
DEL: Discrete Element Learner for Learning 3D
Particle Dynamics with Neural Rendering

Jiaxu Wang1 Jingkai Sun1,2 Junhao He1 Ziyi Zhang1

Qiang Zhang1,2 Mingyuan Sun3 Renjing Xu1

1 Hong Kong University of Science and Technology, Guangzhou, China
2 Beijing Innovation Center of Humanoid Robotics Co. Ltd, Beijing, China

3 Northeastern University, Shenyang, China
{jwang457, qzhang749, jsun444}@connect.hkust-gz.edu.cn

mingyuansun@stumail.neu.edu.cn
{junhaohe, ziyizhang, renjingxu}@.hkust-gz.edu.cn

Abstract

Learning-based simulators show great potential for simulating particle dynam-
ics when 3D groundtruth is available, but per-particle correspondences are not
always accessible. The development of neural rendering presents a new solution to
this field to learn 3D dynamics from 2D images by inverse rendering. However,
existing approaches still suffer from ill-posed natures resulting from the 2D to
3D uncertainty, for example, specific 2D images can correspond with various 3D
particle distributions. To mitigate such uncertainty, we consider a conventional,
mechanically interpretable framework as the physical priors and extend it to a
learning-based version. In brief, we incorporate the learnable graph kernels into
the classic Discrete Element Analysis (DEA) framework to implement a novel
mechanics-integrated learning system. In this case, the graph network kernels
are only used for approximating some specific mechanical operators in the DEA
framework rather than the whole dynamics mapping. By integrating the strong
physics priors, our methods can effectively learn the dynamics of various materials
from the partial 2D observations in a unified manner. Experiments show that our
approach outperforms other learned simulators by a large margin in this context and
is robust to different renderers, fewer training samples, and fewer camera views.

1 Introduction

Simulating complex physical dynamics and interactions of different materials is crucial in areas
including graphics, robotics, and mechanical analysis. While conventional numerical tools offer
plausible predictions, they are computationally expensive and need extra user inputs like material
specifications. In contrast, learning-based simulators have recently garnered significant attention as
they offer more efficient solutions. Previous works primarily simulate object dynamics in 2D. They
either treat pixels as grids [1] or map the images into low latent space [2, 3] and predict future latent
states. However, these 2D-centric approaches possess limitations. The world is inherently 3D, and 2D
methods struggle to reason about physical processes because they rely on view-dependent features,
and are hard to understand real object geometries. To address these, researchers have incorporated
multi-view 3D perceptions into simulations such as Neural Radiance Field (NeRF) [4] which is
an implicit 3D-aware representation. Some studies extract view-invariant representations and 3D
structured priors by NeRFs to learn 3D-aware dynamics [5, 6]. They either represent the whole scene
as a single vector or learn compositional object features by foreground masks. However, they require
heavy computational demands and struggle with objects with high degrees of freedom.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

45703 https://doi.org/10.52202/079017-1453

Particle-based learned simulators show impressive results in modeling 3D dynamics. The success
is mainly attributed to the popularity of Graph Neural Networks (GNNs). In general, objects are
represented as particles that are regarded as nodes in graphs, and their interactions are modeled
by edges. Previous studies [7, 8] adapt GNN to predict particle tracks and achieve good results.
Recent research has made strides in improving GNN simulators [9, 10]. They require particle
correspondences across times for training. However, 3D positions of particles across time are not
always accessible and learning dynamics solely from visual input is still a big challenge. The
reasons can be summarized as follows. Determining particle positions from 2D observations leads to
uncertainty since different particle distributions can produce similar 2D images. Moreover, previous
GNN-based simulators aim to learn how to infer the entire dynamics, which are fully uninterpretable
and result in hard optimization. Several studies [11, 12] reconstruct 3D from 2D images and then
learn from it, but they are not directly trained end-to-end with pixel supervision. One feasible way
is to employ inverse rendering. For example, [13, 14] use NeRF-based inverse rendering to learn
dynamics from 2D images. However, they are either constrained to simulate specific material or
incapable of dealing with the 2D-3D ambiguities, thereby damaging their generalization ability.
Furthermore, existing approaches only evaluate their methods on simple datasets. Their synthetic
dataset often contained a limited variety of materials (usually rigid bodies), rarely involved collisions
between objects, and featured very regular initial shapes.

To address the above challenges, this work incorporates strong mechanical constraints in the learning-
based simulation system to effectively learn the 3D particle dynamics from 2D observations. Discrete
Element Analysis (DEA) [15], also known as Discrete Element Method [16], is a traditional numerical
method to simulate particle dynamics in mechanical analysis. This method computes interaction
forces between particles to predict how the entire assembly of particles behaves over time. However,
traditional DEA heavily relies on the user-predefined mechanical relations between particles, such
as constitutive mapping or dissipation modeling, which often involve several material-specific
hyperparameters. Moreover, the results often deviate from the actual mechanical responses because
the constitutive equations are overly idealized.

In this work, we combine GNNs with the DEA theory to implement a physics-integrated neural simu-
lator, called the Discrete Element Learner (DEL), aiming to enhance the robustness, generalization,
and interoperability of GNN architectures. In detail, we use GNNs as kernels to learn the mechanical
operators in DEA rather than adopting user-define equations. On the other hand, the graph networks
only need to fit some specific physical equations in the DEA framework instead of learning the whole
evolution of dynamics, which largely reduces the optimization difficulties. Therefore, combining the
conventional mechanical framework and GNN can reduce the 2D-to-3D uncertainty and alleviate the
ill-posed nature. The main contributions of this work can be summarized as follows:

• We propose a novel physics-integrated neural simulation system called DEL which incor-
porates graph networks into the conventional Discrete Element Analysis framework to
effectively learn the 3D particle dynamics from 2D observations in a physically constrained
and interpretable manner.

• We design the network architecture under the guidance of the DEA theory. In detail, we use
learnable GNN kernels to only fit several specific mechanical operators in the classic DEA
framework, instead of learning the entire dynamics to make GNNs and the DEA mutually
benefit from each other, significantly reducing the ill-posed nature of this task.

• We evaluate our method on synthetic datasets that contains various materials and complex
initial shapes compared to existing ones. Extensive experiments show that our method
surpasses all previous ones in terms of robustness and performance.

2 Related Work

2.1 GNN-based particle dynamics simulator

There has been many works [17, 18, 9, 19, 20, 21] to develop GNN-based particle simulators to predict
3D dynamical systems. This is because representing 3D scenes as particles perfectly matches the
graph structure via particles as nodes and interactions as edges. GNS [7] shows plausible simulations
on multiple materials by multi-step message passing. DPI [8] adds one level of hierarchy to the
rigid and predicts the rigid transformation via generalized coordinates. EGNN [17] maintains the

2

45704https://doi.org/10.52202/079017-1453

Dynamic Predictor
Particles Initialization

Neural
Reconstruction - GT

2

2

(a) (b)
TimeTime

Recurrent Dynamic Inference

render

Figure 1: The paradigm of the dynamics learning via inverse rendering. (a) Particles Initialization
Process. The scene is initialized as particles. (b)Recurrent Dynamic Inference Process. The generated
particle set is fed into a dynamic predictor to infer the next state iteratively.

equivariance of graphs by passing scalar and vector messages separately, and explicitly assumes the
direction of vector message passing along with the edges. SGNN [9] proposes the subequivariant
simulator, which has a strong generalization to long-term predictions. Most of them are black-
box models and non-interpretable, thus complicating the optimization. There are some works
incorporating basic physical priors into neural networks [22, 23, 24, 25, 26], whereas they perform
well either on toy examples or specific topologies such as rigid hinges. All the above-mentioned
learned simulators require full 3D particle tracks as labels for training. They cannot learn from
pixel-level supervision because of the large solution spaces caused by the 2D-to-3D uncertainties,
which we experimentally proved in Section 4. Our approach reduces ambiguities by integrating GNNs
into a mechanical analysis framework. Our method not only yields impressive results supervised by
3D labels but also effectively learns realistic physics under 2D supervision.

