Hollowed Net for On-Device Personalization of
Text-to-Image Diffusion Models

Wonguk Cho*''2 Seokeon Choi' Debasmit Das' Matthias Reisser!
Taesup Kim?> Sungrack Yun' Fatih Porikli'

'Qualcomm AI Researchf 2Seoul National University

1{wongcho , seokchoi, debadas, mreisser, sungrack, fporikli}@qti.qualcomm.com
2{Wongukcho , taesup.kim}@snu.ac.kr

Abstract

Recent advancements in text-to-image diffusion models have enabled the person-
alization of these models to generate custom images from textual prompts. This
paper presents an efficient LoORA-based personalization approach for on-device
subject-driven generation, where pre-trained diffusion models are fine-tuned with
user-specific data on resource-constrained devices. Our method, termed Hollowed
Net, enhances memory efficiency during fine-tuning by modifying the architecture
of a diffusion U-Net to temporarily remove a fraction of its deep layers, creating a
hollowed structure. This approach directly addresses on-device memory constraints
and substantially reduces GPU memory requirements for training, in contrast to
previous methods that primarily focus on minimizing training steps and reducing
the number of parameters to update. Additionally, the personalized Hollowed Net
can be transferred back into the original U-Net, enabling inference without addi-
tional memory overhead. Quantitative and qualitative analyses demonstrate that our
approach not only reduces training memory to levels as low as those required for
inference but also maintains or improves personalization performance compared to
existing methods.

1 Introduction

Recent research on text-to-image (T21) diffusion models [[1,2]], which generate high-resolution images
from text prompts, has increasingly focused on personalizing and customizing these generative models
effectively [3} 14} 15,16, [7]. A primary approach, termed subject-driven generation [J5], involves fine-
tuning pre-trained diffusion models with a few user-specific images to generate varied representations
of a subject using simple text prompts. This allows users to create personalized images of specific
subjects, such as family, friends, pets, or personal items, with preferred appearances, backgrounds, and
styles. Such capabilities enable creative applications including art renditions, property modifications,
and accessorization.

From a practical standpoint, implementing subject-driven generation on-device offers significant
benefits in efficiency and privacy. By operating independently of congested cloud servers or networks,
users can generate personalized images anywhere at no additional cost and do not need to compromise
their privacy as all data and personal information remain on the device.

*Work done during an internship at Qualcomm AI Research.
TQualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

43058 https://doi.org/10.52202/079017-1363

Despite extensive research aimed at efficiently personalizing diffusion models, limited attention
has been paid to memory I/O, a critical bottleneck in on-device learning. Recent studies have
mainly explored two strategies: (1) decreasing the number of training steps and (2) reducing the
number of updating parameters. The first methods [8 (9} 10} [11} [12] utilize additional large pre-
trained models to generate a set of personalized Low-Rank Adaptation (LoRA) parameters [13]], text
embeddings, or image prompts from a user-specific image. This strategy provides a better initial
setup for personalizing the diffusion models, effectively reducing required training steps. Some
models [[10, [11} [12]] even support zero-shot personalization, although they underline that further
fine-tuning can enhance personalization quality and address failure cases. Nonetheless, these methods
are not viable for environments with severely limited computational resources, as they necessitate
additional inference using large pre-trained models (e.g., 2.7B parameters for BLIP-2 in BLIP-
Diffusion [12] and 2.5B for apprentice models in SuTI [[L1]), which are substantially larger than
standard diffusion models (e.g., 1B for Stable Diffusion v2 [2]), making their application challenging
in on-device settings.

The second approach [7,|14]], often involving LoRA, aims to reduce the number of updating parameters
by limiting updates to specific layers or decomposing weight matrices. However, even with fewer
parameters to update, these parameters reside within large pre-trained models, and thus the backward
pass through the large models is required to compute gradients. Given limited computational resources,
where even simple inference tasks with diffusion models can strain GPU memory, performing
backpropagation while keeping the entire diffusion model in GPU memory remains a significant
limitation.

A promising approach to address these challenges is side-tuning [[15 [16} 17} 18], which fine-tunes
a smaller auxiliary network rather than directly updating the parameters of a large pre-trained
network. This method significantly reduces the heavy memory costs associated with computing
backpropagation on the larger network. Particularly for Natural Language Processing (NLP) tasks,
Ladder Side Tuning (LST) [18] has proven effective, reducing the memory costs required for fine-
tuning large language models (LLMs) by 69 percent. However, applying LST directly to diffusion
U-Nets presents significant challenges. Unlike transformer layers in LLMs, which maintain consistent
input and output dimensions, diffusion U-Nets have varying spatial dimensions and channels, as well
as skip-connections across different blocks. Additionally, the requirements for structural pruning and
weight initialization to build side-tuning networks further complicate the rapid adaptability of LST to
personalization tasks across different subjects and domains.

To this end, we introduce a novel personalization technique called Hollowed Net, which is illustrated
in Fig.|1] Based on our observation that deep layers in the middle of diffusion U-Nets play significantly
less important roles than the rest of the layers, we propose to fine-tune LoRA parameters for the
personalization using Hollowed Net, a layer-pruned U-Net featuring a central hollow, which is
constructed by temporarily removing the middle deep layers from the pre-trained diffusion U-Net.
By utilizing the symmetrical "U-shape" architecture of the diffusion U-Net, we avoid complicated
processes of applying structural pruning and weight initialization to build a side network, and neither
additional models nor extensive pre-training with large datasets are required.

By fine-tuning LoRA parameters using Hollowed Net, we can significantly reduce the memory
needed for storing model weights in GPU. Once the LoRA parameters are fine-tuned with Hollowed
Net, they can be seamlessly transferred back to the original Diffusion U-Net for inference, without
requiring any additional memory beyond the small set of transferred parameters. Our experiments
demonstrate that Hollowed Net enables achieving performance that is comparable to or better than
the direct fine-tuning with LoRA, while using 26 percent less GPU memory, which is only 11 percent
increased GPU memory relative to an inference.

