

Table 7: Categorization after aggregating human annotations.
Dataset Knowledge Reasoning Info. Flow Fine-grained Interactions

NLVR2 No Less Querying No Uniqueness
NLVR No Less Querying Yes Uniqueness
NY CARTOON Yes More Fusion No Synergy
MM-IMDB No Less Fusion No Synergy
MEMOTION Yes Less Fusion No Redundancy
MEMECAP No More Fusion No Synergy
MAGIC BRUSH No Less Editing Yes Synergy
IRFL No Less Fusion No Synergy
HATEFUL MEMES Yes Less Fusion No Synergy
INATURALIST Yes Less Querying No Uniqueness
FLICKR30K No Less Translation No Uniqueness
GQA No Less Querying Yes Redundancy
ENRICO Yes Less Querying No Uniqueness
FER-2013 No Less Querying No Uniqueness
DECIMER Yes Less Translation Yes Uniqueness
WINOGROUND No Less Querying Yes Redundancy
VQARAD Yes More Querying Yes Uniqueness
VQA No Less Querying Yes Uniqueness
VISUAL GENOME No Less Querying Yes Uniqueness
VCR Yes More Fusion Yes Redundancy
UCMERCED LAND USE Yes Less Querying No Uniqueness
SLAKE Yes Less Querying Yes Uniqueness
SCREEN2WORDS No Less Translation No Uniqueness
SCIENCEQA Yes Less Querying Yes Synergy
RESISC45 Yes Less Querying No Uniqueness
OPENPATH Yes Less Querying No Uniqueness
PATHVQA Yes Less Querying Yes Uniqueness
NOCAPS No Less Translation Yes Uniqueness
OK-VQA Yes Less Querying Yes Uniqueness
LNCOCO Yes Less Translation Yes Uniqueness

As per the annotations, we aggregate the annotations for each dataset across each dimension and
calculate the maximum occurrence of annotation across all dimensions to categorize the datasets
presented in Table 7. We also consider ‘Neutral Reasoning’ and ‘Less Reasoning’ to be the same
category and label them as ‘Less Reasoning’ before aggregating over the annotations. However,
we see that the inter-annotator scores have low agreement, and some annotations go against the
definitions above in the section 2. Hence, we carry out an additional round of the annotation process
using GPT-4V, and explain the process below.

A.2.2 Categorization stage 2: Automatic annotation with human verification
After the first stage was done, we found that most of the annotations were reliable but there were some
cases where annotators misunderstood the definitions and tasks which led to low agreement values.
For the second stage of the annotation process, we query GPT-4V for categorization of datapoints
into dimensions to supplement the human annotations we obtained in the first stage. For each dataset,
we consider three samples from each dataset for a total of 87 data points for categorization spread
out across six sets. For each data point, we ask the model the same questions as asked to the human
annotators above and obtain the categorization across the dimensions. For some questions, the model
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Table 8: Categorization after aggregating GPT-4V annotations. Cases where ’-’ is present are due to the model
not providing an answer, citing a lack of information available for evaluating the input. We ignore such cases for
categorization.

Dataset Knowledge Reasoning Info. Flow Fine-grained Interactions

NLVR2 No Less Fusion Yes Synergy
NLVR No More Querying Yes -
NY CARTOON Yes Less Fusion No Synergy
MM-IMDB No Less Fusion No Synergy
MEMOTION Yes Less Fusion No Synergy
MEMECAP Yes More Fusion No -
MAGIC BRUSH Yes Less Editing No Synergy
IRFL Yes Less Fusion No Redundancy
HATEFUL MEMES Yes More Fusion No Synergy
INATURALIST Yes Less Querying No -
FLICKR30K No Less Translation - -
GQA No Less Querying Yes Uniqueness
ENRICO No Less - No -
FER-2013 No Less Querying - -
DECIMER Yes More Translation No Uniqueness
WINOGROUND No Less Fusion No Redundancy
VQARAD Yes Less Querying No Uniqueness
VQA No Less Querying Yes Synergy
VISUAL GENOME No Less Querying Yes -
VCR Yes Less Fusion No Redundancy
UCMERCED LAND USE Yes Less Querying No Synergy
SLAKE Yes More Querying Yes Uniqueness
SCREEN2WORDS No Less Fusion No -
SCIENCEQA No Less Fusion No Synergy
RESISC45 No Less Querying - Uniqueness
OPENPATH Yes More Querying - -
PATHVQA Yes Less Fusion Yes -
NOCAPS Yes Less Translation No Uniqueness
OK-VQA Yes Less Querying Yes Synergy
LNCOCO Yes Less Translation Yes Uniqueness

Table 9: Inter-annotator agreement scores for stage 2 annotations.
Set

number Knowledge Info. Flow Interactions Fine-grained Reasoning

1 0.667 0.420 0.868 0.705 0.000
2 0.631 0.797 0.363 1.000 0.450
3 -0.097 1.000 0.732 0.732 0.444
4 0.588 0.658 0.851 0.571 0.417
5 0.444 1.000 0.842 0.722 0.587
6 0.317 1.000 0.222 0.837 0.000

refuses to answer the question citing enough information is not provided, so we do not consider the
output for categorization. Aggregation is done similarly to stage 1 of the annotation process and the
categories are provided in Table 8. For each set, we ask two annotators to label the annotation by
GPT-4V as either correct or wrong, depending on the categorization provided by the model. The
inter-annotator agreement scores are provided in Table 9. We see improvements over the previous
annotation process in some dimensions and datasets, however, cases where annotations do not match
the definition persist. Also, GPT-4V does not give output for a few cases due to which aggregation
is not possible. Hence, we carry out the third stage of the annotation process to get a more refined
categorization.