2.2 Learning dynamics from 2D images

Learning dynamics from merely visual observations is vital for many domains. Previous works
[1, 3] map images into low dimensional space and learn dynamic models to infer the evolution of
latent vectors. However, the general latent approach [27, 28, 2, 29, 30, 31, 32, 33] makes things
like pixel-level video prediction rather than real physical inference [34]. The biggest reason is the
gap between 2D observations and 3D worlds [10]. To address this challenge, recent works consider
3D-invariant representation to build latent states. NeRF is used by [5] to encode multiview images as
view-independent features. But it serves the whole scene as a single vector, and cannot handle scenes
with multiple objects. [6] encodes compositional multi-object environments into implicit neural
scatter functions, while it only handles rigid objects. Similarly, [33] and [35] use compositional
implicit representation, but cannot simulate objects with large deformations. Some other methods
[36, 37, 38] need additional signals, such as Lidar data. The 3D-aware latent dynamics also lack
generalizability to unobserved scenarios and cannot work with complex topologies and varying
materials. Moreover, latent dynamics models are fully non-interpretable.

Very recently, with the development of differentiable neural rendering, a few studies have attempted
to train 3D dynamic models from visions via inverse rendering [13, 14, 39]. They bridge images
and 3D scenes with a differentiable renderer to minimize the renderings and groundtruth. However,
[13] and [14] can only simulate fluids because they require fluid properties as input. VPD[39] learns
3D particle dynamics directly from images and can simulate various solid materials. However, it
requires jointly training its own particle renderer and latent simulator, which leads to a black-box
nature and is hard to be adopted by other renderers. Conversely, our DEL can seamlessly integrate
into any point-based renderers with satisfactory performance and is physically interpretable as well
as can simulate various materials in a unified manner.

3 Methodology

3.1 Preliminaries and Problem Statement

This task is formulated as inferring particle dynamics via inverse neural rendering. Similar to other
inverse graphics, the scene can be represented by 3D primitives, and then the dynamical module
infers the future state of these primitives. Once this future state is inferred, it can be effectively
transformed into visual images by neural renderers. The dynamical module can be trained from

3

45705 https://doi.org/10.52202/079017-1453

the error between the renderings and observations. Figure 1 illustrates the general paradigm. In
this formula, 3D scenes should be represented as particles, and then, the renderer should be able to
render particles into images with a given camera viewpoint. According to the above discussion, we
choose the Generalizable Point Field [40] (GPF) as our renderer, which can represent a 3D scene as
particles, change its content by moving particles, and render images with arbitrary views. Notably,
other particle-based renderers such as [41, 13] or recently prevailing [42], can also be used arbitrarily
as long as they are fully differentiable and represent objects as particles. The renderer module can
iteratively produce updated images after the dynamic module moves particles at each timestamp.

The dynamical module operates as a graph network simulator. Consider a physical system with N
particles to represent M objects, the simulator models its dynamics by mapping the current state to
consequent future states, usually the positions of particles. Assume Xt

i ∈ X are particle states at
time t, Xt

i usually includes the coordinate xt
i, the velocity vt

i and particle’s intrinsic attributes Ai

such as the material type and mass. The learnable GNN simulator S considers particles as nodes
and dynamically constructs connections at independent time steps when the distance between two
particles is smaller than a threshold (E = {i, j : ||xi − xj ||2 <= r}). The GNN maps all the
information at the current state to the positions at the next timestamp by passing messages on the
graph, i.e. xt+1

i = Sθ(x
t
i,v

t
i ,ai, E). Different GNN simulators mainly lie in the different designs

of message-passing networks. As we claim in Section 1, the Sθs in most previous approaches aim
to learn the entire dynamics process, which leads to hard optimization and the risk of overfitting.
Moreover, they are non-interpretable black boxes. Therefore, the learning target would be very
ill-posed because the solution space is very large when only visual supervisions are given.

We propose a mechanics-encoded architecture that combines the GNN with the typical DEA to reduce
uncertainty and improve interpretability. In the following section, we first introduce the general DEA
method and its potential to be enhanced by the learning-based kernels. Second, we present how we
incorporate the graph networks into DEA to replace the traditional operators.

3.2 The General Discrete Element Analysis Theory

In this section, we introduce the general framework of Discrete Element Analysis, also known as the
Discrete Element Method, and its drawbacks which potentially can be enhanced by our learnable
kernels. Here we only cover the general knowledge that we need to design our architecture, we
recommend readers refer to [15, 43, 16] for deeper knowledge of DEA. In the framework, the whole
scene is represented as particles and the DEA is used to simulate the behavior and interactions of
these particles. Generally, in this framework, the movement of an individual particle is governed by
the Newton-Euler motion equation:

mi
d2u

dt2
=

n∑
j=1

(Fp
ij + Fv

ij) + Fg
i (1)

where u is the movement vector, mi is the mass of particle i. F g
i refers to the gravity. F p

ij and
F v
ij are the interaction forces between particle i and j, the former marks potential interaction force,

and the latter marks dissipative (viscous) contributions. The potential interactions primarily arise
from physical contact between elements [15]. The dissipative contributions take into account kinetic
energy dissipation mechanisms concerned with the dispersion of elastic waves (this dissipation is
general for all materials) [43]. Given this context, the potential contributions to interactions assume a
significant role while the dissipative contribution merely influences the energy dissipation within the
system. Therefore, the fundamental problem is to formulate a general form of potential interactions
between particles, which would apply to materials with different features of mechanical responses.

Besides, Fp
ij and Fv

ij can be decomposed into the normal and tangential directions, which are
represented by the superscript n and t in Equation 2.

Fp
ij = Fpn

ij + Fpt
ij , F

v
ij = Fvn

ij + Fvt
ij (2)

Substituting Equation 2 into Equation 1 and omitting the gravity terms for simplicity, we can derive:

mi
d2u

dt2
=

N∑
j=1

(Fpn
ij + Fvn

ij) +

N∑
j=1

(Fpt
ij + Fvt

ij) (3)

4

45706https://doi.org/10.52202/079017-1453

where the first term is the normal constituent and the second term is the tangential constituent. Here
we discuss the potential interaction forces within the two directions respectively. According to [16],
The Fpn

ij can be considered as the composition of contact force f cnij and bond force f bnij . The contact
forces are activated when two particles physically contact and collide. The bond forces mean if the
two particles belong to the same object, they are connected by a bond that will provide attraction or
repulsion based on their relative positions to maintain the fundamental properties of the material. We
depict the mechanism in Figure 2. Furthermore, in DEA, a physical quantity called intrusion scalar is
commonly used to compute the two forces:

δdn = (ri + rj)− ∥xi − xj∥2 (4)

where ri, rj are the radius of particle xi,xj. δdn > 0 means they contact and vice versa. We use
visual aid Fig. 2(a) to depict δdn intuitively. The red hard sphere intrudes into the blue soft sphere in
the figure. The deformation length on the blue surface refers to the δdn. The normal contact force
f cnij should be related to the δdn because the particle tends to recover its initial shape. In addition, the
direction of f cnij is the normal direction between i and j. On the other side, as stated in Figure 2(b),
f bnij acts as a linkage between two particles belonging to the same object, akin to a bond. f bnij also
relates to δdn. According to the above discussion, the total normal potential interaction forces can be
formulated as:

fnij =

{
(Fn

c (δdn, Aij) + Fn
b (δdn, Aij))n i, j ∈ Ok,

Fn
c (δdn, Aij)n i, j /∈ Ok.

(5)

where Fn
c ,Fn

b are two functions to map the δdn and Aij = [Ai, Aj] to the contact and bond forces
respectively. Ok is the Object k. Here A∗ is the material properties in the particles’ small surrounding
vicinity. n =

xj−xi

∥xj−xi∥2
is the normal unit vector. In DEA, the Fn

c ,Fn
b , Ai, Aj usually require to be

specified by users, which are often simple linear or polynomial functions. For example, the most
simple way to compute the total interaction force is the linear spring model Fn

c+b = kδ̇dn. Some
more complex functions such as Hertz-Mindlin (Eq. 6) are also commonly used.