To the best of our knowledge, Hollowed Net is the first technique that addresses subject-driven
generation in terms of memory efficiency. Our method shows how T2I diffusion models can be
fine-tuned under extremely limited computational resources with as low GPU memory as required for
inference. Furthermore, it is important to note that our method does not preclude the use of previously
described strategies for efficient personalization. Both enhanced parameter-efficient strategies and
improved initializations with additional pre-trained models can be integrated with our approach to
further increase efficiency according to given resource constraints.

Our contributions can be summarized as follows:

https://doi.org/10.52202/079017-1363 43059

Frozen

Trainable
b4 LoRA

—>
—5 Forward

Backward

save

load

Stage 1: Pre-computing

Hollowed

Stage 2: Fine-tuning
>
)
S
Q.
| |

!
X @&
ool
H
X &
'

Figure 1: The LoRA personalization with Hollowed Net for resource-constrained environments. The
input image is from the DreamBooth dataset [3].

* We introduce Hollowed Net, a novel personalization technique for T2I diffusion models
under limited computational resources. Our method significantly reduces the memory
demands on GPU to levels as low as those required for inference, while maintaining a
high-fidelity personalization capacity. This demonstrates its potential as a feasible on-device
learning solution for resource-constrained devices.

* Our method provides a scalable and controllable solution for on-device learning. As this
method does not require any additional models or pre-training with large datasets, it is easily
scalable to other architectures such as SDXL and Transformers. Moreover, we can simply
adjust the fraction of hollowed layers to control the trade-offs between performance and
memory requirements, depending on the target application and resources.

* Unlike previous side-tuning methods, Hollowed Net does not need to be retained for
inference. The LoRA parameters fine-tuned with Hollowed Net can be seamlessly transferred
back to its original network, enabling inference with no additional memory cost.

2 Related Works

2.1 Efficient Personalization of T2I Diffusion Models

Recent research on the personalization of T2I diffusion models has introduced various methods
to fine-tune the models for generating diverse images of user-specific subjects from a few given
images. Two foundational works in this area are Textual Inversion and DreamBooth [3} [5]. Textual
Inversion [3]] aims to learn new text embeddings to represent a given subject, while DreamBooth [3]
proposes fine-tuning an entire diffusion model to align the subject with a unique token.

Building on these foundational works, recent research has focused on enhancing the efficiency of this
personalization process, primarily through two approaches. The first approach involves decreasing
the number of training steps, mostly by utilizing an additional large pre-trained model. A popular
method is to use a pre-trained image/multi-modal encoder to generate personalized text embeddings

43060 https://doi.org/10.52202/079017-1363

or image prompts from a user-specific image [9, 12} [10]. Other recent works [8} [1 1] propose utilizing
a set of pre-optimized LoRA parameters or millions of fine-tuned expert models to pre-initialize for
efficient fine-tuning or enable zero-shot generation with in-context learning. While these models
demonstrate significant reductions in the number of training steps, the requirement for additional large
pre-trained models limits their application to on-device settings. Moreover, models with zero-shot
personalization capacities [[11,[12,[10] cannot be a one-size-fits-all solution for addressing different
types of user-subject prompts. These models often struggle with flexibility in editing subjects or
maintaining subject fidelity, and in these cases, additional fine-tuning with specific subjects is needed
to further enhance their personalization capacity [11} [12].

On the other hand, another stream of work adapts parameter-efficient fine-tuning (PEFT) approaches.
These methods demonstrate significant reductions in the number of training parameters by limiting
updates to a small subset of model weights in cross-attention layers [7] or further reducing the
updating parameters by applying singular vector decomposition to weight matrices [14]]. However,
these methods are still limited in environments with extremely low computational resources, as they
require backpropagation over large diffusion models and do not reduce memory usage from the model
weights. Therefore, it is crucial to explore new approaches for personalizing T2I diffusion models in
resource-limited settings, as we propose with our novel method, Hollowed Net. Notably, our method
can be integrated with previously discussed techniques to further improve efficiency based on specific
resource constraints.

2.2 Fine-Tuning with Side Networks

The idea of of side-tuning has been introduced by Zhang et al. [15], proposing the training of
a lightweight "side" network instead of directly fine-tuning a pre-trained network for adaptation.
In terms of efficiency, Cai et al. [16] has demonstrated an additional lightweight residual module
can reduce memory overhead associated with the activations of the original network. Similarly,
AuxAdapt [17] has shown that a small auxiliary network can be fine-tuned to adjust the main
network’s decisions, enabling efficient test-time adaptation for video semantic segmentation tasks.

In the context of generative models, LST [18]] has demonstrated the effectiveness of side networks for
different NLP tasks with LLMs by introducing a small side network that takes intermediate activations
of the main network as input via shortcut connections. However, directly applying LST to diffusion
U-Nets poses challenges due to varying spatial dimensions, channel sizes, and skip-connections across
blocks, unlike the consistent dimensions in transformer layers of LLMs. Furthermore, the structural
pruning and specific weight initialization required to construct side-tuning networks complicate
LST’s adaptability for personalized tasks across a range of subjects and domains.

2.3 Layer Pruning of Large Generative Models

Several concurrent works demonstrate that layer-pruning methods can be applied to generative
models, particularly for NLP tasks. Gromov et al. [19] suggest that for fine-tuning LLM models, up
to 40% of deep layers can be removed, while still achieving comparable results. The authors propose
that the optimal block of layers to prune can be selected based on similarity across layers. Similarly,
Kim et al. [20]] also propose a depth-pruning approach by evaluating block-level importance.

