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Abstract

Predicting potential outcomes of interventions from observational data is crucial
for decision-making in medicine, but the task is challenging due to the fundamental
problem of causal inference. Existing methods are largely limited to point estimates
of potential outcomes with no uncertain quantification; thus, the full information
about the distributions of potential outcomes is typically ignored. In this paper,
we propose a novel causal diffusion model called DiffPO, which is carefully
designed for reliable inferences in medicine by learning the distribution of potential
outcomes. In our DiffPO, we leverage a tailored conditional denoising diffusion
model to learn complex distributions, where we address the selection bias through
a novel orthogonal diffusion loss. Another strength of our DiffPO method is that it
is highly flexible (e.g., it can also be used to estimate different causal quantities
such as CATE). Across a wide range of experiments, we show that our method
achieves state-of-the-art performance.

1 Introduction

Predicting potential outcomes (POs) for patients from observational data is crucial for decision-
making in medicine [16]. For example, in cancer care, one is interested in individualized predictions
of survival under different treatment plans, which can then help medical practitioners choose a
treatment plan that promises the largest chance of survival [48].

Predicting POs of interventions from observational data is challenging due to the fundamental problem
of causal inference, i.e., the fact that one cannot obverse all POs for each individual [27]. Further, in
observational data, treatments are generally not assigned completely randomly, and, as a result, the
distributions of covariates in the treatment and control groups differ [54]. If this covariate shift is not
taken into account, the distributions of POs given the covariates would be learned sub-optimally [13,
11].

In the causal inference literature, many existing methods are aimed at conditional average treatment
effect (CATE) estimation where POs are used as auxiliary quantities (e.g.,[1, 2, 3, 6, 10, 12, 13, 25, 28,
30, 31, 32, 37, 45, 64, 66]). In principle, some CATE methods could be used for predicting POs but
these are not tailored for POs and thus tend to underperform at predicting POs. The underlying reason
is that the estimator with the best performance in estimating CATE might not do best at predicting
POs in finite samples [11, 13]. Additionally, many state-of-the-art CATE estimators leverage an
inductive bias [13, 31], i.e., they assume that POs should share similar structures. As a result, they
assume that the CATE follows a much simpler function than the POs, so that it is easier to learn
the CATE than each PO separately. Moreover, most of these methods only focus on point estimates
instead of learning the distributions of POs. The latter is more difficult but very crucial for reliable
decision-making in medical applications.
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Table 1: Overview of key methods for CATE estimation (and predicting POs). UQ refers to whether
the methods allow for uncertainty quantification of POs. Bias addressing refers to whether the
methods address the selection bias. Orthogonal refers to whether it is robustness (i.e., Neyman-
orthogonality wrt. nuisance functions). POs are the target refers to whether the methods are originally
designed for the task of predicting POs.

Estimator type UQ Bias-addressing Orthogonal POs are the target Key limitations

S-learner [37] One-step (plug-in), model-agnostic ✗ ✗ ✗ ✓ Selection bias; point estimator
T-learner [37] One-step (plug-in), model-agnostic ✗ ✗ ✗ ✓ Selection bias; point estimator
DR-learner[31, 39] Two-step, model-agnostic ✗ ✓ ✓ ✗ CATE inductive bias; point estimator
RA-learner[12] Two-step, model-agnostic ✗ ✓ ✗ ✗ CATE inductive bias; point estimator
TARNet [54] One-step (plug-in), model-specific ✗ ✗ ✗ ✓ Selection bias; point estimator
CFR [30] One-step (plug-in), model-specific ✗ ✓ ✗ ✓ Point estimator
GANITE [64] Two-step, model-specific (✗) ✗ ✗ (✗) Selection bias; unstable training
TEDVAE [66] One-step (plug-in), model-specific ✗ ✗ ✗ ✗ Selection bias; non-identifiability

DiffPO (ours) One-step (plug-in), model-specific ✓ ✓ ✓ ✓ Sampling time longer

(✗) in the column UQ refers to that methods are not originally designed for uncertainty quantification of POs, but can be adapted for this purpose.

In this paper, we propose a causal diffusion model called DiffPO for predicting POs. Specifically, we
leverage a tailored conditional diffusion model to learn complex distributions of POs. We further
propose a novel orthogonal diffusion loss to adjust for the covariate shift problem in finite samples.
Our orthogonal diffusion loss ensures Neyman-orthogonality, which offers favorable theoretical
properties. In particular, it makes our method more robust to misspecification. Further, our DiffPO is
carefully designed for reliable inferences in medicine and thus allows for uncertainty quantification
We thereby follow recent calls in medicine to move beyond point estimates and offer distributional
knowledge [23, 35], which can inform how likely a certain outcome is and what a probable range of
POs is.

Our method is highly flexible. It can learn distributions of POs for uncertainty quantification and
give point estimates of POs. It can also handle different causal quantities, such as the CATE. This
is unlike many state-of-the-art methods from CATE estimation which are limited to point estimates
[12, 13, 31, 32, 37, 45]. Hence, for different settings, custom methods have to be designed, while our
causal diffusion model offers a flexible and reliable approach.

Overall, our main contributions are the following: (1) We propose a novel causal diffusion model for
learning the distributions of POs, which can give both point estimation but also allows for uncertainty
quantification. (2) We propose a novel orthogonal diffusion loss that ensures Neyman-orthogonality.
(3) We conduct a wide range of experiments in different settings to demonstrate the flexibility and
effectiveness of our DiffPO.1

2 Related Work

Our work aims to learn the distributions of POs for patients. The task is related to CATE estimation
in that the PO framework conceptualizes the CATE as the expected difference between the POs of
a patient with and without treatment. Hence, we include also methods for CATE estimation in our
literature review below. While these could, in principle, be used for predicting POs, we emphasize
that CATE estimation and predicting POs will have a different finite-sample performance.

2.1 Predicting POs and CATE estimation

There have been many works designed for CATE estimation (e.g.,[1, 2, 3, 6, 10, 12, 13, 25, 28,
30, 31, 32, 37, 45, 64, 66]). Existing CATE methods fall into two categories: model-agnostic and
model-specific estimators. We only give a concise overview in this section (see Table 1). A detailed
literature review is in Appendix A.3.

Model-agnostic estimators. Model-agnostic learning strategies are also known as meta-learners
(e.g.,[12, 13, 31, 32, 37, 45]). These can be split into (a) one-step (plug-in) learners that output
regression functions from the observational data and then compute the CATE as the difference
between the POs and (b) two-step learners that first estimate nuisance functions to build a pseudo-
outcome and then obtain CATE directly by regressing the input covariates on the pseudo-outcomes in
the second step. (Note that pseudo-outcomes are not potential outcomes).

1Code is available at https://github.com/yccm/DiffPO.
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The problem with one-step plug-in learners (e.g., S-learner [37], T-learner [37]) is that they often do
not address selection bias. The problem with two-step learners (e.g., DR-learner [31, 39], RA-learner
[12]) is that these commonly leverage an inductive bias specific to CATE. Thus, two-step learners
often have benefits for CATE estimation, but they make restrictive assumptions that hurt the finite-
sample performance in predicting POs. Hence, in finite samples, such an inductive bias in CATE
estimation can even lead to bias in PO prediction.

Model-specific estimators. Many model-specific estimators provide instantiations the general model-
agnostic methods: Here, standard machine learning models are adapted to CATE estimation / POs
prediction (e.g.,[10, 30, 54, 61, 64, 66]). Recently, neural networks have been used for model-specific
learners [30, 54, 64, 66]. Yet, model-specific estimators based on neural networks are designed for
CATE estimation but are not directly aimed at POs.

Uncertainty quantification. Most state-of-the-art estimators fail to offer uncertainty quantification
of POs (see Table 1). In particular, these methods typically only offer point estimates, yet without
distributional information and thus do not allow for uncertainty quantification. Yet, distributional
information is crucial for reliable decision-making in medicine and presents the focus of our method.