Fn
c (δdn) =

4

3
E
√
Rδdn, F

n
b (δdn) = knb δdn (6)

In Eq. 6,E,R, kb are human-defined material parameters. However, the above-introduced handcrafted
mapping functions only roughly approximate real cases and always deviate from the realistic natures
of materials, leading to inaccurate simulations of DEA. Likewise, the tangential interactions can
be analogous to the above. Notably, the normal direction contributes mostly to the total potential
interactions because the tangential deformation is small due to the friction constraints [44]. Therefore,
general DEA often approximates it by the instantaneous displacement within a timestamp ∆t, i.e.
δdt = ||vt

ij∆t||2. vt
ij is the tangential velocity of j relative to i.

f t
′

ij = F t
c(δdt, Aij , ||fnij ||)t+ Fn

b (δdt, Aij , ||fnij ||)t (7)

Similar to n, the t = vt
ij/||vt

ij || is the tangential unit vector to determine the force direction. F t
c ,F t

b
are the user-defined simple functions. Furthermore, the tangential magnitude is also affected by the
normal force [45] thus ||vt

ij || is included. The DEA theory includes the dissipative contribution [15],
also called the viscosity term [45], as it is only to simulate energy dissipation to prevent the system
from exhibiting perpetual motion. In general, large velocities lead to large dissipation. In the general
DEA, the term is often modeled by:

Fvis = −η · ccrit · vrel (8)

where ccrit is a material properties called critical damping, vrel refers to vn (normal velocity), vt
(tangential velocity) correspondingly.

Based on the above discussion, DEA requires multiple user-specific mechanical operators including
Fn
c , F

n
b , F

n
vis, F

t
c , F

t
b , F

t
vis, which would be inaccurate and fully different for various materials.

Moreover, we cannot precisely estimate the real properties of materials when only videos are
available. This can be considered another impracticability of the DEA framework. On the contrary,
the benefit of DEA is that we only need to solve the magnitudes of these decomposed forces because
these directions are physically constrained in this framework. Therefore, we keep the advantages
of the physical priors while remedying the defects of DEA by replacing these mechanical operators
with trainable network kernels.

5

45707 https://doi.org/10.52202/079017-1453

Impact

Object A

Object B

Velocity

Force

Intrusion

Normal

v
f

nd n
ijv

t
ijv

n
ijf

ijf t
ijf

(a) Different objects (b) Same objects

Bondn
ijf

ijf t
ijf

n
ijv

t
ijv

Impact

i j

i

nd
j

Figure 2: Two cases of particle interactions. (a)
contact forces, affected by the intrusion δdn. (b)
The bond force exists between two particles of
the same object, affected by the bond length.

MLP

],,,[n
ijnji vdhh 

],,~,,[t
ij

n
ijijji vfhhh

n
ijh

t
ijf

ix
GT

n
ix

MLP

n
ijf





 iv

 
n
iv



ijh
Normal solver

Tangential solver

cn
ijf
bn
ijf

Figure 3: The main pipeline of message-passing
network

3.3 Mechanics-informed Graph Network Architecture

This subsection introduces the proposed Discrete Element Learner which replaces these human-
specific operators in DEA with learnable graph kernels. In other words, we integrate physics prior
knowledge into the network design to make the entire AI system differentiable and can be optimized
through image sequences. We visualize such mechanics-integrated network architecture in Fig. 3.
Furthermore, our method implicitly encodes the material properties into embedding vectors during
the unsupervised training. Similar to other GNN-based simulators, we first construct subgraphs by
searching neighbors with a fixed radius, and each subgraph can be viewed as a collective of particles
involved in interactions. Then we convert all physical variables including velocities and positions to
each particle-centric coordinate system when analyzing associated particles.

We define the DEA-incorporated message-passing network as follows and the symbols previously
used maintain their consistent meanings. First, we encode each particle attribute Ai such as material
types into latent embedding hi ∈ R200, [−1, 1] via Eq. 9.

hi = Norm(MLP(Ai)) (9)

Second, the following four equations in GNN are used to implement Eq. 5

ni, nj , eij = Φn(δdn, hi, hj) (10)

f cnij = ReLU(Hc(ni, nj , eij)) (11)

f bnij = Hb(ni, nj , eij) (12)

fn
′

ij = f cnij + f bnij (13)
where Φn is a graph network kernel, ni, nj , and eij are node and edge features. ni,j encode the
properties of the small regions around particle i, j. eij encodes their interaction. Hc, and Hb are two
heads to regress the magnitude of the two forces. Due to the previous discussion, the contact force
f cnij can only act from j towards i, it must be a positive value, therefore we apply ReLU activation.
While the bond force fnbij can be either positive or negative, thereby no activation is used. As for the
dissipative effect, we consider the dissipation as a reduction coefficient rather than directly regress its
value because it always diminishes the potential interaction force. In our network, we use an MLP ϕn
activated by Sigmoid σ to model the normal dissipative phenomenon in Eq. 14.

fnij = σ(ϕn(∥vnij∥2, eij))fn
′

ij n (14)

Likewise, we apply another kernel Φt (Eq. 15) to replace Eq. 7. A minor difference is that we omit
the tangential bond force because when the particle undergoes very small relative displacement
tangentially, the bond length remains nearly unchanged (f btij ≈ 0). In this way, f tij = f ctij .

f t
′

ij , eij = Φt(∥vtij∥2, fn
′

ij , eij , ni, nj) (15)

According to the discussion in the previous section, the quantity f t
′

ij relates to particle properties (n∗),
the tangential relative displacement (||vtij ||2∆t), and the precomputed normal pressure (fn

′

ij). Similar
to ϕn, ϕt models tangential dissipation in Eq. 16.

f tij = σ(ϕt(∥vtij∥2, eij))f t
′

ijt (16)

6

45708https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 4: Qualitative Comparisons of dynamics prediction between our DEL and baselines in the
particle-view on test sequences.

Notably, all graph kernels output the magnitudes of these mechanical vectors because our mechanical
framework precomputes their directions by n and t, which largely reduces the ambiguities when
learning dynamics. It can be observed that our approach deeply integrates the mechanical analysis
framework, and is partially interpretable. The design of this architecture is strongly inspired by the
physical knowledge to reduce the learning burden, we vividly demonstrate it in Fig. 3.

3.4 Training Strategy

We train the DEL from only visions. Assuming cameras record many dynamic sequences including
the same materials but with different initial conditions, we first initialize scenes as particles by GPF
at timestamp t0. Then we adopt the first three frames to approximate the initial velocities, similar
to [46]. Next, the dynamic module tries to move particles to the next state. Then the GPF renders
the after-moving particles into images. If the positions are correctly predicted, the rendered images
should align with the recordings. We use L2 loss to supervise

Lr =
∑
cam

∥Icamt −R(D(xt−1), cam)∥1 (17)

where D refers to the dynamic module, Xt−1 is particle states at the last timestamp, R is the GPF
rendering module, and Icamt is the observed image at view cam and time t. Moreover, we apply the
same L2 loss to supervise the images produced by the particles updated by using only the fni (the
normal force) as stated in Figure 3. This aims to amplify the contribution of the normal direction
since it is claimed in the previous section that the normal direction is the main influencing factor for
collisions. The formulation of this L2 loss is referred to as Ln

r . In addition, the gradients of rendering
loss ∂Lr

∂x can be interpreted as the scaled velocities of particles. Thus we propose the gradient loss to
constrain the direction of the total velocity of each particle.

Lg =

N∑
i=1

(
∂Lr

∂xi
/

∥∥∥∥∂Lr

∂xi

∥∥∥∥
2

− vi(t)

∥vi(t)∥2
) (18)

The final loss is L = Ln
r + Lr + βLg . More implementation details are contained in the Appendix.