These approaches differ from ours due to the distinct characteristics of LLMs versus diffusion U-Nets.
The aforementioned approaches involve the complete removal of deep layers for both fine-tuning
and inference, considering that those layers store less critical knowledge. However, our study finds
that the deep layers of diffusion U-Nets may be less involved with personalization but still contain
crucial high-level image features for generating high-fidelity images. Thus, their removal can lead
to severe performance degradation, even with additional pre-training [21]], as shown in Appendix [A]
This highlights the importance of our two-stage fine-tuning strategy, which excludes layers during
fine-tuning to reduce memory overhead while preserving the knowledge from these excluded layers
throughout both training and inference stages.

3 Preliminaries

In this section, we describe some preliminaries on T2I diffusion models. First, we discuss the basics
of Stable Diffusion (SD) model and how they can be used for fine-tuning. The SD model is a large

https://doi.org/10.52202/079017-1363 43061

down_blocks.0 [0.0035 down_blocks.0 [N 0.0032

down_blocks.1 | 0.0031 down_blocks.1 | 0.0030
down_blocks.2 = 0.0028 down_blocks.2 [NE- 0.0028
down_blocks.3 —— 0.0016 down_blocks.3 =i 0.0017
mid_block — 0.0011 mid_block —0.0012

up_blocks.0 ——0.0022 up_blocks.0 ——0.0020

up_blocks.1 —— 0.0033 up_blocks.1 — 0.0032

up_blocks.2 ————0.0046 up_blocks.2 =—0.0045

up_blocks.3 NN 0.0048 up_blocks.3 NN 0.0045

0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.001 0.002 0.003 0.004 0.005
(a) DreamBooth (b) CustomConcept101

Figure 2: Analysis of the LoORA weight change before and after personalization, per block of U-Net.

foundational T2I model, pre-trained on large amount of text-image pairs (P, x), where we have
image x and associated text prompt P. The SD contains the following components: (a) Autoencoder
consisting of the encoder-decoder pair (€, D), (b) Text Encoder as CLIP E7(-), and (c) Conditional
Diffusion Model as U-Net € (+). The encoder £(+) processes an image z into a latent space z = (),
and the decoder is used to reconstruct the input image from latent z such that z &~ D(z). The diffusion
process of SD is conducted in the latent space. For a randomly sampled noise ¢ ~ A (0, I) at time
step t, the standard scheduler produces a noisy latent code z; = o,z + o€, where o and oy are
coefficients controlling the noise schedule. The conditional diffusion model €y is trained using the
following de-noising objective:

min Ep, . .[lle — 69(zt,t,ET(P))H§]. e))

After the training is carried out, the conditioned model €y(-) is used to predict the noise by using
the conditional embedding E7(P) and time step ¢ as input. To personalize diffusion models for
subject-driven generation introduced by [J5], the same loss is used except that the data is sampled
from user-specific subjects such as dog, person, backpack, and etc. For the prompt, a special identifier
S is used and described as "a S person”, "a S* backpack", etc. For regularization, [5]] introduces
an additional class-specific prior preservation loss term, written as

min EZ’E,tHlepr - 69(21157 2 ET(P;DT))HS] (2)

where ¢, is the ground truth noise for the data generated using the frozen pre-trained diffusion model

with prompts P, described more generic as "a person”, "a backpack", and etc.

The diffusion U-Net can be fully fine-tuned, but it is also possible to fine-tune only a subset of
parameters with LoRA [[13] for better efficiency. In LoRA, network weight residuals AW are
fine-tuned instead of the full weights W. For the fine-tuning of AW, it is further decomposed into
low-rank matrices A and B such that AW = AB. Since A and B are low-rank matrices, the total
number of parameters to optimize in AW is significantly smaller than in TV

4 Methodology

In this section, we describe the details of our novel memory-efficient personalization technique,
Hollowed Net, and its fine-tuning strategy. We begin by identifying less significant layers for
personalization from diffusion U-Nets. Based on these observations, we explain how to construct
Hollowed Net from a pre-trained U-Net. Next, we present our fine-tuning and inference processes for
memory-efficient personalization of T2I diffusion models.

4.1 Analysis of the LoORA Weight Changes per Block of U-Net

To achieve the goal of reducing the required memory for fine-tuning a diffusion model, we first
identify less significant layers in the diffusion U-Net for personalization. Similar to Li et al. [22],
Kumari et al. [7]] and Shah et al. [6], we analyze the LoRA weight changes AW in the fine-tuned
model for each block:

43062 https://doi.org/10.52202/079017-1363

T >
| P4 Personalized LoRA — Inference Path w/o LoRA —> Inference Path w/ LoORA |

Figure 3: The inference process with personalized LoRA parameters transferred from Hollowed Net
to the original U-Net. The input image is from the DreamBooth dataset [S].

1 n
AW == fw; — wjl, 3)
=1

where w and w’ respectively represent the weights before and after personalization, and 7 is the
total number of weights in a specific block. This represents the average weight change per element
i. Figure 2] shows the analysis of the weight changes AW before and after personalization for each
block of U-Net: (a) for all subjects from the DreamBooth dataset and (b) for all subjects from
the CustomConcept101 dataset by fine-tuning Stable Diffusion v2.1 diffusion model [2] for 1000
steps with a learning rate of 1e-4. The x-axis shows the changes in LoORA weights before and after
personalization, while the y-axis of each plot represents the specific U-Net blocks. For each dataset,
we average the weight changes across subjects and provide error bars to indicate the statistical
variance within each dataset.

From the figures, we observe that the average weight changes tend to be close to zero around the cen-
tral blocks and become increasing for the layers farther from the mid_block. This demonstrates that
the blocks around the center are less involved in the personalization compared to those at the begin-
ning and end of the U-Net (e.g., down_blocks.0, down_blocks.1, up_blocks.2, and up_blocks.3).
We leverage this characteristic for designing Hollowed Net.