Implications for benchmarking. Most of the existing works are designed for CATE estimation, but
not for learning the distributions of POs. For benchmarking PO prediction, many methods targeting
the CATE do not include an estimation of POs, and, thus, they are not applicable for our task. We
show this in the column POs are the target in Table 1. Instead, we can only compare with those
methods that are applicable to our task: that is, where the model can directly output POs predictions
[37, 54, 64].

2.2 Diffusion models for causal inference

Diffusion models were introduced for learning from complex distribution for a given dataset from
which one can then sample high-quality data points (e.g., images) [26, 55, 57]. Diffusion models
have achieved state-of-the-art performance, outperforming other generative models on various tasks
in the computer vision field (e.g.,[14, 56, 59]). We give a brief technical overview of diffusion models
in Sec. 3.

Diffusion models were previously used for different causal inference tasks but in a different setting
from ours, for example, generating the counterfactual of a given image [36, 51], answering causal
queries [8], or causal discovery [52]. We emphasize that the aforementioned tasks are different from
ours. For example, the task in [36, 51] is similar to minimizing the changes that one needs to make
to an image in order for the classifier to categorize the image into a different class. The task of
answering causal queries [8, 33, 53] builds upon structural causal models (SCMs), while we are using
the PO framework [50]. The assumptions for fitting SCMs are usually much stronger than the latter.
In causal discovery [52], the output is the causal graph, while our output is a causal quantity. Hence,
these works were all developed for different tasks (and not designed for learning the distributions of
POs). Because of this, the works are not applicable as baselines.

3 Preliminaries on diffusion models

Diffusion models [26, 55, 57] are likelihood-based generative models that use (1) forward and
(2) reverse Markov processes. The (1) forward process ‘disturbs’ the data distribution q (x0) into a
tractable prior N (0, I). For this, it gradually adds noise to an initial sample x0 ∼ q (x0) across T
steps with variance schedules {β1, . . . , βT }. The forward process can be written as q (x1:T | x0) =∏T

t=1 q (xt | xt−1) with Gaussian distribution q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
. It admits

a closed form of q (xt | x0) that is also a Gaussian distribution N (
√
ᾱtx0, (1− ᾱt) I), where ᾱt =∏t

i=1 (1− βi).

The (2) reverse process p (x0:T ) =
∏T

t=1 p (xt−1 | xt) gradually denoises the latent variable
xT ∼ N (0, I) and further allows for generating new data samples from q (x0). The distribu-
tions p (xt−1 | xt) are usually unknown and approximated by a neural network with parameters θ.
Thus, a parameterized Markov chain {pθ (xt−1 | xt)}Tt=1 is trained in the reverse process. It can be
parameterized as pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)). [26] suggested using diagonal
Σθ (xt, t) with a constant σt and computing µθ (xt, t) as a function of xt and ϵθ (xt, t). This yields
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µθ (xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
, where αt := 1− βt, ᾱt :=

∏
i≤t αi and where ϵθ (xt, t)

predicts a ‘ground truth’ noise component ϵ for the noisy data sample xt.

Later, we develop a novel causal diffusion model for predicting POs. We further explain why the
standard loss from above fails in our task because it does not account for the underlying causal
structure. As a remedy, we develop an orthogonal diffusion loss that is tailored to learn complex
distributions of POs.

4 Problem Formulation

Setup: We consider an observational dataset D with i.i.d. patient data. The dataset consists
of: an outcome of interest Y ∈ Y ⊆ R, dX -dimensional covariates (also called confounders)
X ∈ X ⊆ RdX , and a treatment A ∈ {0, 1}. For example, in critical care, the patient covariates
X are different risk factors (e.g., age, gender, prior diseases), the treatment is whether a ventilator
is applied, and the outcome is the patient survival. For notation, let π(x) = p(A = 1 | X = x)
denote the propensity score, which gives the probability of a patient receiving the treatment. Let
p(y | x, a) = p(Y = y | X = x,A = a) be the probability density function of the conditional
distribution p(Y | X,A).

Potential outcomes: We build upon the standard setting of Neyman-Rubin potential outcomes
framework [50]. Hence, let Y (a) denote the potential outcome after intervening on the treatment by
setting it to a. We have two potential outcomes for each individual: Y (1) if treatment is administered
(i.e., A = 1), and Y (0) if not treated (i.e., A = 0). However, due to the fundamental problem of
causal inference [27], only one of the POs is observed. Hence, Y = AY (1) + (1−A)Y (0).

Identifiability: To ensure that POs are identifiable, we follow previous literature (e.g.,[12, 31, 64])
and make the following standard assumptions:

Assumption 1. (1) Consistency: If an individual is assigned treatment a, we observe the associated
potential outcome Y = Y (a). (2) Unconfoundedness: there are no unobserved confounders, so that
Y (0), Y (1) ⊥⊥ A | X . (3) Overlap: treatment assignment is non-deterministic, i.e., 0 < π(x) <
1,∀x ∈ X if p(x) > 0.

Under Assumption 1, the distributions of POs can be identified from observational data via p(Y (a) |
X) = p(Y | X,A = a).

Objective: Our main interest lies in predicting POs in medical settings. Formally, E[Y (a) | X] are
the expected POs corresponding to a treatment assignment (intervention) a for an individual with
covariates X . Predicting POs is crucial for decision support in medicine [16]. For example, in critical
care, doctors aim to predict the survival of each patient under different treatments (e.g., mechanical
ventilation), which can then guide their decision-making.

However, decision-making in medicine needs to be reliable. Because of this, doctors are not only
interested in the point estimate but need to quantify the uncertainty in the POs [23, 35]. For example,
uncertainty quantification is needed in medical practice to decide whether to apply either a treatment
that has a small but certain benefit or a treatment with a large benefit but potentially a large variability
in the outcomes and thus large uncertainty of whether the treatment is actually beneficial for a specific
patient. Hence, we estimate the distribution of the POs after assigning treatment a to an individual,
i.e., p(Y (a) | X). Learning this distribution allows us to sample from it and obtain predictive
intervals for uncertainty quantification.

5 DiffPO for predicting potential outcomes

Overview: In the following, we introduce our DiffPO: a diffusion-based model for predicting POs
with 3 key components (Fig. 1): 1 a forward diffusion process, 2 a reverse diffusion process, and
3 a novel orthogonal diffusion loss. Finally, we introduce our training and sample procedure.
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5.1 Forward and reverse diffusion process

Our DiffPO builds upon diffusion models [26, 55, 57]. We distinguish the distributions learned in the
forward process and the reverse process via q and p, respectively, to make the notation straightforward
in this section.

1 Forward process: Given a data point (y, x, a) sampled from the observational data distribution
p(Y,X,A), in the forward diffusion process, we gradually add Gaussian noise to the initial y (denoted
as y0) across T time steps. This thus produces a sequence of noisy samples y1, . . . , yT in the same
sample space as y0. The forward process follows a Markov chain

q (y1:T | y0) :=
T∏

t=1

q (yt | yt−1) , q (yt | yt−1) := N
(
yt;

√
1− βtyt−1, βtI

)
, (1)

where βt is a variance schedule: {βt ∈ (0, 1)}Tt=1 is a small positive constant that represents a noise
level and, thus, essentially controls the step sizes. By using the reparameterization trick [34], sampling
yt at an arbitrary timestep t has a closed form

q (yt | y0) = N
(
yt;

√
ᾱty0, (1− ᾱt) I

)
, (2)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. Thus, yt can be expressed as

yt (y0, ϵ) =
√
ᾱty0 +

√
1− ᾱtϵ, (3)

where ϵ ∈ RdY ∼ N (0, I). As a result, the data sample y0 gradually ‘looses’ its distinguishable
features for later steps t. Eventually, when T → ∞, yT is equivalent to an isotropic Gaussian
distribution.

2 Reverse process: We aim to learn the true distributions of POs, which can be identified as the
conditional distribution in Sec. 4. Using the notation above, it can be rewritten as q (y0 | x, a) =∫
q (y0:T | x, a) dy1:T . As q (yt−1 | yt, x, a) is intractable, we need to learn a model distribution pθ

parameterized by θ to approximate the data distribution.

