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Abstract

Existing Goal-Conditioned Reinforcement Learning (GCRL) algorithms are built
upon Hindsight Experience Replay (HER), which densifies rewards through hind-
sight replay and leverages historical goal-achieving information to construct a
learning curriculum. However, when the task is characterized by a non-Markovian
reward (NMR), whose computation depends on multiple steps of states and actions,
HER can no longer densify rewards by treating a single encountered state as the
hindsight goal. The lack of informative rewards hinders policy learning, resulting
in rolling out failed trajectories. Consequently, the replay buffer is overwhelmed
with failed trajectories, impeding the establishment of an applicable curriculum.
To circumvent these limitations, we deviate from existing HER-based methods
and propose an on-policy GCRL framework, GCPO, which is applicable to both
multi-goal Markovian reward (MR) and NMR problems. GCPO consists of (1)
Pre-training from Demonstrations, which pre-trains the policy to possess an initial
goal-achieving capability, thereby diminishing the difficulty of subsequent online
learning. (2) Online Self-Curriculum Learning, which first estimates the policy’s
goal-achieving capability based on historical evaluation information and then se-
lects progressively challenging goals for learning based on its current capability.
We evaluate GCPO on a challenging multi-goal long-horizon task: fixed-wing UAV
velocity vector control. Experimental results demonstrate that GCPO is capable of
effectively addressing both multi-goal MR and NMR problems.

1 Introduction

Multi-goal problems are ubiquitous in real-world applications, such as controlling robotic arms to
grasp objects at any location on a table [13, 16], and operating fixed-wing Unmanned Aerial Vehicles
(UAVs) to navigate towards any specified velocity vector [8, 34], etc. To address the challenge of
automatically learning policies capable of achieving and generalizing across a range of diverse goals
[47], Goal-Conditioned Reinforcement Learning (GCRL) [48, 37] has emerged as a prominent area
of research. Serving as a generalization of standard Reinforcement Learning (RL) [61], GCRL learns
goal-conditioned policies [55] through interactions within multi-goal environments [48].

In existing GCRL algorithms, Hindsight Experience Replay (HER) [3] plays a pivotal role in facilitat-
ing the learning of goal-conditioned policies. First, HER enhances sample efficiency by replacing
the desired goals of failed trajectories with achieved states, thereby providing more informative
rewards for policy learning [70, 11]. Second, HER contributes to creating a curriculum that enables
the policy to progressively master challenging goals [40, 69, 47]. This process involves fitting the
current policy’s goal-achieving capability with historical goal-achieving information and selecting
goals of appropriate difficulty for the current policy learning. Due to the reliance on replay buffers
[72], current research on GCRL predominantly focuses on off-policy RL approaches [51, 25].
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Figure 1: Left: Illustrations of HER on Markovian reward (MR) and non-Markovian reward (NMR)
problems. Right: Performance of HER on MR and NMR problems. NMR[x] represents the NMR
depends on the last x consecutive states and actions. Results come from experiments on an easy
version (Appendix A.7) of fixed-wing UAV velocity vector control task over 5 random seeds.

Despite its widespread success, HER is subject to a limitation: the reward function must be able to
determine goal achievement based solely on the current state, which implies that the reward function
must be Markovian [2]. In real-world applications, many reward functions depend on multiple steps
of states and actions, i.e., rewards are non-Markovian [24, 1]. For instance, determining whether an
UAV has stably achieved a goal based on a sequence of states, or calculating a penalty for control
oscillation based on a sequence of actions [33, 8]. For non-Markovian reward (NMR) problems, on
one hand, it is not feasible to treat a single state from the sampled trajectory as a hindsight goal; on
the other hand, it is challenging for the trajectory obtained through exploration to include the special
transition sequence that satisfies the specific NMR. In Fig. 1, we present a specific case to elucidate the
NMR problem and illustrate why HER fails to address NMR, and corresponding experimental results
to support this explanation. It is evident that as the NMR relies on longer state-action sequences,
the performance of HER gradually deteriorates, ultimately becoming indistinguishable from the
performance when HER is not employed. This limitation prevents HER from densifying the reward.
The lack of informative rewards hinders policy learning, which further leads to rolling out failed
trajectories. Consequently, the replay buffer is overwhelmed with failed trajectories, obstructing the
creation of a reasonable curriculum.