4.2 Hollowed Net

Based on the aforementioned observations, we propose fine-tuning a layer-pruned U-Net, which
we refer to as Hollowed Net, instead of directly fine-tuning the entire diffusion model. The core
concept of Hollowed Net involves removing deep layers that are not vital for personalization from
a pre-trained diffusion U-Net. This strategy decreases the need to store the entire model in GPU
memory, thereby reducing the memory cost associated with the model’s weights.

However, unlike transformer layers in large language models, where input and output maintain
the same data structure, the alterations in spatial and channel dimensions in U-Net architectures
complicate the removal of its deep layers in the middle. To address this, we utilize the symmetrical
"U-shape" architecture of the diffusion U-Net, where each down-block layer’s output is concatenated
with a corresponding up-block layer’s input via a skip-connection. This design permits us to select any
up-block layer skip-connected to a down-block layer and hollow out the middle layers between the
pair, ensuring that the processed information from the remaining down-blocks can still be transferred
to the remaining up-blocks without the need for additional projection layers to adjust for dimensional
differences. The missing input for the upper layer, due to the removal of the middle layers, is replaced
with the pre-computed output from the full diffusion U-Net, which is illustrated in the next section.

4.3 LoRA Personalization with Hollowed Net
To optimize GPU memory utilization, we propose a two-stage fine-tuning strategy: (1) pre-computing

intermediate activations of the original diffusion U-Net and (2) fine-tuning the Hollowed Net using the
pre-computed activations, as shown in the upper and bottom half of Fig. [T} respectively. Initially, we

https://doi.org/10.52202/079017-1363 43063

Table 1: The quantitative comparisons of fine-tuning methods with three evaluation metrics. The
number of parameters are the ones held in GPU memory during fine-tuning stage. The results are
obtained by averaging over four runs with different seeds (standard deviation is added in a small-sized
text).

Method # of Parameters Training Memory DreamBooth CustomConcept101
Base LoRA Peak Comp. w/ Inf. DINO CLIP-I CLIP-T DINO CLIP-I CLIP-T
0.663 0.802 0.302 0.605 0.773 0.302
Full FT 866M B 16.62GB +376% 4+0.013 +0.007 +0.002 +0.005 +0.006 +0.002
LoRA FT 0.658 0.806 0.299 0.603 0.773 0.302
(r=128) 866M M 5.23GB +50% +0.001 40.005 +0.002 +0.008 +0.005 +0.002
LoRA FT 0.516 0.738 0.314 0522 0.737 0.305
(r=1) 866M 207K 4.84GB +39% +0.011 +0.003 +0.001 +0.008 +0.005 +0.001
Hollowed Net 0.660 0.805 0.300 0.603 0.773 0.302
(Ours) 527M 24M 3.88GB +11% +0.011 +0.006 +0.001 +0.007 £0.005 +0.002
Table 2: Human evaluation results Table 3: Computational loads (FLOPs)
Method Subject Fidelity — Text Fidelity Method Pre-computing Fine-tuning Inference
Hollowed Net 31.2% 18.1% Hollowed Net 0.238T 2.004T 0.920T
Tie 49.3% 69.4% LoRAFT - 2.148T 0.716T
LoRA FT 19.5% 12.5%

conduct a forward pass with a pre-trained diffusion model for the specified number of pre-computing
steps. During each step, given input images and sampled noise, we calculate and store intermediate
activations in the data storage, which serve as inputs for the upper-block layer of the Hollowed Net.
We also store the sampled noises, time steps, and the IDs when there are multiple user images.

Once the data from the pre-trained model is pre-computed, we fine-tune the Hollowed Net by loading
data from data storage, thereby avoiding the need to keep the original model in GPU memory. To
further improve efficiency, we apply LoRA fine-tuning for the Hollowed Net instead of updating
entire parameters. The reduced number of parameters of the Hollowed Net decreases the required
GPU memory, satisfying the device’s low memory I/O threshold and computational load during
backpropagation.

Additionally, our inference process ensures that both the original diffusion model and Hollowed Net
are not simultaneously maintained on GPU. Unlike side-tuning networks [[15} 17, 18] that differ in
architecture and parameters from their original models, Hollowed Net maintains the same architectures
and parameters as the original diffusion U-Net, except for the removed middle layers. Thus, the LoORA
parameters fine-tuned on Hollowed Net can be seamlessly transferred to the corresponding layers in
the original U-Net. As depicted in Fig.|3| there are two inference paths, respectively corresponds to
each stage of fine-tuning. The first path (green line) represents the process of computing intermediate
activations without using LoRA, aligning with the pre-computing stage. The second path (red line)
involves using personalized LoRA parameters, which matches the application of these parameters
for generating personalized images during the fine-tuning stage. By sequentially executing these
paths, we enable personalized generation using the transferred LoRA parameters without requiring
additional memory beyond the small set of LoRA parameters.

S Experiments

5.1 Experimental Settings

We conduct experiments following the protocol proposed in DreamBooth [5]. We use a total of 131
subjects for experiments, utilizing both the DreamBooth [S]] and CustomConcept101 [7] datasets. The
DreamBooth dataset includes 30 image sets from 15 different classes, each containing 4-6 images of
a given subject. The subjects are divided into living subjects and objects, and 25 different prompts are
assigned based on this division. Meanwhile, the CustomConcept101 dataset includes 101 image sets,
each containing 3-15 images of a given subject. The subjects consist of 15 different large categories,
with 20 unique prompts assigned to each category. For evaluation, four images with different fixed
random seeds are generated per subject per prompt for both datasets.

