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Abstract
Language-image pre-training is an effective technique for learning powerful rep-
resentations in general domains. However, when directly turning to person repre-
sentation learning, these general pre-training methods suffer from unsatisfactory
performance. The reason is that they neglect critical person-related characteristics,
i.e., fine-grained attributes and identities. To address this issue, we propose a novel
language-image pre-training framework for person representation learning, termed
PLIP. Specifically, we elaborately design three pretext tasks: 1) Text-guided Image
Colorization, aims to establish the correspondence between the person-related
image regions and the fine-grained color-part textual phrases. 2) Image-guided
Attributes Prediction, aims to mine fine-grained attribute information of the person
body in the image; and 3) Identity-based Vision-Language Contrast, aims to corre-
late the cross-modal representations at the identity level rather than the instance
level. Moreover, to implement our pre-train framework, we construct a large-scale
person dataset with image-text pairs named SYNTH-PEDES by automatically gen-
erating textual annotations. We pre-train PLIP on SYNTH-PEDES and evaluate our
models by spanning downstream person-centric tasks. PLIP not only significantly
improves existing methods on all these tasks, but also shows great ability in the
zero-shot and domain generalization settings.

1 Introduction
Person-centric tasks, such as image/text-based person re-identification, person attribute recognition,
person search and human parsing, are becoming increasingly influential in widespread applications,
such as security monitor, smart city, virtual reality and scene understanding. Benefiting from the
advances in designing task-specific methods [78, 9, 41, 54, 50], these tasks have achieved significant
progress for the past few years.

However, it has become evident through recent advancements in research that the mere development
of sophisticated models based on specific tasks has already encountered a performance bottleneck.
At the same time, some works [35, 15, 10, 14] on general representation learning have shown great
potential to further improve model performance. Due to the above reasons, some researchers [12]
have attempted to learn generic person representations by utilizing rich person images. However,
their pre-training method based on sparse visual information falls short in terms of both training
performance and efficiency.

Meanwhile, some works [72, 49, 85] have demonstrated that introducing the language modality helps
to learn better representations in general domains, for the language naturally enjoys higher information
density. However, when it comes to person representation learning, these general language-image
pre-training methods like CLIP [72] are often unsatisfactory in performance. We believe the reason is
that they neglect some critical person-related characteristics, i.e., fine-grained attributes and identities.
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Figure 1: Illumination of our framework. Based
on the constructed dataset, we pre-train a language-
image model by three pretext tasks and transfer the
model to some downstream person-centric tasks.

On the one hand, these general language-image
pre-training methods typically implement the
global alignment between cross-modality rep-
resentations and lack explicit consideration for
fine-grained information. However, in person
domain, the fine-grained information, such as
the person attributes, plays a key role in dis-
tinguishing a specific person. Neglecting fine-
grained attributes will easily lead to difficulty in
learning discriminative person representations.
On the other hand, they are based on instance
level and only incorporate the concept of image-
text pairs. They simply treat each image-text
pair in the same person identity as different pairs,
and assume that images and texts not in the same
pair do not have a corresponding relationship.
However, in person domain, there exists a no-
table concordance between the images and texts
within the same person identity. If only conducting the optimization at the instance level, it will lead
to instability to learn more meaningful representations.

To address these limitations mentioned above, we deeply consider the characteristics of persons
and attempt to introduce the language modality into person representation learning. We propose
a well-motivated language-image pre-training framework for learning generic and discriminative
person representations, termed PLIP, to help the downstream person-centric tasks. Also, to implement
the pre-training, we construct a large-scale person dataset with rich image-text pairs. The whole
framework is illustrated in Fig. 1.

Specifically, to explicitly learn fine-grained and meaningful cross-modal associations, we design
three pretext tasks in PLIP:

(1)Text-guided Image Colorization, given a complete textual description, is designed to restore the
color information of a grayscale transformed person image. This task establishes the correspondence
between the person-related image regions and the fine-grained color-part textual phrases, which
robustly helps the model to learn the semantic concept of person body parts.

(2) Image-guided Attributes Prediction, by exploiting the paired colorful images, is designed to
predict the masked attribute phrases in textual descriptions. This task primarily focuses on predicting
attributes, rather than predicting any random masked words as in the general domains. Through
this multi-modal masked language modeling, it helps the model to understand the key areas and
fine-grained attribute information of the person body in the image, which is crucial to identifying a
person.

(3) Identity-based Vision-language Contrast is designed to associate representations between vision
and language at the identity level rather than the instance level in general domains. This means it
is optimized by narrowing the distance between any images and texts in the same person identity
and widening the distance between those not in the same person identity. By taking identity into
consideration, this task achieves more robust and meaningful association between different modalities.

As is well known, the quality and quantity of training data is essential for learning rich representations.
However, there exists huge domain gap between the large-scale image-text pairs used in general
domains and the specific person data. Also, the scale of the existing person datasets [52, 24] with
manual textual descriptions is limited due to expensive hand-labeled annotations. Therefore, we
construct a new large-scale person dataset with image-text pairs named SYNTH-PEDES based on
the LUPerson-NL and LPW datasets [30, 83]. The text annotations are automatically synthetized by
our proposed person image captioner named Stylish Pedestrian Attributes-union Captioning (SPAC).
The dataset contains 312,321 identities, 4,791,711 images and 12,138,157 textual descriptions. At
the same time, extensive experiments have been conducted to verify the competitive quality of
our synthetic dataset compared to manually annotated datasets [52, 24, 122], which guarantees the
superior performance of the learned person representations.
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We utilize PLIP to pre-train our models on the SYNTH-PEDES dataset, and then evaluate the model
performance on spanning downstream person-centric tasks. Extensive experiments show that our pre-
trained models have learned generic person representations, pushing many state-of-the-art methods to
a higher level on a wide range of person-centric tasks without bells and whistles. For example, for
unsupervised person Re-ID, by applying our pre-trained ResNet50 model on PPLR [20], we improve
the mAP metric on Market1501 [114] and MSMT17 [94] by 5.1% and 14.7%, respectively. The key
contributions of this paper can be summarized as follows:

(1) We propose a novel language-image pre-training framework with three pretext tasks, termed PLIP,
which deeply takes person-related characteristics into consideration. It can facilitate fine-grained
cross-modal association and learning generic person representations explicitly.

(2) To implement the pre-training, we construct a large-scale person dataset with generated text
annotations, called SYNTH-PEDES. The dataset provides rich image-text pre-training data for this
community.

(3) We pre-train PLIP on SYNTH-PEDES and the learned representations perform remarkable
ability in various downstream person-centric tasks. It is demonstrated as generic to bring significant
improvements to various baseline methods.

2 PLIP: Representation Learning Framework
This section presents our proposed language-image based person representation learning framework
PLIP via three pretext tasks, i.e., text-guided image colorization (TIC), image-guided attributes
prediction (IAP), and identity-based vision-language contrast (IVLC). As illustrated in Fig. 2, the
whole architecture is a dual branch encoder structure, and generic person representations can be
learned through joint training of these three pretext tasks.

2.1 Text-guided Image Colorization

The TIC task is designed to restore the original color information of grayscale transformed images by
exploiting the complete textual descriptions. Such cross-modal colorization promotes the construction
of image-text association. The reason is that the attribute phrases in the descriptions generally contain
fine-grained person-centric information especially color information and this colorization process
naturally enables the model to understand the key components in textual descriptions and achieve
a relationship construction between the textual phrases and visual regions. The overall task can be
converted into a pixel-wise regression problem.

As illustrated in Fig. 2, for a pair of a gray image and a complete textual description {igray, tcomplete},
in the encoding stage, the input gray image igray is firstly fed into a hierarchical network, which
is as the visual encoder. Secondly, the hierarchical features are up-sampled to the same scale and
concatenated to produce the feature Fgray . Then, we feed the complete textual description tcomplete

to the textual encoder [23] and adopts the average of the hidden-state outputs as the textual global
embedding Tglobal.

In the decoding stage, the visual feature Fgray and textual global embedding Tglobal should be fused
for colorization. Specifically, we adopt the multi-modal SE-blocks [95] as the cross-modal feature
fusing module, so that the textual global embedding can play a role in the visual feature channels. In
the block, the visual feature Fvisual is compressed into a feature vector Vf through max pooling
operation. Then we concatenate the visual feature vector and the textual global embedding Tglobal,
and feed the concatenated vector into several fc layers and a softmax layer to generate an attention
vector Af . Finally, we utilize Af on the visual feature Fvisual to generate a multi-modal feature
Zm. The decode is also made up of several de-convolution layers, which are employed to restore
the feature dimensions. Finally, we generate a mutilmodal feature map with same dimensions as the
input gray image igray and it can be utilized to predict the target color image icolor.

We denote θtic as the parameters of the trainable regression model mentioned above. It maps the
textual global embedding Tglobal and the gray image extracted feature Fgray to the output recovered
color image icolor as a target. TIC is supervised by:

Ltic =
1

N

N∑
D(icolor, θtic(Tglobal,Fgray)), (1)

where D can be any differentiable distance function such as Euclidean distance we adopt and N
represents the total number of samples within a batch.

3

45668 https://doi.org/10.52202/079017-1452



Visual Encoder Textual Encoder

Vg TgF1 F2 F3 F4

“A man is wearing a dark blue jacket with

grey shorts, carrying a blue backpack.”

“A man is wearing a [MASK] [MASK] [MASK]

with grey shorts, carrying a [MASK] [MASK].”

M1 M2 Mn

Tg

SIC

Vg

VAP
VLC

Gray Image Original Image

Original Caption

Masked Caption

SIC:

C
O

N
-C

A
T

UP×2

UP×2

UP×2

CONV

CONV+UP×2

CONV+UP×4

CONV+UP×8

MSE-Block
Deconv

MSE-Block

F

Max 
Pooling

Vector Tg

FC

channel-wise 
attention

Vf Af

Z

VAP:

Visual 
Encoder

Textual 
Encoder

Visual global embedding

…

Masked hidden states

M1 M2 Mn

Vg

Visual Feature Extraction Textual Feature Extraction

Textual global embedding

Tg Tg

Masked 
Caption

N×

Fused embeddings

LayerNorm

MHA

LayerNorm

MLP

L×

P
re

d
ictio

n
 H

e
ad

[dark]

[blue]

[blue]

[backpack]

[jacket]
predict

Masked phrases

Decoder

Grayscale 

Transform
Random 

Attribute Masking

Element-wise AdditionFramework:

Figure 2: Overview of our proposed framework incorporating a text-guided image colorization task,
an image-guided attributes prediction task and an identity-based vision-language contrast task.

As displayed in Fig. 5 of the appendix, altering the color word in textual description significantly
affects the colorization of image. However, our model may not fully understand the semantics of
more detailed image regions. As shown in the last row, our model fails to distinguish between
the blue clothing region and the red shoulder strap region (marked with yellow boxes), instead
blending the two into a unified coloration. This is due to the fact that the level of detail in manually
annotated datasets is still not sufficient, resulting in the model being unable to theoretically learn
representations with higher levels of detail and greater discrimination capabilities. However, it is
undeniable that our model has a preliminary understanding of the meaning of attributes and colors,
and can associate them with related image regions, rather than simple memorization. This ability to
distinguish between different parts of the person body guarantees the superior performance on the
subsequent person-centric tasks.

2.2 Image-guided Attributes Prediction

The IAP task requires utilizing original color images to predict the masked attribute phrases in textual
descriptions. Unlike previous methods [42, 95] that randomly mask any words or only color words
in a description, our method focuses on masking attribute phrases. For each sentence, the attribute
phrases are partially masked to create a masked textual description. In this multi-modal masked
language modeling (MMLM) way, the correlation between images and texts can be bridged more
in depth and more discriminative representations can be learned. The reason is that the prediction
process enables the model to further understand the person-centric regions in images and extract the
key semantic information. Meanwhile, by exploiting the visual representations, the MMLM enhances
the perception of context and strengthens the interaction between vision and language modality.

In the encoding stage, as illustrated in Fig. 2, for a pair of a color image icolor and a masked textual
description tmasked with masked words wm = {wm1

, . . . ,wmM
} (M is the number of masked

words), we feed them to respective encoders to extract the visual global embedding Vglobal and
textual hidden-state outputs ht = {ht1 , . . . ,htL} (L is the length of the tokens in the masked textual
description). The visual global embedding Vglobal is obtained from a pooling operation on the last
stage feature output of the visual encoder.