4 Experiments
Dataset. Existing datasets in this field contain only a few types of materials or even only rigidity,
lack rich interactions between objects, and have simple initial shapes. Therefore, we create a more

7

45709 https://doi.org/10.52202/079017-1453

Table 1: Quantitative Comparisons between ours and benchmarks on five scenarios in render views.
Plasticine SandFall Multi-Objs FLuidR Bear

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SGNN* [9] 25.27 0.925 0.143 23.61 0.886 0.216 24.76 0.909 0.166 28.88 0.935 0.168 27.61 0.949 0.132
NeRF-dy [5] 21.09 0.893 0.225 22.58 0.879 0.216 19.61 0.826 0.318 25.79 0.925 0.270 22.83 0.873 0.232
EGNN* [17] 26.27 0.944 0.119 25.17 0.918 0.178 26.38 0.928 0.144 30.28 0.951 0.123 29.13 0.953 0.117
VPD [39] 27.06 0.941 0.101 24.61 0.926 0.127 25.62 0.921 0.136 30.06 0.947 0.126 30.52 0.964 0.102
Ours 28.09 0.959 0.091 26.65 0.945 0.113 27.06 0.939 0.128 30.53 0.944 0.122 30.08 0.964 0.105

Table 2: Quantitative comparisons between ours and baselines on five scenarios in particle views.
Plasticine SandFall Multi-Objs FluidR Bear

Method CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓
SGNN* [9] 35.91 26.4 2.47 2.69 20.3 26.9 3.98 5.02 4.69 5.01
3DIntphys [11] 26.99 22.61 3.17 3.35 16.55 17.61 6.92 8.01 6.69 6.01
EGNN* [17] 16.20 14.61 2.13 2.56 13.21 13.77 2.58 3.01 3.95 4.16
VPD [39] 16.96 12.77 1.99 2.35 14.26 14.57 3.22 2.94 3.41 3.71
Ours 7.54 7.10 1.73 1.90 8.48 9.13 1.72 1.88 3.54 3.33

challenging dataset that includes various materials (rigid, elastic, plastic, fluid, and sandy soil). The
dataset includes six main scenarios. Each scenario contains 128 training and 12 testing dynamic
sequences with different initial conditions such as velocities and shapes. These sequences are
generated by our MPM simulator, then Blender is used to render them to produce high-fidelity
multiview images. We use 4 cameras to observe each dynamic episode. The six scenarios are:
Plasticine illustrates the collision of an elastic ball with a plasticine toy. Multi-Objs includes rigid
and elastic objects. SandFall depicts sand descending onto elasticities. Fluids contains fluid with
different viscosity. FluidR describes that Newtonian fluid flows onto rigid bodies. Bear involves
interactions of elastic, plastic, and rigid objects.

Baselines. We compare the proposed approach with the two most recent baselines, i.e. VPD [39]
and 3DIntphys [11]. These two methods focus on learning 3D particle dynamics from 2D images.
VPD must jointly train its specific point renderer and particle dynamics module, which are highly
coupled. Therefore, it cannot use other point-based renderers. In contrast, our DEL does not contain
any assumption of the neural renderer and thus can be directly adapted to different renderers. We
choose the GPF [40] as our renderer. 3DIntphys first reconstructs a series of NeRFs for the image
sequences at all timestamps, then extracts the point cloud from each NeRF, and finally trains its
dynamics module with point similarity loss across time. Hence, it cannot be trained in an end-to-end
manner and cannot render novel views from the updated particle sets.

Moreover, to evaluate the effectiveness of our dynamics prediction. We set two additional baselines in
which we replace our dynamic model with two prevailing GNN-based simulators, i.e. EGNN [17] and
SGNN [9] while keeping the same point-based render with us. In their original paper, they require 3D
particle correspondence across time for training. But in our setting, we also utilize inverse rendering
to train them from images. We mark these two variants via an upright ∗. We also compare with the
NeRF-dy [5], a fully implicit dynamics predictor. Next, we additionally retrain NeuroFluid [13] on
the Fluids scenario for comparisons because it only supports inferring fluid dynamics.

Metrix. We use the Chamber Distance (CD) and Earth Mover Distance (EMD) to measure the
similarities between the predicted particle distributions and the groundtruth because no per-particle
correspondence is available. The reported CD and EMD are multiplied by 102 in all tables for clarity.
We compare the PSNR, SSIM, and LPIPS (AlexNet) between the renderings and 2D labels. We also
provide qualitative results and comparisons for a better visual assessment.

4.1 Results and Comparisons

Results in Rendering View. We also present the comparisons of rendering qualities to further
evaluate the effectiveness because we adopt inverse rendering to bridge 2D and 3D. The quantitative
results are listed in Table 1. The VPD overall achieves the second-best performance because it is
designed specifically for high-quality rendering. However, due to the robust physical priors, our
approach more easily learns the underlying physical rules, resulting in a more accurate dynamics
prediction, consequently, rendering more plausible images. The other two graph-based simulators
perform mediocrely. We additionally show visual examples in Figure 5. Our approach gives better
renderings than baselines due to better dynamic predictions. Due to page constraints, we only give

8

45710https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 5: Qualitative Comparisons of rendered images between ours and baselines.

N
eu

ro
fl

u
id

O
u
rs

G
T

Figure 6: Qualitative comparisons between neurofluid and ours.

examples of the Plasticine scenario. More results on other scenarios can be seen in the Appendix.

Results in Particle View. In this section, we report the simulation results generated by differ-
ent approaches in the particle view. Table 2 and Figure 4 show the quantitative and qualitative
comparisons respectively. It is observed from Table 2 that our method delivers the most satis-
factory results across all scenarios. One interesting finding is that the EGNN∗ overall outper-
forms the SGNN∗, but in their respective original papers, the SGNN performs better than EGNN
when 3D labels are available. The reason might be EGNN benefits from predefining message-
passing directions, but SGNN simultaneously determines both directions and values, which is hard
to optimize when only 2D images are given. From this figure, VPD, 3DIntphys, EGNN∗, and
SGNN∗ cannot predict precise interactions while our method shows steady long-term simulation.
Table 3: Ablation studies of four components

SandFall Multi-Objs
Method CD↓ EMD↓ CD↓ EMD↓
No/Lg 3.95 4.09 29.7 32.9
No/f tij 2.26 2.78 11.4 18.6
No/decomp 3.15 3.04 16.5 13.3
No/Lr

n 2.65 2.91 10.27 12.38
Full 1.73 1.90 8.48 9.13

Table 4: Quantitative results on Fluids scene

Particle-view Render-view
Method CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓
Neurofluid 10.7 11.0 25.36 0.930 0.175
SGNN* 11.87 11.32 27.68 0.946 0.182
EGNN* 10.76 9.78 29.01 0.962 0.108
Ours 4.18 2.97 30.02 0.962 0.104

4.2 Additional Comparisons and Analysis

Comparisons with Neurofluid. Neurofluid [13] is another unsupervised method for learning fluid
dynamics. It uses the particle-based PhysNeRF as the renderer and employs DLF [47] as the dynamic
modules. We compare our approach with it on the Fluids. The results are reported in Table 4 and
Fig. 6. The results show that Neurofluid cannot work well on test data because its dynamic module

9

45711 https://doi.org/10.52202/079017-1453

lacks enough physical priors. Another reason is that it jointly trains the renderer and dynamics
modules which makes them compensate for each other, causing overfitting of training data.

Ablation Studies. We evaluate some significant components of our method. First, we ablate the
gradient loss (marked as No/Lg). Second, we report the contribution of the tangential decomposition
constituent f tij (No/f tij). Third, we make the graph network fully regress the direction and magnitude
of the interaction forces (No/decomp) instead of using the priors encoded in the DEA framework,
i.e. the output of the graph is a force vector. Next, we ablate the Lr

n loss term, further proving the
significance of normal components. The quantitative results are listed in Table 3, which shows that
the Lg and Lr

n contribute to simplifying the optimization. In addition, the mechanical decomposition
is important as well. Even though the main direction of message passing is along the directions of
edges, the tangential components indeed make the simulation results more realistic. Furthermore, we
evaluate the effect of different renders, different training data sizes, different numbers of cameras
used to capture scenes, and different points. We also test the Rollout MSE of the three methods when
the 3D labels are available. Both of the results can be seen in our appendix, which shows that our
method is satisfactory and robust under all the above ablation conditions.

5 Conclusion and Limitation

Conclusion. We propose the DEL which combines the Discrete Element Analysis framework with
graph networks to effectively learn 3D particle dynamics from only 2D images with various materials.
The main idea is to integrate strong physical priors to reduce 2D to 3D uncertainties. Existing
GNN-based simulators, which are designed for learning from 3D particle correspondence, try to
model the whole dynamics of particles. Differently, the DEL only adopts graph networks as learnable
kernels to model some specific mechanical operators in the DEA framework, while keeping its
mechanical priors, such as the direction of forces and decompositions of forces. We also evaluate
our approach on synthetic data with various materials, initial shapes, and extensive interactions. The
experiments show our method outperforms baselines when only 2D supervision is accessible. We
also show the robustness of our methods to the renderers, training data sizes, and 3D labels.

Limitation. Currently, studies in this field, including this work, are conducted on synthetic datasets
due to the impracticability of collecting multiview dynamic videos. Hence, "learning from few data"
could potentially help address the problem of learning 3D dynamics from a single realistic video. We
include them in our future work.

References
[1] Haozhi Qi, Xiaolong Wang, Deepak Pathak, Yi Ma, and Jitendra Malik. Learning long-term visual dynamics

with region proposal interaction networks. In International Conference on Learning Representations, 2020.