A.2.3 Categorization stage 3: Final check by experts
In the third stage of the annotation process, the authors of the project manually go through the
annotations from both stages to check for errors and obtain the final categorization of datasets. We
present the categorization in Table 10 with the source for each categorization in the table. (1) indicates
that the category has been agreed upon both by human annotators and GPT-4V, (2) indicates that
GPT-4V better categorizes the dataset for the dimension and hence the annotation from GPT-4V has
been chosen, (3) indicates that human annotations better categorize the dataset for the dimension,
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Table 10: Final dataset categorization.
Dataset Knowledge Reasoning Info. Flow Fine-grained Interactions

NLVR2 No (1) Less (1) Querying (3) No (4) Redundancy (4)
NLVR No (1) Less (3) Querying (1) Yes (1) Redundancy (4)
NY CARTOON Yes (1) More (3) Fusion (1) No (1) Synergy (1)
MM-IMDB No (1) Less (1) Fusion (1) No (1) Synergy (1)
MEMOTION Yes (1) More (4) Fusion (1) No (1) Synergy (2)
MEMECAP Yes (2) More (1) Fusion (1) No (1) Synergy (3)
MAGIC BRUSH No (3) Less (1) Editing (1) Yes (3) Synergy (1)
IRFL No (3) More (4) Fusion (1) No (1) Synergy (3)
HATEFUL MEMES Yes (1) More (2) Fusion (1) No (1) Synergy (1)
INATURALIST Yes (1) Less (1) Querying (1) Yes (4) Uniqueness (3)
FLICKR30K No (1) Less (1) Translation (1) No (3) Uniqueness (3)
GQA No (1) Less (1) Querying (1) Yes (1) Redundancy (3)
ENRICO No (2) Less (1) Querying (3) No (1) Uniqueness (3)
FER-2013 No (1) Less (1) Querying (1) No (3) Uniqueness (3)
DECIMER Yes (1) More (2) Translation (1) No (2) Uniqueness (1)
WINOGROUND No (1) Less (1) Querying (3) Yes (4) Redundancy (1)
VQARAD Yes (1) More (4) Querying (1) Yes (4) Redundancy (4)
VQA No (1) Less (1) Querying (1) Yes (1) Redundancy (4)
VISUAL GENOME No (1) Less (1) Querying (1) Yes (1) Redundancy (4)
VCR No (4) Less (2) Fusion (1) Yes (3) Redundancy (1)
UCMERCED LAND USE No (4) Less (1) Querying (1) No (1) Uniqueness (3)
SLAKE Yes (1) More (4) Querying (1) Yes (4) Redundancy (4)
SCREEN2WORDS No (1) Less (1) Translation (3) No (1) Uniqueness (3)
SCIENCEQA Yes (3) Less (1) Fusion (4) No (2) Synergy (1)
RESISC45 No (2) Less (1) Querying (1) No (3) Uniqueness (1)
OPENPATH Yes (1) More (4) Querying (1) Yes (4) Redundancy (4)
PATHVQA Yes (1) Less (1) Querying (3) Yes (4) Redundancy (4)
NOCAPS No (3) Less (1) Translation (1) No (2) Uniqueness (1)
OK-VQA Yes (1) Less (1) Querying (1) Yes (1) Redundancy (4)
LNCOCO Yes (1) Less (1) Translation (1) Yes (1) Uniqueness (1)

(4) indicates that authors of this work have categorized the dataset for the dimension. As we can see
from Table 10, the majority of categories are agreed upon both by human annotators and GPT-4V,
indicating reliability. There are only a few with (4), indicating that authors had to provide the final
categorization due to dimensions that were hard to understand by non-experts in multimodal learning
and by GPT-4V.

A.2.4 Details on annotation and participants
The annotations in stages 1 (human annotation) and 2 (automatic inference with human verification)
are all university students with some knowledge of machine learning. There were 10 sets of annota-
tions each evaluated by two annotators for a total of 20 annotators. All participation in user studies
was voluntary and done for pay at a level consistent with research participation at our university (15
dollars an hour). The annotations in stage 3 (final check) are done by 5 experts in the multimodal
machine learning community for a final verification in case of misunderstandings in the first two
stages.

A.3 Modeling categorizations and details
We also evaluate the performance of the models based on various modeling decisions. To achieve
this, we categorize the models into various classes based on the following properties:

1. Interleaved modality training: In the multi-modal setting, models are broadly trained/fine-
tuned either by separately processing individual modalities using modality-specific encoders
followed by fusion, or by interleaving the raw modalities first and then processing the
interleaved input together.