In the decoding stage, to perform the IAP task, we specially design a simple but effective mutil-modal
fusion module that mainly consists of self-attention blocks and a prediction head. Firstly, we adopt
the element-wise summation of ht and Vglobal as the preliminary fused embeddings. Then, the
embeddings will be served as query(Q), key(K) and value(V) simultaneously. Finally, we obtain the
multi-modal fused embeddings for each masked position by:

{hmi
}Mi=1 = Blocks(Q,K,V), (2)

where M is the total number of masked tokens in the masked textual description, and Blocks are the
self-attention blocks.

For each embedding representing the masked word, we use a prediction head to realize the correspond-
ing probability prediction. The IAP can be optimized by minimizing the negative log-likelihood:
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Liap = − 1

MN

N∑ M∑
k=1

logP (wmk
|hmk

), (3)

where M is the total number of masked words in a masked textual description, N denotes the number
of samples within a batch and P denotes the probability distribution mapping.

2.3 Identity-based Vision-language Contrast

In order to further strengthen the correlation between vision and language modalities, we must
optimize the model to learn a unified cross-modal feature space. A preliminary approach based on
contrastive learning [72] is to shorten the distance of the representations in image-text pairs and
simultaneously amplify the distance of representations not in the same pair. This approach considers
image-text pairs as instances and ignores the identity, where different image-text pairs of the same
identity are treated as negative samples. However, in person-centric field, the identity plays a crucial
role in distinguishing different people. Therefore, unlike the usual practices in general domain, we
must take the identity into consideration.

For a group of a color image, a complete textual description and a corresponding identity
{icolor, tcomplete, Id}. The color image is firstly fed into the visual encoder. Then the last-stage
feature is pooled to get the visual global embedding Vglobal. The description is directly fed into
the textual encoder and the average pooling of hidden-states will be served as the textual global
embedding Tglobal.

Then, given a batch of N image-text pairs, for each visual global embedding Vi
global, we construct

a set of visual-textual embedding pairs as {(Vi
global,T

j
global), yi,j}Nj=1, where yi,j = 1 means that

the pair is matched and from the same identity, and yi,j = 0 indicates the unmatched pair. Let
sim(x, z) = x⊤z/∥x∥∥z∥ denotes the matching probability of x and z. Then, the probability of
matching pairs can be calculated with the following function:

pi,j =
exp

(
sim

(
Vi

global,T
j
global

))
∑N

k=1 exp
(
sim

(
Vi

global,T
k
global

)) . (4)

Then, the IVLC loss from vision to language in a batch can be computed by:

Lv2l =
1

N

N∑
i=1

N∑
j=1

pi,j log

(
pi,j

qi,j + ϵ

)
, (5)

where qi,j = yi,j/
∑N

k=1 yi,k is the true matching probability and ϵ is a small number to avoid
numerical problems.

Similarly, the IVLC loss from language to vision Ll2v can be be computed by exchange Vglobal and
Tglobal in above equations. Finally, the IVLC task can be optimized by:

LIV LC = Lv2l + Ll2v, (6)

Indeed, the IVLC loss can be any cross-modal contrastive loss that takes identity into consideration
such as the Cross-Modal Projection Matching (CMPM) loss [112] we adopt, which promotes the
representation association between multiple modalities by incorporating the cross-projection into KL
divergence.

Then, to supervise the model to learn discriminative and highly generic person representations, the
overall multi-task loss L is computed as:

L = Livlc + λ1Ltic + λ2Liap, (7)

where λ1, λ2 ∈ R+ are hyper-parameters to control the importance of each pretext task.
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1.A man in his mid-twenties with short black 
hair is wearing a lemon colour t-shirt over 
black shorts. He is carrying a backpack with 
black straps visible on the t-shirt and wearing 
black canvas shoes with a white sole. 
2.A man wearing a lime green shirt, a pair of 
black shorts and a pair of black and white 
shoes.
3.The man with dark hair is wearing a green 
shirt and black shorts. He is also wearing 
black shoes, carrying a black backpack.

1.A man wearing a black shirt, a pair of blue 
jeans and a pair of black shoes.
2.A middle-aged Asian man with short black 
hair and a receding hairline is wearing a 
black collared shirt and light blue jeans. He is 
also wearing black formal shoes and is 
holding something in his hand.
3.A man with black hair is wearing a black 
shirt with blue jeans. He is also wearing black 
shoes.

1.A woman with long black hair is wearing a 
long black coat, black leggings and black 
boots.
2.A woman in her twenties with straight long 
hair is wearing a long black coat. She is also 
wearing a pair of black leggings and black 
ankle boots.
3.A woman has black hair and is wearing a 
long jacket. She is also wearing black pants 
and ankle boots. She is carrying a black bag.

Figure 3: Visualization of some examples in our SYNTH-PEDES dataset.

3 SYNTH-PEDES: A Large-scale Image-text Person Dataset
We build the SYNTH-PEDES dataset to pre-train our PLIP models at a large-scale. In this section,
we show the general process of constructing our SYNTH-PEDES dataset, which can be described as
three steps. The complete construction details can be found in Sec. A.5 of the appendix.

Firstly, we collect and process two large-scale person datasets to form the image dataset. The first is
LUPerson-NL [30]. It is a new variant of LUPerson [29] on top of raw videos from LUPerson and
assign the noisy labels to each person image with automatically generated tracklet. It consists of 10M
images with about 430K identities collected from 21K scenes. The second is LPW [83]. It consists
of 2,731 different persons and 592,438 images collected from three different crowded scenes.

Secondly, we propose an image captioner named SPAC to generate satisfactory textual descriptions
for the images. Given an input person image, there is no specific work targeting at generating
captions that detailedly describe the person’s appearance. To this end, we propose a simple but
effective method for person image captioning. It can generate attribute-annotations and stylish
textual-descriptions, which simulate the diverse perspectives that different annotators may have on
the same person image. The specific technics for SPAC can be found in Sec. A.5.1 of the appendix.

Thirdly, we adopt some post-processing approaches to eliminate the noises and improve the dataset
quality. We propose Seed Filter Strategy to filter the noises in LUPerson-NL, which includes three
processes of Filter-out, Reassignment and Merger. Meanwhile, we propose Data Distribution Strategy
to ensure the quality of generated attributes, the consistency of gender annotation, and identity
distribution balance. The specific details for the strategies can be found in Sec. A.7 of the appendix.

Thanks to the outstanding generating ability of our proposed SPAC, the SYNTH-PEDES dataset
is full of high-quality textual descriptions in a variety of styles, which can be utilized to train the
representation learning model. Compared with existing person datasets, SYNTH-PEDES has the
following advantages:

Diversified. Our dataset contains a wide range of variations in the textual descriptions. Unlike
the previous person datasets with only one or two image-text pairs, most images of our dataset are
annotated with three textual descriptions.

High-quality. As some typical qualitative examples can be seen in Fig. 3, the generated annotations
achieve an accurate and detailed description of the person appearance. The further experiments
conducted on the dataset quality evaluation can be found in Sec. A.9.2 of the appendix. Researchers
can use this dataset with confidence to conduct relevant studies.

Large-scale. In Tab. 11 of the appendix, we have compared the properties of SYNTH-PEDES with
other popular person datasets. As we can see, SYNTH-PEDES is the largest real person dataset
with high-quality image-text pairs by far, which contains 312,321 identities, 4,791,711 images, and
12,138,157 textual descriptions.

4 Experiments
Implementation. During the training of PLIP, we adopt four types of backbone as the visual encoder,
i.e., ResNet50, ResNet101, ResNet152 and Swin Transformer Base. The pre-trained BERT [23] is
utilized as the textual encoder with the last 5 layers unfrozen. We train our model on 4 × Geforce 3090
GPUs for 70 epochs. For each person-centric downstream task, we reproduce a range of state-of-the
art methods as the baselines. If not specially stated, we perform the experiments by just replacing the
backbone in each baseline to the our pre-trained models. We perform in-depth experiments on eleven
datasets for five downstream person-centric tasks. Meanwhile, we perform thorough ablation studies
and analyses in Sec. A.9 of the appendix. More details and experiments can be found in the appendix.
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Table 1: Performance comparisons of our PLIP with some other SoTA pre-trained models on
downstream tasks. The table is divided into two parts: the upper part covers some general-domain
pre-trained models and the lower part focuses on some person-domain pre-trained models. The
baseline downstream methods for the five tasks are CMPM/C [112], ABDNet [9], Rethinking [41],
SeqNet [54] and SCHP [50], respectively. Due to the inability of certain non-hierarchical models to
be applied to some downstream methods, their performance results are indicated as “-".

Method Backbone Text Re-ID Image Re-ID Attribute Recog. Person Search Human Parsing
CUHK ICFG Market Duke PETA PA100K SYSU PRW LIP PASCAL

Baseline RN50 54.81/83.22 47.61/75.48 88.3/95.6 78.6/89.0 83.96/86.35 80.21/87.40 94.8/95.7 47.6/87.6 59.36 71.46
Baseline RN101 56.77/84.86 51.78/77.92 89.3/95.7 79.8/88.9 85.17/86.44 81.61/87.62 95.1/96.1 48.4/87.7 60.57 72.12
Baseline RN152 58.64/85.84 53.13/79.18 89.6/95.8 80.1/89.0 85.81/86.64 82.17/87.96 95.3/96.3 48.8/87.9 61.71 72.87

MoCov3 [17] RN50 52.17/81.94 46.51/74.86 87.7/95.0 77.3/87.7 82.87/85.19 79.12/86.56 94.1/94.5 46.2/86.1 57.63 69.16
MoCov3 [17] ViT-S 53.21/82.63 46.77/74.62 -/- -/- 83.51/85.98 79.64/87.12 -/- -/- - -
MoCov3 [17] ViT-B 55.46/83.82 50.28/76.22 -/- -/- 84.82/86.83 80.96/87.28 -/- -/- - -

CLIP [72] RN50 57.92/85.12 51.30/77.64 89.5/95.7 79.7/88.9 84.49/86.65 81.07/87.82 92.8/93.4 48.0/86.7 59.81 70.93
CLIP [72] RN101 58.04/85.88 52.80/79.31 90.6/96.0 81.4/89.9 85.67/87.04 81.82/87.95 93.3/93.8 48.5/87.4 60.74 72.39
CLIP [72] ViT-B 58.91/86.21 53.73/79.98 -/- -/- 86.37/87.95 82.41/88.41 -/- -/- - -
BLIP [49] ViT-B 60.37/86.63 54.64/80.23 -/- -/- 86.97/88.42 82.81/88.46 -/- -/- - -
BLIP [49] ViT-L 63.23/88.74 56.96/82.79 -/- -/- 87.08/88.55 83.23/88.62 -/- -/- - -
LUP [29] RN50 57.51/84.86 50.52/76.63 90.2/95.9 80.7/89.3 84.17/86.10 81.94/88.25 94.3/94.9 47.7/87.3 59.43 71.89
LUP [29] RN101 57.84/85.36 53.08/78.93 91.4/96.5 83.1/90.9 85.66/86.57 82.31/88.21 94.8/95.5 47.9/87.4 60.41 72.35
LUP [29] RN152 59.41/86.22 53.79/79.51 91.7/96.7 83.7/91.9 85.92/87.44 82.63/88.47 95.3/95.9 48.6/88.1 62.05 73.16

LUP-NL [30] RN50 57.85/84.97 50.64/76.55 90.8/96.1 81.7/89.7 84.09/86.32 81.71/88.08 95.4/95.9 49.3/87.5 59.88 71.67
LUP-NL [30] RN101 58.12/85.74 53.38/78.85 91.4/96.5 82.1/90.9 85.77/86.93 82.39/88.28 95.5/95.7 49.6/87.6 60.92 72.51
LUP-NL [30] RN152 59.27/86.06 54.21/80.12 91.5/96.5 81.8/90.6 86.18/88.09 82.54/88.65 95.8/96.1 49.5/88.2 61.98 73.12

SOLIDER [12] Swin-T 51.22/80.27 46.51/74.16 87.2/94.6 77.5/87.8 84.12/86.27 83.81/87.91 94.9/95.7 56.8/86.8 57.52 68.42
SOLIDER [12] Swin-S 56.43/84.78 51.19/77.82 89.6/95.5 80.2/89.3 85.47/87.14 85.32/89.08 95.5/95.8 59.8/86.7 60.21 69.81
SOLIDER [12] Swin-B 58.06/85.64 52.37/79.62 90.1/95.6 81.2/89.8 85.78/87.46 85.91/89.66 94.9/95.5 59.7/86.8 60.50 70.02

PLIP(ours) RN50 71.13/92.81 64.88/87.32 91.4/96.8 81.7/91.1 85.12/86.94 82.21/88.62 96.0/96.7 53.5/88.9 60.41 72.14
PLIP(ours) RN101 72.34/93.46 64.92/87.66 92.0/96.9 82.3/91.8 85.84/87.42 82.52/88.16 96.2/96.8 54.6/89.4 61.32 72.63
PLIP(ours) RN152 73.68/94.22 65.52/88.40 92.6/97.1 83.1/92.1 86.28/88.17 82.91/88.83 96.5/97.0 55.7/89.8 62.44 73.51
PLIP(ours) Swin-B 75.36/94.87 66.17/88.94 93.2/97.3 84.4/92.2 87.12/88.84 83.65/89.17 96.4/96.7 56.6/89.9 63.52 73.93

4.1 Comparison With Other Pre-trained Models
We have compared the performance of our PLIP pre-trained models with other SoTA pre-trained
models [17, 29, 30, 12, 72, 49, 106] on five downstream tasks. We reproduce a range of popular
and open-sourced methods [112, 9, 41, 54, 50] as the baselines, which are initialized by ImageNet
supervised pre-trained ResNet backbones. Then, we compare the performance of different pre-trained
models by simply replacing the backbone in each method. The compared models can be divided into
general-domain pre-trained models and person-domain pre-trained models, with the latter typically
exhibiting better performance in person-centric tasks. The performance metrics for these tasks are
R@1/R@10, mAP/R@1, mAP/F1, mAP/R@1 and mIoU, respectively. As shown in Tab. 1, our PLIP
models consistently demonstrate a significant performance advantage over other pre-trained models
in a fair comparison with roughly equal parameters.