[2] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. pages 2555–2565. PMLR, 2019.

[3] Rohit Girdhar, Laura Gustafson, Aaron Adcock, and Laurens van der Maaten. Forward prediction for
physical reasoning. In International Conference on Machine Learning Workshop, 2021.

[4] B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European conference on computer vision, 2020.

[5] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. In Conference on Robot Learning, pages 112–123, 2022.

[6] Stephen Tian, Yancheng Cai, Hong-Xing Yu, Sergey Zakharov, Katherine Liu, Adrien Gaidon, Yunzhu Li,
and Jiajun Wu. Multi-object manipulation via object-centric neural scattering functions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9021–9031, 2023.

[7] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. pages 8459–8468, 2020.

[8] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Conference on
Learning Representations, 2018.

[9] Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan. Learning physical
dynamics with subequivariant graph neural networks. Advances in Neural Information Processing Systems,
35:26256–26268, 2022.

10

45712https://doi.org/10.52202/079017-1453

[10] Daniel Bear, Elias Wang, Damian Mrowca, Felix Jedidja Binder, Hsiao-Yu Tung, RT Pramod, Cameron
Holdaway, Sirui Tao, Kevin A Smith, Fan-Yun Sun, et al. Physion: Evaluating physical prediction from
vision in humans and machines. 2021.

[11] Haotian Xue, Antonio Torralba, Joshua Tenenbaum, Daniel Yamins, Yunzhu Li, and Hsiao-Yu Tung.
3d-intphys: Towards more generalized 3d-grounded visual intuitive physics under challenging scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3624–3634,
2023.

[12] Lili Li, Toru Lin, Kexin Yi, DavidM. Bear, Daniel Yamins, Jiajun Wu, JoshuaB. Tenenbaum, and Antonio
Torralba. Visual grounding of learned physical models. arXiv: Learning,arXiv: Learning, Apr 2020.

[13] Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics grounding
with particle-driven neural radiance fields. In International Conference on Machine Learning, pages
7919–7929. PMLR, 2022.

[14] Jinxian Liu, Ye Chen, Bingbing Ni, Jiyao Mao, and Zhenbo Yu. Inferring fluid dynamics via inverse
rendering. arXiv preprint arXiv:2304.04446, 2023.

[15] Peter Wriggers and B Avci. Discrete element methods: basics and applications in engineering. Modeling
in engineering using innovative numerical methods for solids and fluids, pages 1–30, 2020.

[16] Du-Min Kuang, Zhi-Lin Long, Ikechukwu Ogwu, and Zhuo Chen. A discrete element method (dem)-based
approach to simulating particle breakage. Acta Geotechnica, 17(7):2751–2764, 2022.

[17] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
pages 9323–9332, 2021.

[18] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equivariant graph
mechanics networks with constraints. In International Conference on Learning Representations, 2021.

[19] KelseyR. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, WilliamDwight Whitney, Alvaro Sanchez-
Gonzalez, PeterW. Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks. Cornell University - arXiv,Cornell University - arXiv, Dec 2022.

[20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and PeterW. Battaglia. Learning mesh-based
simulation with graph networks. arXiv: Learning,arXiv: Learning, Oct 2020.

[21] Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous, rigid contact dynamics.
In Conference on Robot Learning, pages 1157–1167. PMLR, 2023.

[22] Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter Battaglia. Constraint-based graph
network simulator. arXiv preprint arXiv:2112.09161, 2021.

[23] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Extending lagrangian and hamiltonian
neural networks with differentiable contact models. Advances in Neural Information Processing Systems,
34:21910–21922, 2021.

[24] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equivariant graph
mechanics networks with constraints. arXiv preprint arXiv:2203.06442, 2022.

[25] Suresh Bishnoi, Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. Enhancing the inductive biases of
graph neural ode for modeling dynamical systems. arXiv preprint arXiv:2209.10740, 2022.

[26] Guangsi Shi, Daokun Zhang, Ming Jin, and Shirui Pan. Towards complex dynamic physics system
simulation with graph neural odes. arXiv preprint arXiv:2305.12334, 2023.

[27] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. 30, 2017.

[28] Yufei Ye, Maneesh Singh, Abhinav Gupta, and Shubham Tulsiani. Compositional video prediction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10353–10362, 2019.

[29] Yilun Dai, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Jan 2023.

[30] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023.

[31] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[32] Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see, simulate,
and shape elasto-plastic objects with graph networks. arXiv preprint arXiv:2205.02909, 2022.

[33] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Conference on Robot Learning, pages 1755–1768,
2023.

11

45713 https://doi.org/10.52202/079017-1453

[34] Haotian Xue, Antonio Torralba, Joshua Tenenbaum, Daniel Yamins, Yunzhu Li, and Hsiao-Yu Tung.
3d-intphys: Towards more generalized 3d-grounded visual intuitive physics under challenging scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3624–3634,
2023.

[35] Danny Driess, Jung-Su Ha, Marc Toussaint, and Russ Tedrake. Learning models as functionals of
signed-distance fields for manipulation planning. In Conference on Robot Learning, pages 245–255, 2022.

[36] Zhenjia Xu, Zhanpeng He, Jiajun Wu, and Shuran Song. Learning 3d dynamic scene representations for
robot manipulation. In Conference on Robot Learning, pages 126–142, 2021.

[37] Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, and Gerhard Neu-
mann. Grounding graph network simulators using physical sensor observations. In International Conference
on Learning Representations, 2022.

[38] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ Tedrake. Keypoints into the future: Self-supervised
correspondence in model-based reinforcement learning. In Conference on Robot Learning, pages 693–710,
2021.

[39] William F Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kimberly
Stachenfeld, and Kelsey R Allen. Learning 3d particle-based simulators from rgb-d videos. arXiv preprint
arXiv:2312.05359, 2023.

[40] Jiaxu Wang, Ziyi Zhang, and Renjing Xu. Learning robust generalizable radiance field with visibility and
feature augmented point representation. arXiv preprint arXiv:2401.14354, 2024.

[41] Jad Abou-Chakra, Feras Dayoub, and Niko Sünderhauf. Particlenerf: Particle based encoding for online
neural radiance fields in dynamic scenes. arXiv preprint arXiv:2211.04041, 2022.

[42] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[43] Willy Leclerc. Discrete element method to simulate the elastic behavior of 3d heterogeneous continuous
media. International Journal of Solids and Structures, 121:86–102, 2017.

[44] Florian Fleissner, Timo Gaugele, and Peter Eberhard. Applications of the discrete element method in
mechanical engineering. Multibody system dynamics, 18:81–94, 2007.

[45] Federico A Tavarez and Michael E Plesha. Discrete element method for modelling solid and particulate
materials. International journal for numerical methods in engineering, 70(4):379–404, 2007.

[46] Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. Physgaussian:
Physics-integrated 3d gaussians for generative dynamics. arXiv preprint arXiv:2311.12198, 2023.

[47] Benjamin Ummenhofer, Lukas Prantl, Nils Thürey, and Vladlen Koltun. Lagrangian fluid simulation with
continuous convolutions. International Conference on Learning Representations, Apr 2020.

12

45714https://doi.org/10.52202/079017-1453

Appendix
A Impact Statements

This work introduces a novel deep learning architecture tightly integrated with a classic mechanical
analysis framework, the Discrete Element Method, to efficiently learn 3D particle dynamics from
only 2D observations. The success provides insights into the combination of physics-augmented
deep learning and 3D neural rendering for areas, e.g. physical simulations, engineering mechanical
analysis, and computer graphics.

B Nomenclature

we list all symbols and marks used in the main paper in the following Table for the convenience of
reference.