2. Instruction Tuning: Generative multimodal models can be trained/fine-tuned using objec-
tives such as image-text matching, image-grounded text generation [62], etc., to generate
relevant outputs. However, recently such generative models are also instruction instruction-
tuned in order to generate outputs that resemble human responses. Therefore, we also
categorise the models based on whether instruction tuning is employed or not.
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3. Architecture: For training multi-modal models, parameters can either be initialized using a
pre-trained model and then are fine-tuned/kept frozen, or are initialized randomly and trained
in an end-to-end fashion. Based on this choice, we categorize models into two classes -
fine-tuned and trained from scratch.

4. Training Data Size: The amount of data used for training the models, plays an important
role in the performance and generalization of the model. Based on the size of the training
data (in our work, the number of image-text or image-image samples), we categorize the
models into three categories - Small, Medium, and Large.

5. Number of Parameters: Model size is an important modeling decision as it affects the
performance of the model, cost and efficiency of training, and the inference time. Hence,
we also categorize the models based on both the total and trainable number of parameters,
and compare the performance across these categories.

6. Diversity in Training Data: Training multimodal models on data from different tasks,
improves the diversity of the training data and may help the models to perform well on
multiple tasks. By categorizing the models based on the diversity of the training data used,
we evaluate the effect of using data from diverse tasks.

A.4 Model Details
For the HEMM benchmark, we currently evaluate the following models. All the models except for
Gemini and GPT-4V are open source and we encourage the community to add more models to the
benchmark.

1. BLIP-2 uses pre-trained image encoder and a pre-trained LLM for decoding. A Q-former
is used to fuse the input text and the image queries using attention mechanism, and the
fused representation is used by the decoder to generate the response. While training,
only the parameters of the Q-former are updated using supervised fine-tuning, and the
rest of the architecture is kept frozen. In this work we use the blip2_t5 model with
pretrain_flant5xxl as the decoder from LAVIS*. The chosen model has 108M and
12.1B trainable and total parameters respectively.
License: The model comes with BSD-3 Clause
https://github.com/salesforce/LAVIS/blob/main/LICENSE.txt
Access restrictions: The model is available to use from the LAVIS repository
https://github.com/salesforce/LAVIS

2. INSTRUCT-BLIPis built on top of the BLIP2 architecture, where the model is first
pre-trained similar to BLIP2. In the second phase, the Q-former in the architecture is
instruction tuned (rest parameters frozen) to create an instruction following Q-former.
For evaluation, we use the blip2_t5_instruct model with flant5xl as the decoder
from LAVIS*. The model has 188M trainable parameters and 4B parameters in total. The
pre-training data for the first phase is similar to BLIP2 and additional 15M samples from
diverse datasets and tasks (e.g., VQA, Reasoning, Captioning, etc.) are used for instruction
tuning.
License: The model comes with BSD-3 Clause
https://github.com/salesforce/LAVIS/blob/main/LICENSE.txt
Access restrictions: The model is available to use from the LAVIS repository
https://github.com/salesforce/LAVIS

3. MINI-GPT-4 also has a similar architecture as BLIP2, and uses the same Vision encoder
and Q-former. However, the decoding LLM is based on Vicuna. Further, MiniGPT-4 has an
additional single projection layer applied to the output of the Q-former. The architecture is
instruction tuned with all the parameters except for the projection layer are kept frozen. We
evaluate the prerained_minigpt4_7b model from the MiniGPT-4 GitHub repository *.
The model has 13B parameters and is fine-tuned using 5M image-text samples.
License: The model comes with BSD-3 Clause https://github.com/Vision-CAIR/MiniGPT-
4/blob/main/LICENSE.md

*https://github.com/salesforce/LAVIS/tree/main/projects/blip2
*https://github.com/salesforce/LAVIS/tree/main/projects/instructblip
*https://github.com/Vision-CAIR/MiniGPT-4?tab=readme-ov-file
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Access restrictions: The model is available to use from https://github.com/Vision-
CAIR/MiniGPT-4/tree/main

4. OPENFLAMINGO is an open-source reproduction of the Flamingo [3] models. Unlike mod-
els that can only take one input image per sample (e.g., BLIP2, MiniGPT-4), OpenFlamingo
can handle multiple images by interleaving images and texts. The architecture comprises
of pre-trained Vision and Language encoder/decoder, where the layers of the pre-trained
LLM are augmented with the vision encoder outputs which allows for cross-modal attention.
All the pre-trained components are kept frozen except for the cross-modal attention
component. For evaluation, we use the OpenFlamingo-3B-vitl-mpt1b model from the
OpenFlamingo Github Repository *. The chosen models has 1.4B trainable parameters and
a total of 3.2B parameters. It is trained using 180M image-text samples.
License: Work is available under MIT License
https://github.com/mlfoundations/open_flamingo/blob/main/LICENSE
Access restrictions: The model is available to use from
https://github.com/mlfoundations/open_flamingo