In light of the aforementioned limitations of HER in addressing NMR problems, we propose a novel
on-policy [62, 57] GCRL framework, termed the Goal-Conditioned Policy Optimization (GCPO)
framework, which deviates from existing HER-based off-policy approaches. GCPO comprises: (1)
Pre-training from Demonstrations: This phase involves leveraging demonstrations to pre-train
the policy offline, equipping it with an initial capability to achieve goals before online learning
begins, thereby diminishing the difficulty of subsequent online learning. (2) Online Self-Curriculum
Learning: This phase involves periodically evaluating the policy, estimating its goal-achieving
capability, and optimizing it through online learning with progressively challenging goals sampled
based on its current capability. It is important to note that GCPO is not specifically designed for
NMR problems; instead, it is a general on-policy GCRL framework applicable to both multi-goal
Markovian reward (MR) and NMR problems.

To evaluate GCPO, we conduct experiments on the Velocity Vector Control (VVC) task of fixed-wing
UAVs. The VVC task represents a typical multi-goal problem that can be formulated as both MR and
NMR, and it also requires long interaction sequences, categorizing it as a challenging long-horizon
problem [28]. The complexity inherent in the VVC task provides a rigorous testbed for evaluating
the efficacy of GCPO. Experimental results indicate that GCPO effectively addresses multi-goal
problems, both MR and NMR. Our contributions are summarized as follows:

• We analyze the reason why existing GCRL algorithms, which rely on HER as a central
component, fail in handling NMR problems and validate this finding through experiments.

• We propose an on-policy GCRL framework, GCPO, which incorporates pre-training from
demonstrations and online self-curriculum learning to address both MR and NMR problems.
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• We evaluate the performance of GCPO on the challenging VVC task, demonstrating its
effectiveness in solving both MR and NMR problems. Additionally, we conduct ablation
studies to analyze the influence of the two components and hyper-parameters on learning.

2 Related Work

Goal-conditioned reinforcement learning. Many prior works assume access to a goal-conditioned
reward function [15, 73] and view GCRL as a reward-driven, multi-task learning problem [68].
Existing GCRL methods are predominantly based on HER, situating them within the off-policy
RL domain [61]. Pitis et al. [47] summarize existing methods and propose a common off-policy
GCRL framework, which alternates between collecting experience and optimizing policies. During
the policy optimization phase, the hindsight replay method is utilized to relabel transitions sampled
from the replay buffer, thereby increasing informative rewards in the training data. When collecting
experience, some heuristics or learning methods are employed to select appropriate goals that assist
in improving the policy.

Selecting appropriate goals involves (1) several heuristics for discovery, including reward relevance
[4, 65], diversity [14, 10], coverage [38, 6], difficulty [32, 43], etc. (2) selecting goals of appropriate
difficulty based on the capability of the current policy, which essentially craft objectives that try
to optimize for learning progress. These methods fit the current policy’s goal-achieving capability
based on the trajectories stored in the replay buffer and then sampling goals of appropriate difficulty
for online learning according to this capability. For instance, RIG [40] samples goals directly from
the distribution of achieved goals, DISCERN [69] samples uniformly on the support set of the
distribution of achieved goals, and MEGA [47] uses inverse probability weighting sampling [32] on
the distribution of achieved goals to samples goals that the current policy can achieve but not well.

The difference between our method and the aforementioned methods lies in the learning framework:
our method is on-policy, whereas the existing methods, all based on HER, are off-policy. This
difference manifests in two key aspects: First, our method does not include a component like
HER, which cannot be used for solving NMR problems. To achieve an effect similar to HER’s
enhancement of informative rewards during learning, we design a component that pre-trains the
policy with demonstrations, making it suitable for on-policy RL. Second, our method employs
off-policy evaluation [63, 64] to estimate the current policy’s goal-achieving capability, rather than
estimating this capability based on the trajectories in the replay buffer. Table 1 summarizes the
similarities and differences between GCPO and existing GCRL methods.

