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Abstract

A longstanding goal of artificial general intelligence is highly capable generalists
that can learn from diverse experiences and generalize to unseen tasks. The lan-
guage and vision communities have seen remarkable progress toward this trend
by scaling up transformer-based models trained on massive datasets, while rein-
forcement learning (RL) agents still suffer from poor generalization capacity under
such paradigms. To tackle this challenge, we propose Meta Decision Transformer
(Meta-DT), which leverages the sequential modeling ability of the transformer ar-
chitecture and robust task representation learning via world model disentanglement
to achieve efficient generalization in offline meta-RL. We pretrain a context-aware
world model to learn a compact task representation, and inject it as a contextual con-
dition to the causal transformer to guide task-oriented sequence generation. Then,
we subtly utilize history trajectories generated by the meta-policy as a self-guided
prompt to exploit the architectural inductive bias. We select the trajectory segment
that yields the largest prediction error on the pretrained world model to construct
the prompt, aiming to encode task-specific information complementary to the world
model maximally. Notably, the proposed framework eliminates the requirement of
any expert demonstration or domain knowledge at test time. Experimental results
on MuJoCo and Meta-World benchmarks across various dataset types show that
Meta-DT exhibits superior few and zero-shot generalization capacity compared to
strong baselines while being more practical with fewer prerequisites. Our code is
available at https://github.com/NJU-RL/Meta-DT.

1 Introduction

Building generalist models that solve various tasks by training on vast task-agnostic datasets has
emerged as a dominant paradigm in the language [1] and vision [2] communities. Offline rein-
forcement learning (RL) [3] allows learning an optimal policy from trajectories collected by some
behavior policies without access to the environments, which holds tremendous promise for turning
massive datasets into powerful generic decision-making engines [4, 5, 6], akin to the rise of large
language models (LLMs) like GPT [7]. A performant example is the decision transformer (DT) [8]
that leverages the transformer’s strong sequence modeling capability for trajectory data and achieves
promising results on offline RL [9, 10, 11, 12].

Transformer-based large models have shown remarkable scaling properties and high transferability
across various domains, including language modeling [13, 7], computer vision [14, 15], and image
generation [16, 17]. However, their counterparts in RL are usually specialized to a narrowly defined
task and struggle with poor generalization to unseen tasks, due to distribution shift and the lack of
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self-supervised pretraining techniques [18, 19, 20]. To promote generalization, Prompt-DT [21] uses
expert demonstrations as a high-quality prompt to encode task-specific information. Generalized
DT [22] conditions on some hindsight information, e.g., statistics of the reward distribution, to match
task-specific feature distributions. These works usually rely on domain knowledge at test time, e.g.,
expert demonstrations or hindsight statistics, which is expensive and even infeasible to acquire in
advance for unseen tasks [23]. The aforementioned limitations raise a key question: Can we design
an offline meta-RL framework to achieve efficient generalization to unseen tasks while drawing upon
advances in the sequence modeling paradigm with the scalable transformer architecture?

In offline RL, the collected dataset depends on the task and behavior policy. When behavior policies
are highly correlated with tasks in the training dataset, the agent tends to memorize the features
of behavior policies and produce biased task inference at test time due to the change of behavior
policies [24, 25]. One major challenge for generalization is how to accurately encode task-relevant
information for extrapolating knowledge across tasks, while minimizing the requirement on the
distribution of pre-collected data and behavior policies. RL agents typically learn through active
interaction with the environment, and the transition dynamics p(r, s′|s, a) completely describes the
characteristics of the underlying environment [26]. The environment dynamics, also called world
model [27, 28], is intrinsically invariant to behavior policies or collected datasets, thus presenting a
promising alternative for robustly encoding task beliefs. By capturing compact representations of the
environment, world models carry the potential for substantial transfer between tasks [29], continual
learning [30], and generalization from offline datasets [31, 32].

Inspired by this, we propose a novel framework for offline meta-RL, named Meta-DT that leverages
robust task representation learning via world model disentanglement to conduct task-oriented se-
quence generation for efficient generalization. First, we pretrain a context-aware world model to
capture task-relevant information from the multi-task offline dataset. The world model contains an en-
coder that abstracts dynamics-specific information into a compact task representation, and a decoder
that predicts the reward and state transition functions conditioned on that representation. Second,
we inject the task representation as a contextual label to the transformer to guide task-conditioned
sequence generation. In this way, the autoregressive model learns to estimate the conditional output
of multi-task distributions and achieve desired returns based on the task-oriented context. Finally,
we leverage the past trajectories generated by the meta-policy as a self-guided prompt to exploit the
architecture inductive bias, akin to Prompt-DT [21]. We feed available trajectory segments to the
pretrained world model and choose the segment with the largest prediction error to construct the
prompt, aiming to encode task-specific information complementary to the world model maximally.

In summary, our main contributions are as follows:
• Generalization Ability. We propose Meta-DT to leverage the conditional sequence modeling

paradigm with the scalable transformer architecture to achieve efficient generalization across
unseen tasks without any expert demonstration or domain knowledge at test time.

• Context-Aware World Model. We introduce a context-aware world model to learn a compact
task representation capable of generalizing across a distribution of varying environment dynamics.

• Complementary Prompt. We design a self-guided prompt that encodes task-specific information
complementary to the world model maximally, harnessing the architectural inductive bias.

• Superior Performance. Experiments on various benchmarks show that Meta-DT exhibits higher
few and zero-shot generalization capacity, while being more practical with fewer prerequisites.

2 Related Work

Offline Meta-RL. Offline RL [33] allows learning optimal policies from pre-collected offline datasets
without online interactions with the environment [34, 35]. Offline meta-RL learns to generalize to new
tasks via training on a distribution of such offline tasks [25, 36]. Optimization-based meta-learning
methods [37, 38] seek policy parameter initialization that requires only a few adaptation steps to
new tasks. MACAW [39] introduces this architecture into value-based RL subroutines, and uses
simple supervised regression objectives for sample-efficient offline meta-training. On the other hand,
context-based meta-learning methods learn a context encoder to perform approximate inference on
task representations, and condition the meta-policy on the approximate belief for generalization,
such as PEARL [40], VariBAD [41], FOCAL [42], CORRO [24], CSRO [25], and UNICORN [43].
These works extended from the online meta-RL setting are mainly trained by temporal difference

2

44846https://doi.org/10.52202/079017-1425



learning, the dominant paradigm in RL [9, 44]. This paradigm might be prone to instabilities due
to function approximation, off-policy learning, and bootstrapping, together known as the deadly
triad [26]. Moreover, many of these works rely on hand-designed heuristics to keep the policy within
the offline dataset distribution [45]. This motivates us to turn to harness the lens of conditional
sequence modeling with the transformer architecture to scale existing offline meta-RL algorithms.

RL as Sequence Modeling. The recent rapid progress in (self) supervised learning models is in large
part predicted by empirical scaling laws with the transformer architecture, such as GPT [7], ViT [14],
and DiT [46]. Decision transformer [8] first introduces the transformer’s sequence modeling capacity
to solving offline RL without temporal difference learning, which autoregressively outputs optimal
actions conditioned on desired returns. As a concurrent study, trajectory transformer [47] directly
models distributions over sequences of states, actions, and rewards, followed by beam search as a
planning algorithm in a model-based manner. Extending the LLM-like structure to RL, this paradigm
activates a new pathway toward scaling powerful RL engines with large-scale compute and data [48].