The reverse process starts at a known prior distribution with density p (yT ) = N (yT ;0, I) and then
proceeds backward to obtain the data distribution at step t = 0. Formally, the reverse diffusion
process is also a Markov chain, and the density of its joint distribution pθ (y0:T | x, a) can be written
as

pθ (y0:T | x, a) := p (yT )

T∏
t=1

pθ (yt−1 | yt, x, a) , yT ∼ N (0, I). (4)

We employ a conditional diffusion model with the reverse process in Eq. (4). The conditional density
pθ (yt−1 | yt, x, a) is also Gaussian, and we parameterize it as

pθ (yt−1 | yt, x, a) := N
(
yt−1;µθ (yt, t | x, a) , σ2

t I
)
. (5)

The reverse process gradually denoises yT ∼ N (0, I) through the learned Gaussian transitions. Once
we have computed the latter, we approximate the original data distribution and can even sample from
it.

Variational inference: Directly computing and maximizing the likelihood pθ(y0 | x, a) is difficult
because it involves intractable integration. As a remedy, we frame the learning objective for the above
diffusion processes through variational inference. Thus, the parameters θ can then be optimized by
maximizing the evidence lower bound (ELBO) via

log pθ (y0 | x, a) ≥ Ey1:T∼q(Y1:T |y0)

[
log

pθ (y0:T | x, a)
q (y1:T | y0)

]
. (6)

The right side of Eq. (6) can be rewritten as (see Appendix B for the derivation)

Ey1∼q(Y1|y0) [log pθ (y0 | y1, x, a)]︸ ︷︷ ︸
reconstruction term

−DKL (q (yT | y0) ∥p (yT ))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eyt∼q(Yt|y0) [DKL (q (yt−1 | yt, y0) ∥ pθ (yt−1 | yt, x, a))]︸ ︷︷ ︸
denoising matching term

.
(7)
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Figure 1: Overview of our causal diffusion model DiffPO. Our method involves a forward and
reverse diffusion process to learn the distributions of potential outcomes. Additionally, we address
selection bias through our orthogonal diffusion loss.

In the denoising matching term, we try to minimize the KL-divergence between two distributions, one
is tractable, ground truth denoising transition step q (yt−1 | yt, y0), and other is denoising transition
step pθ (yt−1 | yt, x, a).
Conditional denoising function. In practice, directly optimizing the learning objective in Eq. (7)
is inefficient. Recently, [26] has shown a way to turn the optimization of the ELBO into a simpler
problem for unconditional diffusion models. We thus follow a similar way to obtain a simpler
problem for our learning objective, but for our conditional diffusion models.

We employ a trainable conditional denoising function fθ : (Y × R | X ,A) → Y . The conditional
denoising function is a function approximation, which we use to predict the ‘ground truth’ noise
component ϵ for the noisy data sample yt conditioned on x and a. We consider the following
parameterization that computes µθ (yt, t | x, a) as a function of yt, x, a and fθ. This gives

µθ (yt, t | x, a) =
1√
αt

(
yt −

βt√
1− ᾱt

fθ (yt, t | x, a)
)
. (8)

The simplified training objective for t ∼ Unif{1, . . . , T} is then

E(y0,x,a)∼p(Y,X,A);ϵ∼N (0,I)

[∥∥ϵ− fθ
(√

ᾱty0 +
√
1− ᾱtϵ, t | x, a

)∥∥2] . (9)

We provide the full derivation of Eq. (8) and Eq. (9) in Appendix C.

5.2 Orthogonal diffusion loss for addressing selection bias

Why we need to address selection bias through our orthogonal diffusion loss: In observational data,
treatments are not randomized but are administered according to some (unknown) behavioral policy.
This can result in a selection bias, especially in medical practice. For example, patients with a more
severe health state will also receive a more aggressive treatment. As a result, when treatment A is
selected based on the covariates X , the propensity score π(X) is not constant, implying that the
distributions of covariates in treatment and control groups differ. Formally, we have a distribution
shift in the covariates, i.e., p(X | A = 0) ̸= p(X | A = 1). If not adjusted for, this distribution shift
may result in a selection bias and thus an inflated variance in the estimates of POs (and thus the
causal effects), especially in low-sample settings [12, 29, 54]. To address this, we thus introduce a
novel orthogonal diffusion in the following.

3 Orthogonal diffusion loss. Our proposed orthogonal diffusion loss is inspired by orthogonal
learning theory [18, 60]. Orthogonal learning theory provides a general toolbox for inference
with semi-parametric models to provide quasi-oracle rates for statistical learning with a nuisance
component. Informally, orthogonal losses are first-order insensitive to misspecification of the nuisance
functions, which introduces many favorable properties such as double robustness [63]. Below, we
construct an orthogonal diffusion loss for our method.

We start by noting that π(x) is not constant and is unknown in observational datasets. Because of
that, one cannot simply use the propensity scores to reweight the data. Instead, we need a trainable
approach to reweight the data and thus adjust for the distribution shift from above. To this end, the
propensity score π(x) is a nuisance function in our method, which we estimate through a trainable
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function gϕ parameterized by ϕ. Let us denote the estimated propensity score by π̂(x) = gϕ(x). We
then assign weights wπ̂(x, a) to each sample via some function wπ̂ : (X × {0, 1}) → R+. More
specifically, we define the function wπ̂ : (X × {0, 1}) → R+ as

wπ̂(x, a) =
a

π̂(x)
+

1− a

1− π̂(x)
. (10)

Then, our orthogonal diffusion loss is given by

L(θ, π̂) =E(y0,x,a)∼p(Y,X,A);ϵ∼N (0,I)

[
wπ̂(x, a)

∥∥ϵ− fθ
(√

ᾱty0 +
√
1− ᾱtϵ, t | x, a

)∥∥2 ]. (11)

The loss in Eq. (9) fits the conditional distributions p(Y | X,A) based on the data samples from
the joint observational distribution, i.e., (y0, x, a) ∼ p(Y,X,A). Due to the selection bias, this
implies that p(Y | X,A = 1) is learned better for the treated population and p(Y | X,A = 0)
for the untreated population [60]. Yet, our target is to learn the potential outcome distributions
p(Y (a) | X) = p(Y | X,A = a) for both a = 0 and a = 1 equally well in all the populations.
This would be equivalent to minimizing the target loss from Eq. (9) if the samples are from the joint
distributions of the POs, i.e., (y0, x) ∼ p(Y (a), X). However, we do not have samples from the
distributions of POs, thus we need the target loss in Eq. (11) to be estimated via the propensity score
π(x) to learn the distributions of POs. Hence, the following remark holds.
Remark 1. The orthogonal diffusion loss in Eq. (11) evaluated with the ground truth nuisance
functions matches the following target loss:

L(θ, π) =
∑

a∈{0,1}

E(y0,x)∼p(Y (a),X);ϵ∼N (0,I)

[∥∥ϵ− fθ
(√

ᾱty0 +
√
1− ᾱtϵ, t | x, a

)∥∥2] . (12)

Proof. The orthogonal diffusion loss in Eq. (11) is an inverse propensity-weighted estimator of the
target loss in Eq. (12).

Theorem 1 (Neyman-orthogonality). The orthogonal diffusion loss in Eq. (11) is Neyman-orthogonal
wrt. its nuisance functions.

Proof. See Appendix D.

As a result of Neyman-orthogonality, our orthogonal diffusion loss has a clear practical advantage:
it offers robustness against errors in nuisance function estimation. Specifically, it is first-order
insensitive wrt. errors in the propensity score π(x) and, thus, is a more accurate objective for our PO
predictive model.

5.3 Training and sampling

Training. Our training algorithm proceeds along the following steps. We first train the function gϕ
on the dataset to estimate the propensity score. After this, the parameters of gϕ are frozen. We then
compute each sample weight for the orthogonal diffusion loss through the weight function wπ̂. We
finally sample from the observational data distribution and run the forward and reverse process as
described in Sec.5.1. The corresponding training loss is given in Eq. (11).