Table 5: Nomenclature. This table is split across pages

Variable Description
i i-th particle
xi position vector of particle
vi velocity vector of particle
ai acceleration vector of particle
ui movement vector of particle
Fp

ij potential interaction force vector
Fv

ij viscous force vector
Fg

i gravity vector
Fpn

ij potential interaction force vector along the normal direction
Fpt

ij potential interaction force vector along the tangential direction
Fvn

ij viscous interaction force vector along the normal direction
Fvt

ij viscous interaction force vector along the tangential direction
δdn intrusion scalar
δdt instantaneous tangential displacement
∆t time interval
ri radius of particle
Ai attribute of i-th particle
F b
ij bond particle between particles which belong to the same object

Fn
c mapping from intrusion to normal contact force

F t
c mapping from intrusion to tangential contact force

Fn
v mapping from intrusion to normal viscous force

F t
v mapping from intrusion to tangential viscous force

Fn
b mapping from intrusion to normal bond force

continued on next page

13

45715 https://doi.org/10.52202/079017-1453

continued from previous page

Variable Description
Ok set of particles belonging to the same k-th object
vt
ij the tangential velocity vector

n normal unit vector
t tangential unit vector
ϕn the normal dissipative model
ϕt the tangential dissipative model
Φn normal graph kernel
Φt tangential graph kernel
Hc prediction head to regress the magnitude of the contact forces
Hb prediction head to regress the magnitude of the bond forces
σ sigmoid activation function
f bn
ij the normal bond force
f bt
ij the tangential bond force
f cn
ij the normal contact force
f ct
ij the tangential contact force
fn′
ij precomputed normal force vector
fnij normal force vector
f t′
ij precomputed tangential force
f tij tangential force vector
µ the frictional coefficient
ni i-th node features
vi(t) velocity of i-th particle at timestep t

hi latent embedding from i-th particle attribute
eij edge features between node i and j

C Detailed architecture

We describe the detailed architecture used in the DEL. The entire graph operator is depicted in
Equation 9 to Equation 16 in the main paper.

The embedding layer is an MLP with 2 hidden layers. The output embedding latent vector is
normalized to [-1,1]. The Ai and Aj refer to the embedding vectors of the per-particle attribute,
which we define as A = [mat, do, ||at−1

i ||2]. Here the mat denotes the type of materials, do is the
distance between the particle to the mass center at the current timestamp, and ||at−1

i ||2 represents
the value of the acceleration at the last timestamp of this particle. In our learning framework, the
A mainly represents the specific material and its properties. During training, the properties of this
material are encoded into the embedding of A.

The Φn and Φt aim to map related physical quantities to the abstracted node and edge features which
we implement by graph neural networks. δdn in Φn is the initial edge features, we also consider it as

14

45716https://doi.org/10.52202/079017-1453

eij . Therefore, Φn can be described as:

templij = ψ1(e
l−1
ij , hi, hj)

elij = ψ2(temp
l
ij , e

l−1
ij)

templi =
1

N
∑
N (i)

elij

ni = Norm(ψ3(temp
l
i, hi))

(19)

where temps are temporary intermediate variables. ni and elij are the final output of the Φn. ψ1,2,3

are three 2-layer MLPs with residual connection. el−1
ij is the edge feature from the last network layer.

Norm refers to learnable Layer Normalization. The reason why we perform an aggregation operation
before computing the normal forces is the following. We assume that the mechanical behavior of
a certain particle should be related to the external intrusion and the properties of its surrounding
vicinity. Therefore, we use this graph aggregation to encode the information of its vicinity (ni) and
the external influence (eij). The abstracted features then are input to two different output heads
Hb,Hc to produce the final magnitude of the forces. The two heads are implemented as small MLPs
with 2 layers and 200 hidden dimensions.

As for Φt in Equation 15, ||vtij ||2, fn
′

ij , and eij are input edge features. In addition, ni and nj are the
concatenation of the ni from Equation 10 and the hi from Equation 9 because we aim to emphasize
the original particle attributes which affect the tangential force.

templij = ψ1(eij , ni, nj)

elij = ψ2(temp
l
ij , e

l−1
ij)

templi =
1

N
∑
N (i)

elij

f t
′

ij = ψ3(e
l
ij , temp

l
i, temp

l
j)

(20)

where eij = cat([el−1
ij , ||vtij ||2, fn

′

ij]), ni = cat([nl−1
i , hi]). The final outputs are f t

′

ij and elij . The
rest of the architecture remains the same with Equation 20. Besides, we use a simple MLP with two
hidden layers (each layer includes 200 neurons) to model ϕt and ϕn. Also, the sigmoid activation
is used before outputting the coefficients because the viscous forces are manifested as a reduction
in potential interaction forces. After f tij in Equation 16 and fnij in Equation 14 are obtained, we
aggregate the forces for each particle:

fi =
∑
N (i)

(fnij + f tij) (21)

Thus we can update their velocities and positions by the Euler integration:

vt = vt−1 +
fi
mi

∆t

xt = xt−1 + (vt−1 +
fi
mi

∆t)∆t

(22)

D Implementation Details

In this section, we introduce the implementation details of our experiment setup. We first use a
pretrained GPF to initialize the scene as particles.

For the dynamic module, we build the graph at each timestamp via the k-nearest neighbor search
with a fixed radius of 0.025. The particle radius (r for different materials) is set to equal the search
radius initially and will be optimized through the training process to be a property of the material. In
addition, we place a heavy rigid table at the bottom of each scenario, which is also represented by
particles but we do not update its position, and its velocity is constantly set to zero. The only function
of it is to support the moving objects above. Additionally, the mass parameter for each particle is set
to initialize at 1 and optimized during the training phase as well. All models are trained via AdamW
optimizer with 5e-4 learning rate. We adopt the StepLR schedule to adjust the learning rate with the
increasing step. After 10,000 iterations, we multiply the learning rate by 0.9.

15

45717 https://doi.org/10.52202/079017-1453

S
an

d
 R

en
d
er

S
an

d
E

la
st

ic
P

la
st

ic
in

e

Figure 7: Examples about material swapping on SandFall

E Swapping Materials.

Our method has a unique advantage. We can swap materials used in simulation by swapping the
material embeddings and graph kernels because different materials share the same mechanical
framework and the graph network in it is only responsible for mapping physical quantities and
material embeddings to the forces. We show an example to illustrate this application. As shown
in Figure 7, the first and second rows are the predicted rendered views and particle views of the
SandFall respectively. We change the graph kernel and material embedding of the sand to the elastic
and plasticine ones respectively. We can observe corresponding changes in the mechanical behavior
of particles.

F Detailed Dataset Description

In this section, we thoroughly describe the data generation process for our experiments, employing
the Material Point Method (MPM) to simulate interactions among various materials. We designed
six distinct scenarios to encompass a diverse range of material combinations: Plasticine, Multi-Objs,
Bear, FluidR, SandFall, and Fluids. Each scenario is represented through 128 dynamic episodes,
differentiated by unique initial conditions such as shapes and velocities, while maintaining consistent
material properties, including elasticity and viscosity coefficients, within each scenario.

For the reconstruction of meshes from simulation data, we utilized SplashSurf, followed by rendering
multiview dynamic image sequences using Blender. At every timestep, the motion is captured from
four distinct camera angles. The objective of this research is to derive material interaction behaviors
from these 2D observational sequences.

Plasticine. This scenario features interactions between two distinct materials: a red elastic object and
a blue elastoplastic material. We initialize the elastoplastic materials in various shapes, including
duck and bunny configurations, which are then subjected to impacts from the red elastic ball from
multiple directions.

Multi-Objs. This scenario encompasses interactions among five objects composed of three distinct
materials. The blue ball and cuboid are categorized as rigid. In contrast, the cylinder and rainbow-
colored ring are elastic, each characterized by unique values of elastic modulus and Poisson’s ratio.
The experimental setup initiates with the rigid ball colliding with the rigid cuboid, triggering a
sequence of subsequent collisions. Each episode is distinguished by varying arrangements and initial
configurations of the objects, showcasing diversity in shape and positioning.

Bear. This scenario investigates interactions among objects composed of three distinct materials:
plastic, elastic, and rigid. The setup includes a brown bear modeled as a plastic toy, a triangular
ship constructed from an elastic material, and a heavy, rigid, yellow box. The experimental design
involves the ship and box colliding with the plastic bear from various directions and positions, aiming
to study the resultant material behavior and object interactions under different impact scenarios. Each
collision is designed to explore the dynamic responses of plastic, elastic, and rigid materials when
subjected to varying forces and angles of impact.

Fluids. The Fluids scenario examines the dynamics of fluid behavior as it impacts a tabletop, with
the fluid initially shaped into complex geometries, including forms reminiscent of a bunny, Pokémon,
or duck, each varying in size. This setup facilitates observations of the fluid’s response upon collision

16

45718https://doi.org/10.52202/079017-1453

1 2 4 6 8 10
Input view

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

lo
g(

CD
)

2.37
2.24

2.14 2.12 2.14 2.1

3.03

2.82
2.72 2.7

2.82
2.67

3.12 3.08
3.01

2.9

2.72
2.61

Multi-objs
Ours
EGNN*
SGNN*

Figure 8: Experiments of model evaluation on
the SandFall with different numbers of input
views. The x coordinate is the number of input
views, and the y coordinate is the log Chamber
Distance.