4.2 Evaluation on Text-based Person Re-ID
Table 2: The results of our transfer experiments.
We show the best score in bold. z-s: zero-shot
setting; l-p: linear-probing setting; f-t: fine-tune
setting. ‡ stands for the results reproduced with
public checkpoints released by the authors.

Method CUHK-PEDES ICFG-PEDES
R@1 R@5 R@10 R@1 R@5 R@10

ViTAA [93] 55.97 75.84 83.52 50.98 68.79 75.78
SSAN [24] 61.37 80.15 86.73 54.23 72.63 79.53

LapsCore [95] 63.40 - 87.80 - - -
TIPCB‡ [18] 63.63 82.82 89.01 54.96 74.72 81.89
LGUR [78] 64.21 81.94 87.93 57.42 74.97 81.45
PLIP+z-s 52.86 74.69 82.46 49.86 68.78 76.27
PLIP+l-p 63.63 82.85 89.36 58.51 77.83 84.24
PLIP+f-t 70.11 86.60 91.89 64.58 81.30 86.82

Transfer capability. To evaluate the transfer ca-
pability of our pre-trained models, we conduct
three different experiments with ResNet50 as
the visual encoder. Firstly, we directly evaluate
the model’s zero-shot performance without any
extra fine-tuning. Secondly, we perform linear
probing by adding a trainable linear embedding
layer to each modal frozen encoder. Finally, we
unfreeze all encoders and perform fine-tuning.
We use the simple CMPM loss [112] as the train-
ing target. From Tab. 2 we can see, our pre-
trained model is not only competitive with some
fully supervised methods [93, 24] even without
fine-tune training, but also greatly exceeds them
by a large margin with a simple fine-tune. These
results demonstrate that our pre-trained models
have excellent transfer capability for this task.

Table 3: Comparison on domain generalization.
“C” and “I” denote CUHK-PEDES and ICFG-
PEDES, respectively.

Method C→I I→C
R@1 R@5 R@10 R@1 R@5 R@10

Dual Path [118] 15.41 29.80 38.19 7.63 17.14 23.52
SCAN [43] 21.27 39.26 48.83 13.63 28.61 37.05
SSAN [24] 29.24 49.00 58.53 21.07 38.94 48.54
LGUR [78] 34.25 52.58 60.85 25.44 44.48 54.39

RaSa [1] 50.59 67.46 74.09 50.70 72.40 79.58
PLIP 56.64 75.65 82.38 57.34 77.60 84.49

Domain generalization. To verify our models’
domain generalization capability, we carry out
experiments with cross-domain settings. We use
the CMPM loss as the training target. As illus-
trated in Tab. 3, our model achieves improve-
ments by large margins when compared with all
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other methods. Specifically, our model outperforms LGUR by 22.4% and 31.9% in terms of Rank-1
metric on the C→I and I→C settings, respectively. These results demonstrate that our pre-trained
models have great capability in domain generalization for this task.

Table 4: Comparison on three methods by using
different pre-trained models. All results are shown
in Rank-1/Rank-10.

Pre-train CMPM/C [112] SSAN [24] LGUR [78]

C
U

H
K

-P
E

D
E

S Baseline. 54.81/83.22 61.37/86.73 64.21/87.93
MoCov3 52.17/81.94 61.97/86.63 65.33/88.47

CLIP 57.92/85.12 62.09/86.89 64.70/88.76
LUP 57.51/84.86 63.91/88.36 65.42/89.36

LUP-NL 57.85/84.97 63.71/87.46 64.68/88.69
PLIP 71.13/92.81 65.90/89.44 67.62/89.90

IC
FG

-P
E

D
E

S Baseline. 47.61/75.48 54.23/79.53 57.42/81.45
MoCov3 46.51/74.86 55.27/79.64 59.90/82.94

CLIP 51.30/77.64 53.58/78.96 58.35/82.02
LUP 50.52/76.63 56.51/80.41 60.33/83.06

LUP-NL 50.64/76.55 55.59/79.78 60.25/82.84
PLIP 64.88/87.32 60.70/83.17 62.38/84.28

Improvement over existing methods. We
reproduce three representative baseline meth-
ods [112, 24, 78] and explore the performance
difference by changing the encoders with differ-
ent pre-trained models. From Tab. 4, we can see
that equipped with our pre-trained model, all the
baseline methods achieve higher and best accu-
racy on each dataset. It is worth noting that, due
to the fact that our PLIP models have already
learned an excellent joint visual-textual feature
space through large-scale pre-training, achiev-
ing outstanding performance is easily attained
by fine-tuning with the simple CMPM/C [112]
loss rather than complicated designing such as
SSAN [24] and LGUR [78].

Table 5: Comparison with the state-of-the-art meth-
ods on text-based person Re-ID. We show the best
score in bold.

Method Image Text CUHK-PEDES ICFG-PEDES
R@1 R@5 R@10 R@1 R@5 R@10

GNA-RNN [52] VGG LSTM 19.05 - 53.64 - - -
CMPM/C [112] RN50 LSTM 49.37 - 79.27 43.51 65.44 74.26

ViTAA [93] RN50 LSTM 55.97 75.84 83.52 50.98 68.79 75.78
NAFS [31] RN50 BERT 59.94 79.86 86.70 - - -
SSAN [24] RN50 LSTM 61.37 80.15 86.73 54.23 72.63 79.53

LapsCore [95] RN50 BERT 63.40 - 87.80 - - -
TIPCB‡ [18] RN50 BERT 63.63 82.82 89.01 54.96 74.72 81.89
LGUR [78] RN50 BERT 64.21 81.94 87.93 57.42 74.97 81.45

IVT [82] ViT-B BERT 65.59 83.11 89.21 56.04 73.60 80.22
CFine [103] ViT-B BERT 69.57 85.93 91.15 60.83 76.55 82.42
IRRA [42] ViT-B Xformer 73.38 89.93 93.71 63.46 80.25 85.82

APTM [106] Swin-B BERT 76.17 89.47 93.57 68.22 82.87 87.50
RaSa [1] ViT-B BERT 76.51 90.29 94.25 65.28 80.40 85.12

PLIP RN50 BERT 71.13 87.57 92.81 64.88 81.70 87.32
PLIP RN101 BERT 72.34 89.15 93.46 64.92 81.63 87.66
PLIP RN152 BERT 73.68 90.35 94.22 65.52 82.64 88.40
PLIP Swin-B BERT 75.36 90.86 94.87 66.17 83.37 88.94

Comparison with state-of-the-art methods. In
Tab. 5, we compare our results with some SoTA
methods on each dataset. The compared meth-
ods can be classified based on whether they rely
on the multi-modal pre-trained models. Gener-
ally, multi-modal pre-trained models can bring
about noticeable performance improvements for
this task. It is worth noting that RaSa utilizes
a larger image resolution of 384×384, while
APTM adopts a two-stage inference method
similar to the re-rank mechanism. These ap-
proaches lead to RaSa and APTM achieving op-
timal performance, however, introducing addi-
tional training and inference costs. Instead, our
PLIP achieves competitive performance without
bells and whistles. Specifically, with ResNet50
as backbone, PLIP outperforms LGUR by 6.9%
and 7.5% rank-1 on each dataset respectively.

4.3 Evaluation on Image-based Re-ID

Table 6: Comparison on two baseline methods by
using different pre-trained models. The best results
are shown in bold.

Pre-train Market1501 MSMT17
mAP R@1 R@5 R@10 mAP R@1 R@5 R10

PP
L

R
[2

0]

Baseline 81.5 92.8 97.1 98.1 31.4 61.1 73.4 77.8
MoCov2 [15] 79.6 91.6 96.6 97.9 28.7 57.5 69.6 74.6

CLIP [72] 75.0 89.0 95.6 97.1 7.6 20.3 29.9 34.9
LUP [29] 57.5 78.2 85.9 88.9 22.5 48.9 62.0 66.9

LUP-NL [30] 84.2 93.4 97.7 98.6 25.0 50.3 63.1 68.7
PLIP 86.6 94.5 98.0 98.7 46.1 73.4 83.7 87.0

IS
E

[1
10

]

Baseline 84.7 94.0 97.8 98.8 35.0 64.7 75.5 79.4
MoCov2 [15] 84.9 93.5 97.6 98.7 34.1 64.5 75.0 79.0

CLIP [72] 79.5 92.0 96.8 98.0 14.9 35.2 46.3 51.3
LUP [29] 84.5 94.2 97.6 98.4 27.8 56.7 68.8 73.4

LUP-NL [30] 87.4 95.0 98.2 98.9 33.9 62.5 73.2 77.3
PLIP 87.6 95.3 98.2 98.9 46.4 74.9 84.3 87.5

Unsupervised methods achieve significant im-
provements. With simply replacing the back-
bone, our pre-trained models benefit unsuper-
vised image-based person Re-ID methods signif-
icantly. We evaluate the improvement brought
by different pre-trained ResNet50 models to the
SoTA unsupervised methods PPLR [20] and
ISE [110]. As shown in Tab. 6, PLIP outper-
forms all other pre-trained models by a large
margin. Specifically, applied to ISE, PLIP
achieves new SoTA performance, outperforming
the previsous SoTA by 2.9% and 11.4% mAP
on Market1501 and MSMT17, respectively.

Table 7: Comparison with SoTA methods on fully
supervised image-based person Re-ID. The best
results are shown in bold.

Method Settings Market1501 DukeMTMC
Backbone Pretrain mAP R@1 mAP R@1

MGN [89] RN50 IMG 87.5 95.1 79.4 89.0
ABDNet [9] RN50 IMG 88.3 95.6 78.6 89.0

GCP [69] RN50 IMG 88.9 95.2 78.6 87.9
ISP [123] RN50 IMG 88.6 95.3 80.0 89.6

TransReID [38] ViT-B IMG 88.2 95.0 80.6 89.6
UPReID [107] RN50 LUP 91.1 97.1 - -

LUP [29] RN50 LUP 91.0 96.4 82.1 91.0
LUP-NL [30] RN50 LUP-NL 91.9 96.6 84.3 92.0
PASS [124] ViT-B LUP 93.0 96.8 - -

PLIP RN50 SYNTH 91.4 96.8 81.7 91.1
PLIP RN101 SYNTH 92.0 96.9 82.3 91.8
PLIP RN152 SYNTH 92.6 97.1 83.1 92.1
PLIP Swin-B SYNTH 93.2 97.3 84.4 92.2

Comparison with state-of-the-art meth-
ods. We compare our results with exist-
ing SoTA image-based person Re-ID methods
on Market1501 and DukeMTMC. Any results
gained from post-processing techniques like re-
rank [121] are excluded for a fair comparison.
As indicated in Tab. 7, by applying our PLIP
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on ABD-Net [9], we achieve competitive per-
formance on all datasets. Moreover, we achieve
new SoTA performance with Swin-Base as the
backbone. This demonstrates that the learned
representations benefits this task significantly.

4.4 Evaluation on Person Search

Table 8: Comparison on two baseline methods by
using different pre-trained models. We show the
best score in bold.