Sampling. Once our diffusion model has learned the distribution pθ (Yt−1 | yt, x, a), we can generate
samples from it. The sampling process starts by sampling yT from the prior distribution and then
denoising it. To obtain yt−1 from pθ (yt−1 | yt, x, a), this requires the mean µ̃ from the previous step,
which can be computed by Eq. (8). Thus, yt−1 can be computed via µ̃+ σtz, where z ∼ N (0, I).
This process continues for t = T, . . . until we arrive at y0.

Implementation. Our model architecture of denoising function is based on [59] and uses U-Net
[49] as the underlying backbone. We use 4 residual blocks where each is built with MLP layers. The
diffusion embedding dimension is 128. The number of diffusion sampling steps is 100. Training is
conducted with a batch size of 256 and a learning rate of 0.0005. We follow [42] in the way how we
learn propensity scores and thus use fully connected neural networks with softmax activation. During
training, we can only observe one of the two POs due to the fundamental problem of causal inference
[27] (as explained in Sec. 4). To guide the model, we need to identify which PO should the loss be

7

43669 https://doi.org/10.52202/079017-1384



computed on. Hence, we introduce causal masks as input to our model: an observational mask mo, a
targeted mask mt, and a conditional mask mc. We only compute the loss at the place where the value
of the targeted mask is 1. Further details about our implementation are in Appendix E.1.

6 Experiments

6.1 Learning distributions of POs

Performance metrics. We use the Wasserstein distance to evaluate the model performance of learning
the distributions of POs. The k-Wasserstein distance (for any k ≥ 1) between two distributions ν1
and ν2 is

W k (ν1, ν2) =

(∫ 1

0

∣∣F−1
1 (l)− F−1

2 (l)
∣∣k dl

)1/k

, (13)

where F−1
1 (l) and F−1

2 (l) are the quantile functions (inverse cumulative distribution functions) of ν1
and ν2 for quantile l, respectively. Specifically, we compute the empirical Wasserstein distance based

on two sets of finite samples, i.e., W k(ν1, ν2) =
(

1
n

∑n
i=1

∥∥X(i) − Y(i)

∥∥k)1/k

, where X1, . . . , Xn

are the samples from ν1 and Y1, . . . , Yn are the samples from ν2. In our experiments, we report the
empirical Wasserstein distance for k = 1. Lower values of W k are preferred.

Table 2: Results showing in- & out-of-sample em-
pirical Wasserstein distance (i.e., Ŵ 1

in and Ŵ 1
out) for

two potential outcomes (i.e., a = 0 and a = 1) on
the synthetic dataset. Reported: mean ± standard
deviation over ten-fold train-test splits.

a = 0 a = 1

Ŵ 1
in Ŵ 1

out Ŵ 1
in Ŵ 1

out

S-learner∗ [37] 1.007 ± 0.121 1.005 ± 0.234 1.781 ± 0.092 1.955 ± 0.233

T-learner∗ [37] 1.034 ± 0.126 1.002 ± 0.298 1.054 ± 0.092 1.453 ± 0.172

TARNet∗ [54] 0.934 ± 0.155 0.978 ± 0.167 0.922 ± 0.183 1.211 ± 0.212

CFR∗ [54] 0.921 ± 0.112 0.943 ± 0.145 0.909 ± 0.112 1.078 ± 0.192

GANITE∗ [64] 0.759 ± 0.325 1.324 ± 0.229 0.821 ± 0.343 1.112 ± 0.348

DiffPO (ours) 0.043 ± 0.021 0.125 ± 0.051 0.032 ± 0.037 0.091 ± 0.055

Lower = better (best in bold). ∗ modified method to make it comparable.

Dataset. Due to the fundamental problem of
causal inference, the counterfactual outcomes
are never observed in real-world data. We thus
follow prior literature (e.g.,[22, 38]) and bench-
mark our model using synthetic datasets. Fur-
ther details about the synthetic datasets are in
the Appendix F.

Baselines. Many methods are targeting CATE
estimation and, therefore, are not suitable for
PO prediction. We thus compare against those
methods that are applicable to our task (i.e., the
model can directly output POs; see Table 1):
(1) S-learner [37]: is a model-agnostic learner
that fits a single regression model by concatenat-
ing the covariate and the treatment as input; (2) T-learner [37]: is a model-agnostic learner that
fits two separate regression models, one for treated and for controls; (3) TARNet [54]: is based
on representation learning to share information about the outcome across treated and controls with
regularization; (4) CFR [54]: is based on representation learning used in variants of balancing
with TARNet; (5) GANITE [64]: uses a generative adversarial network to generate POs and then
uses another generative adversarial network to generate CATE. We adapt GANITE to our task by
removing the second stage, so that we directly sample POs from the learned distributions in the first
stage. However, methods (1) to (4) above are only able to give point estimates of POs. Therefore,
we follow [24] to equip them with Monte Carlo (MC) dropout to make these methods comparable.
Implementation details are in Appendix E.2.

Results. The results are in Table 2. We find that our method gives the lowest empirical Wasserstein
distance out of all methods, which is desirable. Hence, the experiments show that our method
outperforms the baselines by a clear margin.

6.2 Learning predictive intervals of POs

Performance metrics. To evaluate the ability of our DiffPO to allow for uncertainty estimation, we
follow [24] and examine the predictive intervals (PIs) of the POs generated by different methods. In
medical practice, the treatment effectiveness is often reported based on the 95% and 99% PIs. We
thus compute the individual equal-tailed (1 − α) PIs with α ∈ [0.01, 0.05]. We then calculate the
faithfulness of the estimated PIs to evaluate the empirical coverage by computing the frequency with
which the PIs contain the outcomes in the test data.
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Table 3: Results for uncertainty estimation of the
two potential outcomes (i.e., a = 0 and a = 1).
Reported: mean ± standard deviation over ten-fold
train-test splits.

a = 0 a = 1
95% PI 99% PI 95% PI 99% PI

S-learner∗ [37] 0.801 ±0.05 0.891 ±0.05 0.879 ±0.05 0.898 ±0.05

T-learner∗ [37] 0.832 ±0.05 0.854 ±0.05 0.843 ±0.05 0.821 ±0.05

TARNet∗ [54] 0.855 ±0.08 0.864 ±0.08 0.845 ±0.08 0.878 ±0.08

CFR∗ [54] 0.861 ±0.08 0.954 ±0.08 0.853 ±0.08 0.862 ±0.08

GANITE∗ [64] 0.892 ±0.16 0.902 ±0.16 0.873 ±0.16 0.885 ±0.16

DiffPO (Ours) 0.981 ±0.02 0.985 ±0.01 0.908 ±0.01 0.926 ±0.02

Higher = better (best in bold). ∗ modified for comparability.

Results: We evaluate the empirical coverage
across different quantiles (1 − α). The results
are in Table 3. It shows that our DiffPO is gen-
erally faithful, while this is not the case for the
baselines. This can be expected: MC dropout
relies upon mixtures of Dirac distributions in
parameter space, which leads to approximations
of the true posterior which are questionable and
not faithful [17, 24].

6.3 Point estimates of POs

Table 4: Results for point estimation of POs bench-
marked using the in- & out-of-sample RMSE for
the two potential outcomes (i.e., a = 0 and a = 1)
on the synthetic dataset. Reported: mean ± stan-
dard deviation over ten-fold train-test splits.

a = 0 a = 1
RMSEin RMSEout RMSEin RMSEout

S-learner [37] 0.401 ±0.05 0.391 ±0.05 0.379 ±0.05 0.398 ±0.05

T-learner [37] 0.432 ±0.05 0.454 ±0.05 0.443 ±0.05 0.421 ±0.05

TARNet [54] 0.364 ±0.06 0.388 ±0.06 0.319 ±0.06 0.382 ±0.06

CFR [54] 0.263 ±0.06 0.278 ±0.06 0.261 ±0.06 0.293 ±0.06

GANITE [64] 0.378 ±0.16 0.390 ±0.16 0.525 ±0.16 0.547 ±0.16

DiffPO (Ours) 0.143 ±0.14 0.156 ±0.14 0.162 ±0.14 0.187 ±0.14

Lower = better (best in bold).