For multi-task learning, Gato [49] trains a multi-modal generalist policy in the GPT style with a
decoder-only transformer. Multi-game DT [4] trains a suite of up to 46 Atari games simultaneously,
and controls policy generation at inference time with a pretrained classifier that indicates the expert
level of behaviors. For generalization to unseen tasks, Prompt-DT [21] exploits a prefix prompt
architecture and Generalized DT [22] designs a hindsight information matching structure to encoder
task-specific information. These works usually require domain knowledge at test time, such as
expert demonstrations or hindsight statistics. T3GDT [50] conditions action generation on three-tier
guidance of global transitions, local relevant experiences, and vectorized time embedding. CMT [18]
provides a pretrain and prompt-tuning paradigm where a task prompt is extracted from offline
trajectories with an encoder-only transformer to realize few-shot generalization.

3 Preliminaries

3.1 Offline Meta Reinforcement Learning

RL is generally formulated as a Markov decision process (MDP) M=⟨S,A, T,R, γ⟩, where S/A is
the state/action space, T/R is the state transition/reward function, and γ is the discount. The objective
is to find a policy π(a|s) to maximize the expected return as maxπ JM (π)=Eπ [

∑∞
t=0 γ

tR(st, at)].

In offline meta-RL, we assume that the task follows a distribution Mi = ⟨S,A, Ti, Ri, γ⟩ ∼ P (M),
where tasks share the same state-action spaces while vary in the reward and state transition functions,
i.e., environment dynamics. For each task i from a total ofN training tasks {Mi}Ni=1, an offline dataset
Di={(si,j , ai,j , ri,j , s′i,j)}Jj=1 is collected by an arbitrary behavior policy πiβ . The agent can only
access the offline datasets {Di}Ni=1 to train a meta-policy πmeta. At test time with the few-shot setting,
given an unseen task M ∼ P (M), the agent can access a small dataset D = {(sj , aj , rj , s′j)}J

′

j=1
to construct the task prompt or infer the task belief before policy evaluation. For the zero-shot
setting, the trained meta-policy is directly evaluated on the unseen task by interacting with the test
environment to estimate the expected return. The objective is to learn a meta-policy to maximize the
expected episodic return over test tasks as J(πmeta) = EM∼P (M) [JM (πmeta)].

3.2 Decision Transformer

By leveraging the superiority of the attention mechanism [13] in extracting dependencies between
sequences, transformers have gained substantial popularity in the language and vision communities [7,
14]. Decision transformer [8] introduces associated advances to solve RL problems and re-frames
offline RL as a return-conditioned sequential modeling problem, inheriting the transformer’s efficiency
and scalability when modeling long trajectory data. DT models the probability of the next sequence
token xt conditioned on all tokens prior to it: Pθ(xt|x<t), similar to contemporary decoder-only
sequence models [51]. The sequence we consider has the form: x = (· · · , R̂t, st, at, · · · ), where R̂t
is the agent’s target return for the rest of the trajectory. Such a sequence order respects the causal
structure of the decision process. When training with offline data, R̂t=

∑T
i=t ri, and during testing,

R̂t=G
∗−

∑t
i=0 ri, where where G∗ is the target return for an entire episode. The same timestep

embedding is concatenated to the embeddings of R̂t, st, and at, and the head corresponding to the
state token is trained to predict the action by minimizing its error from the ground truth.
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Figure 1: The overview of Meta-DT. We pretrain a context-aware world model to accurately disentan-
gle task-specific information. It contains a context encoder Eψ that abstracts recent h-step history µit
into a compact task representation zit , and the generalized decoders (Rϕ, Tφ) that predict the reward
and next state conditioned on zit. Then, the inferred task representation is injected as a contextual
condition to the causal transformer to guide task-oriented sequence generation. Finally, we design a
self-guided prompt from history trajectories generated by the meta-policy at test time. We select the
trajectory segment that yields the largest prediction error on the pretrained world model, aiming to
encode task-relevant information complementary to the world model maximally.

4 Method

In this section, we present Meta Decision Transformer (Meta-DT), a novel offline meta-RL framework
that draws upon advances in conditional sequence modeling with robust task representation learning
and a complementary prompt design for efficient generalization across unseen tasks. Fig. 1 illustrates
the method overview, and the following subsections present the detailed implementations.

4.1 Context-Aware World Model

The key to efficient generalization is how to accurately encode task-relevant information for extrapo-
lating knowledge across tasks, which proves more challenging in RL. A supervised or unsupervised
learner is passively presented with a fixed dataset and aims to recognize the pattern within that dataset.
In contrast, RL typically learns from active interactions with the environment, and aims at an optimal
policy that receives the maximal return in the environment, rather than only recognizing the pattern
within the pre-collected dataset. Since the offline dataset depends on both the task and the behavior
policy, the task information could be entangled with the features of behavior policies, thus producing
biased task inference at test time due to the shift in behavior policies. Taking 2D navigation as an
example, tasks differ in goals and the behavior policy is going towards the goal for each task. The
algorithm can easily distinguish tasks based on state-action distributions rather than reward functions,
leading to extrapolating errors when the behavior policy shifts to random exploration during testing.

To address this intrinsic challenge, we ought to disentangle task-relevant information from behav-
ior policies. The transition dynamics, i.e., the reward and state transition functions p(s′, r|s, a),
completely describes the characteristics of the underlying environment. Naturally, this environ-
ment dynamics, also called world model, keeps invariant to behavior policies or collected datasets,
and could be a promising alternative for accurately inferring task beliefs. Therefore, we introduce
a context-aware world model to learn robust task representations that can generalize to unseen
environments with varying transition dynamics.

In the typical meta-learning setting, the reward and state transition functions that are unique to each
MDP are unknown, but also share some common structure across the task distribution P (M). There
exists a true variable that represents either a task description or task identity, but we do not have
access to this information. Hence, we use a latent representation z to approximate that variable. For
a given task Mi, the reward and state transition functions can be approximated by a generalized
context-aware world model W that is shared across tasks as

Wi(rt, st+1|st, at) ≈W (rt, st+1|st, at; zit). (1)
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Since we do not have access to the true task description or identity, we need to infer task representation
zit given the agent’s h-step experience up to timestep t collected in task Mi as

µit = (st−h, at−h, rt−h, ..., st−1, at−1, rt−1, st). (2)
The intuition is that the true task belief of the underlying MDP can be abstracted from the agent’s
recent experiences, analogous to recent studies in meta-RL [41, 36].

We separate the reasoning about the world model into two parts: i) encoding the dynamics-specific
information into a latent task representation, and ii) decoding the environment dynamics conditioned
on that representation. First, we use a simple yet effective context encoder Eψ to embed recent
experiences into a task representation as zit=Eψ(µ

i
t). Second, the decoder contains a generalized

reward model Rϕ and state transition model Tφ. The task representation is augmented into the input
of both models to predict the instant reward r̂t+1=Rϕ(st, at; z

i
t) and next state ŝt+1=Tφ(st, at; z

i
t).