43064 https://doi.org/10.52202/079017-1363

A [V] dog wearing a
red hat

A [V] teapot A bronze [V] teapot

A [V]toy A [V]toy in the snow

A V] toy with a

A [V] toy with the Eiffel A[V] dog in a police
A silver [V] teapot A gold [V] teapot Tower in the mountain in the g in ap
outfit
background background

A watercolor paintig
of [V] plushie on a
mountain

A kitten exploring the
[V] houseplant

P Fe &
Japanese ink wash
painting of a [V]
houseplant

A [V] plushie in Grand A koala in the style of A [V] houseplant next
Canyon [V] plushie to a vintage typewriter

A [V] barn oil painting
Ghbli inspirted

Painting of [V] barn in
the style of Van Gogh

Figure 4: Qualitative generation results of Hollowed Net with different subjects and prompts. The
upper half are the examples from the DreamBooth dataset [3], and the lower half are the examples
from the CustomConcept101 dataset [7]].

We adopt the three evaluation metrics from [5]: DINO and CLIP-I for subject fidelity and CLIP-T
for prompt fidelity. DINO and CLIP-I are the average pairwise cosine similarities between feature
embeddings of the real and generated images, using DINO ViT-S/16 and CLIP ViT-B/32, respectively.
As DINO is more sensitive to differences between subjects of the same class due to its training on
instance discrimination, the DINO score is considered the preferred metric for measuring subject
fidelity. The CLIP-T score is the average cosine similarity between text prompt embeddings and image
CLIP embeddings. We use the Stable Diffusion v2.1 diffusion model [2]]. Following DreamBooth [3],
we use a prior preservation loss with ~1000 pre-generated class samples. LoORA is applied for
the cross and self-attention layers and fine-tuned for ~1000 steps. We use AdamW optimizer with
the learning rate of 1e-5 for full-finetuning and le-4 for the others. Assuming a resource-constrained
environment, we use a batch size of 1 and do not update the pre-trained text encoder, while text
embeddings are pre-computed before fine-tuning.

5.2 Results

In this section, we present the results of our proposed Hollowed Net to evaluate its effectiveness
in terms of both memory efficiency and personalization performance. We conduct experiments
with Hollowed Net, applying a hollowed fraction of 39.2%. Architectural details are provided in
Appendix [B] Ablation studies on different fractions of hollowed layers can be found in Sec.[5.3] In
the main results, the rank of Hollowed Net is fixed to 128. Experimental results on different ranks are
presented in Appendix [C]

https://doi.org/10.52202/079017-1363 43065

6.0 0.800 0.850 0.340
LoRA (=128) }
5.0 L
0.700 Py LoRA (r=128) 0,320
oo , [ORA(=I28) 0.800 Hollowed Net
4.0 Inference M
0.600 0.300
3.0 Hollowed Net 0.750 | Hollowed Net LoRA (r=128)
Hollowed Net 0.500 ’ 0.280
2.0 . .
1.0 0.400 0.700 0.260
00 02 04 06 08 0.0 02 04 06 038 0.0 02 04 06 08 0.0 02 04 06 08
(a) Peak Usage (GB) (b) DINO (c) CLIP-I (d) CLIP-T

Figure 5: Analysis of different fractions of hollowed layers. For all figures, the x-axis represents
the fractions of layers removed from the pre-trained diffusion U-Net. The y-axis corresponds to the
metric used for each figure.

Quantitative Evaluation The quantitative results are displayed in Table|I| For comparison base-
lines, we implement full fine-tuning (Full FT) and LoRA fine-tuning (LoRA FT) methods with rank
128 and rank 1 [[13]]. We find that while Full FT results in slightly higher performance than other
methods, particularly in terms of DINO, the differences between Full FT and Hollowed Net are not
significant as it is within the range of standard deviations of Full FT results across different seeds.
Moreover, Full FT requires more than 16GB of GPU memory which is nearly 4.7 times the memory
cost of performing an inference with a diffusion U-Net. Clearly, this is not a feasible solution for
on-device learning, where computation resources, especially memory I/O, are extremely limited.

Our Hollowed Net demonstrates its superior memory efficiency based on a significant reduction
in model size, requiring only 3.88GB of GPU memory usage for fine-tuning. This is only an 11%
increase compared to inference. Its personalization performance is comparable to or marginally better
than that of LoRA fine-tuning using the same rank (r = 128), while LoRA requires a 50% increase in
GPU memory compared to inference. Using the lowest rank of LoRA (r = 1) does not compete with
Hollowed Net either, as its memory efficiency is limited by the need to run backpropagation on the
entire U-Net, even though the number of fine-tuning parameters is significantly small. Additionally,
the use of a low number of fine-tuning parameters significantly degrades personalization capacity.

For human evaluation, we conduct user studies with 40 participants, each completing a set of 25
comparative tasks. In each task, participants are presented with a reference image, a prompt, and two
generated images (A and B). They answer two questions: subject fidelity and text fidelity. Each pair
of generated images, A and B, is created using Hollowed Net and LoRA FT, and the labels (A or B)
are randomly assigned for each task. Table[2]displays the results of these user studies. These findings
confirm that users generally perceive the images generated by Hollowed Net and LoRA FT to be
similar in both subject fidelity and text fidelity, consistent with the main results presented in Table I]

Additionally, we include the analysis of computational loads for Hollowed Net and LoRA FT in
Table 3] Each number corresponds to one step of each stage: one forward pass for pre-computing
and inference and one forward+backward pass for fine-tuning. For the fine-tuning of Hollowed Net,
~1000 steps are required, totaling 2.004 x 1000 = 2004 TFLOPs. For pre-computing, we find 200
pre-computed samples are sufficient to achieve high-fidelity results (see Appendix [D]for a detailed
analysis), requiring 0.238 x 200 = 47.6 TFLOPs of additional computation. Therefore, the total
computation required for training with Hollowed Net is 2004 + 47.6 = 2051.6 TFLOPs, which is
lower than 2.148 x 1000 = 2148 TFLOPs needed for LoRA FT. On the other hand, for running an
inference pass, Hollowet Net requires approximately 0.204 TFLOPs more than LoRA FT, as it needs
to repeat part of the early down-blocks to reproduce the path used in training.