Performance metrics for POs: To evaluate
point estimates of POs, we compute the dif-
ference between the predicted PO ŷi and the
ground truth PO yi via the root mean squared

error RMSE =
√

1
N

∑N
i=1 (ŷi − yi)

2.

Baselines. We compare against those methods
that are applicable to this task (i.e., the model
can directly output POs; see Table 1).

Results. The results are in Table 4. We find
that our DiffPO gives the best point estimates of
POs.

6.4 Flexibility to handle other causal quantities

A strength of our method is that it is flexible and can not only be used for POs but also for other
causal quantities. For example, even though we are aiming at learning the distributions of POs, our
method is also capable of estimating the CATE τ(x) = E[Y (1) − Y (0) | X = x], which is the
expected difference of POs for an individual with covariate values X = x. For this, one can use
our method to first predict µa(x) = E[Y | X,A = a] for a ∈ {0, 1} and then simply leverage that
τ(x) = µ1(x)− µ0(x).

Table 5: Results for benchmarking CATE estima-
tion on ACIC 2016 and ACIC 2018 for both in- &
out-of-sample, respectively. Reported: % of runs
with the best performance.

ACIC 2016 (77 datasets) ACIC 2018 (24 datasets)
% bestin % bestout % bestin % bestout

S-learner [37] 3.76 3.41 1.16 1.02
T-learner [37] 3.71 3.8 0.74 1.13
TARNet [54] 8.92 9.21 7.98 6.71
CFR [54] 10.52 11.45 7.91 7.71
GANITE [64] 6.78 6.44 5.22 3.98
DR-learner [19] 14.54 15.67 23.64 22.13
RA-learner [12] 15.71 14.68 15.73 15.01
TEDVAE [66] 9.33 9.52 7.28 5.45

DiffPO 26.73 25.82 31.34 36.86
Higher = better (best in bold).

Datasets. We estimate the CATE across ACIC
2016 & ACIC 2018, which are widely used
dataset collections for CATE benchmarking [66,
12, 42]. The ACIC2016 [46] contains 77 dif-
ferent benchmark datasets, and ACIC2018 [41]
contains 24. These datasets include a wide range
of data-generating mechanisms (see Appendix F
for more details). We use five random train/test
splits (80% / 20%) for each dataset, tune hyper-
parameters on the first split, and evaluate the
average out-sample on every split.

Performance metrics. We compare the

ϵPEHE =
√

1
N

∑N
i=1 (τ̂ (xi)− τ (xi))

2.

Baselines. We consider a broad array of state-of-the-art methods for treatment effect estimation
from the literature. Considering the rich methods in the literature, we thus compare with the most
popular CATE estimation approaches in this field [10, 30, 37, 54, 61, 64, 66], as listed in the Table 1.
Specifically, we use the following baselines: (1) to (5) from Sec. 6.1. (6) DR-learner [39, 31]:
generates pseudo-outcomes based on the doubly-robust AIPW estimator; (7) RA-learner [12]: uses
a regression-adjusted pseudo-outcome in the second stage; (8) TEDVAE [66]: uses a variational
autoencoder to differentiate confounding factor and learns CATE. We instantiate the meta-learners
(i.e., S-, T-, DR, and RA-learner) with neural networks, similar to our DiffPO. To ensure a fair
comparison across all methods and all experiments, we tune hyperparameters across all methods
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separately for each experimental dataset. We discuss implementation details of baselines in the
Appendix E.

Results. The results for CATE estimation are in Table 5. We find that our method achieves a good
performance similar to existing methods, even though our method is not tailored for CATE estimation.
Across a wide range of experiments in different settings, we even observe that our method often
achieves state-of-the-art performance.

6.5 Visualizing the learned distributions of POs

A clear advantage of our DiffPO is that we not only return point estimates but also the distribution of
POs. This is crucial in medical practice [23, 35] in order to understand the expected probability of
whether a treatment is beneficial and thus to better assess the reliability of the estimates. We show the
learned distributions for a real-world dataset from medicine.

IHDP dataset. This is a semi-synthetic dataset from the Infant Health and Development Program
(IHDP) [25], which is based on the extracted features and treatment assignments from a real-world
clinical trial. The dataset comprises 747 patients, with 25 features for each patient. Further details for
IHDP are in Appendix F.3.
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Figure 2: Empirical distributions of the conditional
POs. Left: p(Y (0) | x). Right: p(Y (1) | x).

Insights. Our DiffPO is capable of capturing
the full information about the distributions of
POs. Current state-of-the-art methods usually
estimate quantities expressed via the mean of
POs, as these methods focus purely on point es-
timation [31, 37, 54]. However, distributional
knowledge of POs is important to account for un-
certainty, because it informs how likely a certain
outcome is and gives the probability that the PO
lies in a desired range, especially in medicine.

Fig. 2 shows the empirical distributions of POs, i.e., p(Y (0) | X) and p(Y (1) | X), given a certain
patient profile X = x. We can see the distributions of the two POs are different, which can provide
extra information for medical decision-making. Here, the learned distributions of POs can help
medical practitioners in choosing a treatment plan that promises not only a large benefit for the
patients but also that the benefit is highly probable.

7 Discussion

Conclusion. Our method is carefully designed for predicting POs in medical practice. To this end,
our method not only predicts point estimates but also computes the distributions of POs to allow for
uncertainty quantification and thus for reliable decision-making.

Limitations. (1) As with other methods in causal inference, ours rests on mathematical assumptions,
yet these are standard in the literature [12, 31, 64]. (2) The efficiency of the sampling process in our
DiffPO – but also diffusion models more generally – could be improved further. There is already
ongoing research, such as different solvers [15, 40, 65] and one-step sampling [58]. However, as we
have shown above, our method can successfully scale to real-world datasets from medical practice.

Broader impact. We expect our method to have a significant impact in medicine where better
decision support is needed to personalize treatment decisions to patient profiles [16]. Another
strength of our method is that it is flexible. This is unlike many other methods in causal inference
which are designed for highly restrictive settings. Hence, we expect our method to be a first step
toward developing more generalizable approaches for a variety of causal inference settings.
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A Extended related work

A.1 Diffusion models for causal inference

Diffusion models were originally introduced for learning a complex distribution for a given dataset
from which we can then sample high-quality images [55, 57, 26]. Diffusion models have achieved
state-of-the-art performance, outperforming other generative models on various tasks in the computer
vision field (e.g.,[56, 14, 59]). Motivated by this, diffusion models were previously used for different
causal inference tasks but in a different setting from ours [51, 52, 8].

[51] proposed a model called Diff-SCM that uses diffusion models and anti-causal predictors to
generate the counterfactual of a given image. It leverages a classifier guidance diffusion model. [8]
proposed using a diffusion model called DCM for modeling structural causal models (SCMs). It
focuses on approximating SCMs given observational data and underlying causal DAG. [8] focused
on a similar task as well as [53, 36], with the aim to answer causal queries by employing variational
autoencoder and normalizing flow, respectively. [36] focused on the same task as [51], aiming for
generating high-quality counterfactual images and proposed a model called CausalDiffAE. [36]
follows the idea of [8] to view the diffusion model as an encoder-decoder framework and employ
so-called denoising diffusion implicit models (DDIM). Diffusion models have also been used in the
causal discovery field. DiffAN [52] is an algorithm based on denoising diffusion training for causal
discovery via topological ordering. In this work, we use diffusion models for predicting POs.