Under the assumption that tasks with similar contexts will behave similarily [52, 53], the proposed
world model can extrapolate the meta-level knowledge across tasks by accurately capturing task-
relevant information from training environments. The context encoder is jointly trained by minimizing
the reward and state transition prediction error conditioned on the task representation as

L(ψ, ϕ, φ) = Eµit∼Di

[
Ezit∼Eψ(µit)

[(
rt+1 −Rϕ(st, at; zit)

)2
+
(
st+1 − Tφ(st, at; zit)

)2]]
. (3)

4.2 Complementary Prompt

Recent works suggest the prompt framework as an effective paradigm for pretraining transformer-
based large models on massive datasets and adapting them to new scenarios with few or no labeled
data [54]. Prompt-DT [21] adopts that paradigm to RL problems by prepending a task prompt to the
DT’s input. At test time, the agent is assumed to access a handful of expert demonstrations to construct
the prompt and perform few-shot generalization to new tasks. However, in real-world scenarios, it is
expensive and even infeasible to acquire such domain knowledge as expert demonstrations in advance
for unseen tasks. Especially in RL, agents typically learn from interacting with an initially unknown
environment. Recent studies [36, 23] also suggest that the quality of demonstrations must be high
enough to act as a well-constructed prompt. Otherwise, the performance of Prompt-DT may degrade
since some medium or random data can easily disrupt the abstraction of task-specific information.

Here, we design a self-guided prompt to achieve more realistic generalization at test time. In the ideal
case where the testing policy is optimal, past experiences during evaluation can act as high-quality
demonstrations to construct the prompt. Motivated by this, we leverage history trajectories generated
by the meta-policy during evaluation as a self-guided prompt to enjoy the power of architecture
inductive bias, while eliminating the dependency on expensive domain knowledge. Though, the
meta-policy may generate medium or even inferior data during initial training. As meta-learning
proceeds, the policy can exhibit increasing generalization capacity via the context-aware world model,
thus generating trajectories that gradually approach expert demonstrations.

Both the world model (algorithmic perspective) and the self-guided prompt (architecture perspec-
tive) aim to extract task-specific information to guide policy generation across tasks. To facilitate
collaboration between these two parts, we force the prompt to maximally complement the world
model towards the same goal. We feed all available segments selected from history trajectories to the
pretrained world model, and use the segment with the largest prediction error to construct the prompt.
In this way, the complementary prompt attempts to encode the portion of task-relevant information
that the world model struggles to capture effectively.

Formally, the complementary prompt is a sequence segment containing multiple tuples, (R̂∗, s∗, a∗),
which are sampled from the agent’s history trajectories. Each element with superscript ∗ is associated
with the prompt. For a given task Mi, we obtain a k-step prompt τ∗i as

τ∗i =
(
R̂∗
j , s

∗
j , a

∗
j , R̂

∗
j+1, s

∗
j+1, a

∗
j+1, ..., R̂

∗
j+k, s

∗
j+k, a

∗
j+k

)
,

where j = max
j

∑j+k

t=j

[(
rt+1 −Rϕ(st, at; zit)

)2
+

(
st+1 − Tφ(st, at; zit)

)2]
.

(4)

Following Prompt-DT, we choose a much smaller value of k than the task horizon, ensuring that the
prompt only contains the information needed to help identify the task but insufficient information for
the agent to imitate. Compared to the world model that explicitly learns the reward and transition
functions, the complementary prompt can store partial information to implicitly capture task dynamics.
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4.3 Meta-DT Architecture

Our Meta-DT architecture is built on decision transformer [8] and solves the offline meta-RL problem
through the lens of conditional sequence modeling with robust task representation learning. We first
pretrain the context-aware world model and keep it fixed to produce compact task representations
for the downstream meta-training process. For each task Mi, we use the context encoder from the
pretrained world model to infer the contextual information for each timestep as zit = Eψ(µ

i
t). Then,

the input of Meta-DT consists of two parts: i) the k-step complementary prompt τ∗i derived from (4),
and ii) the most recent K-step history τ+i augmented by the learned task representations as

τ+i = (zit−K+1, R̂t−K+1, st−K+1, at−K+1, ..., z
i
t, R̂t, st, at) (5)

The input sequence (τ∗i , τ
+
i ) corresponds to 3k + 4K tokens in the transformer, and Meta-DT

autoregressively outputs k +K actions at heads corresponding to state tokens in the input sequence.
During training, we construct the prompt from the top few trajectories that obtain the highest returns
in the offline dataset. Meta-DT minimizes errors between the predicted and real actions in the data
for the K-step history. At test time with a few-shot setting, the meta-policy is allowed to interact with
the environment for a few episodes, and Meta-DT utilizes these history interactions to construct the
self-guided prompt. For the zero-shot setting, we ablate the prompt component and directly evaluate
Meta-DT on test tasks. Corresponding algorithm pseudocodes are given in Appendix A.

5 Experiments

We comprehensively evaluate the generalization capacity of Meta-DT on popular benchmarking
domains across various dataset types. In general, we aim to answer the following questions:

• Can Meta-DT achieve consistent performance gain on the few and zero-shot generalization to
unseen tasks compared with other strong baselines? (Secs. 5.1 and 5.2)

• How do the context-aware world model, the self-guided prompt design, and the complementary
prompt construction affect the generalization performance, respectively? (Sec. 5.3)

• Is Meta-DT robust to the quality of offline datasets? (Sec. 5.4)

Environments. We evaluate all tested methods on three classical benchmarks in meta-RL: i) the 2D
navigation environment Point-Robot [25]; ii) the multi-task MuJoCo control [55, 36], containing
Cheetah-Vel, Cheetah-Dir, Ant-Dir, Hopper-Param, and Walker-Param; and iii) the Meta-
World manipulation platform [56], including Reach, Sweep, and Door-Lock. For each environment,
we randomly sample a distribution of tasks and divide them into the training set T train and test set
T test. On each training task, we use SAC [57] to train a single-task policy independently for collecting
datasets. We consider three ways to construct offline datasets: Medium, Mixed, and Expert. More
details about environments and datasets are given in Appendix B.

Baselines. We compare Meta-DT to four competitive baselines that cover two distinctive paradigms
in offline meta-RL: the DT-based 1) Prompt-DT [21], 2) Generalized DT [22], and the temporal
difference-based 3) CORRO [24], 4) CSRO [25]. More details about baselines are given in Appendix C.

All evaluated methods are carried out with 5 different random seeds, and the mean of the received
return is plotted with 95% bootstrapped confidence intervals of the mean (shaded). The standard
errors are presented for numerical results. Appendix D gives implementation details of Meta-DT.
Appendix E presents hyperparameter analysis on the context horizon h, the prompt length k, and the
number of training tasks. Appendix F shows experimental results on Meta-World domains.

5.1 Few-shot Generalization Performance

Note that these baselines work under the few-shot setting, since they require expert demonstrations
as task prompts or some warm-start data to infer the task representation. We first compare Meta-
DT to them under an aligned few-shot setting, where each method can leverage a fixed number
of trajectories for task inference. Fig. 2 and Table 1 present the testing curves and converged
performance of Meta-DT and baselines on various domains using Medium datasets under an aligned
few-shot setting. In these environments with varying reward functions or state transition dynamics,
Meta-DT consistently obtains superior performance regarding data efficiency and final asymptotic
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Figure 2: The received return curves averaged over test tasks of Meta-DT and baselines using Medium
datasets under an aligned few-shot setting.