5. LLAMA-ADAPTER is based on the architecture of LLaMA Adapter [125] which augments
the text tokens with learnable adaptation prompts. In addition to this, LLaMA Adapter V2
uses early fusion to add visual knowledge to the decoding LLM. The architecture uses both
early fusion and late fusion, and while fine-tuning, all the pre-trained components are frozen
except for the bias layers of the LLM, Visual Projection Layer and the zero-initialized
cross attention module. We evaluate the BIAS-LORA-7B model which uses LLaMA-7B as
the decoder*. The model is instruction tuned using 619K samples, and has 14M trainable
parameters.
License: Work is available under GNU General public license
https://github.com/OpenGVLab/LLaMA-Adapter/blob/main/LICENSE
Access restrictions: Model is available to use from
https://github.com/OpenGVLab/LLaMA-Adapter

6. EMU is a large multimodal model trained using interleaved video, image and text data,
trained in an autoregressive manner to predict the next token in the multimodal sequence.
With the ability to produce the next visual token, Emu is also able to generate images
and has been evaluated on the Magic Brush dataset in this work. The architecture uses
pre-trained encoder and a decoding LLM such as LLaMA. EMU is first pre-trained using
interleaved video, image, and text data, and all the parameters are updated during the
pre-training. In the second stage, emu is further instruction-tuned. However, in this work we
only evaluate the pre-trained version of Emu. We evaluate the Emu-14B model pre-trained
using 82M samples.
License: Work is available under Apache 2.0 license
https://github.com/baaivision/Emu/blob/main/LICENSE
Access restrictions: The model is available to use from https://github.com/baaivision/Emu

7. FUYU-8B is a decoder only architecture where the image patches are linearly projected
into the first layer of the transformer architecture. Fuyu’s architecture is same as that of
Persimmon-8B *, and we use the details of Persimmon-8B to categorise Fuyu into the model
categories. Persimmon-8B has 9.3B parameters and is trained from scratch. In our work
we evaluate the pre-trained model as the instruction tuned models aren’t available and the
pre-training data sources and sizes are unknown. We evaluate the Fuyu-8B model available
through HuggingFace *.
License: Work is available under Creative Commons Attribution Non Commercial 4.0
International license https://spdx.org/licenses/CC-BY-NC-4.0
Access restrictions: Model is available to use from huggingface

*https://github.com/mlfoundations/open_flamingo
*https://github.com/OpenGVLab/LLaMA-Adapter/tree/main/llama_adapter_v2_multimodal7b
*https://www.adept.ai/blog/persimmon-8b
*https://huggingface.co/adept/fuyu-8b
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8. KOSMOS-2 is based on a causal Transformer Language Model, and has the architecture
similar to Kosmos1 [40]. It is trained on the next-token prediction task. In addition to the
pre-training data used to train Kosmos1, grounded image-text pairs are added to the dataset
to train Kosmos2. Overall, Kosmos2 is trained using interleaved image-text data and later
instruction-tuned using both multimodal and language-only instructions. We evaluate the
ydshieh/kosmos-2-patch14-224 model from HuggingFace * which has a total of 1.6B
parameters.
License: Work is available under MIT License
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
Access restrictions: The model is available to use from
https://huggingface.co/microsoft/kosmos-2-patch14-224

9. MPLUG-OWL uses a vision foundation model to encode input image and uses a visual
abstractor model to summarize the input from the encoder. The abstractor output along with
the text queries are then passed to a pre-trained language foundation model that generates the
response. The model is first pre-trained using supervised fine-tuning of all the parameters
except for the language models. In the second phase, the language models is instruction
tuned using multimodal and language instructions, with the other parameters frozen.
We evaluate the https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl
model obtained from the mPLUG-Owl Github Repository *. The chosen models has a total
of 7.2B parameters.
License: Work is available under MIT License https://github.com/X-PLUG/mPLUG-
Owl/blob/main/LICENSE
Access restrictions: The model is available to use from https://github.com/X-
PLUG/mPLUG-Owl

10. GPT-4V is a multimodal extension to GPT-4 which has been trained on the next
word prediction task using image and text data from the internet and licensed data
sources and fine tuned using RLHF[84],[20]. We use ’gpt-4-vision-preview’ as a chosen
model for our evaluation. As of evaluating the models, ’gpt-4-vision-preview’ points to
’gpt-4-1106-vision-preview’ in the OpenAI API interface which has been trained up to April
2023 *.
License: None
Access restrictions: The model is available via OpenAI’s API
https://platform.openai.com/docs/guides/vision

11. GEMINI is a series of multimodal large language models which support inter-
leaved inputs. These models have been trained on multimodal and multilingual
data comprising of data from web documents, books, and code, and includes
image, audio, and video data. For our evaluation, we use ‘gemini-pro-vision‘
which points to ’gemini-1.0-pro-vision-001’ released on February 15, 2024
*. We also use safety settings such as ’HARM_CATEGORY_DANGEROUS’,
’HARM_CATEGORY_HARASSMENT’, ’HARM_CATEGORY_HATE_SPEECH’,
’HARM_CATEGORY_SEXUALLY_EXPLICIT’,
’HARM_CATEGORY_DANGEROUS_CONTENT’ and set the threshold to
’BLOCK_NONE’ provided by the API *.
License: None
Access: Available via API https://ai.google.dev/gemini-api/docs/models/gemini