Qualitative Evaluation In Fig.[d] we present qualitative generation results of Hollowed Net for
various subjects and prompts. The upper half shows examples from the DreamBooth dataset, and the
lower half displays examples from the CustomConcept101 dataset. These results demonstrate that
Hollowed Net effectively captures the visual details of the target subjects, while maintaining high
text-image alignment for different types of applications including property modification, recontextu-
alization, accessorization, and artistic rendition. Its ability enabling high-fidelity personalization with
memory costs as low as those of inference makes it an efficient solution for a range of on-device appli-
cations with constrained computational resources. Additional qualitative examples with SDXL [23]]
are included in Appendix [E] illustrating the scalability of our approach in a larger model.

43066 https://doi.org/10.52202/079017-1363

= A [V] stuffed
animal in the

= A V] toy
: w with a wheat

‘\a . field in the

e background

A [V] sneaker
with a mountain g
in the o

¥ background. %

S——

Original
Image Small The fractions of hollowed layers Large

Figure 6: Qualitative results with different fractions of hollowed layers given three subjects from the
DreamBooth dataset [J3].

5.3 Ablation Study on Fractions of Hollowed Layers

Based on the symmetrical "U-shape" architecture of the diffusion U-Net, we can design different
Hollowed Net architectures by selecting a different up-block layer skip-connected to a down-block
layer and hollowing out the middle layers between the pair. Figure [5] presents experimental results
across different fractions of hollowed layers, ranging from around 10% to 85% of layers removed. In
Fig.[5] we observe the peak GPU memory usage decreasing linearly with layer removal, as fewer
model weights need to be stored on the GPU during backpropagation. Analyzing the DINO and
CLIP-I scores in Fig. 5] (b) and (c), we find that the model’s capacity to preserve subject fidelity
remains comparable to or slightly better than LoRA until around 39.2% of layers are removed,
where memory cost reduces nearly to the level of inference. Beyond this threshold, however, subject
fidelity significantly diminishes, as fewer layers essential for personalization are included in the
Hollowed Net. This effect of hollowed layer fractions is also visible in the qualitative results in Fig.[6]
Meanwhile, the CLIP-T score does not exhibit a general trend, except in cases of very high hollowed
fractions, where the model is not capable of personalization, and thus generates images solely based
on a given prompt. However, note that the increase in CLIP-T remains marginal, as Hollowed Nets
with low hollowed fractions also maintain a high capacity for text-image alignment.

6 Conclusion

In conclusion, our paper introduces a novel approach for on-device personalization through memory-
efficient fine-tuning with Hollowed Net. Hollowed Net effectively leverages the architecture of the
diffusion U-Net, enabling fine-tuning with significantly reduced memory costs by minimizing the
model’s size during fine-tuning without requiring any additional processes such as structural pruning
or pre-training on large-scale datasets. However, we observe that, due to the use of non-personalized
prompts with the original network, the model’s performance can be sensitive to the granularity of
class token definitions. For example, the DreamBooth dataset contains "poop emoji" images, for
which the class token is very coarsely defined as "toy". In this case, non-personalized intermediate
activations generated with prompts using "toy" struggle to effectively correlate and generate "poop
emoji" image. Therefore, a careful choice of fine-grained class tokens is necessary for the effective
application of Hollowed Net.

Additionally, it is worth noting that our methodology is orthogonal to existing different PEFT
methods [24} 25] and quantization methods [26}, 27]. Thus, our approach offers substantial potential
for further memory reduction, which is crucial for training under constrained computational resources.
Furthermore, while our primary focus in this paper has been on image generation tasks, our method
is not limited to diffusion models and can be seamlessly extended to various NLP tasks with LLMs,
which we leave for future work. We anticipate that Hollowed Net will be applied to a wide range
of tasks requiring constrained computational resources, serving as an efficient solution for various
on-device applications.

https://doi.org/10.52202/079017-1363 43067

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684—-10695, 2022.

[3] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
arXiv preprint arXiv:2208.01618, 2022.

[4] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836-3847,
2023.

[5] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22500-22510, 2023, licensed
under CC BY 4.0.

[6] Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun Jampani.
Ziplora: Any subject in any style by effectively merging loras. arXiv preprint arXiv:2311.13600, 2023.

[7] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1931-1941, 2023.

[8] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa, Michael
Rubinstein, and Kfir Aberman. Hyperdreambooth: Hypernetworks for fast personalization of text-to-image
models. arXiv preprint arXiv:2307.06949, 2023.

[9] Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. Encoder-
based domain tuning for fast personalization of text-to-image models. ACM Transactions on Graphics
(TOG), 42(4):1-13, 2023.

[10] Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
visual concepts into textual embeddings for customized text-to-image generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 15943—-15953, 2023.

[11] Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, and William W Cohen.
Subject-driven text-to-image generation via apprenticeship learning. Advances in Neural Information
Processing Systems, 36, 2024.

[12] Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for controllable
text-to-image generation and editing. Advances in Neural Information Processing Systems, 36, 2024.

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[14] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff: Compact
parameter space for diffusion fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7323-7334, 2023.

[15] Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: a baseline
for network adaptation via additive side networks. In Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16, pages 698-714. Springer, 2020.