Pre-train CUHK-SYSU PRW
mAP R@1 R@5 R@10 mAP R@1 R@5 R10

Se
qN

et
[5

4]

Baseline 94.8 95.7 98.1 98.7 47.6 87.6 94.4 95.4
MoCov2 [15] 94.0 94.4 98.2 98.5 48.3 87.3 94.6 95.8

CLIP [72] 92.8 93.4 97.8 98.2 48.0 86.7 94.5 95.9
LUP [29] 94.3 94.9 98.2 98.7 47.7 87.3 94.5 95.7

LUP-NL [30] 95.4 95.9 98.2 98.8 49.3 87.5 94.3 95.9
PLIP 96.0 96.7 98.7 99.1 53.5 88.9 95.2 96.3

G
L

C
N

et
[7

0]

Baseline 95.8 96.2 98.3 98.8 47.8 87.8 94.5 95.5
MoCov2 [15] 95.1 95.6 98.0 98.4 48.4 87.8 94.6 95.9

CLIP [72] 93.0 93.6 97.7 98.1 48.2 87.1 94.5 96.0
LUP [29] 95.5 95.8 98.3 98.9 48.1 87.7 94.5 95.8

LUP-NL [30] 96.0 96.4 98.4 99.0 49.8 87.8 94.6 96.0
PLIP 96.3 97.0 99.0 99.3 53.7 89.0 95.4 96.4

Improvement over existing methods. Our pre-
trained models bring significant performance
gain to existing person search methods. To
verify this, we choose two representative meth-
ods SeqNet [54] and GLCNet [70] as the base-
lines, and evaluate the improvements brought
by different pre-trained models. As shown in
Tab. 8, under the ResNet50 setting, our model
brings maximum performance improvements to
all methods. Specifically, when applying our
pre-trained ResNet50 to GLCNet, it achieves
96.3% and 53.7% mAP on the CUHK-SYSU
and PRW datasets, respectively.

Table 9: Comparison with state-of-the-art methods
on the end-to-end person search. We show the best
score in bold.

Method Backbone CUHK-SYSU PRW
mAP R@1 mAP R@1

OIM [98] RN50 75.5 78.7 21.3 49.9
NPSM [59] RN50 77.9 81.2 24.2 53.1

CTXGraph [104] RN50 84.1 86.5 33.4 73.6
QEEPS [67] RN50 88.9 89.1 37.1 76.7
BINet [25] RN50 90.0 90.7 45.3 81.7
NAE+ [5] RN50 92.1 92.9 44.0 81.1

SeqNet [54] RN50 94.8 95.7 47.6 87.6
GLCNet [70] RN50 95.8 96.2 47.8 87.8

SOLIDER [12] Swin-B 94.9 95.5 59.7 86.8
PLIP RN50 96.3 97.0 53.7 89.0
PLIP RN101 96.5 97.2 55.1 89.4
PLIP RN152 96.7 97.3 56.2 89.9
PLIP Swin-B 96.6 97.5 57.8 90.3

Comparison with state-of-the-art methods.
We compare our results with existing SoTA per-
son search methods in Tab. 9. By applying our
pre-trained models on GLCNet [70], we achieve
new SoTA performance on each dataset. Specif-
ically, under ResNet50 setting, our method sur-
passes the previous SoTA GLCNet by 5.9%
mAP on PRW dataset. Also, with Swin-Base
as the backbone, we achieve the best perfor-
mance compared with all other methods. These
results demonstrate that our pre-training frame-
work shows great potential in learning discrim-
inative person representation for this task.

4.5 Ablation studies and analyses

Table 10: Ablation study on the effectivenss of
each pretext task, all using default settings.

# Components CUHK-PEDES Market1501
IVLC TIC IAP R@1 R@5 R@10 R@1 R@5 R@10

1 ✓ 30.2 53.3 64.0 62.3 79.9 85.7
2 ✓ ✓ 31.4 55.2 65.9 62.9 80.7 86.2
3 ✓ ✓ 30.5 54.4 64.3 62.7 80.5 86.1
4 ✓ ✓ - - - 39.3 61.4 70.4
5 ✓ ✓ ✓ 32.5 56.3 66.6 63.1 80.8 86.3

We perform ablation studies with ResNet-50 as
the visual encoder and pre-training on the sub-
dataset of SYNTH-PEDES, which has 10,000
identities, 139,564 images and 353,617 textual
descriptions. To assess the effectiveness of pre-
text tasks on the generalizability of our models,
we directly evaluate the zero-shot performance
of pre-trained models on downstream datasets.
As we can see in Tab. 10, each task contributes
to the model’s zero-shot capability and combining all of the tasks leads to the best performance.
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Figure 4: The diversity of textual descriptions mat-
ters. PC and GC mean prompt caption and gener-
ated caption, respectively.

Meanwhile, to validate the effectiveness of textual diversity in SYNTH-PEDES, we have studied
four different degrees of textual diversity from weak to strong. As shown in Fig. 4, the fourth case
with the highest degree of textual diversity has the best performance. More thorough ablation studies
and analyses about effectiveness of each component, dataset quality evaluation, pre-training settings
and so on can be found in Sec. A.9 of the appendix.

5 Conclusion
In this paper, we propose a novel language-image self-supervised person representation learning
framework named PLIP, which consists of three well-motivated pretext tasks. Also, we build a
large-scale real-scenario image-text person dataset SYNTH-PEDES by auto-captioning procedures.
We achieve good generic person representation learning by utilizing PLIP and SYNTH-PEDES.
Equipped with our pre-trained models, we push many existing methods to a much higher level
without bells and whistles. We hope that our simple and effective framework can inspire researchers
to devote further attention to this area.
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A Appendix

A.1 Related Work

General Representation Learning. To avoid the labor-intensive manual annotation process, many
general representation learning approaches have been explored to utilize unlabeled image data. Several
representative works [36, 101, 10, 34, 16, 2, 35, 4, 14] have achieved performance comparable
to, or even surpassing, supervised methods. For example, CAE [14] presents a novel masked
image modeling approach and shows the benefit to representation learning through an encoder-
regressor-decoder architecture. Besides to pre-training on unlabeled image data, there is currently
a popular trend of attempting to establish the relationship between vision and language to learn
more discriminative representations. For example, CLIP [72] and ALIGN [40] perform cross-modal
contrastive learning on hundreds or thousands of millions of image-text pairs crawled from the web
and can directly perform open-vocabulary image classification. BLIP [49] shows that the noisy web
texts are suboptimal for vision-language learning, and proposes a Captioning and Filtering method to
improve the quality of the text corpus.

Person Representation Learning. In person related field, it is common practice to leverage the
backbones pre-trained on ImageNet [21], which ignores domain gap between general images and
person-related images, and leads to limited performance. To address such a problem, LUP [29]
constructs a large-scale unlabeled person dataset and makes the first attempt of performing a general
unsupervised pre-training method MoCov2 [15] for learning person representations. The good
experimental results on the person Re-ID task verified the effectiveness of it.

However, simply adopting the general pre-training method may result in the ignorance of person
fine-grained characteristics. Therefore, considering the particularity of Re-ID tasks, the proposed UP-
ReID [107] introduces an intra-identity regularization and is the first attempt toward a Re-ID specific
pre-training framework by explicitly pinpointing the difference between the general pre-training and
Re-ID pre-training. Before long, LUP-NL [30] develop a large-scale pre-training framework utilizing
noisy labels, and demonstrate that learning directly from raw videos is a promising alternative for
pre-training, which utilizes spatial and temporal correlations as weak supervision. This simple
pre-training task provides a scalable way to learn good Re-ID representations from scratch without
bells and whistles. Also, PASS [124] is proposed to use several learnable tokens to extract part-level
features offering fine-grained information. It helps the ViTs set good performance on several person
Re-ID datasets. More recently, CION [125] is proposed to learn identity-invariant representations
across large-scale different videos for person Re-ID pre-training.

However, these approaches are only target at learning person representations especially for promoting
the person Re-ID performance. They have poor generalization ability and perform poorly on other
person-centric tasks. To learn a general human representation, SOLIDER [12] is proposed recently
by introducing prior knowledge and more semantic information.

In general, these pure-vision based works are rather aimed at only promoting the person Re-ID
performance, or limited to the person-centric visual tasks. Their performance in learning generic
person representation is still unsatisfactory and lacks the ability of multi-modal understanding.

Person-centric Tasks. In computer vision community, there are many tasks directly or indirectly
related to person, i.e., image/text based person Re-ID, person attribute recognition, person pose
estimation, person search, multi-object tracking and human parsing. We name such tasks as person-
centric tasks and sort out five representative tasks among them for study.

1) Text-based person Re-ID aims to search for person images of a specific identity by textual
descriptions. Existing works can be divided into attention-based and attention-free methods. The
former [8, 52, 68, 24, 78] attempts to establish region-text correspondences but ignores the efficiency.
To better align the multi-modal features, the latter usually focuses on designing various objective
functions [112, 27, 77] and model structures [93, 118].

2) Image-based person Re-ID aims to search for person images by given person images. Most works
are based on supervised learning. The hard triplet loss [11, 39, 108] and classification loss [79, 119]
are introduced to learn a global feature. Also, some works [84, 86] focus on learning a part-based
feature instead. For example, Sun et al. [86] proposed to represent features as horizontal stripes and
learn with separate classification losses. Some works utilize camera style [117] and viewpoints [116]
to train a more robust model. Some works [81, 80] focus on semi-supervised or unsupervised setting.
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3) Person attribute recognition aims to identify the person’s attributes. Many methods [44, 62, 61]
treat this task as a multi-label classification problem, while some others [90, 51, 113] adopt recurrent
neural networks for exploring the attribute context. Also, some works [19, 53] introduce an additional
language modality to get better performance.

4) Person search aims to jointly localize and identify a query person from natural and uncropped
images. Existing works can be generally categrized into two-step and one-step ones. In two-step
works [26, 87], persons are detected and then fed into a Re-ID model for identification, while one-step
approaches [54, 70, 6] makes the joint framework more effective and efficient.

5) Human parsing is a fine-grained semantic segmentation task in human analysis. Some early
works [33, 96] combine human parsing with pose estimation. Moreover, some works [47, 32] study
the human parsing task in a multi-person scenario, which needs to distinguish the human instances.
Meanwhile, the work [50] proposes a self-correction mechanism and leads to better performance.

A.2 Broader Impact

This paper proposes a language-image pre-training framework for person representation learning, and
contributes a large-scale synthetic person-centric dataset with rich image-text pairs. Our pre-trained
models and dataset can help diverse person-related applications such as person re-identification,
person attribute recognition and human parsing, thus boosting the development of smart retail, smart
transportation, smart security systems and so on in the future metropolises.

Nevertheless, the application of person Re-ID and attribute recognition, such as for recognizing and
tracking pedestrians in surveillance systems, might raise privacy concerns. It typically depends on
the utilization of surveillance data for training without the explicit consent of the individuals being
recorded. Therefore, governments and officials need to carefully establish strict regulations and
laws to control the usage of these technologies. Otherwise, these technologies can potentially equip
malicious actors with the ability to surveil pedestrians through multiple cameras without their consent.
Furthermore, we should be cautious of the misidentification of the Re-ID systems to avoid possible
disturbance. Also, note that the demographic makeup of the datasets used is not representative of the
broader population.

At the same time, we have utilized a substantial amount of person-containing video data from the
internet for pre-training purposes. Consequently, it is inevitable that the resulting models may
inherently contain information about these persons. Researchers should adhere to relevant laws and
regulations, and strive to avoid using our models for any improper invasion of privacy. We will
have a gated release of our models and training data to avoid any misuse. We will require that users
adhere to usage guidelines and restrictions to access our models and training data. Meanwhile, all our
open-sourced assets can only be used for research purpose and are forbidden for any commercial use.

A.3 Limitations

PLIP presents a preliminary attempt to introduce language modality into generic person representation
learning. Despite its effectiveness on existing public datasets, PLIP may still be difficult to learn good
fine-grained person representations for it does not explicitly achieve local information correlation
across different modalities. Also, its pretext tasks require multiple forward propagation, directly
increasing the memory overhead and affecting computational efficiency. Meanwhile, as we have
followed the conventional practice of previous works by utilizing a large amount of person-containing
internet video data to implement pre-training, there is a potential for privacy and security issues to
some extent. Therefore, in our subsequent work, we will focus on addressing fine-grained issues
and improving the efficiency of our framework. We will take every possible measure to prevent the
misuse of our models and dataset as well.