Table 1: Comparison between HER-based methods and GCPO. pag refers to the distribution of
achieved goals, supp(·) refers to the support set of a distribution, U(·) refers to the uniform distribu-
tion on a set, and IPW (·) refers to the inverse probability weighting [32].

Method Type of RL Applicable
Reward Types

Method for increasing
informative rewards

Method for sampling goal

estimate pag sample distribution

HER-based
(NeurIPS2017)

+RIG (NeurIPS2018)
off-policy MR hindsight replay replay

buffer

pag
+DISCERN (ICLR2019) U [supp(pag)]

+MEGA (ICML2020) IWP (pag)

GCPO on-policy MR, NMR pre-train from
demostrations

off-policy
evaluation

pag,U [supp(pag)],
IWP (pag), · · ·

Non-Markovian rewards. Abel et al. [2] underscore the necessity of NMRs by demonstrating
the existence of environment-task pairs for which no MR function can realize the task. Moreover,
numerous exploration strategies implicitly depend on NMRs [35, 45], and studies considering non-
Markovian discount factors [19, 58] can also be interpreted as special forms of NMRs [46]. The
fundamental approach for addressing NMRs involves augmenting the state space to render the reward
Markovian [24]. Various techniques have been proposed to achieve this, such as Reward Machines
[9] and the Split-MDP [1]. Nevertheless, the expanded reward state space may grow exponentially
with the number of acceptable policies and could incorporate an infinite number of simple reward
functions [1]. Our work diverges from the aforementioned research by presenting a general GCRL
framework, rather than a specialized approach for NMR problems. Unlike existing GCRL methods
that depend on HER, which is not applicable to NMR problems, our framework can be applied to
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Figure 2: The overall GCPO framework.

both NMR and MR problems. Additionally, our framework is compatible with techniques designed
to address NMR challenges, as demonstrated in Appendix F.

3 Methodology

GCPO is designed as an on-policy GCRL framework. We draw upon the key insights from existing
HER-based GCRL methods that have led to their success and incorporate two critical components
into the GCPO framework: pre-training from demonstrations and online self-curriculum learning.
The overall GCPO framework is depicted in Fig. 2 and a practical implementation of GCPO is
detailed in Algorithm 1.

3.1 Preliminaries

GCRL can be described by goal-augmented MDP [37] M = ⟨S,A, T , r, γ,G, pdg, ϕ⟩, where
S,A, γ,G and pdg denote the state space, action space, discount factor, goal space and desired
goal distribution of the environment, respectively. T : S × A → P(S) is the transition function,
where P(X ) denote the probability distribution over a set X . r is the goal-conditioned reward
function. It can be both Markovian r = {rg|rg : S × A → R, g ∈ G} and non-Markovian
r = {rg|rg : (S × A)∗ → R, g ∈ G}. ϕ : S → G is a tractable mapping function that maps
the state to a specific goal. The objective of GCRL is to reach goals via a goal-conditioned policy
π : S × G → P(A) that maximizes the expectation of the cumulative rewards over the desired goal
distribution J(π) = Eat∼π(·|st,g),g∼pdg,st+1∼T (·|st,at) [

∑
t γ

trg(·)] . Additionally, previous works
[47, 37] identify two common definitions of goals: Achieved goal, which refers to the goal accom-
plished by the policy in the current state. The notation pag denotes the distribution of achieved goals.
Behavioral goal, which represents the specific task that is targeted for sampling within a rollout
episode [37].

3.2 Pre-Training from Demonstrations.

GCRL encounters more substantial exploration challenges compared to standard RL due to the
inclusion of an additional goal space [30]. Pre-training from demonstrations is primarily designed to
facilitate biased exploration [50]. Specifically, the policy can be pre-trained with Imitation Learning
(IL) [74] or goal-conditioned IL [13, 25] on demonstrations. The pre-training provides the policy
with a warm start [60, 71], which refers to an initial ability to achieve some of the desired goals.
Pre-training is vital for on-policy RL as it enhances informative rewards during online learning.
Without such informative rewards, the policy would struggle to acquire any meaningful knowledge or
skills [61]. Through subsequent online learning, the policy can effectively discern when it is more
advantageous to adhere to states and actions from the demonstration trajectories or to explore superior
alternatives.