*https://huggingface.co/microsoft/kosmos-2-patch14-224
*https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl
*https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
*https://cloud.google.com/vertex-ai/generative-ai/docs/learn/model-versioning
*https://ai.google.dev/gemini-api/docs/safety-settings
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Table 11: Evaluation metrics supported in HEMM

Metric Task Modalities

BLEU Text Generation Text
ROUGE Text Generation Text
BertScore Text Generation Text
BARTScore Text Generation Text
RefCLIPScore Text Generation Image, Text
CLIP-I Image Generation Image
MSE Image Generation Image

B Experimental Details
B.1 Evaluation metrics
We present our results on BARTScore [122] as models under our evaluation generate noisy free from
text, however, we also support other text generation metrics under our evaluation suite listed in the
Table 11 below.

B.2 Evaluation protocol
HEMM supports image generation tasks, models and metrics. However, currently there are only 2
image generation tasks (LNCOCO and MAGIC BRUSH) and 1 model (EMU) that supports image
generation. Hence, we perform all our evaluation on the remaining 28 text generation tasks and report
the results on the image generation tasks in Appendix C.

Note: Since HEMM contains models that are unable to process multiple images in the same input,
we modify the WINOGROUND and IRFL tasks (as per A.1) in order to have a single image-text pair
as input for each sample.

For each dataset, we use the same prompts across all models as shown in Section C, for standardization,
however, there can be a scenario where these models perform better with other prompts or scenarios
and may perform poorly under our scenarios or prompts in our evaluation.

For each dataset, the computed metrics for the models are normalized on a scale of 0 to 1, 0
corresponds to the model achieving the lowest score on that dataset, and 1 corresponds to the
performance achieve by exactly generating the ground truth. For BERTScore [126], ROUGE [70],
and RefCLIPScore [36] the maximum value is set to 1. BARTScore [122] uses the log of probabilities.
Following [16], we calculate the maximum value for each dataset separately as BARTScore(r, r)
where r is the ground truth sentence.

Since details regarding training type for GEMINI and GPT-4V, and modality processing for GPT-4V
are not revealed, we do not use the scores from these models while evaluating the performance for
the training type and modality processing dimensions. Further, for HATEFUL MEMES, OPENPATH,
and MEMOTION datasets, GPT-4V did not respond and generated can’t provide assistance and
"indeterminate" for many samples. Hence, we exclude the results of GPT-4V on these datasets
during evaluation.

B.3 Significance tests
While comparing performance across categories in each dimension, we perform paired t-tests to
determine the significance of the results. For datasets, specifically, for each category, we calculate the
average performance of each of the 11 models on all the datasets in a category (ci) to create a vector
vi ∈ R11. Next, we performed pairwise t-tests between these vectors to determine the significance
of the results. The p-values obtained through the t-tests are presented in Table 13. We find that
the difference between the performance on different categories is statistically significant (p-value
< 0.05) for real-world use cases, multimodal interaction, external knowledge, and information flow
dimensions, which explains that these are particularly difficult dimensions for today’s multimodal
model.

We also conducted t-tests for various categories in each of the modeling dimensions. For all models
in a category (ci), we use their average performance on each of the 28 datasets to construct a vector
wi ∈ R28. We then perform pair-wise t-tests across all the categories for all dimensions. As mentioned
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Table 12: Hyperparameters used for running inference for various models. Temperature for GPT-4V and Beam
Size for GPT-4V and GEMINI are unknown. We also report the average inference time in seconds for an
image-text input. For each models, we take the average of inference times across all the datasets.

Model Temperature Beam Size Max New Tokens Inference Time

BLIP-2 1.0 5 30 0.64
INSTRUCT-BLIP 1.0 5 256 0.58
MINI-GPT-4 1.0 3 100 11.8
FUYU-8B 1.0 1 100 1.92
EMU 0.9 5 100 1.43
OPENFLAMINGO 1.0 3 50 2.35
KOSMOS-2 1.0 1 500 0.31
MPLUG-OWL 1.0 1 100 0.87
LLAMA-ADAPTER 0.0 1 100 1.30
GPT-4V - - 300 2.67
GEMINI 0.4 - 2048 4.62

in Section B.2, we do not use the scores of GPT-4V and GEMINI for the dimensions where their
training/modeling decisions aren’t revealed. We find that for all the dimensions, the best-performing
category achieves significantly better scores with p-values < 0.05 (Table 14).

B.4 Model hyperparameters and inference time
In Table 12, we list the values of important text-generation hyperparameters used to evaluate different
models. For each model, we also report the inference time for a single image-text pair averaged
across all the datasets.

B.5 Human evaluation
We perform human preference-based pair-wise comparison (battles) of model responses across 1000
datapoints and use the following metrics to rank the models.

Average win rate: Similar to Chiang et al. [19], for each pair of models, considering only the battles
between them, we determine the win rate wab = Na

Na+Nb
, where Na and Nb are the number of battles

won by modela and modelb respectively. We then take the average of the win rates across all the
models to calculate the average win rate for each model i.e., awra = 1

M ∑M
b=1wab.