16 32 64 96 128 192
Training Data Size

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

lo
g(

CD
)

2.12 2.13 2.17
2.07 2.14 2.18

2.85 2.83 2.82
2.74 2.71 2.7

3.09 3.14 3.07 3.04 3.01 2.99

Multi-objs
Ours
EGNN*
SGNN*

Figure 9: Experiments of the number of training
episodes on Multi-objs dataset. The x coordinate
is the number of training data, and the y coordi-
nate is the log Chamber Distance.

PhysNeRF ParticleNeRF GPF1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

lo
g(

CD
)

2.27 2.23
2.14

2.83
2.76 2.71

3.15
3.06 3.0

Multi-objs
Ours
EGNN*
SGNN*

Figure 10: Particle-view results of the dynamic
prediction on Multi-objs dataset by using differ-
ent particle-based renderers. The y coordinate
refers to the log Chamber Distance metrics.

PhysNeRF ParticleNeRF GPF20

22

24

26

28

30

PS
NR

24.19

25.95

27.01

23.29

24.83

25.8

22.72

24.06
24.77

Multi-objs
Ours
EGNN*
SGNN*

Figure 11: Rendering results of the three meth-
ods on Multi-objs dataset by using different ren-
derers. The y coordinate refers to the PSNR
metrics.

with the ground, encapsulated within a scenario that includes invisible boundaries to constrain the
fluid’s spread. Upon contacting these boundaries, fluid particles alter their trajectories, enabling
detailed study of fluid dynamics and boundary interactions. This scenario allows for the exploration
of fluid behavior under varied initial conditions, contributing to our understanding of fluid dynamics
in controlled environments.

FluidR. In this scenario, we explore the dynamics of liquid flow over a hollow shelf with a complex
geometry. Across different episodes, we systematically vary the initial configurations of the liquid,
altering both its shape and the height from which it is released atop the shelf. The shelf itself is
constructed from a hard elastic material, characterized by a very high Young’s modulus, to study
the interaction between the liquid’s fluid dynamics and the shelf’s structural response. This setup
provides a unique opportunity to observe the behavior of liquids in contact with elastic materials
under varying initial conditions, offering insights into fluid-structure interaction phenomena.

SandFall. This scenario investigates the dynamic interaction between a life buoy, composed of sand
soil, and an elastic toy duck. Upon impact, the toy duck undergoes deformation and subsequently
recovers to its original shape, causing the sand soil life buoy to rebound. A significant challenge in
modeling the dynamics of this interaction lies in the partial obscuration of the toy duck by the sand soil
during impact. This obscuration results in incomplete information regarding the duck’s deformation
and response, complicating the task of accurately learning the system’s dynamics. The study focuses

17

45719 https://doi.org/10.52202/079017-1453

0 25 50 75 100 125
0

10

20

30

R
ol

lo
ut

 C
D

Multi-objs

EGNN*
Ours
SGNN*

0 20 40 60 80
0

10

20

30

40

R
ol

lo
ut

 C
D

Plasticine

EGNN*
Ours
SGNN*

Figure 12: Accumulated rollout chamfer distance on two scenes

on understanding and overcoming the limitations imposed by insufficient visual information on the
elastic response of the toy under the impact of granular material.

G Additional Results and Comparisons

G.1 The establishment of Rollout metrics

We in addition show two line diagrams of the accumulated Rollout Chamfer Distance in the two
sequences in Plasticine and Multi-Obj, to further indicate the superiority of our dynamics module
(Fig. 12).

G.2 The influence of different renderer

The default renderer utilized in the main paper is the GPF. In this section, we evaluate our methods
and the baselines with the other two particle-based renderers, i.e. PhysNeRF [13], ParticleNeRF [41],
both of which can render dynamic particles. PhysNeRF is employed in Neurofluid to represent and
render scenes. However, in the original paper, it is jointly trained with the dynamics module and
requires more camera views. For a fair comparison, we pretrain the PhysNeRF from scratch and
freeze its parameters for all models. In addition, we provide an initialized particle set for PhysNeRF
and ParticleNeRF because they are difficult to initialize the scenes as point clouds from sparse camera
views (4 in our experiments), while GPF is capable of initialization due to its depth estimation module.
Figure 11 and Figure 10 show the rendering and dynamic prediction results of different renders.
We can see our method achieves better performance regardless of which renderer is employed.
Moreover, rendering capability scales proportionally with the accuracy of learned dynamics. As
GPF produces better rendering quality, more accurate dynamics can be learned by utilizing it. This
example illustrates that our method is robust to the renderer selection because physical priors always
guide the model toward a reasonable learning target.

S
an

d

st
o
n
e

P
la

st
ic

in
e

F
lu

id
F
lu

id

re
n
d
er

Figure 13: Detailed example of swapping materials without retraining the model on the FluidR
scenario

G.3 The influence of the number of camera views in training

In this section, we use various numbers of camera views to train the models. In the main paper, four
camera views are deployed across four corners of the scene. Here we additionally evaluate if 1, 2, 6,
8, 10 cameras are used, what will happen? The ablation results on Multi-Objs dataset are reported

18

45720https://doi.org/10.52202/079017-1453

E
la

st
ic

P
la

st
ic

in
e

S
an

d
S

an
d

re
n
d
er

Figure 14: Detailed example of swapping materials without retraining the model on the SandFall
scenario

Figure 15: Visualization of the case to remove the bond force.

in Figure 8. It is observed that our approach is not sensitive to the number of cameras, even if only
one camera is used, due to the physical constraints posed by our mechanics framework. The search
space is contracted by the physical knowledge injected into the model. Therefore our method can be
effectively trained via only visible particles while the invisible ones are constrained through physics.
On the contrary, the other two baselines are severely affected by the number of cameras. They cannot
learn well from sparse cameras. With the increase in the number of cameras, their performance also
improved and the upward trend shows no signs of abating. We can assume that the maximum upper
bound of such improvement should be the performance when the 3D labels are used to train them.

G.4 The influence of different sizes of training samples

We evaluate how the training set size affects the performance and the results are reported in Figure 9.
With increasing sizes of the training set, the log Chamber Distance of EGNN∗ and SGNN∗ experience
slight rises. However our performance remains stable and always stays on top, which means our
method is not sensitive to the training sizes and can learn from sparse data.

G.5 What will happen if we remove the bond force?

In this subsection, we claim the importance of the bond force in the simulation system and the
significance of using two independent networks to model contact and bond force separately. We did
two additional experiments. The first is that we remove the bond force from the entire system, i.e.
remove Eq. 12. The second is that we use a single network to predict the bond force and contact force
simultaneously, i.e. merge Eq. 12 and 11 together. We observe that the simulator cannot keep the
original shape of rigid and elastic bodies in either case. We show a visual example in Fig. 15 and
Fig. 16 to illustrate this. These two experiments prove the effectiveness and necessity of this design
to separately model the two forces by distinct networks.

G.6 How does the performance when 3D groundtruth particle labels is used

We here report the evaluation of training these models with 3D particle tracks. Even though our
approach aims to learn 3D dynamics from images, the mechanics-encoded paradigm is also helpful
for learning from 3D labels. Table 6. show the rollout mean square errors of the three models in
all scenarios. From this comparison, SGNN’s performance has rapidly risen and is roughly on par

19

45721 https://doi.org/10.52202/079017-1453

Figure 16: Visualization of the case to jointly model the contact and bond force by a single network.

Table 6: Quantitative comparisons between our method and benchmarks on five scenarios in particle
views.

Given 3D GT Rollout MSE × 10^2
Method Plasticine SandFall Multi-Objs FluidR Bear Fluids
Ours 0.275 0.0414 0.239 0.136 0.301 0.051
SGNN* 0.268 0.0468 0.252 0.121 0.282 0.062
EGNN* 0.614 0.127 0.568 0.318 0.705 0.143

with our method. Both of them outperform EGNN by a considerable margin, which is consistent
with that reported in their original paper. This further proves that the reason why SGNN fails to
perform well under pixel supervision is caused by the uncertainty of 2D to 3D. EGNN is better than
SGNN under 2D supervision because it predefines the direction of message passing which reduces the
learning space as well. More importantly, our promising performance illustrates the effectiveness of
incorporating strong mechanical priors for both 2D and 3D labels used. Our approach seems to excel
in simulating solids, particularly elastic and rigid bodies. However, the SGNN method outperforms
in simulating particulate matter like sand and viscous liquids. This discrepancy may stem from the
presence of bond forces in our mechanical framework, constraining particles belonging to the same
material.