[16] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce activations, not trainable parameters
for efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

[17] Yizhe Zhang, Shubhankar Borse, Hong Cai, and Fatih Porikli. Auxadapt: Stable and efficient test-time
adaptation for temporally consistent video semantic segmentation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2339-2348, 2022.

[18] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory efficient
transfer learning. Advances in Neural Information Processing Systems, 35:12991-13005, 2022.

43068 https://doi.org/10.52202/079017-1363

[19] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

[20] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv preprint
arXiv:2402.02834, 2024.

[21] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: A lightweight, fast,
and cheap version of stable diffusion. arXiv preprint arXiv:2305.15798, 2023.

[22] Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with elastic weight
consolidation. arXiv preprint arXiv:2012.02780, 2020.

[23] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe Penna,
and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

[24] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[25] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

[26] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1972-1981, 2023.

[27] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and

Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 17535-17545, 2023.

https://doi.org/10.52202/079017-1363 43069

A Experiments with Layer-Pruned Diffusion Models

As shown in recent work [21], layer pruning involves the complete removal of selected layers, which
necessitates extensive pre-training on large datasets to recover lost information and restore model
functionality. However, diffusion models often suffer from substantial performance degradation
post-pruning, as the lost information may not be fully recoverable through pre-training.

Tablepresents experiments with BK-SDM [21] models, layer-pruned SD models, using rank-128
LoRA. Compared to the results in Table [T} these models achieve memory usage comparable to
Hollowed Net but show significant performance degradation. Despite extensive pre-training, their
performance remains compromised.

In contrast, Hollowed Net does not completely remove deep layers and requires no additional
pre-training. Instead, we temporarily exclude selected layers during fine-tuning while preserving
essential information through a pre-computation stage. Notably, despite this added stage, the overall
computational load for training Hollowed Net can remain more efficient than LoRA fine-tuning, as
discussed in Sec.[5.2]and Appendix

Table 4: Quantitative results of BK-SDM on the DreamBooth dataset [5]].

Method # of Parameters Training Memory DINO CLIP-I CLIP-T
BK-SDM-Base 595.7M 3.546GB 0.629 £0.012 0.788 +0.007 0.300 £ 0.001
BK-SDM-Small 496.2M 3.133GB 0.602 £ 0.013 0.774 +0.008 0.298 £ 0.001

Original U-Net (0% Removed)

- pif1-2(f -3l 2-1 i} 2-2 1| 2-3 1| 3-1 {1} 3-2[]] 3-3 - 7-2|[|7-3| | 7-4|l|8-1]|[[8-2|[|8-3| |8-4|||9-1|][9-2([[9-3 [y
RA RA D RA RA D RA RA D RA RA RA u RA RA RA u RA RA RA

L] L L J L J L J L] L] L L J
down_blocks.0 down_blocks.1 down_blocks.2 down_blocks.3 mid_block up_blocks.0 up_blocks.1 up_blocks.2 up_blocks.3

Hollowed Net (39.2% Removed)

1 1-2([[1-3([]] 21 2-2(]]2-3([|3-1 3-2 71 7-2(1|7-3[| 7-4([|8-1 8-2|]|8-3| |8-4(]|9-1 9-2(]]9-3 [y
RA RA D RA RA D RA RA RA RA RA u RA RA RA u RA RA RA

L I L J L J L J L J L I L J L J L J
down_blocks.0 down_blocks.1 down_blocks.2 down_blocks.3 mid_block up_blocks.0 up_blocks.1 up_blocks.2 up_blocks.3

Figure 7: Architectural details of Hollowed Net. R represents ResBlock. RA represents a set
of ResBlock and CrossAttentionBlock. D and U represent Downsample and Upsample Convs,
respectively.

B Architectural Details of Hollowed Net

In this section, we present the architectural details of Hollowed Net. We leverage the skip connections
inherent in the U-Net architecture to determine which layers to be removed during fine-tuning
(hollowed). For our main results, we choose the third block of the down_blocks.2 (block 3-3), the
entire down_blocks.3 (blocks 4-1 and 4-2), the entire mid_block (blocks 5-1 and 5-2), and the entire
up_blocks.0 (blocks 6-1, 6-2, 6-3, and 6-4) to be hollowed, which corresponds to around 39.2% of
the U-Net’s parameters, as described in Fig.[7]

Similarly, Hollowed Net with different fractions of hollowed layers can be achieved as follows:

¢ 11.5% removed: blocks 5-1 and 5-2 are hollowed.
¢ 20.8% removed: blocks 4-2, 5-1, 5-2, and 6-1 are hollowed.

43070 https://doi.org/10.52202/079017-1363

* 30.1% removed: blocks 4-1, 4-2, 5-1, 5-2, 6-1, and 6-2 are hollowed.
* 56.6% removed: blocks 3-2, 3-3, 4-1, 4-2, 5-1, 5-2, 6-1, 6-2, 6-3, 6-4, and 7-1 are hollowed.

* 73.3% removed: blocks 3-1, 3-2, 3-3, 4-1, 4-2, 5-1, 5-2, 6-1, 6-2, 6-3, 6-4, 7-1, and 7-2 are
hollowed.

¢ 84.3% removed: blocks 2-3, 3-1, 3-2, 3-3, 4-1, 4-2, 5-1, 5-2, 6-1, 6-2, 6-3, 6-4, 7-1, 7-2, 7-3,
and 7-4 are hollowed.