The top 4 models based on the average win rate are GEMINI (0.73), GPT-4V (0.68), INSTRUCT-BLIP
(0.60) and BLIP-2 (0.52).

Elo Rating: Using the initial rating of each model as 1000, we sequentially process the battles and
update the rating of the models as per the below equations. Ra and Rb denote the current ratings of
modela and modelb in the battle. Sa = 1 if modela wins the battle and 0 if it loses. Sb = 1 − Sa and
in case of ties, Sa = Sb = 0.5. For more stable Elo ratings, we use K = 4.

Ea = 1

1 + 10(Rb−Ra)/400 ; Eb = 1

1 + 10(Ra−Rb)/400

R̂a = Ra +K ∗ (Sa −Ea); R̂b = Rb +K ∗ (Sb −Eb)
The above update rule is sensitive to battle orders. In order to get more stable and less biased Elo
ratings, we run the above computation 1000 times by shuffling the battle order each time, and report
the median Elo rating over the 1000 runs for each model.

The 1000 battles were split across 5 authors randomly (200 battles each) for annotation. Using a
web interface, the model outputs were presented to the annotators. For each sample, the annotators
were instructed to select the output that better answers the query. For cases where both outputs were
equally good/bad, or performing the task required domain knowledge (e.g., healthcare datasets), the
annotators were instructed to choose the Tie option. For each battle, the models were anonymized for
fair comparison.
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Table 13: Standard deviation and p-values (from paired t-tests) across categories for each dataset dimension. On
average, models achieve significantly higher scores on Multimedia and Affect as compared to other use cases.
The p-values for Reasoning and Granularity dimensions are higher than 0.05, indicating that there is no category
significantly more challenging than the rest.

Dimension Category Perf (↑) P-value

Real-world use case

Multimedia 31.30 ± 0.14

vs Affect: 0.1100
vs Health: 0.0006
vs Science: 0.0000
vs HCI: 0.0002

Affect 30.35 ± 0.15
vs Health: 0.0044
vs Science: 0.0018
vs HCI: 0.0011

Health 20.24 ± 0.09
vs Science: 0.8806
vs HCI: 0.0961

Science 19.83 ± 0.13 vs HCI: 0.2093

HCI 15.70 ± 0.08

Multimodal interaction
Redundancy 29.04 ± 0.14

vs Uniqueness: 0.0008
vs Synergy: 0.0522

Uniqueness 19.60 ± 0.10 vs Synergy: 0.0000

Synergy 33.73 ± 0.15

Reasoning More Reasoning 27.50 ± 0.11 vs Less Reasoning: 0.6415

Less Reasoning 26.84 ± 0.13

Granularity Fine-grained 26.52 ± 0.12 vs Coarse-grained: 0.5887

Coarse-grained 27.52 ± 0.13

Knowledge External Knowledge 23.51 ± 0.10 vs None: 0.0023

None 29.62 ± 0.14

Information flow
Querying 25.88 ± 0.13

vs Translation: 0.0479
vs Fusion: 0.0018

Translation 18.97 ± 0.07 vs Fusion: 0.0004

Fusion 33.77 ± 0.15

C All Results
Due to query limits for GPT-4V and GEMINI, we evaluated the two models only on 100 samples per
dataset, and for a fair comparison, we performed our analysis using the outputs of all the models on
those 100 samples. In this section, we present the results and analysis on the whole evaluation set
using the outputs of all the models except GPT-4V and GEMINI. Further, since our analysis was
based on text-generation tasks, we present here the results on the image-generation tasks - MAGIC
BRUSH and LNCOCO. Specifically, we evaluated EMU (only model in HEMM that can generate
images) on both tasks. We find the MSE and the CLIP-I score between the generated and the ground
truth image for MAGIC BRUSH to be 0.17 and 0.54. For the LNCOCO dataset, the MSE and CLIP-I
score are 0.18 and 0.50.

Note: due to high inference time of some models (e.g., MINI-GPT-4, EMU, OPENFLAMINGO),
missing image URLs in the NLVR2 dataset, and compute restrictions for larger evaluation sets like
MM-IMDB, VISUAL GENOME, and INATURALIST, we use the results from the same 100 samples
used for evaluation in Section 4.

C.1 Dataset and model comparisons
Dataset comparisons: On average, the models achieve the highest scores on IRFL (0.53),
WINOGROUND (0.42), and NLVR (0.40) datasets. Healthcare, Science, and HCI datasets are the most
challenging use cases for the models with the average scores being the lowest for DECIMER (0.05),
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Table 14: Standard deviation and p-values for categories in various modeling dimensions. Models in the
best-performing category in each dimension, receive significantly higher scores than the other categories.