A.4 Altering Color Word Affects Image Colorization: Visualization

As displayed in Fig 5, in our pretext task of text-guided image colorization, altering the color word
in textual description significantly affects the colorization of image. However, our model may not
fully understand the semantics of more detailed image regions. As shown in the last row, our model
fails to distinguish between the blue clothing region and the red shoulder strap region (marked with
yellow boxes), instead blending the two into a unified coloration. This is due to the fact that the level
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of detail in manually annotated datasets is still not sufficient, resulting in the model being unable to
theoretically learn representations with higher levels of detail and greater discrimination capabilities.
However, it is undeniable that our model has a preliminary understanding of the meaning of attributes
and colors, and can associate them with related image regions, rather than simple memorization. This
ability to distinguish between different parts of the person body guarantees the superior performance
on the subsequent person-centric tasks.

The man with short black
hair is wearing a [ ] jacket
and black straight pants.
He is also wearing black
shoes with white edging.

"A man with short black
hair is wearing a [ ] shirt
and light blue jeans. He is
wearing black sneakers
with white soles."

"A woman in her twenties
with straight shoulder
length brown hair is
wearing a short [ ] dress."

"A man with short black
hair is wearing a blue shirt
and [ ] pants. He is
wearing black sneakers
with white soles."

original grayscale [blue] [purple] [orange] [pink] [green] [red] [yellow]

“A man with black short hair
and he is wearing a dark
blue hooded jacket with
grey shorts paired with black
shoes with white edging
carrying a [ ] backpack.”

“A woman with brown hair
is wearing a [ ] shirt and
black leggings. She is also
wearing black dam shoes.
She is carrying a yellow
backpack.”

“A woman with brown hair
is wearing a pink shirt and
black leggings. She is also
wearing black dam shoes.
She is carrying a [ ]
backpack.”

“An almost bold man is
wearing a [ ] shirt and a
pair of light blue jeans. He
is wearing a pair of black
shoes.”

Figure 5: Visualization of gray-scale person image colorization results by changing the color words
in textual descriptions.
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A.5 How to Construct SYNTH-PEDES and its Properties

We build the SYNTH-PEDES dataset to pre-train the PLIP models at a large-scale. In this section,
we show the details of how to construct our SYNTH-PEDES dataset and its characteristic properties.

A.5.1 Dataset Construction

The dataset construction process can be described as three steps. Firstly, we collect several person
datasets [30, 83] to form the large-scale image dataset. Secondly, as a person image captioner, a
simple but effective method is proposed to achieve automatic diversified text annotation with high-
quality. Finally, we adopt some post-processing approaches to eliminate the noises and improve the
dataset quality.

Image Collection.

We collect and process two large-scale person datasets to form the image dataset. The first is
LUPerson-NL [30]. It is a new variant of LUPerson [29] on top of raw videos from LUPerson and
assign the noisy labels to each person image with automatically generated tracklet. It consists of 10M
images with about 430K identities collected from 21K scenes. The second is LPW [83]. It consists
of 2,731 different persons and 592,438 images collected from three different crowded scenes.
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Figure 6: Architecture of Stylish Pedestrian
Attributes-union Captioning. It mainly consists
of a prefix encoder and a generator. We use it to
generate descriptions from a person image.

Image Captioner (SPAC).

Given an input person image, there is no spe-
cific work targeting at generating captions that
detailedly describe the person’s appearance. To
this end, we propose a simple but effective
method for person image captioning. It can gen-
erate attribute-annotations and stylish textual-
descriptions, which simulate the diverse perspec-
tives that different annotators may have on the
same person image.

As illustrated in Fig. 6, Stylish Pedestrian
Attributes-union Captioning (SPAC) mainly
comprises two modules, i.e., a prefix encoder
and a shared generator. Specifically, we use
ResNet101-FPN [37, 58] as the encoder and
GPT2 [73] as the generator to capture rich per-
son image details and generate high-quality
texts. In the existing image-text person datasets [52, 24], many unique workers were involved
in the labeling tasks. The same images usually have inconsistent-style language descriptions. Con-
structing image-text pairs for an image with multiple descriptions will lead to unstable training and
affect the model performance. Thus, in order to replicate the stylized variations that arise from
multiple workers’ labels and mitigate the issue of redundant real labels, we have incorporated style
encoders into our pipeline. We let the concatenated prefixes pass through different style encoders to
get the prefixes of their own style and then send them to the generator for the subsequent generation.

The entire training process can be seen as an autoregressive problem. Given a dataset of paired
images, attributes and captions

{
xi,Ai,yi

}N

i=1
, where Ai is an attribute set of image xi containing

six attribute descriptions, the learning goal is to generate meaningful attribute descriptions and
captions from an unseen person image. The attributes and captions can be referred as a sequence

of padded tokens Ai =
{
ai,k1 , . . . ,ai,kℓ1

}n−1

k=1
,yi = y1

i, . . . ,yℓ2
i, with maximal lengths ℓ1, ℓ2

accordingly.

Following recent works [66, 65], our key solution is to jointly train a prefix encoder and a generator.
The former is to capture the semantic embeddings as the prefixes from the image, and the latter, as
an autoregressive language model, is to use the prefixes to predict the next token one by one. As
shown in Fig. 6, we first feed the input image xi into the prefix encoder PE and different branches
{BRk}nk=1 to get the n attribute-and-relation prefix embeddings:
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ei1, . . . , e
i
n =

{
BRk(PE(xi))

}n

k=1
. (8)

And then the concatenated embeddings are fed into different style encoders {SEk}mk=1 to get the
stylized caption embeddings:

ci1, . . . , c
i
m =

{
SEk(concat([e

i
1, . . . , e

i
n]))

}m

k=1
, (9)

each embedding has the same dimension as a token embedding. We then concatenate the obtained
embeddings to the atrribute and caption token embeddings, where ei is selected from the stylized
caption embeddings in turn:

{Zi
k = concat([eik,a

i,k
1 , . . . ,ai,kℓ1 ])}

n−1
k=1 ,

Zi
n = concat([ei,y1

i, . . . ,yℓ2
i].

(10)

Finally, we feed the embeddings {Zi}Ni=1 into the shared generator G to predict the attribute and
caption tokens in an autoregressive fashion, using the cross-entropy loss:

Lc =

N∑
i=1

ℓ2∑
j=1

logG
(
yi
j | ei,yi

1, . . . ,y
i
j−1

)
, (11)

La = {
N∑
i=1

ℓ1∑
j=1

logG
(
ai,kj | eik,a

i,k
1 , . . . ,ai,kj−1

)
}n−1
k=1 . (12)

Define λ ∈ R+ as a balance factor, then the overall loss Lspac is computed as:

Lspac = −Lc − λLa. (13)

Post-Processing.

man

black hair

white bag

S
SPAC

Generator

A [person] with [head] is wearing a [up] with [down].

He is also wearing [shoes] and carrying a [others].

A man with black hair is wearing a white shirt with 

gray shorts. He is also wearing white shoes and 

carrying a white bag.

Attributes Generating

Prompt Engineering

Image Dataset

Figure 7: Visual example of Attributes Prompt
Engineering. Given an image, we generate the
attribute annotations based on SPAC and embed
them into the masked sentence randomly chosen
from the sentence library to form a complete cap-
tion.

Noise Filter Strategy. To filter the noises in
LUPerson-NL, we propose Seed Filter Strategy.
Specifically, it mainly includes three processes.
1) Filter-out. For all samples with the same iden-
tity, we cycle to calculate the similarity between
the current sample and the center of other sam-
ples and exclude the samples whose similarity
does not meet the threshold until the similarity
of all samples with the same identity meets it. 2)
Reassignment. According to the similarity and
threshold, we reassign the excluded samples in
excluded dataset to the correct identity within
a certain identity continual range. 3) Merger.
We merge the samples that should belong to the
same identity but are divided into different iden-
tities. Through this process, the samples with
incorrect identity label annotations can be well
filtered out or included in their expected identity
set. More details can be found in Sec. A.7

Data Distribution Strategy. There are some
samples with poor imaging conditions in the image part. Also, the number of images per identity in
LUPerson-NL is very unbalanced. To this end, we have adopted some strategies to ensure the quality
of generated attributes, the consistency of gender annotation, and identity distribution balance. For
example, we adopt a gender voting mechanism to automatically synchronize the gender annotation of
an identity in dispute. For the text part, we aim to generate three sentences for an image. Two of them
are directly generated by SPAC while the another is generated by Attributes Prompt Engineering
exploiting the attribute annotations generated by SPAC, as shown in Fig. 7. There are averagely 2.53
sentence per image. More details can be found in Sec. A.7
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Table 11: Statistics comparison on existing popular datasets. SYNTH-PEDES is by far the largest
person dataset with textual descriptions without any human annotation effort.

Datasets year #images #identities #descriptions view label type label method crop size
Market1501 [114] 2015 32,668 1,501 - fix camara identity hand+DPM [28] 128×64
DukeMTMC [120] 2017 36,411 1,852 - fix camera identity hand vary

CUHK-PEDES [52] 2017 40,206 13,003 80,412 fix camera identity+description hand vary
LPW [83] 2018 592,438 2,731 - fix camera identity hand+Detector+NN vary

MSMT17 [94] 2018 126,441 4,101 - fix camera identity FasterRCNN [75] vary
SYSU30K [88] 2020 29,606,918 30,508 - dymamic identity YOLOv2 [74] vary

RSTPReid [122] 2021 20,505 4,101 41,010 fix camera identity+description hand vary
ICFG-PEDES [24] 2021 54,522 4,102 54,522 fix camera identity+description hand vary

LUPerson [29] 2021 4,180,243 > 200k - dymamic no YOLOv5 vary
LUPerson-NL [30] 2022 10,683,716 433,997 - dymamic identity FairMOT [111] vary

MALS [106] 2023 1,510,330 - 1,510,330 dynamic description ImaginAIry vary
UFine6926 [126] 2024 26,206 6,926 52,412 dynamic identity+description hand vary
SYNTH-PEDES 2024 4,791,771 312,321 12,138,157 dymamic identity+description SPAC vary

A.5.2 Dataset Properties
Thanks to the outstanding generating ability of our proposed SPAC, the SYNTH-PEDES dataset
is full of high-quality textual descriptions in a variety of styles, which can be utilized to train the
representation learning model. Compared with existing person datasets in Tab. 11, SYNTH-PEDES
has the following advantages:

Diversified. Our dataset contains a wide range of variations in the textual descriptions. Unlike
the previous person datasets with only one or two image-text pairs, most images of our dataset are
annotated with three textual descriptions.

High-quality. As some typical qualitative examples can be seen in Fig. 3, the generated annotations
achieve an accurate and detailed description of the person appearance. The further experiments
conducted on the quality research can be found in the following sections. Researchers can use this
dataset with confidence to conduct relevant studies.

Large-scale. In Tab. 11, we compare the properties of SYNTH-PEDES with other popular person
datasets. As we can see, SYNTH-PEDES is the largest real person dataset with high-quality image-
text pairs by far, which contains 312,321 identities, 4,791,711 images, and 12,138,157 textual
descriptions.

A.6 Details of Network Structures

In this section, we will provide a detailed explanation of the structure and some parameter settings
of our representation learning network, mainly including some modifications made to the ResNet
networks [37] and the decoder designs for the two pre-text tasks. The dimension of global embeddings
is set to 768.

A.6.1 Modifications to ResNets

We made some modifications to the ResNet networks like CLIP [72]. Firstly, there are now 3
"stem" convolutions as opposed to 1, with an average pool instead of a max pool. For each "stem"
convolutions, it is consisted of a convolution layer, a batch normalization layer and a ReLU activation
funtion. Secondly, we perform anti-aliasing strided convolutions, where an avgpool is prepended to
convolutions with stride > 1. Thirdly, the final pooling layer is a max pool instead of an average pool
and we add a trainable linear layer to compress feature dimensions to 768.

A.6.2 Specifications of TIC Decoder

For an image with 3×H×W , we firstly obtain the multi-scale visual feature map with 1024×H
4 ×W

4
like FPN. Then, we send the feature map and textual global embedding to 2 Multimodal SE-Block
and deconvolution layers to acquire the final feature map with 3×H×W , which is utilized to restore
the color information. Next, we specify the detailed designs of the Multimodal SE-Block.

In each MSE-Block, for a visual feature map with C×H×W , we firstly perform an average pooling
operation on it to obtain a visual feature embedding with 1× C. Then we concat the visual feature
embedding and the input texutal global embedding with 1× 768 to obtain a fused feature embedding
with 1× (C + 768). Then, we feed it to a FC layer, which contains a linear layer((C + 768), C), a
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ReLU activation, a linear layer(C,C) and a sigmoid funtion, to obtain the fused attention embedding
with 1× C. Finally, we apply it to the channel of the original feature map to obtain the multi-modal
fused feature with C ×H ×W .