A.2 Neyman-orthogonality

Neyman-orthogonality of a functional refers to the mean zero property of its directional derivatives
along one-dimensional paths that change nuisance functions [18]. A loss function is called Neyman-
orthogonal when this property holds for all its directional derivatives along one-dimensional paths
that change the (infinite-dimensional) parameter of interest. This allows for a debiased machine
learning approach to construct estimators and inference procedures that are robust to small mistakes in
nuisance functions [9]. Specific orthogonal learners for estimating CATE are given in the DR-learner
[39, 31], R-learner [45], and i-learner [60].

A.3 Conditional average treatment effect (CATE)

Our work is about predicting potential outcomes (POs) for individuals; however, it is strongly
related in practical applications to conditional average treatment effect (CATE) estimation. The
PO framework conceptualizes the CATE estimation problem as estimating the expected difference
between an individual’s expected potential outcome with and without treatment. Below, we give a
brief overview of the CATE literature.

The estimation of the CATE has received a lot of attention in the causal inference literature (e.g.,[10,
25, 28, 1, 54, 37, 2, 30, 3, 64, 61, 12, 66, 31, 45, 32, 13]). Among those CATE estimation methods,
many have been proposed to estimate the effects of binary treatments (e.g.,[10, 25, 28, 1, 54, 37, 2, 30,
3, 64, 6, 12, 66, 31, 45, 32, 13]). Based on the categorization in [13], we roughly categorize them into
three categories based on their most salient characteristics: (i) model-agnostic learning strategies for
CATE estimation (also known as meta-learners), and (ii) model-specific ML-based CATE estimators
(including representation learning-based and other neural network-based estimators).

A.3.1 Meta-learners

Now we consider popular approaches that involve using model-agnostic learning strategies, also
known as meta-learners, which can be implemented using any ML method (e.g.,[37, 31, 45, 32, 13,
12]). The idea behind “meta-learner” strategies was originally introduced in [37] and expanded in
[45, 31, 12].

Existing CATE meta-learners can be categorized into: (a) one-step (plug-in) learners (indirect meta-
learners) that output two regression functions from the observational data and then compute CATE
as the difference in the POs (this is the strategy underlying the S- and T-learners); and (b) two-step
learners (direct meta-learners/multi-stage direct estimators). These learners first compute nuisance
functions to build a pseudo-outcome. In the second step, they obtain the CATE directly by regressing
the input covariates on the pseudo-outcome. (Note that pseudo-outcomes are not potential outcomes).
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In terms of (b), existing methods fall largely into three broad classes: regression adjustment (RA),
propensity weighting (PW), or doubly robust (DR) strategies.

A.3.2 Model-specific ML-based CATE estimators

Many methods proposed in the related work do not fall within the meta-learner class because they
rely on the properties of a specific ML method. We roughly categorize them into two branches: one is
neural network-based (NN-based) estimators and the other does not use neural networks, for example,
some using causal Forest [61], Bayesian regression [25], or Gaussian processes [1].

As for the NN-based estimators, some are representation learning-based estimators. Much work of
this track focused on handling selection bias by learning shared and balanced feature representations
for the two PO functions or incorporating weighting strategies. Examples are BNN [28], TARNet
[54], and CFR [30]. [54] used representation learning to share information about the outcome across
treated and controls, while regularizing representation distributional distance between the groups. [67,
30] recognized that such regularization may result in a violation of ignorability in the representation
and proposed to learn representations in which context information is preserved but where treatment
groups overlap. Later, many works proposed further extensions (e.g.,[29, 20, 4, 21, 62, 67, 5, 7]).
However, a wrongly chosen dimensionality of the representation or a too large balancing weight can
induce confounding bias [43], and, therefore, the representation learning-based methods fall outside
the scope of this paper.
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B Evidence lower bound of DiffPO

Directly computing and maximizing the likelihood p(y | x, a) is difficult because it involves inte-
grating all latent variables, which is intractable for complex models. Thus, we derive the evidence
lower bound (ELBO) similar to the bound of the variational autoencoder. Our original objective can
be optimized by maximizing the ELBO, like its analog in the ELBO of a vanilla VAE [34], which is
given by

log p(y | x, a) = log

∫
p (y0:T | x, a) dy1:T

= log

∫
p (y0:T | x, a) q (y1:T | y0)

q (y1:T | y0)
dy1:T

= logEq(y1:T |y0)

[
p (y0:T | x, a)
q (y1:T | y0)

]
≥ Eq(y1:T |y0)

[
log

p (y0:T | x, a)
q (y1:T | y0)

]
.

(14)

The ELBO in Eq. (14) can be rewritten as follows:
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log p(y) ≥Eq(y1:T |y0)

[
log

p (y0:T | x, a)
q (y1:T | y0)

]
=Eq(y1:T |y0)

[
log

p (yT )
∏T

t=1 pθ (yt−1 | yt, x, a)∏T
t=1 q (yt | yt−1)

]

=Eq(y1:T |y0)

[
log

p (yT ) pθ (y0 | y1, x, a)
∏T

t=2 pθ (yt−1 | yt, x, a)
q (y1 | y0)

∏T
t=2 q (yt | yt−1)

]

=Eq(y1:T |y0)

[
log

p (yT ) pθ (y0 | y1, x, a)
∏T

t=2 pθ (yt−1 | yt, x, a)
q (y1 | y0)

∏T
t=2 q (yt | yt−1, y0)

]

=Eq(y1:T |y0)

[
log

p (yT ) pθ (y0 | y1, x, a)
q (y1 | y0)

+ log

T∏
t=2

pθ (yt−1 | yt, x, a)
q (yt | yt−1, y0)

]

=Eq(y1:T |y0)

log p (yT ) pθ (y0 | y1, x, a)
q (y1 | y0)

+ log

T∏
t=2

pθ (yt−1 | yt, x, a)
q(yt−1|yt,y0)q(yt|y0)

q(yt−1|y0)


=Eq(y1:T |y0)

[
log

p (yT ) pθ (y0 | y1, x, a)
q (y1 | y0)

+ log
q (y1 | y0)
q (yT | y0)

+ log

T∏
t=2

pθ (yt−1 | yt, x, a)
q (yt−1 | yt, y0)

]

=Eq(y1:T |y0)

[
log

p (yT ) pθ (y0 | y1, x, a)
q (yT | y0)

+

T∑
t=2

log
pθ (yt−1 | yt, x, a)
q (yt−1 | yt, y0)

]
=Eq(y1:T |y0) [log pθ (y0 | y1, x, a)] +

Eq(y1:T |y0)

[
log

p (yT )

q (yT | y0)

]
+

T∑
t=2

Eq(y1:T |y0)

[
log

pθ (yt−1 | yt, x, a)
q (yt−1 | yt, y0)

]
=Eq(y1|y0) [log pθ (y0 | y1, x, a)] +

Eq(yT |y0)

[
log

p (yT )

q (yT | y0)

]
+

T∑
t=2

Eq(yt,yt−1|y0)

[
log

pθ (yt−1 | yt, x, a)
q (yt−1 | yt, y0)

]
=Eq(y1|y0) [log pθ (y0 | y1, x, a)]︸ ︷︷ ︸

reconstruction term

−DKL (q (yT | y0) ∥p (yT ))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq(yt|y0) [DKL (q (yt−1 | yt, y0) ∥pθ (yt−1 | yt, x, a))]︸ ︷︷ ︸
denoising matching term

.