Dimension Category Perf (↑) P-value

Modality Processing Interleaved 22.94 ± 0.10 vs Separate: 0.0011

Separate 28.58 ± 0.15

Model Size
Small 23.34 ± 0.14 vs Medium: 0.7370

vs Large: 0.0004

Medium 23.87 ± 0.12 vs Large: 0.0004

Large 42.33 ± 0.07

Training Type Modular 24.92 ± 0.12 vs End-to-End: 0.0427

End-to-End 21.26 ± 0.13

Size of Training Data
Small 16.80 ± 0.10 vs Medium: 0.0000

vs Large: 0.0000

Medium 30.10 ± 0.15 vs Large: 0.5024

Large 31.77 ± 0.16

Diversity of Training Data Non-diverse 21.71 ± 0.12 vs Diverse: 0.0000

Diverse 30.15 ± 0.14

Instruction Tuning No 22.49 ± 0.11 vs Yes: 0.0004

Yes 29.71 ± 0.15

PATHVQA (0.06), INATURALIST (0.06), and ENRICO (0.08). Meme datasets are also challenging for
the models. A low average score (0.12) on MEMECAP shows that the models struggle to understand
the visual metaphors and generate suitable captions for the memes.

Model comparisons: Overall, INSTRUCT-BLIP and BLIP-2 achieve the highest average scores
of 0.38 and 0.37, followed by FUYU-8B (0.29). OPENFLAMINGO and EMU rank lowest on many
datasets (receiving a 0 score as per our normalization) and achieve the lowest average scores of 0.05
and 0.11.

C.2 Dataset trends
In Table 15, we summarize the average performance of models on various categories in each data
dimension. We now closely compare the performance between different categories of individual
dimensions.

Multimodal Skills 1: Interactions The average scores on datasets having redundant, unique and
synergistic interactions are 0.25, 0.14, and 0.28. The p-values obtained using paired t-test for Redun-
dancy vs Uniqueness, Uniqueness vs Synergy, and Redundancy vs Synergy are 0.01, 0.0008, and
0.22, indicating that average scores on datasets with unique interactions is significantly lower as com-
pared to datasets with Redundant and Synergistic interactions. Reasons for lower uniqueness scores
can be attributed to the presence of highly challenging datasets such as DECIMER, INATURALIST,
ENRICO.

Multimodal Skills 2: Granularity The average scores of the models on datasets with fine-grained
(0.23) and coarse-grained alignment (0.22) are not significantly different, indicating that both cate-
gories are challenging for the models, with the former containing tasks like GQA, WINOGROUND and
NLVR and the latter having tasks such as FLICKR30K, HATEFUL MEMES, and SCIENCEQA.

Multimodal Skills 3: Reasoning The average scores achieved by models on tasks requiring less
or more reasoning are 0.22 and 0.23 respectively, and we find that the difference is not statistically
significant. This indicates that both categories are challenging for the models with the less reasoning
category comprising of datasets like ENRICO and INATURALIST posing challenges related to visual
perception and external knowledge. On the other hand, tasks within the more reasoning category
such as VCR and MEMECAP test for compositional and commonsense reasoning.
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Table 15: Comparisons on different dataset categories.
30 multimodal datasets are split into various groups
based on their real-world use case, type of multimodal
interaction, presence of reasoning and external knowl-
edge, granularity of alignment, and types of infor-
mation flow. Performance is measured via the mean
BARTscore across 9 multimodal models.

Category Group Perf (↑)

Real-world
use case

Multimedia 29.27 ± 0.14
Affect 22.63 ± 0.11
Health 15.51 ± 0.08
Science 14.23 ± 0.08
HCI 12.49 ± 0.07

Multimodal
interaction

Redundancy 24.86 ± 0.13
Uniqueness 13.87 ± 0.06
Synergy 28.48 ± 0.13

Reasoning More 23.19 ± 0.11
Less 21.78 ± 0.09

Granularity Fine-grained 22.97 ± 0.11
Coarse-
grained

21.68 ± 0.10

Knowledge External 19.60 ± 0.09
None 24.21 ± 0.11

Information
flow

Querying 20.15 ± 0.10
Translation 16.72 ± 0.07
Fusion 29.16 ± 0.14

Table 16: Comparisons on different modeling deci-
sions. We group models based on the modeling and
training decisions, including how they process modal-
ities, their parameter counts, model architecture, train-
ing data size and diversity, and the presence of instruc-
tion tuning. Performance is measured via the mean
BARTscore across all 30 tested multimodal datasets.

Category Group Perf (↑)

Modeling decisions

Modality
processing

Interleaved 16.92 ± 0.09
Separate 26.48 ± 0.15

Model size
Small 21.51 ± 0.13
Medium 22.59 ± 0.12

Training decisions

Training type Modular 23.18 ± 0.13
End-to-end 20.93 ± 0.13

Size of
training data

Small 16.08 ± 0.11
Medium 27.60 ± 0.15
Large 20.72 ± 0.15

Diversity of
training data

Non-diverse 19.92 ± 0.12
Diverse 24.09 ± 0.13

Instruction
tuning

No 21.00 ± 0.12
Yes 23.22 ± 0.14

Multimodal Skills 4: External Knowledge Average performance of models on tasks requiring
external knowledge (0.20) is significantly lower than tasks not requiring knowledge (0.24). For
example, on average, models perform better on NLVR, FER-2013 and WINOGROUND that do not
require external knowledge as compared to tasks like INATURALIST and SLAKE which require
external knowledge to identify appropriate species or organs in the image.