Table 1: Few-shot test returns of Meta-DT against baselines using Medium datasets.

Environment Prompt-DT Generalized DT CORRO CSRO Meta-DT
Point-Robot -12.58±0.27 -14.97±0.43 -14.51±1.65 -16.39±2.95 -10.18±0.18
Cheetah-Vel -135.89±19.91 -123.47±6.88 -154.12±28.83 -111.83±9.16 -99.28±3.96
Cheetah-Dir 590.26±7.28 572.94±26.02 566.08±96.16 556.97±54.59 608.17±4.18

Ant-Dir 287.23±29.51 268.53±12.20 246.75±49.33 251.66±30.01 412.00±11.53
Hopper-Param 309.90±5.74 320.77±12.82 332.37±12.90 332.84±11.23 348.20±3.21
Walker-Param 357.30±18.34 368.07±13.79 368.02±41.77 388.08±24.92 405.12±11.11

results. A noteworthy point is that Meta-DT outperforms baselines by a larger margin in relatively
complex environments like Ant-Dir, which demonstrates the high generalization capacity of Meta-DT
when tackling challenging problems. Moreover, Meta-DT generally exhibits a lower variance during
learning, signifying not only superior learning efficiency but also enhanced training stability.

5.2 Zero-shot Generalization Performance

Since Meta-DT can derive real-time task representations zt from its h-step experience µt via the pre-
trained context encoder, it can achieve zero-shot policy adaptation to unseen tasks. To demonstrate
its zero-shot generalization ability, we ablate the prompt component and directly evaluate Meta-DT
on test tasks. For a fair comparison, we modify the baselines to an aligned zero-shot setting, where
prompt or warm-start data is inaccessible before policy evaluation. All methods can only use samples
generated by the trained meta-policy during evaluation to construct task prompts (Prompt-DT),
calculate hindsight statistics (Generalized DT), or infer task representations (CORRO and CSRO).

Fig. 3 and Table 2 present the testing curves and converged performance of Meta-DT and baselines
on various domains using Medium datasets under an aligned zero-shot setting. Unsurprisingly, most
baselines exhibit a collapsed performance (about 20%-35% drop on average) compared to their few-
shot counterparts. The main reason is that they usually require expert demonstrations as task prompts
or some high-quality warmup data to accurately capture task information. In contrast, Meta-DT
can abstract compact task presentations via the context-aware world model, and its performance in
zero-shot scenarios drops merely a little (about 5% on average) compared to the few-shot counterpart.
The superiority of Meta-DT over all baselines is more pronounced when deployed to zero-shot
adaptation scenarios. In addition to its enhanced generalization capacity, this result also demonstrates
the superior practicability of Meta-DT with fewer prerequisites in real-world applications.
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Figure 3: The received return curves averaged over test tasks of Meta-DT and baselines using Medium
datasets under an aligned zero-shot setting.

Table 2: Zero-shot test returns of Meta-DT against baselines using Medium datasets. The ↓ denotes
the performance drop compared to the few-shot setting.

Environment Prompt-DT Generalized DT CORRO CSRO Meta-DT
Point-Robot -17.3±0.2 (↓38%) -16.9±0.1 (↓13%) -16.3±1.3 (↓12%) -23.0±2.5 (↓40%) -10.7±0.3 (↓5%)

Cheetah-Vel -148.3±12.7 (↓9%) -218.4±15.8 (↓77%) -165.1±97.4 (↓7%) -140.4±18.3 (↓26%) -100.1±2.8 (↓1%)

Cheetah-Dir 212.4±185.2 (↓64%) 129.2±106.5 (↓77%) 146.4±169.0 (↓74%) 200.9±97.0 (↓64%) 542.4±13.8 (↓11%)

Ant-Dir 150.6±5.4 (↓48%) 162.2±22.4 (↓40%) 214.6±11.0 (↓13%) 235.5±13.3 (↓6%) 368.9±10.6 (↓10%)

Hopper-Param 301.7±12.7 (↓3%) 318.7±13.4 (↓1%) 320.0±20.0 (↓4%) 329.9±6.9 (↓1%) 342.0±7.4 (↓2%)

Walker-Param 317.9±32.3 (↓11%) 355.2±14.0 (↓4%) 342.4±31.1 (↓7%) 347.9±12.1 (↓10%) 397.4±3.8 (↓2%)

5.3 Ablation Study

To test the respective contributions of each component, we compare Meta-DT to four ablations: i)
w/o_context, it only removes the task representation zit from the input of the casual transformer;
ii) w/o_com, it randomly chooses a segment from a candidate trajectory to construct the prompt,
i.e., removing the complementary way for constructing the prompt; iii) w/o_prompt, it directly
removes the prompt component; iv) DT, it removes all components and degrades to the original DT.
For ablations, all other structural modules are kept consistent strictly with the full Meta-DT.

Fig. 4 and Table 3 show ablation results on representative domains using Medium datasets. First,
Meta-DT obtains a decreased performance when any component is removed, which demonstrates
that all components are essential for Meta-DT’s capability and they complement each other. Second,
ablating the context incurs a more significant performance drop than ablating the complementary
way or the whole prompt. It indicates that task representation learning via the world model plays a
more vital role in capturing task-relevant information. Third, the performance order of w/o_prompt
< w/o_com < Meta-DT shows that using the self-guided prompt can improve the performance, and
leveraging the complementary way to construct the prompt can further achieve a performance gain.
Another interesting point is that the performance gain achieved by the self-guided prompt and the
complementary way is more significant in complex environments like Ant-Dir than in simpler ones
like Point-Robot. It again verifies our superiority in tackling challenging tasks.

5.4 Robustness to the Quality of Offline Datasets

A good offline algorithm ought to be robust to different types of datasets that involve a wide range
of behavioral policies [58]. To test how Meta-DT performs with data of different qualities, we
also conduct experiments on the Mixed and Expert datasets. Figs. 5-6 present test return curves of
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Figure 4: Test return curves of Meta-DT ablations using Medium datasets. w/o_context removes task
representation, w/o_com removes the complementary way, and w/o_prompt removes the prompt.

Table 3: Test returns of Meta-DT ablations using Medium datasets.

Environment w/o_context w/o_com w/o_prompt DT Meta-DT
Point-Robot -16.44±1.93 -10.32±0.15 -10.61±0.15 -17.04±0.17 -10.18±0.18
Cheetah-Dir 551.30±55.04 580.34±30.84 542.44±13.84 473.75±104.09 608.18±4.18

Ant-Dir 290.44±54.36 390.70±11.23 368.94±10.56 143.64±15.36 412.00±11.53

Figure 5: Few-shot test curves of Meta-DT and baselines using Mixed datasets.

Meta-DT and baselines with a few-shot setting, and Table 4 shows corresponding converged results.
In Mixed datasets, Meta-DT still outperforms all baselines by a large margin, especially in complex
environments like Ant-Dir and Walker-Param.