After each MSE-Block, there is a deconvolution layer operated on the output feature map. For the
first block, the deconv is with input channel=1024, output channel=256, kernel size=3, stride=2,
padding=1 and output padding=1. For the second block, the deconv is with input channel=256 output
channel=3, and others the same.

After the approaches above, we finally obtain an output feature map with the same shape like the
input original color image, and it can be used to predict the ground truth.

A.6.3 Specifications of IAP Decoder

For each masked token, we obtain its hidden state output as the masked embedding. We then simply
concat the masked embedding and the visual global embedding to obtain the fused embedding. Then
the fused embedding will be regarded as the QKV and set to a normal transformer block to improve
the multimodal fusion. Finally, the output fused embedding of transformer block will be sent to
a prediction head to predict the masked word. The prediction head is a simple linear layer with
(768, nvocab), where the nvocab means the size of the dictionary.

A.7 Details of Dataset Construction

In this section, we specify the details of our gathering SYNTH-PEDES dataset. We mainly provide
a detailed explanation of the designs of our texutal description generated model SPAC. Also, we
demonstrate the noise filter strategy and data distribution strategy adopted in the process of dataset
constrution.

A.7.1 Designs of SPAC Model

The prefix encoder is a ResNet101-FPN [58] pre-trained on ImageNet [21]. There are two types
of prefix branches, one is the attribute branch and the other is the sentence branch. The detailed
structures of each branch are shown in Tab. 12. Prefix dimension is set to 768. Attribute prefix length
and sentence prefix length are 3 and 5, respectively.

There are totally 6 types of attribute prefix. For each type of attribute prefix, we send it to the generator
GPT2 [73] and generate the attribute annotation accordingly. Also, we concat all the attribute prefixes
and sentence prefix, and send them to 2 types of style encoders for obtaining the stylized prefixes.
Then the stylized prefixes will be used to generate complete textual descriptions of 2 different styles
accordingly. The two style encoders are actually two linear transformation matrices with different
weights.

A.7.2 Details of Noise Filter Strategy

To filter various noises in the LUPerson-NL [30] dataset, we propose Seed Filter Strategy, which is
illustrated in Algorithm 1. Specifically, it consists of three processes, each with its corresponding
similarity threshold for filtering, reassigning or merging. 1) Filter-out. For all samples with same
identity, we cycle to calculate the similarity between the current sample and the center of other
samples and exclude the samples whose similarity does not meet the filtering threshold σs until the
similarity of all samples with same identity meets it. 2) Reassignment. According to the similarity
and reassigning threshold σr, we reassign the excluded samples in the excluded dataset to the correct
identity within a certain identity continual range. 3) Merger. We merge the samples that should
belong to the same identity but are divided into different identities according to the merging threshold
σm. Through these processes, the samples with incorrect identity label annotations can be well
filtered out or included in their expected identity set.

The following is a detailed explanation of the specific symbols in the Algorithm 1. Sin is the input
dataset to be denoised while Sout is the output denoised dataset. Sexclude is the set of image samples
to be excluded. Smerge is the set of identities to be merged and it contains a lot of merged-identity
pairs. IDk is the k.th identity of the input dataset, with n image samples xk

i . FIDk is the output
final identity. Sim is a similarity calculate function. If the variable it contained is a single identity, it
will calculate the similarity between each sample and other samples’ center. If it contains a image
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Table 12: Structure of the attribute and sentence branch. The bias of all linear layers is set to true. n
represents batch size. c represents the channel size. h and w represent the height and width of the
output feature map.

Layers Paramters Output Size
(CNN-MLP) (kernel,stride,pad) (n,c,h,w)
Conv layer (3,2,1) (n,c,h/2,w/2)
Avgpool - (n,c)
Linear - (n,768)

Dropout rate=0.25 (n,768)
Linear - (n,2304)

Dropout rate=0.25 (n,2304)
LeakyReLU rate=1/5.5 (n,2304)

Rearange - (n,3,768)
Conv layers × 2 (3,2,1) (n,c,h/4,w/4)

Avgpool - (n,c)
Linear - (n,1536)

Dropout rate=0.25 (n,1536)
Linear - (n,3840)

Dropout rate=0.25 (n,3840)
LeakyReLU rate=1/5.5 (n,3840)

Rearange - (n,5,768)

sample and a identity, it will calculate the similarity between the image sample and the center of all
samples in the identity. If it contains two identities, it will calculate the similarity between the two
centers of the two identities. Merge is a function that merges the identities. We use cosine similarity
to calculate the similarity between samples. For the hyper-parameters, σs is set to 0.6. σr is set to
0.65. σm is set to 0.62. ra and rb are both set to 2.

Algorithm 1 Seed Filter Strategy

1: Input Sin = {IDk}Nk=1, where IDk = {xk
i , . . . , x

k
n}

2: for IDk ∈ Sin do
3: repeat
4: if minSim(IDk) < σs then
5: xk

j = argminSim(IDk);
6: IDk = IDk − xk

j , x
k
j ⇒ Sexclude;

7: end if
8: until minSim(IDk) ≥ σs

9: end for
10: for xk

j ∈ Sexclude do
11: if max{Sim(xk

j , IDi)}k+ra
i=k−ra

≥ σr then
12: IDr = argmax{Sim(xk

j , IDi)}k+ra
i=k−ra

;
13: IDr = IDr + xk

j ;
14: end if
15: end for
16: for IDk ∈ {IDi}Ni=1 do
17: if {Sim(IDk, IDk+i)}rbi=1 > σm then
18: {IDk, IDk+i} ⇒ Smerge

19: end if
20: end for
21: for FIDi ∈ Smerge do
22: for FIDj ∈ {FIDj}i+rb

j=i+1 do
23: if FIDi ∩ FIDj ̸= ∅ then
24: FIDi = Merge(FIDi, F IDj)
25: end if
26: end for
27: FIDi ⇒ Sout

28: end for
29: Output Sout;
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A.7.3 Details of Data Distribution Strategy
For the image part, there are some bad pictures with blocking, blurring and multiple people. Due to the
poor quality, these pictures are not a good choice for training. Also, the number of images per identity
in LUPerson-NL [30] is very unbalanced. Some identities have thousands of images, while others
have only few images. To further improve the quality of our dataset, we have adopted the following
strategies: 1) Ensure the qualities of generated attributes. In our setting, the attributes generated by
poor quality pictures will contain a large number of unknowns. To filter these poor quality pictures,
the pictures with three or more unknown attributes will be directly filtered. Particularly, if the upbody
and downbody attributes of a picture are unknown simultaneously, it will also be filtered. 2) Ensure
the consistency of gender attribute. Ensuring the gender consistency of an id plays a role in promoting
the stability of the model training. However, for those pictures with poor quality, it is often very
challenging to correctly predict their gender attributes. So we adopt a gender voting mechanism. That
is, for all pictures in an identity, if the gender attribute with the maximum frequency of occurrence is
greater than 0.7, the gender of all pictures in the identity will be automatically changed to this gender.
Otherwise, the pictures in the identity will be considered as bad pictures, and will be filtered out. 3)
Balance the distribution of identities. If the number of images of an identity is less than the minimum
number of 5, this identity will be filtered. If the number of images of an identity is greater than the
maximum number of 20, randomly select 20 images from all images of the identity and filter out the
others.

Female: 1. The [person] has [head]. She is wearing a [up], [down],
and [shoes]. She is carrying a [others].

2. The [person] with [head] is wearing a [up] and [down].
She is also wearing [shoes] and carrying a [others].

3. A [person] with [head] and she is wearing a [up] with
[down] paired with [shoes] carrying a [others].

Male: 1. The [person] is wearing a [head] with a [up] and he is
also wearing [down] paired with [shoes], carrying a
[others].

2. A [person] with [head] is wearing a [up] and [down]. He
is also wearing [shoes]. He is carrying a [others].

3. A [person] with [head] is wearing a [up] and a pair of
[down]. He is also wearing [shoes] and carrying a [others].

1. An individual with [head] and is wearing a [up] with
[down] paired with [shoes] carrying a [others].

2. A [person] with [head] and is wearing a [up] with [down]
paired with [shoes] carrying a [others].

3. A [person] has [head], and wears a [up] and a pair of
[down] and a pair of [shoes], is holding a [others].

Person:

Figure 8: Some examples in the mask standard sen-
tence library for the attributes-all-known situation.

For the text part, we aim to generate three sen-
tences for an image. Two of them are directly
generated by SPAC while the another is gener-
ated by Attributes Prompt Engineering exploit-
ing the attribute descriptions generated by SPAC.
In many processes of our approach, we must ex-
tract the attribute phrases from a textual descrip-
tion. For example, in order to guild the SPAC
to generate attribute descriptions, we have to ex-
tract the attribute labels from the paired textual
descriptions. The extracting process is as the fol-
lowing: 1) Construct the keywords set for each
attribute. Firstly, we extract all the nouns in the
datasets’ [52, 24] captions by nltk tools and sort
them by frequency. Then, for each attribute, we
manually select from the nouns and construct
the keywords set. 2) Assign the noun phrases
to relevant attributes. For a textual description,
we firstly extract the noun phrases by nltk tool.
Then, according to the keywords set, we assign each noun phrase to the correct attribute. On this
way, we finally finish extracting the attribute phrases from a a textual description. For Attributes
Prompt Engineering, as shown in Fig. 8, we have created a mask standard sentence library with many
diversities. To construct the library, by exploiting the nltk tool and the above attributes extracting
method, we first mask all attributes phrases of the captions in CUHK-PEDES and ICFG-PEDES.
Then We manually select sentences with good sentence structure from them to form the mask stan-
dard sentence library. The library totally consists of 1664 sentences for different generated attribute
missing situations.

A.8 Experimental Setup

A.8.1 Implementation Details

During the training of SPAC, we adopt ResNet-101 [37] together with a Feature Pyramid Network
(FPN) [58] as the prefix encoder and GPT2 [73] as the generator. The ResNet-101 and GPT2 are both
pre-trained on their respective pre-training tasks. All images are resized to 384 × 128 and normalized
with mean and std of [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], which are calculated from all
images in ImageNet. We use the combination of CUHK-PEDES [52] and ICFG-PEDES [24] as
the training dataset. We adopt horizontally flipping to augment data, where each image has 50%
probability to flip randomly. We aim to generate the textual descriptions with two style type. The
learning rate is fixed at 0.0001. The balance factor λ is set as 0.15. There are six types of attributes
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including gender, head, upper body, lower body, shoes and belongings. The prefix lengths of attributes
and relation are 3 and 5 respectively. We train it on 4 × Geforce 3090 GPUs for 30 epochs with a
batch size of 64 totally, which takes approximately 1.6 days. The optimizer is AdamW [63] with the
default setting.

During the training of PLIP, we adopt four types of backbone as the visual encoder, i.e., ResNet50,
ResNet101, ResNet152 and Swin Transformer Base. The pre-trained BERT [23] is utilized as the
textual encoder and we only unfreeze the last 5 layers, keeping other parameters frozen. All images
are resized to 256 × 128 and normalized with mean and std of [0.357, 0.323, 0.328], [0.252, 0.242,
0.239], which are calculated from our proposed SYNTH-PEDES. We adopt horizontally flipping
to augment data, where each image has 50% probability to flip randomly. For ResNet50, we train
our model on 4 × Geforce 3090 GPUs for 70 epochs with a batch size of 512 totally, which takes
approximately 15.2 days. The base learning rate is set to 0.002 and decreased by 0.1 at the epoch
of 30 and 50. Besides, the learning rate warm-up strategy is adopted in the first 10 epochs. The
learning rate of BERT has a 0.1 decay. For other types of visual encoder, there are some differences
on the learning rate and batch size setting. The hyper-parameters in the objective function are set to
λ1 = 0.02 and λ2 = 0.1. The optimizer is Adan [100] with the default setting. We adopt the mixed
precision training mode by Apex.

For each person-centric downstream task, we reproduce a range of state-of-the art methods as
the baselines. If no special instructions are given, we perform the experiments by just replacing
the backbone in each baseline to the models pre-trained by our proposed method. Meanwhile, for
text-based person Re-ID, we adopt the standard metrics Rank-k (k=1,5,10) to evaluate the model
performance. For image-based person Re-ID and person search, we follow the popular evaluation
metrics: the mean Average Precision (mAP) and the Rank-k (k=1,5,10). For person attribute
recognition, we adopt four evaluation metrics including accuracy (Acc), mean accuracy (mA), recall
(Rec) and F1 value (F1). For human parsing, we use mean accuracy (mA) and mean intersection over
union (mIoU) as the evaluation metrics.