Multimodal Skills 5: Information flow Models achieve significantly lower average score on
translation datasets (0.17) as compared to querying (0.20) and fusion (0.29) datasets. Lower scores
on translation dataset is due to the presence of highly challenging datasets such as DECIMER which
requires domain knowledge of molecules to generate the correct textual sequence.

C.3 Modeling trends
Model scale: Since we do not consider GPT-4V and GEMINI for analysis in this section, there are no
models in the large category. Amongst small and medium models, we find no significant difference
(p-value = 0.45) between the average performance of models from the two categories with small and
medium models receiving 0.21 and 0.23 average scores respectively.

Pretraining data scale: On average, models with medium pretraining data achieve the highest score
(0.28) as compared to the models pretrained with small (0.16) or large (0.21) scale data. Although
the average score of models trained with large pretraining data is lower as compared to models
trained with medium pretraining data, we find that the former models perform better on tasks such as
IRFL, WINOGROUND, MEMECAP, and DECIMER which require complex reasoning and external
knowledge.

Diversity of pretraining data: Models trained with diverse pretraining data (0.24) perform better
than models trained only on image-captioning datasets (0.20). The p-value for the paired t-test is 0.01
indicating that the difference is significant. On average, we find that models pretrained with diverse
data achieve better scores on knowledge-intensive tasks such as INATURALIST and OK-VQA with
improvements in average scores up to 0.21.
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Figure 8: Model outputs on samples from ENRICO, VQARAD, INATURALIST, and SCIENCEQA. In (a), all
the models struggle to reason about the use of the zip code field in the UI, which will be used to search the TV
provider. Example (b) underscores the complexity faced by models in interpreting medical images, particularly
evident in their inability to recognize the absence of a kidney in the radiology image. As shown in (c), the highly
fine-grained INATURALIST dataset is very challenging and none of the models can determine the species of the
insect. In (d), all models provide incorrect responses when tasked with identifying the colony’s name, illustrating
the challenges posed by tasks requiring external knowledge.

Instruction tuning vs supervised fine-tuning: Instruction-tuned models achieve a higher average
score (0.23) as compared to models with only supervised fine-tuning (0.21). We observe the highest
improvements in translation tasks such as DECIMER, FLICKR30K, and SCREEN2WORDS. We also
observe that instruction-tuned models receive a higher average score as compared to supervised
fine-tuned models (improvement of 0.12).

Modality processing: Models that process the modalities separately perform significantly better than
the models that operate on interleaved inputs. The average scores for the former and latter models are
0.17 and 0.26 respectively (p-value ≈ 0). We find high improvements of 0.26, 0.24, 0.22, and 0.2
in the average scores for the datasets SCIENCEQA, NY CARTOON, MM-IMDB, and UCMERCED
LAND USE.

Training type: We do not find a significant difference between the models that are fine-tuned in a
single phase end-to-end manner (0.21) as compared to the models where only specific modules are
fine-tuned in a single phase (0.23).

C.4 Summary of takeaway messages
Finally, we summarize the main findings regarding the performance and evaluation of multimodal
foundation models that can be important directions for future work:

1. Challenging datasets: Health, HCI, and Science are all relatively difficult use cases for today’s
multimodal foundation models, which are statistically significantly harder than Multimedia and
Affective Computing use cases. In particular, images of scientific diagrams, satellite images,
medical images, memes, and rich social interactions pose challenges. It is therefore important to
evaluate multimodal models on a diverse range of input modalities and output tasks to get a better
measure of generalization performance.

2. Multimodal interactions: Models perform better on redundant interactions but struggle when
visual information is not directly referenced by text (i.e., uniqueness or synergy). Future bench-
marks should contain richer multimodal interactions beyond redundancy, such as in analyzing
sarcasm, humor, memes, science, environment, and education. These can serve as better test beds
for multimodal models and enable their applications towards real-world multimodal interactions.

3. Reasoning, fine-grained, and knowledge: We need better datasets that test for complex reasoning
and fine-grained alignment - current ones do not pose enough challenges to today’s models, with
no significant performance differences with or without reasoning and fine-grained alignment.
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We do find that tasks requiring external knowledge are significantly harder than no knowledge;
bridging this gap can be a promising direction for multimodal research.

4. Model and data size: Perhaps unsurprisingly, larger scales of data and models improve the
average score across the board, with significant improvements of up to 75% as compared to
medium-sized models. Training on diverse data sources also improves over models that only
pretrain on images and captions. The tasks that show the most improvement are INATURALIST
and MEMECAP which are knowledge-intensive and require complex reasoning.

5. Model training: Instruction-tuned models performed better than those with only supervised
fine-tuning. Cross-modal translation (image-to-text) tasks show the most improvements (e.g.,
DECIMER, MEMECAP, and SCREEN2WORDS). However, some instruction-tuned models still
struggle to follow the instructions (e.g., generating a caption when asked to classify an image, or
generating long responses when asked to answer in a few words). Instruction tuning using larger
datasets with diverse instructions can help alleviate this problem.
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