In Expert datasets, Meta-DT exhibits superior generalization capacity than the three baselines of
Generalized DT, CORRO, and CSRO. Compared to Prompt-DT, Meta-DT obtains significantly better
performance in Point-Robot, Cheetah-Vel, and Ant-Dir, and obtains comparable performance in the
other three environments. This phenomenon is because Prompt-DT is sensitive to the quality of
prompt demonstrations. The performance can drop a lot when provided with prompts from Medium
or Mixed datasets, also mentioned in the original paper [21] and subsequent studies [36]. Hence,
Prompt-DT can achieve satisfactory performance only when expert demonstrations are available at
test time. When tackling offline tasks with lower data qualities, Prompt-DT would induce a significant
performance gap compared to Meta-DT. In summary, the above results verify that our method is
robust to the dataset quality and is more practical with fewer prerequisites in real-world scenarios.
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Figure 6: Few-shot test curves of Meta-DT and baselines using Expert datasets.

Table 4: Few-shot test returns of Meta-DT against baselines using Mixed and Expert datasets.

Mixed Prompt-DT Generalized DT CORRO CSRO Meta-DT
Point-Robot -15.31±1.52 -15.10±0.52 -10.38±1.29 -18.14±3.75 -8.39±0.28
Cheetah-Vel -91.34±14.87 -86.52±10.62 -81.59±37.17 -110.55±12.01 -79.90±5.69
Cheetah-Dir 376.66±33.00 480.49±48.38 577.80±24.87 579.90±15.55 631.34±83.96

Ant-Dir 869.58±22.64 511.97±23.86 255.49±32.64 330.15±33.77 908.48±20.73
Hopper-Param 320.76±10.58 338.36±14.07 335.12±26.73 351.96±13.61 358.05±10.69
Walker-Param 391.24±20.28 394.32±19.78 330.54±14.07 334.34±28.57 470.36±12.85

Expert Prompt-DT Generalized DT CORRO CSRO Meta-DT
Point-Robot -7.99±0.46 -12.99±0.34 -7.76±0.18 -19.42±2.10 -6.90±0.11
Cheetah-Vel -133.78±18.24 -62.95±3.42 -111.47±36.97 -129.00±24.24 -52.42±8.11
Cheetah-Dir 960.32±17.07 806.30±124.41 628.64±61.11 641.05±129.54 874.91±73.45

Ant-Dir 678.07±68.74 613.59±49.22 381.42±13.83 417.37±39.70 961.27±18.07
Hopper-Param 393.79±11.44 358.56±11.75 338.17±47.36 358.29±16.25 383.51±8.99
Walker-Param 449.15±37.53 421.96±40.70 352.02±44.99 336.89±16.71 437.79±18.21

6 Conclusions, Limitations, and Future Work

In the paper, we tackle the offline meta-RL challenge via leveraging advances in sequence modeling
with scalable transformers, marking a step toward developing highly capable generalists akin to
those in the language and vision communities. Improvements in few and zero-shot generalization
capacities highlight the potential impact of our robust task representation learning and self-guided
complementary prompt design. Without requiring any expert demonstration or domain knowledge at
test time, our method exhibits superior practicability with fewer prerequisites in real-world scenarios.

Though, our method requires a two-phase process of pre-training the world model and training the
causal transformer. A promising improvement is to develop a unified framework that simultaneously
abstracts the task representation and learns the meta-policy, akin to in-context learning [59]. Also,
our generalist model is trained on relatively lightweight datasets compared to popular large models.
A crucial future step is to deploy our model on significantly larger datasets, unlocking the scaling
law with the transformer architecture. This also aligns with the urgent trend that RL practitioners are
striving to break through. Another interesting line is to leverage self-supervised learning [15, 60] to
facilitate task representation learning at scale. We leave these as future work.
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Appendix A. Algorithm Pesudocodes

Based on the implementations in Sec. 4, this section gives the brief procedures of our method. First,
Algorithm 1 presents the pretraining of the context-aware world model. Then, Algorithm 2 shows
the pipeline of training Meta-DT, where the sub-procedure of generating the complementary prompt
is given in Algorithm 3. Finally, Algorithm 4 and Algorithm 5 show the few-shot and zero-shot
evaluations on test tasks, respectively.

Algorithm 1: Pretraining the Context-Aware World Model

Input: Training tasks T train and corresponding offline datasets Dtrain

Context encoder Eψ; Reward decoder Rϕ; Transition decoder Tφ
Context horizon h; Batch size B

1 for each iteration do
2 for b = 1, ..., B do
3 Sample a task Mi ∼ T train and obtain the corresponding dataset Di from Dtrain

4 Sample a whole trajectory (si0, a
i
0, r

i
0, s

i
1, a

i
1, r

i
1, ...) from Di

5 Sample a transition tuple (st, at, rt, st+1) with randomly selected t
6 Obtain its h-step history µit = (st−h, at−h, rt−h, ..., st−1, at−1, rt−1, st)

7 Compute the context zit = Eψ(µ
i
t)

8 Compute the predicted reward r̂t = Rϕ(st, at; z
i
t) and next state ŝt+1 = Tφ(st, at; z

i
t)

9 end
10 Update Eψ , Rϕ, and Tφ using the loss as

L(ψ, ϕ, φ) = 1
B

∑[(
rt+1 −Rϕ(st, at; zit)

)2
+

(
st+1 − Tφ(st, at; zit)

)2]
11 end

Algorithm 2: Training Meta Decision Transformer

Input: Training tasks T train and corresponding offline datasets Dtrain

Causal transformer Fθ; Pretrained context encoder Eψ and decoders Rϕ, Tφ
Context horizon h; Trajectory length K; Batch size B

1 for each task Mi ∈ T train do
2 Construct the demo dataset Ddemo

i using the top few trajectories with the highest returns in Di
3 end
4 for each iteration do
5 for b = 1, 2, ..., B do
6 Sample a task Mi ∼ T train and obtain the corresponding dataset Di from Dtrain

7 Sample a trajectory τi of length K from Di, τi = {(R̂, s, a)}tt−K+1

8 Infer the context of each timestep t from its h-step history using the pretrained context
encoder as zt = Eψ(st−h, at−h, rt−h, ..., st−1, at−1, rt−1, st)

9 Augment the trajectory τi with per-step context as τ+i = {(z, R̂, s, a)}tt−K+1

10 Sample a prompt τ∗i = GetPrompt
(
Ddemo
i , Eψ, Rϕ, Tφ

)
as in Algorithm 3

11 Get input τ input
i = (τ∗i , τ

+
i )

12 end
13 Get a batch B = {τ input

i }Bb=1

14 apred = Fθ(τ
input
i ), ∀τ input

i ∈ B
15 L(θ) = 1

B

∑
τ input
i ∈B(a− a

pred)2

16 Few or Zero-Shot Evaluation along with training
17 end
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Algorithm 3: Complementary Prompt Generation (GetPrompt)

Input: Demo Dataset Ddemo
i ; Prompt length k

Pretrained context encoder Eψ and decoders Rϕ, Tφ
1 Sample a trajectory (s0, a0, r0, ..., st, at, rt, ...) from Ddemo

i
2 Get the segment with the largest prediction error on the pretrained world model as

j = maxj
∑j+k
t=j

[(
rt+1 −Rϕ(st, at; zit)

)2
+

(
st+1 − Tφ(st, at; zit)

)2]
, where zit = Eψ(τ

i
t )