(15)

17

43679 https://doi.org/10.52202/079017-1384



C Simplified training objective for DiffPO

With the reverse process defined above, the learning objective in Eq. (7) is clearly differentiable with
respect to θ and is ready to be employed for training. However, in practice, directly optimizing this
objective is inefficient. Recall that our aim is to match the approximate denoising transition step
pθ (yt−1 | yt, x, a) to ground truth denoising transition step q (yt−1 | yt, y0) as closely as possible,
which we can also model as a Gaussian. Thus, optimizing the KL divergence term reduces to
minimizing the difference between the means of the two distributions:

argmin
θ

DKL (q (yt−1 | yt, y0) ∥ pθ (yt−1 | yt, x, a))

=argmin
θ

DKL (N (yt−1;µq,Σq(t)) ∥ N (yt−1;µθ,Σq(t)))

=argmin
θ

1

2

[
log

|Σq(t)|
|Σq(t)|

− d+ tr
(
Σq(t)

−1Σq(t)
)
+ (µθ − µq)

T
Σq(t)

−1 (µθ − µq)

]
=argmin

θ

1

2

[
log 1− d+ d+ (µθ − µq)

T
Σq(t)

−1 (µθ − µq)
]

=argmin
θ

1

2

[
(µθ − µq)

T
Σq(t)

−1 (µθ − µq)
]

=argmin
θ

1

2

[
(µθ − µq)

T (
σ2
q (t)I

)−1
(µθ − µq)

]
=argmin

θ

1

2σ2
q (t)

[
∥µθ − µq∥22

]
.

(16)

By using the reparameterization trick, we have

y0 =
yt −

√
1− ᾱtϵ0√
ᾱt

. (17)

Plugging it into the previously derived true denoising transition mean µq (yt, y0), we yield

µq (yt, y0) =

√
αt (1− ᾱt−1) yt +

√
ᾱt−1 (1− αt) y0

1− ᾱt

=

√
αt (1− ᾱt−1) yt +

√
ᾱt−1 (1− αt)

yt−
√
1−ᾱtϵ0√
ᾱt

1− ᾱt

=

√
αt (1− ᾱt−1) yt + (1− αt)

yt−
√
1−ᾱtϵ0√
αt

1− ᾱt

=

√
αt (1− ᾱt−1) yt

1− ᾱt
+

(1− αt) yt
(1− ᾱt)

√
αt

− (1− αt)
√
1− ᾱtϵ0

(1− ᾱt)
√
αt

=

(√
αt (1− ᾱt−1)

1− ᾱt
+

1− αt

(1− ᾱt)
√
αt

)
yt −

(1− αt)
√
1− ᾱt

(1− ᾱt)
√
αt

ϵ0

=

(
αt (1− ᾱt−1)

(1− ᾱt)
√
αt

+
1− αt

(1− ᾱt)
√
αt

)
yt −

1− αt√
1− ᾱt

√
αt

ϵ0

=
αt − ᾱt + 1− αt

(1− ᾱt)
√
αt

yt −
1− αt√
1− ᾱt

√
αt

ϵ0

=
1− ᾱt

(1− ᾱt)
√
αt

yt −
1− αt√
1− ᾱt

√
αt

ϵ0

=
1√
αt

yt −
1− αt√
1− ᾱt

√
αt

ϵ0.

(18)

Therefore, we can set our approximate denoising transition mean µθ (yt, t | x, a) as

µθ (yt, t | x, a) =
1√
αt

yt −
1− αt√
1− ᾱt

√
αt

fθ (yt, t | x, a) , (19)
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and the corresponding optimization problem becomes

argmin
θ

DKL (q (yt−1 | yt, y0) ∥ pθ (yt−1 | yt, x, a))

=argmin
θ

DKL (N (yt−1;µq,Σq(t)) ∥ N (yt−1;µθ,Σq(t)))

=argmin
θ

1

2σ2
q (t)

[∥∥∥∥ 1√
αt

yt −
1− αt√
1− ᾱt

√
αt

fθ (yt, t | x, a)−
1√
αt

yt +
1− αt√
1− ᾱt

√
αt

ϵ

∥∥∥∥2
2

]

=argmin
θ

1

2σ2
q (t)

[∥∥∥∥ 1− αt√
1− ᾱt

√
αt

ϵ− 1− αt√
1− ᾱt

√
αt

fθ (yt, t | x, a)
∥∥∥∥2
2

]

=argmin
θ

1

2σ2
q (t)

[∥∥∥∥ 1− αt√
1− ᾱt

√
αt

(ϵ− fθ (yt, t | x, a))
∥∥∥∥2
2

]

=argmin
θ

1

2σ2
q (t)

(1− αt)
2

(1− ᾱt)αt

[
∥ϵ− fθ (yt, t | x, a)∥22

]
.

(20)
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D Proofs

Theorem 2 (Neyman-orthogonality). The orthogonal diffusion loss

L(θ, π̂) =E(y0,x,a)∼p(Y,X,A);ϵ∼N (0,I)

[
wπ̂(x, a)

∥∥ϵ− fθ
(√

ᾱty0 +
√
1− ᾱtϵ, t | x, a

)∥∥2 ], (21)

is Neyman-orthogonal wrt. its nuisance functions.

Proof. As it was shown in the Sec. 5.1, the minimization of the orthogonal diffusion loss is equivalent
to the maximization of the following weighted ELBO wrt. to θ:

E(pθ, π̂) = E(y0,x,a)∼p(Y,X,A)

[
wπ̂(x, a)Ey1:T∼q(Y1:T |y0)

[
log

pθ (y0:T | x, a)
q (y1:T | y0)

]]
. (22)

We denote a maximizer of the weighted ELBO with the ground truth nuisance functions by pθ∗ =
argmaxpθ

E(pθ, π). Given a flexible enough diffusion model, pθ∗(y0 | x, a) coincides with the
ground truth posterior and, thus matches the ground truth conditional distribution, namely, p(Y |
X,A) [47].

To demonstrate Neyman-orthogonality, we need to show that a pathwise cross-derivative is equal to
zero [18, 60, 44], i.e.,

DπDpθ∗E(pθ∗ , π)[pθ − pθ∗ , π̂ − π] = 0 for every pθ and π̂. (23)

We start by taking the pathwise derivative wrt. the optimal diffusion model pθ∗ :

Dpθ∗E(pθ∗ , π)[pθ − pθ∗ ] (24)

=
d

dt
E(y0,x,a)∼p(Y,X,A)

[
wπ(x, a)Ey1:T∼q(Y1:T |y0)

[
log

pθ∗ (y0:T | x, a) + t
(
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

)
q (y1:T | y0)

]] ∣∣∣∣∣
t=0

(25)

=E(y0,x,a)∼p(Y,X,A)

[
wπ(x, a)Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

pθ∗ (y0:T | x, a) + t
(
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

)]] ∣∣∣∣∣
t=0

(26)

=E(y0,x,a)∼p(Y,X,A)

[
wπ(x, a)Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

pθ∗ (y0:T | x, a)

]]
. (27)
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Then, we take a derivative wrt. the propensity score π:

DπDpθ∗E(pθ∗ , π)[pθ − pθ∗ , π̂ − π] (28)

=
d

dt
E(y0,x,a)∼p(Y,X,A)

[
wπ+t(π̂−π)(x, a)Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

pθ∗ (y0:T | x, a)

]] ∣∣∣∣∣
t=0

(29)

=E(y0,x,a)∼p(Y,X,A)

[(
− a

(π(x))2
+

1− a

(1− π(x))2

)
Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, a)− pθ∗ (y0:T | x, a)

pθ∗ (y0:T | x, a)

]]
(30)

=Ex∼p(X)

[
− p(A = 1 | x)

(π(x))2
Ey0∼p(Y |x,1)Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, 1)− pθ∗ (y0:T | x, 1)

pθ∗ (y0:T | x, 1)

]
(31)

+
p(A = 0 | x)
(1− π(x))2

Ey0∼p(Y |x,0)Ey1:T∼q(Y1:T |y0)

[
pθ (y0:T | x, 0)− pθ∗ (y0:T | x, 0)

pθ∗ (y0:T | x, 0)

] ]
(32)

=Ex∼p(X)

[
− 1

π(x)

∫
pθ (y0:T | x, 1)− pθ∗ (y0:T | x, 1)

pθ∗ (y0:T | x, 1) p(y0 | x, 1) q(y1:T | y0) dy0 dy1:T
(33)

+
1

1− π(x)

∫
pθ (y0:T | x, 0)− pθ∗ (y0:T | x, 0)

pθ∗ (y0:T | x, 0) p(y0 | x, 0) q(y1:T | y0) dy0 dy1:T
]

(34)