Table 5: Quantitative results of LoRA FT and Hollowed Net with different ranks

Method # of Parameters Training Memory DINO CLIP-I CLIP-T

LoRA r=4 866.7M 4.847GB 0.564 £ 0.014 0.766 + 0.006 0.311 + 0.001
LoRA r=16 869.2M 4.883GB 0.618 =0.008 0.788 = 0.005 0.305 +£ 0.001
Hollow r=4 527.7TM 3.526GB 0.566 £ 0.009 0.763 £0.003 0.311 £ 0.001
Hollow r=16 529.9M 3.558GB 0.626 +0.009 0.789 +0.005 0.305 + 0.001

C Experiments with Different Ranks

In Table [5] we present the results using LoRA and Hollowed Net with different ranks (4 and 16)
using the DreamBooth dataset. While the default rank of 4 in the diffusers library is often used, we
have found that it often oversimplifies personalization details or fails to effectively handle a range
of challenging subjects and prompts. Increasing the rank from 4 to 16 improves subject fidelity.
However, to achieve personalization quality comparable to full fine-tuning across all subjects and
prompts, we find that the rank of 128 is necessary.

15 0.70 0.82 0.32
12 0.65 0.80 0.31
0.9 <
0.60 0.78 0.30
0.6
0.3 0.55 0.76 0.29
0.0 50 0.74 0.28
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Data Storage (GB) (b) DINO (c) CLIP-I (d) CLIP-T
Figure 8: Analysis of different numbers of pre-computed samples. For all figures, the x-axis represents

the number of pre-computed samples. The y-axis corresponds to the metric used for each figure.

Table 6: Resource usage analysis for different hollowed fractions and numbers of pre-computed

samples
Hollowed Fraction # of Precomputed Samples Peak GPU Usage Date Storage Pre-computing FLOPs Fine-tuning FLOPs Total FLOPs
11.5% 200 4.49GB 0.08GB 44T 2081T 2125T
11.5% 500 4.49GB 0.19GB 109T 2081T 2190T
11.5% 1000 4.49GB 0.38GB 218T 2081T 2299T
39.2% 200 3.88GB 0.26GB 48T 2004T 2052T
39.2% 500 3.88GB 0.66GB 119T 2004T 2123T
39.2% 1000 3.88GB 1.31GB 238T 2004T 2242T
56.6% 200 3.16GB 0.26GB 56T 1776T 1832T
56.6% 500 3.16GB 0.66GB 140T 1776T 1916T
56.6% 1000 3.16GB 1.31GB 279T 1776T 2055T

D Further Analysis on Computational Costs

In Fig. [§] we provide ablation studies on the impact of varying the number of samples on both
quantitative and qualitative results. The findings indicate that using only 200 pre-computed samples
results in minimal performance degradation compared to using 1000 pre-computed samples.

Additionally, we present a detailed analysis of computational loads and space consumption in Table 6]
for different numbers of precomputed samples and different fractions of hollowed layers, which

https://doi.org/10.52202/079017-1363 43071

will enable users to choose the optimal configurations of Hollowed Net according to their specific
resource constraints.

down_blocks.0
down_blocks.1
down_blocks.2
mid_block
up_blocks.0
up_blocks.1
up_blocks.2

I — 0.0036
I 0.0027
—E=— 0.0024
——0.0025
F=—0.0030
I E=— 0.0046
I — 0.0046

0.000 0.001 0.002 0.003 0.004 0.005

(a) DreamBooth

down_blocks.0
down_blocks.1
down_blocks.2
mid_block
up_blocks.0
up_blocks.1
up_blocks.2

—E=— 0.0035
[- 0.0027
e 0.0024
i 0.0025
= 0.0029
e 0.0046
I 0.0046

0.000 0.001 0.002 0.003 0.004 0.005

(b) CustomConcept101

Figure 9: Analysis of the LoORA weight change before and after personalization, per block of U-Net
using SDXL [23].

[V] on a purple rug
in the forest

[V] wearing a
yellow shirt

[V]in a purple
wizard outfit

[V] wearing pink
glasses

[V] with a colorful
flower bouquet

[V] in the snow

[V] on the beach

[V] on top of a
wooden floor

Figure 10: The qualitative examples of Hollowed Net and LoRA FT with the samples from the
DreamBooth dataset [5]] using SDXL [23]].

43072

https://doi.org/10.52202/079017-1363

E Experiments with SDXL

To demonstrate the scalability of Hollowed Net, we present additional analysis and qualitative
examples using SDXL [23]]. Figure [0]shows that similar patterns of weight changes are observable
with SDXL, as displayed in Fig.[2] In Fig.[I0] we present qualitative examples of Hollowed Net and
LoRA FT with the samples from the DreamBooth dataset using SDXL. Hollowed Net is applied by
removing the entire mid_block layers (410M parameters) of SDXL. The results show that Hollowed
Net achieves high-fidelity personalization results comparable to LoRA FT.

https://doi.org/10.52202/079017-1363 43073

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer Section 5 Experiments which includes the materials to support the
answer.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer Section 6 Conclusion which describes the limitation.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

43074 https://doi.org/10.52202/079017-1363

Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer Section 4 and 5 which describe the details of our architecture and
experimental settings.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

https://doi.org/10.52202/079017-1363 43075

Answer:

Justification: We used a public dataset and described its experimental settings (Refer the
Section 5). The code would be available after an internal review process has been completed
(not available at this submission time).

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer Section 5 Experiments which describes the details.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Refer the table in Section 5 Experiments where the statistical variations of the
results are included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

43076 https://doi.org/10.52202/079017-1363

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer the Section 5 Experiments for the details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Conform with the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: (based on the guideline described below) Our work does not consider to
improve the quality of generative models itself but to optimize the network to fine-tune the
model in a faster and more efficient way.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

https://doi.org/10.52202/079017-1363 43077

https://neurips.cc/public/EthicsGuidelines

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release any model or dataset but considers an efficient
fine-tuning method.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our work uses the model and dataset with the license and terms of use explicitly
mentioned in the release package.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

43078 https://doi.org/10.52202/079017-1363

paperswithcode.com/datasets

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

https://doi.org/10.52202/079017-1363 43079