3 Obtain the k-step prompt τ∗i =
(
R̂∗
j , s

∗
j , a

∗
j , R̂

∗
j+1, s

∗
j+1, a

∗
j+1, ..., R̂

∗
j+k, s

∗
j+k, a

∗
j+k

)

Algorithm 4: Meta-DT Few-Shot Evaluation on Test Tasks
Input: Test tasks T test; Target return G∗; Evaluation episodes N

Context horizon h; Trajectory length K; Prompt length k
Trained meta-DT Fθ; Pretrained context encoder Eψ and decoders Rϕ, Tφ

1 for each task Mi ∈ T test do
2 Initialize the demo dataset Ddemo

i = ∅
3 for n = 1, ..., N do
4 Initialize desired return R̂ = G∗

i
5 for each timestep t do
6 Infer the context from h-step history using Eψ as

zt = Eψ(st−H+1, at−H+1, rt−H+1, ..., st−1, at−1, rt−1, st)

7 Augment the trajectory τi with context as τ+i = {(z, R̂, s, a)}tt−K+1

8 Sample a prompt τ∗i = GetPrompt
(
Ddemo
i , Eψ, Rϕ, Tφ

)
as in Algorithm 3

9 Get action a = Fθ((τ
+
i , τ

∗
i ))

10 Step env. and get feedback s, a, r, R̂← R̂− r
11 Append (R̂, s, a) to recent history τi
12 end
13 Append the whole trajectory τi to the demo dataset as Ddemo

i ← Ddemo
i ∪ τi

14 end
15 end

Algorithm 5: Meta-DT Zero-Shot Evaluation on Test Tasks
Input: Test tasks T test; Target return G∗

Context horizon h; Trajectory length K
Trained meta-DT Fθ; Pretrained context encoder Eψ

1 for each task Mi ∈ T test do
2 Initialize desired return R̂ = G∗

i
3 for each timestep t do
4 Infer the context from h-step history using Eψ as

zt = Eψ(st−H+1, at−H+1, rt−H+1, ..., st−1, at−1, rt−1, st)

5 Augment the trajectory τi with context as τ+i = {(z, R̂, s, a)}tt−K+1

6 Get action a = Fθ(τ
+
i )

7 Step env. and get feedback s, a, r, R̂← R̂− r
8 Append (R̂, s, a) to recent history τi
9 end

10 end
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Appendix B. The Details of Environments and Dataset Construction

In this section, we show details of evaluation environments over a variety of testbeds, as well as the
offline dataset collection process conducted on these environments.

B.1. The Details of Environments

Following the mainstream studies in offline meta-RL [39, 24], we adopt three classical benchmarks:
the 2D navigation [25], the multi-task MuJoCo control [55, 36], and the Meta-World [56]. We
evaluate all tested methods on the following environments as

• Point-Robot: a problem of a point agent navigating to a given goal position in the 2D space. The
observation is the 2D coordinate of the robot and the goal is not included in the observation. The
action space is [−0.1, 0.1]2 with each dimension corresponding to the moving distance in the
horizontal and vertical directions. The reward function is defined as the negative distance between
the point agent and the goal location. Each learning episode always starts from the fixed origin
and terminates at the horizon of 20. Tasks differ in goal positions that are uniformly distributed in
a unit square, resulting in the variation of the reward functions.

• Cheetah-Vel, Cheetah-Dir, Ant-Dir: multi-task MuJoCo continuous control benchmarks in
which the reward functions differ across tasks. Cheetah-Vel requires a planar cheetah robot to run
at a particular velocity in the positive x-direction, and the reward function is negatively correlated
with the absolute value between the current velocity of the agent and a goal. Cheetah-Dir/Ant-Dir
is to control a 2D cheetah/3D quadruped ant robot to move in a specific direction, and the reward
function is the cosine product of the agent’s velocity and the goal direction. The goal velocity
and direction are uniformly sampled from the distribution U [0.075, 3.0] for Cheetah-Vel and
U [0, 2π] for Ant-Dir. In Cheetah-Dir, the goal directions are limited to forward and backward.
The maximal episode step is set to 200.

• Hopper-Param, Walker-Param: multi-task MuJoCo benchmarks where tasks differ in state
transition dynamics. The two benchmarks control a one-legged hopper and a two-legged walker
robot to run as fast as possible. The reward function is proportional to the running velocity in the
positive x-direction, which remains consistent for different tasks. In both domains, the physical
parameters of body mass, inertia, damping, and friction are randomized across tasks. The agent
needs to move forward with varying environment dynamics to accomplish the task. The maximal
episode step is set to 200 for both.

• Reach, Sweep, Door-Lock: three typical environments from the robotic manipulation benchmark
Meta-World. Reach, Sweep, and Door-Lock control a robotic arm to reach a goal location in
3D space, to sweep a puck off the table, and to lock the door by rotating the lock clockwise,
respectively. Tasks are assigned with random goal object positions for Reach, with random
puck positions for Sweep, and with random door positions for Door-Lock. The variations in
goal/puck/door positions are not provided in the observation, forcing meta-RL algorithms to adapt
to the goal through trial-and-error. The maximal episode step is set to 500.

For the Point-Robot and MuJoCo environments, we sample 45 tasks for training and another 5
held-out tasks for testing. For Meta-World environments, we sample 15 tasks for training and 5
held-out tasks for testing.

B.2. The Details of Datasets

We employ the soft actor-critic (SAC) [57] algorithm to train a policy independently for each task.
Table 5 shows the detailed hyperparameters for training the SAC agents in each environment. Figs. 7-8
show the learning curves of independently training the SAC agents for each training and testing task
in all evaluation domains. During training, we periodically save the policy checkpoints to generate
various types of offline datasets as

• Medium: using a medium policy that achieves a one-third to one-second score of an expert policy.
All trajectories are generated by this medium policy.

• Expert: using an expert policy that obtains the optimal return in the environment. In practice,
we load the last policy checkpoint after the training has converged, and use this expert policy to
generate all trajectories.
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• Mixed: a mixed dataset of the Medium and Expert types. We use a combination of the medium
(70%) and expert (30%) datasets collected as above to generate the mixed dataset.

Specifically, we generate 100 trajectories for the Point-Robot and MuJoCo environments, and 300
trajectories for the Meta-World environments, using the saved checkpoint policies to construct
corresponding offline datasets.

B.3. Further discussions

The above environments are relatively homogenous in nature. Our generalist model is trained
on relatively lightweight datasets compared to popular large models. The urgent trend that RL
practitioners are striving to break through is to deploy on significantly large datasets with more
diversity, unlocking the scaling law with the transformer architecture. It would be interesting to see
how Meta-DT generalizes across worlds and tasks with more diversity, like training on K-levels of
an Atari game and generalizing to the remaining N −K levels of well-suited Atari games.

The challenges in extending to such paradigms might include: i) how to collect large-scale datasets
with sufficient diversity and high quality, ii) how to tackle the heterogenous task diversity in hard
cases, and iii) how to scale RL models to very large network architectures like in large language
or visual models. To tackle these potential challenges, we conjecture several promising solutions
including: i) leveraging self-supervised learning to facilitate task representation learning at scale, ii)
enabling efficient prompt design or prompt tuning to facilitate in-context RL, and iii) incorporating
effective network architectures like mixture-of-experts to handle heterogenous domain diversity.

Table 5: Hyperparameters of SAC used to collect multi-task datasets.