(∗)
=Ex∼p(X)

[
− 1

π(x)

∫
pθ (y0:T | x, 1)− pθ∗ (y0:T | x, 1)

pθ∗ (y1:T | y0, x, 1)
q(y1:T | y0) dy0 dy1:T (35)

+
1

1− π(x)

∫
pθ (y0:T | x, 0)− pθ∗ (y0:T | x, 0)

pθ∗ (y1:T | y0, x, 0)
q(y1:T | y0) dy0 dy1:T

]
(36)

(∗∗)
= Ex∼p(X)

[
− 1

π(x)

∫
(pθ (y0:T | x, 1)− pθ∗ (y0:T | x, 1)) dy0 dy1:T (37)

+
1

1− π(x)

∫
(pθ (y0:T | x, 0)− pθ∗ (y0:T | x, 0)) dy0 dy1:T

]
(38)

=Ex∼p(X)

[
− 1

π(x)
(1− 1) +

1

1− π(x)
(1− 1)

]
= 0, (39)

where the equality (∗) holds due p(y0 | x, a) = pθ∗(y0 | x, a); and the equality (∗∗) holds due to
that the forward process is independent of x and a, namely, pθ∗(y1:T | y0, x, a) = pθ∗(y1:T | y0) =
q(y1:T | y0).
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E Implementation details

In the following, we summarize the implementation details of our DiffPO and baselines.

E.1 Implementation details of DiffPO

We implemented our DiffPO in PyTorch. (Code is available at https://github.com/yccm/
DiffPO). Experiments were carried out on 1× NVIDIA A100-PCIE-40GB. We report the default
settings of our model below but note that hyperparameters may require slight adjustments depending
on the dataset.

Our model architecture of the denoising function fθ is based on the architecture of [59], and we
use U-Net [49] as the basic backbone. We use 4 diffusion residual blocks, where each is built with
MLP layers. The diffusion embedding dimension is 128. The β starts at 0.0001 and ends at 0.5, and
the schedule is the “quadratic” version. The number of diffusion sampling steps is set to 100. The
training batch size is set to 256 with a learning rate of 0.0005. The training epoch is set to 500.

During training, we can only observe one of the two POs due to the fundamental problem of causal
inference [27] (as explained in Sec. 4). To guide the model, we need to identify which of two POs
should be generated. Hence, we introduce causal masks as input to our model: an observational mask
mo, a targeted mask mt, and a conditional mask mc. For the observational mask mo, it is 1 at the
place where we have the observational data and 0 for the opposite case. Since we condition on x and
a, the conditional mask mc is 1 for the element x and a, and 0 otherwise. For the target mask, the
observed outcomes y in the original dataset are 1, while all the other elements are 0. In this way, we
can compute the loss only at the place where the value of the targeted mask is 1, i.e., where we have
the ground truth outcomes. We follow [42] in the way how we learn propensity scores and use fully
connected neural networks with softmax activation. Thus we add weight to each sample via a learned
function when computing the orthogonal loss.

E.2 Implementation details of baselines

We follow the implementation from https://github.com/AliciaCurth/CATENets/tree/main
for most of the CATE estimators, including S-learner [37], T-learner [37], DR-learner [39, 31], RA-
learner [12], TARNet [54]. For GANITE, we follow the implementation of https://github.com/
vanderschaarlab/mlforhealthlabpub/tree/main/alg/ganite. For TEDVAE, we follow
the implementation of https://github.com/WeijiaZhang24/TEDVAE.

We performed hyperparameters tuning of the nuisance functions models for all the baselines based
on five-fold cross-validation using the training subset. For each baseline, we performed a grid
search with respect to different tuning criteria, evaluated on the validation subsets. We aimed for a
fair comparison and thus kept the number of parameters, network structures, and grid size similar
across models. For evaluating the uncertainty estimation, for both training and testing, the dropout
probabilities were set to p = 0.1.
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F Dataset details

F.1 Synthetic dataset

We use one of the datasets from ACIC2018 with 177 covariates to generate the synthetic dataset with
a coefficient matrix W , i.e.,{

X ∼ Real-World (·),
A ∼ Real-World (X),
Y := UY + sin(WX) +AX +A; UY ∼ N(0, 1)

(40)

We use a ten-fold split for train/test samples (80%/20%).

F.2 ACIC 2016 & 2018 datasets

The 2016 Atlantic Causal Inference Challenge (ACIC2016) [46] contains 77 different settings of
benchmark datasets, and ACIC2018 [41] contains 24, respectively. They are designed to benchmark
causal inference algorithms with various data-generating mechanisms. Covariates of ACIC 2016
are taken from a large study of developmental disorders, and covariates of ACIC 2018 are derived
from the linked birth and infant death data. ACIC 2016 and ACIC 2018 differ in the number of true
confounders, the varying levels of overlap, and the form of conditional outcome distributions. ACIC
2016 has 77 different data-generating mechanisms with 100 equal-sized samples for each mechanism
(n = 4802, dX = 82). ACIC 2018 provides 63 distinct data-generating mechanisms with around 40
non-equal-sized samples for each mechanism (n ranges from 1, 000 to 50, 000, dX = 177). Notably,
ACIC 2018 has a constant CATE for most of the datasets, but heterogeneous propensity scores.

F.3 IHDP dataset

The Infant Health and Development Program (IHDP) [25] has features and treatment assignments
from a real-world clinical trial. The dataset comprised 747 subjects, with 25 features for each
subject. Out of the 25 features, 6 are continuous, and 19 are binary with a binary treatment. For
both treated and untreated, synthetic outcomes of IHDP are sampled from different conditional
normal distributions. These distributions are homoscedastic (σ2 = 1) but have substantially different
conditional means. The potential outcomes are simulated according to the standard non-linear
“Response Surface B” setting in [25] with the following data-generating mechanism:

X ∼ Real-World(·),
A ∼ Real-World(X),

Y ∼ N
(
A (Xβ − ω) + (1−A) (exp((X +W )β)), 1

)
,

(41)

where β, W , ω are constant parameters of the simulation. For further details, we refer to [25].
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G Additional experiments

G.1 Simulation experiments

We examine the Neyman-orthogonality property of our orthogonal diffusion loss through simulation
experiments. We conduct experiments to show that the orthogonal diffusion loss can address the
problem of model misspecifications when estimating nuisance functions (e.g., the propensity score
π(x)).

To this end, we perturb the propensity score manually to assess the robustness of the loss when the
nuisance functions are estimated with varying errors. During training, we consistently increase the
sample size and evaluate the CATE estimation error on the synthetic dataset. As shown in Fig. 3, the
CATE estimation error decreases as the sample size grows and eventually converges to zero. This
demonstrates that, even when the propensity score is misspecified, the orthogonal loss remains robust,
enabling our DiffPO to converge to the correct objective. This experiment supports Theorem 1 by
illustrating how the stability and consistency of the orthogonal loss contribute to convergence. In
sum, it shows the theoretical benefits of our proposed orthogonal diffusion loss.

200 400 600 800 1000
Number of samples

0.1

0.2

0.3

0.4

0.5

PE
HE

Figure 3: We manually perturb the propensity score during training on the synthetic data. We replace
the estimated propensity score π̂(x) with a randomly sampled value π̃(x) from the interval (0, 1).
The weight wπ̂(x, a) for each sample in the orthogonal diffusion loss L(θ, π̂) is thus replaced by
weight wπ̃(x, a). The CATE estimation error gradually converges as the sample size increases. This
aligns with our expectation, as the loss remains robust even with varying errors in the estimation of
nuisance functions.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Sec.7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions in Sec. 4 and proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results in the Appendix. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide open access to the data and code and provide an anonymous link
to our code: https://anonymous.4open.science/r/DIFFPO

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the Sec. 6 and in the Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we report standard deviation in our experiment results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments do not require any specific hardware/resources. We admit the
runtime of our method is longer compared to baselines.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our method in Sec.7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets used in our paper are cited accordingly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not provide any assets in our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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