G.7 Additional Demonstrations of Swapping Materials

Our methodology introduces a novel capability for dynamic material pair substitution within pre-
existing simulation environments. By predefining mechanical responses and employing a GNN solely
for mapping deformations to interaction forces, we facilitate the modification of material interactions
with minimal adjustments. This process involves substituting the parameters of the GNN kernel with
those derived from alternative scenarios and altering the input Aij , representing the adjacency matrix
or interaction terms.

Figure 13 illustrates this concept by substituting the original fluid-elastic interaction pair with a plastic-
elastic pair in the Bear scenario, and a sand-elastic pair in the SandFall scenario, demonstrating the
adaptability of our approach to simulate varied mechanical behaviors. Similarly, Figure 14 presents
another application of our method, where the sand soil material is replaced with elastic and plastic
materials, leveraging GNN kernels trained in distinct contexts. These examples underscore our
method’s versatility in simulating diverse material behaviors through strategic parameter adjustments.

H Visualization of Learned Particle Interaction Forces

In this section, we visualize the contact forces and bond forces to validate the physical meaning and
interoperability of the learnable GNN kernel. After training the DEL, the ϕn, Hc and Hb in Eq. 10,
11, 12 should correctly map intrusion into the contact and bond force magnitudes. We extracted
these GNN kernels from the simulation system separately to evaluate their responses and outputs to
different intrusion inputs. For simplicity, we only evaluate the normal direction. The recorded results
are visualized in Fig. 17. In this figure, the x-axis refers to the intrusion value (δd in the paper), the
y-axis denotes the normalized output of Eq. 11, and 12. The solid line denotes the contact force
and the dashed line denotes the bond forces. We represent different materials in various colors. We
can see from this figure that for rigid bodies, even very small displacements can result in significant
resistance, preventing the object from deforming. For sand and water, since they do not need to

20

45722https://doi.org/10.52202/079017-1453

Figure 17: Visualization of the learned constitutive mapping. The x-axis refers to the intrusion and
the y-axis denotes normalized force magnitude.

Figure 18: Visualization of the learned material embeddings on Multi-Obj scenes.

maintain original shapes, our network adaptively learns to set the bond forces to very small values.
For plastic materials, our network has also learned to break the bond links at appropriate times (the
bond forces are close to 0). Through this visualization, we would like to claim that our GNN kernel
has indeed learned real physical meaning i.e. the forces between particles for simulating different
materials.

I Visualization of Learned Material Embeddings

Furthermore, following the suggestion of the reviewer, we visualize the learned feature vector, i.e. hi
in Eq. 9, by using the t-SNE method, which is shown in Fig. 18. In this figure, the red scatter points
are projected by the feature of Rigid particles. The green and blue scatter points are produced by
the feature of particles belonging to two different types of elastic bodies. The features belonging to
the same object have clustered together. The reason they do not overlap completely is because their
positions relative to the object are also encoded in the Ai. As shown in the Figure, the red points are
closer together, which is because for rigid bodies, regardless of where the points are on the object,
they have a strong resistance to deformation. We believe this visualization demonstrates that our
framework has learned the material-specific features.

21

45723 https://doi.org/10.52202/079017-1453

Figure 19: Failure examples of the proposed method when simulating non-Newtonian fluids.

J More Qualitative Results in both render and particle views

In this section, we report additional qualitative results from Fig. 21 to Fig. 30. These figures include
both particle view and render view of our method, EGNN∗, VPD, and 3DIntphys (only available
for particle views). More detailed results can be seen in our supplementary video. For the EGNN∗

and our method, we demonstrate both render and particle views to faithfully compare the predicted
dynamics.

It can be observed from these figures that our method can generalize well to different initial shapes
and conditions, especially when predicting long-term dynamics. While the VPD and EGNN∗ cannot
precisely predict the mechanical behaviors between materials. Or they only produce plausible results
on some certain materials. For instance, in some cases, such as BEAR and FluidR, the EGNN∗ can
deliver plausible results at the early stage of interactions, but the performance degrades drastically
with the progressing deformation.

We in addition show a comparison of baselines for the Fluids dataset in Figure 20. Our method
preserves the basic trend of water flow, which other methods do not.

K Failure Cases

In this section, we discuss failure cases of the proposed method. We observe that this method
struggles to simulate non-Newtonian fluids because a fundamental assumption of this method is that
the material properties are consistent throughout the training dataset. However, the properties of
non-Newtonian fluids change with stress variation. Here we show an example in Fig. 19. If we use
our method to simulate non-Newtonian fluid, a large gap between the prediction and groundtruth can
be observed.

This method is also not suited to simulate smoking. First, smoke consists of extremely small
water vapor particles, with the particle size being very small and the number of particles being
vast. Simulating smoke by particles requires significant computational resources. Second, smoke
simulation not only involves the exchange of momentum between particles but also is governed by
thermodynamics, making the simulation of smoke with particles a complex topic.

22

45724https://doi.org/10.52202/079017-1453

N
eu

ro
fl

u
id

E
G

N
N

*
S

G
N

N
*

O
u
rs

G
T

Figure 20: Qualitative Comparisons of all baselines on Fluids dataset in both rendering and particle
views.

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 21: Long-term predictions of 3DIntphys, VPD, EGNN and our method on Plasticine scenarios
in particle view.

23

45725 https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 22: Long-term predictions of VPD, EGNN and our method on Plasticine scenarios in render
view.

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 23: Long-term predictions of 3DIntphys, VPD, EGNN and our method on Multi-objs scenarios
in particle view.

24

45726https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 24: Long-term predictions of VPD, EGNN and our method on Multi-objs scenarios in render
view.

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 25: Long-term predictions of 3DIntphys, VPD, EGNN and our method on Bear scenarios in
particle view.

25

45727 https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 26: Long-term predictions of VPD, EGNN and our method on Bear scenarios in render view.

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 27: Long-term predictions of 3DIntphys, VPD, EGNN and our method on FluidR scenarios in
particle view.

26

45728https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 28: Long-term predictions of VPD, EGNN and our method on FluidR scenarios in render
view.

G
T

O
u
rs

V
P

D
E

G
N

N
3
D

In
tp

h
y
s

Figure 29: Long-term predictions of 3DIntphys, VPD, EGNN and our method on SandFall scenarios
in particle view.

27

45729 https://doi.org/10.52202/079017-1453

G
T

O
u
rs

V
P

D
E

G
N

N

Figure 30: Long-term predictions of VPD, EGNN and our method on SandFall scenarios in render
view.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We briefly and accurately conclude the contribution and scope of our proposed
paper in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of our proposed method in Section.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

28

45730https://doi.org/10.52202/079017-1453

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This paper provides the full set of assumptions and a complete proof and
introduction in Section.3, and 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In this paper, we give a detailed introduction about how we construct the
dataset. The proposed method, training, and testing paradigm, and data collection method
are completely reproducible and easy to follow.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may

29

45731 https://doi.org/10.52202/079017-1453

be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and dataset can be obtained by emailing the author only for research
collaborations. One can also easily reproduce the proposed physics-informed GNN on the
guidance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

30

45732https://doi.org/10.52202/079017-1453

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: We give implementation details, comparative experiments, and ablation studies
in Section.4, and our Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We give qualitative and quantitative experimental results to prove our proposed
method outperforms existing dynamic learners across multiple scenarios in Section 4 and
the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on computing resources is concluded in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

31

45733 https://doi.org/10.52202/079017-1453

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our proposed methods, code, datasets, and experiment paradigms fully comply
with NeurIPS’ Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential impact of this work in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: In this paper, we do not utilize datasets with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

32

45734https://doi.org/10.52202/079017-1453

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of assets used in the paper are all credited
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not contain crowdsourcing experiments and research with
human subjects.

Guidelines:

33

45735 https://doi.org/10.52202/079017-1453

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

45736https://doi.org/10.52202/079017-1453