Environments
Training Warmup Save Learning Soft Discount Entropy

steps steps frequency rate update factor ratio

Point-Robot 2000 100 40 3e-4 0.005 0.99 0.2
Cheetah-Dir 500000 10000 10000 3e-4 0.005 0.99 0.2
Cheetah-Vel 500000 2000 10000 3e-4 0.005 0.99 0.2

Ant-Dir 500000 2000 10000 3e-4 0.005 0.99 0.2
Hopper-Param 500000 10000 10000 3e-4 0.005 0.99 0.2
Walker-Param 500000 2000 10000 3e-4 0.005 0.99 0.2

Reach 200000 5000 1000 3e-4 0.005 0.99 0.2
Sweep 200000 5000 1000 3e-4 0.005 0.99 0.2

Door-Lock 200000 5000 1000 3e-4 0.005 0.99 0.2

Appendix C. The Details of Baselines

This section gives the details of the representative five baselines, including three DT-based approaches,
one temporal difference-based approach, and one diffusion-based approach. These baselines are
thoughtfully selected to encompass the three distinctive categories of offline meta-RL methods. Also,
since our method Meta-DT belongs to the DT-based category, we adopt more approaches from this
kind as our baselines. The baselines are introduced as follows:

• Prompt-DT [21], is a DT-based method that leverages the sequential modeling ability of the
Transformer architecture and the prompt framework to achieve few-shot adaptation in offline RL.
It designs the trajectory prompt, which contains segments of the few-shot demonstrations, and
encodes task-specific information to guide policy generation. At test time, it assumes that the
agent can assess a handful of expert demonstrations to construct the prompt.

• Generalized DT [22], is a DT-based method that formulates multi-task learning as a hindsight
information matching (HIM) problem, i.e., training policies that can output the rest of the
trajectory to match some statistics of future information. It defines offline multi-task state-
marginal matching and imitation learning as two generic HIM problems to evaluate the proposed
Categorical DT and Bi-directional DT.
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Figure 7: Learning curves of training independent SAC agents in Point-Robot and MuJoCo domains.

Figure 8: Learning curves of independently training the SAC agents for each task in Meta-World.
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• CORRO [24], is a temporal difference-based method with a contrastive learning framework to
learn task representations that are robust to the distribution mismatch of behavior policies in
training and testing. It formalizes the learning objective as mutual information maximization
between the representation and task, to maximally eliminate the influence of behavior policies
from task representations. At test time, it needs to collect a context trajectory with an arbitrary
policy to infer the task representation.

• CSRO [25], is a temporal difference-based method that proposes a max-min mutual information
representation learning framework to mitigate the distribution discrepancy between the contexts
used for training (from the behavior policy) and testing (for the exploration policy). At test time, it
explores the new task with a non-prior strategy and collects few-shot context data to infer the task
representation. It demonstrates superior performance than prior context-based meta-RL methods.

Note that these baselines can only work under the few-shot setting, since they require several expert
demonstrations as the task prompt or some warm-start data to infer the task representation. We first
compare Meta-DT to them under an aligned few-shot setting, where each method can leverage a fixed
number of trajectories for task inference.

Further, we demonstrate the zero-shot generalization capability of Meta-DT and baselines by directly
evaluating the meta-policy on the unseen task without collecting any data in advance. For Meta-DT,
we ablate the prompt component and derive real-time task representations from the history trajectory
via the pre-trained context encoder. For a fair comparison, we modify the baselines to an aligned
zero-shot setting, where prompt demonstrations or warm-start data are inaccessible before policy
evaluation. All these baselines can only use samples generated by the trained meta-policy during
evaluation to construct task prompts (Prompt-DT), calculate hindsight statistics (Generalized DT), or
infer task representations (CORRO and CSRO).

Appendix D. Implementation Details of Meta-DT

Network Architecture. In this paper, we use simple network structures for the context-aware
world model, including the context encoder, the reward decoder, and the state transition decoder.
Specifically, the context encoder contains a fully-connected multi-layer perceptron (MLP) and a GRU
network with ReLU as the activation function. The GRU cell encodes the agent’s h-step history
(st−h, at−h, rt−h, ..., st−1, at−1, rt−1, st) into a 128-dimensional vector, and the MLP transforms
this vector into a 16-dimensional embedding, i.e., the task representation z. The reward decoder is an
MLP that takes as input the (s, a, s′, z) tuple and predicts the reward r through two 128-dimensional
hidden layers. Similarly, the state transition decoder is an MLP that takes as input the (s, a, r, z) tuple
and predicts the next state s′ through two 128-dimensional hidden layers.

We implement the proposed Meta-DT based on the official codebase released by DT [8]
(https://github.com/kzl/decision-transformer). We follow most of the hyperparameters as they did.
Specifically, task representations z, returns R̂, states s, and actions a are fed into modality-specific lin-
ear embeddings, and the same positional episodic timestep encoding is added to tokens corresponding
to the same timestep. Tokens are fed into a GPT architecture which predicts actions autoregressively
using a causal self-attention mask. In summary, Table 6 shows the details of network structures.

Algorithm Hyperparameters. We evaluate the proposed Meta-DT algorithm on various testbeds
with different types of offline datasets. Each report unit involves running on one environment (Point-
Robot, Cheetah-Vel, Cheetah-Dir, Ant-Dir, Hopper-Param, Walker-Param, Reach) with one dataset
(Medium, Expert, Mixed). Some common hyperparameters across all report units are set as: optimizer
Adam, weight decay 1e-4, linear warmup steps for learning rate decay 10000, gradient norm clip 0.25,
dropout 0.1, and batch size 128. Table 7 presents the detailed hyperparameters of Meta-DT trained
on the Point-Robot and MuJoCo domains with the Medium, Expert, and Mixed datasets. Table 8
presents the detailed hyperparameters of Meta-DT trained on Meta-World environments with the
Medium datasets.

Compute. We train our models on one Nvidia RTX4080 GPU with the Intel Core i9-10900X CPU
and 256G RAM. Pretraining the context-aware world model and the causal transformer costs about
0.5-6 hours and 1-8 hours, respectively, depending on the complexity of the environment.
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Table 6: The network configurations used for Meta-DT.

World Model Value Causal Transformer Value
GRU hidden dim 128 layers num 3
task representation dim 16 attention heads num 1
decoder hidden dim 128 embedding dim 128
decoder hidden layers num 2 activation function ReLU
activation function ReLU

Table 7: Hyperparameters of Meta-DT on Point-Robot and MuJoCo domains with various datasets.

Medium Point-Robot Cheetah-Vel Cheetah-Dir Ant-Dir Hopper-Param Walker-Param
training steps 100000 100000 100000 500000 100000 100000

sequence length K 8 20 20 20 20 20
context horizon h 4 4 4 4 4 4

learning rate 1e-4 5e-5 6e-6 5e-5 5e-5 5e-5
prompt length k 3 5 5 5 5 5

Expert Point-Robot Cheetah-Vel Cheetah-Dir Ant-Dir Hopper-Param Walker-Param
training steps 300000 200000 300000 500000 100000 100000

sequence length K 8 20 20 20 20 20
context horizon h 4 4 4 4 4 4

learning rate 1e-4 5e-5 5e-5 5e-5 5e-5 5e-5
prompt length k 3 5 5 5 5 5

Mixed Point-Robot Cheetah-Vel Cheetah-Dir Ant-Dir Hopper-Param Walker-Param
training steps 300000 200000 300000 500000 100000 100000

sequence length K 8 20 20 20 20 20
context horizon h 4 4 4 4 4 4

learning rate 1e-4 5e-5 5e-5 5e-5 5e-5 5e-5
prompt length k 3 5 5 5 5 5

Table 8: Hyperparameters of Meta-DT trained on Meta-World domains with Medium datasets.