A.8.2 Benchmarks
To evaluate our proposed approach, we perform in-depth experiments on eleven datasets for five
downstream person-centric tasks. For text-based person Re-ID, we conduct extensive experiments
on two popular pubic datasets, i.e., CUHK-PEDES [52] and ICFG-PEDES [24]. For image-based
person Re-ID, we use three popular public datasets, i.e., Market1501 [114], MSMT17 [94] and
DukeMTMC [120]. For person attribute recognition, three large-scale datasets PETA [22], PA-
100K [62] and RAP [45] are used. For person search, we adopt PRW [115] and CUHK-SYSU [99]
in our experiments. For human parsing, the LIP dataset [33] and PASCAL-Person-Part dataset [13]
are used. Next is an introduction to representative datasets in each task.

CUHK-PEDES dataset [52] is the first and most commonly used benchmark for text-based person
re-identification. It contains 40,206 images and 80,412 textual descriptions for 13,003 identities.
Each person image has two corresponding textual descriptions on average. We dopt the same data
split as [52]. The training set has 34,054 images of 11,003 identities. The validation and test set have
3,078 and 3,074 images of 1,000 identities, respectively.

Market1501 dataset [114] includes 32,668 images of 1,501 persons captured from 6 different cameras.
The DPM detector is employed to crop the bounding boxes for these pedestrians. The dataset is
divided into a training set comprising 12,936 images of 751 persons and a test set with 3,368 query
images and 19,732 gallery images of 750 persons.

PA-100K dataset [62] contains 100,000 pedestrian images with resolutions ranging from 50× 100
to 758 × 454 captured from 598 different cameras. Each pedestrian image is annotated with 26
commonly used attributes. As the official protocol, there are 80,000 images for training, 10,000
images for validation, and 10,000 images for testing.

PRW dataset [115] is a widely used dataset for person search which contains 11,816 video frames
captured by 6 different cameras, and 34,304 manually annotated bounding boxes. All people are
divided into labeled identities and other unknown ones. The training set comprises 5,704 images and
482 identities. The test set contains 6,112 images and 2057 query people.

LIP dataset [33] is a large human parsing dataset containing 50,462 images with manual pixel-wise
annotations for 19 semantic human parts. The dataset is collected from the real-world scenarios. It
contains human images with various appearances, heavily occlusions and low-resolutions, which
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introduces many challenges. LIP is divided into 30,462 images for train set, 10,000 images for
validation set and 10,000 images for test set.

A.9 Thorough Ablation Studies and Analyses

In this section, we perform in-depth ablation studies to analyze the effectiveness of each part of our
work. If not specially stated, we use ResNet-50 as the visual encoder and pre-train on the sub-dataset
of SYNTH-PEDES, which has 10,000 identities, 139,564 images and 353,617 textual descriptions.
The evaluation is mainly performed on the benchmarks of text-based person Re-ID and image-based
person Re-ID using the zero-shot evaluation protocol.

A.9.1 Effectiveness of Each Component Table 13: Ablation study on the impact of each
pretext task, all using default settings.

# Components CUHK-PEDES Market1501
IVLC TIC IAP R@1 R@5 R@10 R@1 R@5 R@10

1 ✓ 30.2 53.3 64.0 62.3 79.9 85.7
2 ✓ ✓ 31.4 55.2 65.9 62.9 80.7 86.2
3 ✓ ✓ 30.5 54.4 64.3 62.7 80.5 86.1
4 ✓ ✓ - - - 39.3 61.4 70.4
5 ✓ ✓ ✓ 32.5 56.3 66.6 63.1 80.8 86.3

Impact of each pretext task. We have designed
three pretext tasks to implement pre-training. To
assess the impact of pretext tasks on the general-
izability of learned representations, we directly
evaluate the performance of pre-trained models
on the downstream datasets without fine-tuning.
As indicated in Tab. 13, each task contributes to the model’s zero-shot capability on CUHK-PEDES
and Market1501. Combining all tasks leads to the optimal performance, highlighting the significant
role each task plays in facilitating the learning of generic person representations.
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Figure 9: The effectiveness of TIC on transfer
capability. TIC brings significant improvements.

TIC is essential for transfer capability. After
pre-training with different settings, we evalu-
ate the model’s performance on four datasets
under the zero-shot setting. The metric on
DukeMTMC [120] is rank-5, while others [52,
24, 114] are all rank-1. As shown in Fig. 9,
without TIC, the learned representation exhibits
noticeably weaker performance on downstream
datasets, averaging a 2.45% decrease compared
to the default method on CUHK-PEDES and
Market1501. However, the introduction of TIC
significantly improves the transfer performance.
We believe this is because TIC encourages the
model to comprehend textual semantics and accomplish body part localization and coloring, which
holds significant implications for learning generic representations.
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Figure 10: The effectiveness of IVLC in stable
representation learning, which brings much better
performance.

IVLC contributes to stable representation
learning. We utilize the IVLC loss to optimize
the model at identity-level. We conduct an ex-
periment to verify the effectiveness of IVLC
in stable and meaningful representation learn-
ing. The training samples in this experiment
are the first one million images from SYNTH-
PEDES. We test the zero-shot performance of
the trained models with different settings on the
CUHK-PEDES and Market1501 datasets. As
the results shown in Fig. 10, the model trained
with instance-level InfoNCE loss significantly
underperforms compared to the model trained
with identity-level IVLC loss. Additionally, as
the training process extends, the model trained
with InfoNCE loss experiences a notable decline
in performance, whereas the performance of the
model trained with IVLC loss tends to stabilize.
These results demonstrate that IVLC contributes
to stable and better representation learning.
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A.9.2 Dataset Quality Evaluation

The quality of dataset is critical for large-scale representation learning. We have conducted quan-
titative experiments to evaluate the quality of our dataset compared to three manual annotated
datasets [52, 24, 122] and an existing synthetic dataset [97].

Manual Evaluation

Table 14: Manual evaluation results. Our SYNTH-
PEDES dataset is competitive with manual datasets
and surpasses an existing synthetic dataset by a
large margin.

Dataset Score Average1 2 3 4 5
CUHK-PEDES [52] 14 24 146 196 120 3.77
ICFG-PEDES [24] 12 44 124 150 170 3.84
RSTPReid [122] 11 26 149 146 168 3.87
FineGPR-C [97] 24 41 435 0 0 2.82
SYNTH-PEDES 18 30 162 132 158 3.76

We randomly select 500 image-text pairs from
our SYNTH-PEDES dataset and other manually
annotated or synthetic datasets, forming 2500
image-text pairs to be evaluated. The score of
the evaluation is divided into five levels. The
first is that the most part of the description of the
image is incorrect. The second is that a small
part of the description of the image is incorrect.
The third is that the description is correct but
rough. The fourth is that the description is cor-
rect and generally detailed. The fifth is that the description is completely correct and very detailed. As
shown in Tab. 14, our SYNTH-PEDES dataset is competitive in quality compared to these manually
annotated dataset at about 200 times the amount of image-text pairs.

Automatic Evaluation
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Figure 11: Automatic evaluation results by 5 pre-
trained models. Our dataset are about 200 times
larger than manually annotated datasets, yet still
mantains competitive data quality.

We utilize some multi-modal pre-trained mod-
els like CLIP [72], ALIGN [40], BLIP [49] and
BLIP2 [48] to calculate the cosine similarity of
image-text pairs in each dataset. Moreover, con-
sidering the varied sensitivity of each model to
image-text similarity, we employ the following
normalization to ensure that the results are ap-
proximately within the same range. For each
model’s evaluation result, we initially identify
its maximum similarity across all datasets and
assign it a score of 100 points. Subsequently,
the score for each dataset is determined as the
average similarity relative to this highest simi-
larity. As shown in Fig. 11, under the evaluation
of five models, our SYNTH-PEDES dataset not
only gains competitive scores compared to man-
ually annotated datasets, but also surpasses the
existing synthetic dataset [97] by a large margin.

A.9.3 Different Pre-training Settings

Downstream SAT ClipCap SPAC
R@1 R@10 R@1 R@10 R@1 R@10

CUHK-PEDE 23.6 55.8 24.3 56.2 26.6 59.8
ICFG-PEDES 17.9 48.8 18.4 49.2 20.9 52.3

RSTPReid 16.2 51.0 16.5 51.4 18.5 54.4
Market1501 57.3 81.8 57.4 81.8 58.4 82.8
DukeMTMC 37.8 59.4 38.2 59.6 39.3 61.0

MSMT17 16.9 36.2 17.1 36.3 18.3 37.9
(a) Different caption methods.

Downstream Low-quality High-quality
R@1 R@5 R@10 R@1 R@5 R@10

CUHK-PEDE 28.3 51.7 62.4 29.2 51.9 62.9
ICFG-PEDES 22.2 43.6 53.4 23.8 44.9 55.5

RSTPReid 19.3 41.7 54.7 20.0 42.5 55.2
Market1501 57.9 77.2 83.3 58.6 77.4 83.4
DukeMTMC 39.6 56.0 62.8 40.9 57.2 64.4

MSMT17 19.3 32.6 39.1 19.6 33.0 39.3
(b) Different dataset quality.

Table 15: Ablation studies on caption methods in (a) and dataset quality in (b).

Pre-training with other caption methods. We have compared our proposed SPAC with the previous
representative caption methods SAT [102] and ClipCap [66] in generating captions for person images.
The compared methods generate only one caption per image, lacking diversity. To ensure a fair
comparison, we exclusively utilize SPAC to generate a single caption for the sub-dataset derived
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IVLC TIC CUHK Market
R@1R@10R@1R@10

Lsd. Manh. 18.7 49.0 46.4 73.8
Lal. Manh. 17.6 45.4 44.0 71.9
Lcm. Manh. 19.1 48.5 44.4 75.4
Lsd. Eucl. 30.0 63.5 63.1 86.1
Lal. Eucl. 31.8 64.1 63.0 85.7
Lcm. Eucl. 32.5 66.6 63.1 86.3

(a) Different training objectives.

G(x)
CUHK Market

R@1 R@10 R@1 R@10
0.2 32.1 65.9 63.2 86.6
0.5 30.9 65.3 62.9 85.2
0.8 31.6 66.1 62.7 86.9
x2 32.3 66.0 63.4 85.9√
x 32.5 66.6 63.1 86.3
x 31.7 65.5 63.7 86.5

(b) Different prediction difficulty.

VisualTextual CUHK Market
R@1R@10R@1R@10

Aver. Pooler 26.6 60.8 55.5 81.0
Max. Pooler. 26.2 59.5 56.2 83.0
Attn. Pooler. 24.3 57.1 57.3 81.9
Aver. Aver. 30.2 65.6 60.1 84.1
Max. Aver. 32.5 66.6 63.1 86.3
Attn. Aver. 27.9 62.4 61.3 84.9

(c) Different pooling methods.

Table 16: Ablation studies on training objectives in (a), prediction difficulty functions in (b) and
pooling methods in (c).

from SYNTH-PEDES. Totally, for each method, there are 139,564 image-text pairs for pre-training.
As shown in Tab. 15 (a), the performance of SPAC on six datasets is much better than the others,
showing the superiority of our SPAC.

High-quality dataset leads to good pre-training. In this experiment, we consider the original
LUPerson-NL dataset [30] and our dataset as low-quality and high-quality dataset, respectively. We
conduct a performance comparison on downstream tasks following pre-training on each dataset.
To ensure parity, an equal number of identities and image samples are randomly selected for each
dataset, and captions are generated using SPAC. The pre-training process involved a total of 214,053
image-text pairs for each dataset. As shown in Tab. 15 (b), the downstream performance of the
low-quality dataset is markedly inferior to ours. These results collectively validate the efficacy of the
strategies employed in our dataset gathering process.
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Figure 12: The diversity of textual descriptions
matters. PC and GC mean prompt caption and
generate caption, respectively.

The diversity of textual descriptions matters.
Our dataset has textual descriptions with differ-
ent styles for each image. To validate the effec-
tiveness of this diversity, we assess it through
pre-training with datasets exhibiting varying de-
grees of textual diversity, followed by a compre-
hensive generalizability study on downstream
tasks. Specifically, we have studied four dif-
ferent degrees of textual diversity from weak
to strong, while keeping the number of person
images and identities consistent. As shown in
Fig. 12, the fourth case, with the highest degree
of textual diversity, has the best performance. Also, compared to the first case, the superior perfor-
mance observed in the second case further substantiates the significance of diversity, as the prompt
caption exhibits less diversity than the generated caption.

A.9.4 Optional Practices

Training Objectives of IVLC and TIC. The different combinations and implementations of the loss
functions for IVLC and TIC are shown in Tab. 16 (a). For the IVLC task, we have implemented three
identity-based loss functions for vision-language contrastive learning. Specifically, Lal. represents the
alignment loss proposed in [93], Lsd. represents the SDM loss proposed in [42], and Lcm. represents
the CMPM loss proposed in [112]. For the TIC task, to measure the error between the color-restored
image and the original colorful image, we tried using Euclidean distance and Manhattan distance.
In fact, any function meeting the requirements can be used in our learning framework. However,
as shown in Tab. 16 (a), the combination of CMPM loss and Euclidean distance leads to the best
performance, and gains rank-1 32.5% and 63.1% on each dataset accordingly.

Different prediction difficulty. Curriculum learning [3, 71] demonstrates that it could be useful to
organize the training samples from easy to hard. It is inspired by the human learning process and has
achieved success in a wide range of tasks. To explore the effectiveness of this, we consider the masked
textual descriptions with different masking probabilities as samples with different difficulty levels.
Specifically, we define G(x) as the difficulty function and explore a variety of optional functions,
including constant, x, x2, and

√
x. By using the gradually increasing functions, we start the G(x)

grows from 0.2 to 0.8, which means the training samples will change from easy to hard at different
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rates. As shown in Tab. 16 (b), the results suggest that satisfactory performance on both datasets can
be achieved with

√
x in pre-training. This means the gradual difficulty sample strategy truly plays a

role in encouraging the model to learn generic person representations better.

Pooling methods of global embeddings. We have studied the impact of different pooling methods
of global embeddings. In the textual branch, we investigated two methods for obtaining the global
embedding, namely pooler-out and average pooling. Additionally, in the visual branch, we explored
three pooling operations on the last stage feature: average pooling, maximum pooling, and attention-
based pooling. As shown in Tab. 16 (c), the combination of maximum pooling and average pooling
consistently yields the best performance on both datasets, establishing it as the default setting.

Table 17: Comparable results of different hyper-
parameters in overall objective function. We show
the best score in bold.

Settings CUHK-PEDES Market1501
R@1 R@5 R@10 R@1 R@5 R@10

λ1 = 1, λ2 = 1 28.7 51.9 62.8 57.6 77.1 83.4
λ1 = 0.2, λ2 = 1 30.3 53.6 64.1 61.7 79.2 85.5
λ1 = 0.05, λ2 = 1 31.8 55.1 65.4 62.2 79.9 85.6
λ1 = 0.02, λ2 = 1 32.3 55.8 65.9 62.6 80.3 85.9
λ1 = 0.01, λ2 = 1 31.7 55.3 65.1 62.4 80.1 85.7
λ1 = 0.02, λ2 = 0.5 32.5 55.9 66.1 62.9 80.9 85.9
λ1 = 0.02, λ2 = 0.2 32.3 56.1 66.4 62.7 81.1 86.1
λ1 = 0.02, λ2 = 0.1 32.5 56.3 66.6 63.1 80.8 86.3

Effectiveness of different hyper-parameters.
Since our objective function consists of three
losses and each loss is critical to the overall
performance, we further search for the optimal
hyper-parameters to balance the loss weights.
As shown in Tab. 17, PLIP achieves the best
performance when λ1 = 0.02 and λ2 = 0.1,
surpassing the version of λ1,2 = 1 by 3.8%
and 5.5% rank-1 on CUHK-PEDES and Mar-
ket1501, respectively. This is mainly attributed
to the loss values of three pretext tasks. The
IVLC loss is the primary component of the objective function, aiming to achieve the visual and
textual modality association. The TIC and IAP losses are employed to better assist in representation
learning, and their loss values are relatively large. Therefore, adjusting the weights reasonably is also
crucial for performance.

A.9.5 Learning with Other Pre-training Methods

Table 18: Comparable results of PLIP with other
representative pre-training methods. We show the
best score in bold.

Method Backbone CUHK-PEDES Market1501
R@1 R@5 R@10 R@1 R@5 R@10

CLIP RN50 38.1 62.6 73.0 70.1 84.7 89.7
CLIP ViT-B 41.6 65.2 74.8 72.9 85.6 90.9
BLIP ViT-S 44.9 68.6 77.4 73.7 86.2 91.4
BLIP ViT-B 48.2 72.7 80.6 76.3 88.6 92.5

BLIP2 ViT-S 47.3 71.6 80.1 75.9 88.1 92.4
BLIP2 ViT-B 48.8 72.6 81.2 77.3 89.4 93.3
PLIP RN50 52.9 74.7 82.5 81.1 91.4 94.6
PLIP Swin-B 56.3 77.6 84.8 83.7 93.6 95.9

PLIP exhibits clear superiority in person repre-
sentation learning compared to other general pre-
training methods. To validate this, we have pre-
trained a series of models on the entire SYNTH-
PEDES dataset with different pre-training meth-
ods, i.e., CLIP [72], BLIP [49], BLIP2 [48] and
PLIP. For BLIP2, we exclusively utilize its first-
stage pre-training method, aligning with the de-
fault setting in the original paper designed for
image-text retrieval tasks. Subsequently, we
compare their direct transfer performance on
downstream datasets. The results, as reported in Tab. 18, demonstrate that under the comparable
setting of models with the roughly same parameters (ViT-Small vs ResNet50 and ViT-Base vs
Swin-Base), PLIP outperforms all other pre-training methods significantly on downstream datasets.
Specifically, PLIP with ReNet50 achieves 52.9% and 81.1% rank-1 on CUHK-PEDES and Mar-
ket1501, greatly surpassing CLIP with ResNet50 by 14.8% and 11.0%. Moreover, with Swin-Base
as the backbone, PLIP achieves the best performance, with rank-1 reaching 56.3% and 83.7%, re-
spectively. These experimental results demonstrate the superiority of PLIP in person representation
learning.

A.10 More Evaluation on Downstream Tasks
Table 19: Comparisons of domain generalization
performance on image-based person Re-ID.

Method Train Set Market1501 MSMT17
mAP R@1 mAP R@1

QAConv RandPerson 46.9 74.5 14.0 40.6
QAConv ClonedPerson 59.9 84.5 18.5 49.1

TransMatcher RandPerson 49.6 77.6 16.4 45.3
TransMatcher UnrealPerson 59.4 81.6 21.6 52.0

WePerson WePerson 55.0 81.5 18.9 46.4
APTM MALS 3.8 11.9 1.8 7.4
PLIP SYNTH-PEDES 55.8 81.1 22.1 52.3

Domain Generalization for Image-based Per-
son Re-ID. A comparison to the SoTA in gen-
eralizable image-based person re-identification
is shown in Tab. 19. The models trained on
the source datasets are directly generalized to
the target datasets without tuning. Several
methods and datasets recently are compared,
with methods including QAConv [56], Trans-
Matcher [57], WePerson [46], and APTM [106],
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and datasets including RandPerson [92], ClonedPerson [105], UnrealPerson [109], WePerson [46]
and MALS [106]. As the results indicate, even without specific design tailored for this generalizable
task, our PLIP trained on SYNTH-PEDES shows competitive performance when directly generalized
to downstream real-world datasets. These results verify the outstanding generalization ability of our
pre-trained models for this task.

Table 20: Improving two person attribute recogni-
tion baseline methods. The results of DeepMAR‡
are from a re-implementation by replacing the
backbone with ResNet50, which are much better
than the original.

Pre-train PA100k PETA
mA Acc Rec F1 mA Acc Rec F1

D
ee

pM
ar

[4
4] Baseline 78.3 76.8 84.0 84.3 82.7 77.1 84.6 85.2

MoCov2 [15] 78.1 76.6 84.1 84.2 82.9 77.1 84.8 85.4
CLIP [72] 79.4 77.5 84.9 85.2 83.3 77.6 84.8 85.4
LUP [29] 78.5 77.3 84.5 84.6 82.8 77.3 84.5 85.3

LUP-NL [30] 79.5 77.4 84.7 84.5 83.5 77.9 85.0 85.6
PLIP 80.5 78.8 86.0 86.5 83.8 78.2 85.3 85.8

R
et

hi
nk

[4
1]

Baseline 80.2 79.2 87.0 87.4 84.0 78.7 85.6 86.4
MoCov2 [15] 80.2 79.0 87.0 87.3 83.4 77.7 84.9 85.6

CLIP [72] 81.1 79.8 87.7 87.8 84.5 79.2 86.0 86.7
LUP [29] 80.2 79.5 87.3 87.6 84.2 78.3 85.2 86.1

LUP-NL [30] 81.3 79.1 87.7 87.4 84.1 78.6 85.2 86.3
PLIP 82.2 81.1 88.6 88.6 85.1 79.5 86.3 86.9

Improvement over Person Attribute Recog-
nition Methods. Our model can also bring con-
siderable improvement to person attribute recog-
nition methods. We conduct experiments using
two representative baseline methods [44, 41] by
comparing the performance gain of different pre-
trained ResNet50 models. We report the results
in Tab. 20, where the two methods are based on
traditional CNN structure and multi-label classi-
fication loss. As we can see, our model improves
their performance significantly on the two pop-
ular datasets, and the improvements leave all
other pre-trained models far behind. Particu-
larly, in terms of mA, by using our pre-trained
ResNet50, the average improvements of these
methods are 2.1% and 1.1% on PA100k and PETA respectively. These results demonstrate that our
framework helps to learn better person representations for fine-grained recognition.

Table 21: Comparison with SoTA methods on hu-
man parsing. We show the best score in bold.

Methods Backbone LIP PASCAL
mIoU mIoU

Attention [7] VGG16 42.92 56.39
MMAN [64] RN101 46.81 59.91
JPPNet [55] RN101 51.37 59.36
CE2P [76] RN101 53.10 -
CNIF [91] RN101 57.74 70.76
SCHP [50] RN101 59.36 71.46

CDGNet [60] RN101 60.30 -
SOLIDER [12] Swin-B 60.50 -

PLIP RN50 60.41 72.14
PLIP RN101 61.32 72.63
PLIP RN152 62.44 73.51
PLIP Swin-B 63.52 73.93

Comparison with state-of-the-art methods
on human parsing. Human parsing task re-
quires excellent perception of spatial informa-
tion. By training the TIC task, as shown in
the Figure 5, our models truly learn the corre-
lation between attribute phrases and spatial re-
gions, which guarantees the good performance
of this fine-grained semantic segmentation task.
In Tab. 21, we compare our results with existing
SoTA human parsing methods on LIP [33] and
PASCAL [13]. Under the ResNet101 setting,
our method achieves 61.32% and 72.63% mIoU
on LIP and PSCAL, respectively, significantly
surpassing previous SoTA methods. Also, by
applying our pre-trained Swin-Base model on
SCHP [54], we achieve the best performance on
each datasets. These results demonstrate that our pre-training framework shows good potential in
learning discriminative person representation for this task.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction of our paper accurately
reflect our paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We conduct an in-depth discussion of the limitations of our work, which can
be found in Sec. A.3 of the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work focuses on computer vision applications, not including theoretical
results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully provided all the details of our proposed methods in the main
text and appendix, to guarantee the reproducibility of our paper’s main experimental results.
Meanwhile, we will open-source all of our code, data, and models after our paper is accepted.
These details and open-source initiatives will ensure the reproducibility of our work and
make a significant contribution to the entire community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: To address privacy concerns associated with our dataset containing persons
and the application of person ReID technology, we will implement a controlled release of
our code, data, and models. Therefore, to ensure private information security, we would not
provide open access to our data and code during the paper submission process. Notably,
we will publicly share the application link for all our sources after our paper is accepted.
Applicants will be required to adhere to relevant guidelines and regulations to access our
sources, and we will conduct a strict review of their qualifications to prevent any privacy
violations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specifies all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Due to pre-training technology is comparably computational expensive, the
error bars are not reported in the paper like nearly all related work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: our paper provides sufficient information on the computer resources needed to
reproduce the experiments, which can be found in Sec. A.8.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper complies with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Sec. A.2 of the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our paper describes safeguards that have been put in place for responsible
release of data and models in Sec. ?? of the appendix.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of assets used in the paper are properly
credited, and the license and terms of use are properly respected.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: To address privacy concerns associated with our assets including code, data,
and models, we will implement a controlled release of our assets. Therefore, to ensure
private information security, we would not release our assets at submission time. We will
publicly share the application link for our assets after our paper is accepted. Applicants will
be required to adhere to relevant guidelines and regulations to access our assets, and we will
conduct a strict review of their qualifications to prevent any privacy violations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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