Hyperparameters Reach Sweep Door-Lock
training steps 500000 500000 500000

sequence length K 20 20 20
context horizon h 4 4 4

learning rate 1e-7 1e-6 1e-6
prompt length k 5 5 5

Appendix E. Hyperparameter Analysis

Context horizon h. As shown by the ablation studies in Sec. 5.3, task representation learning via
the world model disentanglement plays a more vital role in capturing task-relevant information
in Meta-DT. The task representation zit is abstracted from the agent’s h-step experience µit =
(st−h, at−h, rt−h, ..., st−1, at−1, rt−1, st). The context horizon h is a key hyperparameter in learning
effective task representations. Hence, we conduct additional experiments to analyze the influence of
context horizon h on Meta-DT’s performance.

Fig. 9 and Table 9 present the testing curves and converged performance of Meta-DT with different
values of context horizon h on representative environments. Generally, the performance of Meta-DT
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is not sensitive to the pre-defined value of the context horizon. In simple environments like Point-
Robot, increasing the context horizon can degrade the final performance a little bit. The most likely
reason for this phenomenon is that the context-aware world model might be overfitted with a large
value of context horizon. In more complex environments like Cheetah-Dir and Ant-Dir, adopting
different values of context horizon leads to very close performance. Hence, throughout the paper, we
choose the context horizon as 4 for our method to exploit a lightweight network design while not
sacrificing performance.

Figure 9: The received return curves averaged over test tasks of Meta-DT with different values of
context horizon h using Medium datasets under an aligned few-shot setting.

Table 9: Few-shot test returns averaged over test tasks of Meta-DT with different values of context
horizon h using Medium datasets.

Context Horizon h 4 6 8
Point-Robot -10.18±0.18 -11.08±0.11 -11.81±0.31
Cheetah-Dir 608.18±4.18 606.81±11.34 610.63±6.13

Ant-Dir 412.00±11.53 406.01±12.61 401.36±6.65

Prompt length k. Analogously, we also investigate the influence of prompt length k on Meta-DT’s
performance. Fig. 10 and Table 10 present the testing curves and converged performance of Meta-DT
with different values of prompt length k on representative environments. Generally, the performance
of Meta-DT is not sensitive to the pre-defined value of prompt length.

Figure 10: Few-shot return curves of Meta-DT with different prompt length k using Medium datasets.

Table 10: Few-shot test returns of Meta-DT with different prompt length k using Medium datasets.

prompt length k 3 5 7
Point-Robot -10.18±0.18 -10.19±0.15 -10.22±0.04
Cheetah-Dir 606.69±2.92 608.18±4.18 605.09±6.31

Ant-Dir 408.97±18.01 412.00±11.53 413.09±8.82
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The number of training tasks. We evaluate Meta-DT with a different number of training tasks.
Fig. 11 and Table 11 present the testing curves and converged performance of Meta-DT with
different numbers of training tasks on representative environments using Medium datasets. Generally,
increasing the number of training tasks can usually improve the generalization ability to test tasks,
especially in harder tasks like Ant-Dir.

The result also matches the intuition of function approximation in machine learning. The “gener-
alization” refers to the question: How can experience with a limited subset of the data space be
usefully generalized to produce a good approximation over a much larger subset? In the single-task
setting, increasing the valid sample points (before being overfitted) can generally improve the func-
tion approximation of the sample space and the generalization to unseen samples at testing. In the
meta-learning setting, increasing the valid task points (before being overfitted) can usually boost the
function approximation of the task space and the generalization to unseen tasks at testing.

Figure 11: Few-shot return curves of Meta-DT with different numbers of training tasks (Medium).

Table 11: Few-shot test returns of Meta-DT with different numbers of training tasks (Medium).

Number of training tasks 15 30 45
Point-Robot -10.20±0.28 -10.45±0.2 -10.18±0.18
Cheetah-Vel -85.42±1.59 -95.14±0.68 -99.28±3.96

Ant-Dir 388.50±9.02 402.71±5.00 412.00±11.53

Appendix F. Experimental Results on Meta-World

Here, we present experimental results on the robotic manipulation benchmark Meta-World [56],
including three environments of Reach, Sweep, and Door-Lock. Fig. 12 and Table 12 show the
testing curves and converged performance of Meta-DT and baselines using Medium datasets under
an aligned few-shot setting. The results show that Meta-DT still performs better than the baselines in
these challenging and realistic Meta-World environments.

Figure 12: Few-shot return curves of Meta-DT and baselines on Meta-World using Medium datasets.
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Table 12: Few-shot test returns of Meta-DT and baselines on Meta-World using Medium datasets.

Env. Prompt-DT Generalized DT CORRO CSRO Meta-DT
Reach 2296.55±66.54 2241.00±394.37 1496.94±402.27 2298.69±224.53 2458.83±162.10
Sweep 593.11±92.10 549.17±79.35 272.67±77.41 446.50±191.46 760.18±4.87

Door-Lock 2284.95±341.20 2601.24±44.42 1615.66±248.00 2216.67±116.84 3025.92±23.41

Appendix G. Generalization to Out-of-Distribution Tasks

Most meta-RL studies follow the experimental setting as training in a large distribution of tasks and
evaluating in a few held-out tasks. The held-out tasks have goals (target position or direction) within
the goal range calibrated by training tasks. We desire to test whether Meta-DT enables knowledge
extrapolation when handling tasks with goals out of the training range, i.e., the generalization ability
in out-of-distribution (OOD) tasks. Hence, we conduct experiments on Ant-Dir to evaluate Meta-DT’s
generalization ability to OOD tasks. In this case, we sample training tasks with a goal direction of
U [0, 1.5π] and then test on tasks of [1.5π, 2π]. Fig. 13 and Table 13 show the few-shot return curves
and converged performance on OOD test tasks using Medium datasets from Ant-Dir.

Obviously, Meta-DT can still obtain better performance than baselines on OOD test tasks, which
again verifies our superiority. Our method extrapolates the meta-level knowledge across tasks by the
extrapolation ability of the world model, which is more accurate and robust since the world model
is intrinsically invariant to behavior policies or collected datasets. For tasks like Ant-Dir, the world
model shares some common structure across the task distribution (even for OOD tasks), e.g., the
kinematics principle or locomotion skills. Hence, the extrapolation of the world model also works for
OOD test tasks in this case.

Figure 13: Few-shot return curves of OOD test
tasks using Medium datasets from Ant-Dir.

Table 13: Few-shot returns of OOD test tasks
using Medium datasets from Ant-Dir.

Method OOD Performance

Prompt-DT 281.73±12.29
Generalized DT 148.83±6.06

CORRO 141.79±94.20
CSRO 208.92±15.47

Meta-DT 412.67±5.15
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