In our implementation of GCPO, we utilize Behavioral Cloning (BC) [49] for pre-training the policy,
as indicated in line 2 of Algorithm 1. For the demonstration DE , the policy is learned by optimizing
a supervised loss function to maximize the likelihood of expert actions [54]

L(θ) = −E(s,a)∼DE
[log πθ(a|s)]. (1)

4
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Algorithm 1 Goal-Conditioned Policy Optimization (GCPO) framework

Require: demonstrations DE , distribution of desired goal pdg , goal weight discount factor κ, online
evaluation budget N , probability transform function f

Ensure: πθ(·|s, g)
1: Initialize goal-conditioned policy πθ(·|s, g), goal buffer Bg which stores tuples of achieved goals

in evaluation and their corresponding weight (g, wg)
2: pre-train πθ(·|s, g) by Eq. 1 ▷ pre-train policy
3: while Not converge do
4: for all (g, wg) in Bg do
5: wg ← κ · wg ▷ decay weight of historically achieved goals
6: end for
7: sample N goals, g1, g2, . . . , gN uniformly from pdg ▷ online policy evaluation
8: for all g in g1, g2, . . . , gN do
9: if πθ finishes g successfully then

10: add (g, 1.0) to Bg

11: end if
12: end for
13: estimate pag with GMM on Bg ▷ estimate pag
14: D ← ∅ ▷ roll-out samples
15: while Not collect enough online samples do
16: sample a goal g from Eq. 2
17: sample a trajectory τ by πθ on g
18: append τ to D
19: end while
20: update πθ by Eq. 3 on D ▷ update policy
21: end while

3.3 Online Self-Curriculum Learning

In GCRL, selecting goals that match the current policy’s capabilities is crucial for effective learning
[20, 12, 5, 11]. To address this, we design an online self-curriculum learning mechanism that
autonomously constructs a curriculum, generating behavioral goals that are incrementally more
difficult than those the policy is currently capable of achieving during training. Specifically, online
self-curriculum learning consists of three processes: (1) Estimating the current policy’s goal-achieving
ability, pag. This can be done through methods such as online evaluation or off-policy evaluation
(OPE) [63, 64]. (2) Setting or learning a probability transform function f : P ×P → P , followed by
sampling progressively challenging behavioral goals based on f(pag, pdg) for online learning. (3)
Conducting online RL learning with behavioral goals sampled in the second part, facilitating the
agent’s progression towards more challenging goals. In our implementation of GCPO:

Gaussian Mixture Model (GMM) [53] is employed to estimate pag, as detailed in lines 4-13 of
Algorithm 1. During the online self-curriculum learning, the policy is periodically evaluated. In each
evaluation, the policy is evaluated with N goals sampled from pdg. Information about the achieved
goals, along with an initial weight of 1.0, is stored in a goal buffer Bg . As the online self-curriculum
learning proceeds, the weight of historically achieved goals is reduced by a factor κ. Ultimately, a
GMM is used to estimate pag based on the data in Bg (The specific calculation can be referred to
Appendix B.).

Maximum Entropy Gain Exploration (MEGA) [47] is utilized as the probability transform function
f , as indicated in lines 14-19 of Algorithm 1. The core idea behind MEGA is to encourage exploration
in sparsely explored areas of the achieved goal distribution. In discrete settings, inverse probability
weighting [32] can be applied to sample goals from pag . A goal g is chosen with the probability given
by [

fMEGA(pag, pdg)
]
(g) =

1
pag(g)∑
p′

1
pag(g′)

. (2)

In continuous settings, a generate and test strategy [42, 47] is employed for goal sampling. Specifically,
M goals {gi}Mi=1 are randomly sampled from supp(pag), the support set of pag , and the goal with the
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minimum density under fMEGA(pag, pag) is selected: g = argmingi

([
fMEGA(pag, pag)

]
(gi)

)
.

This approach biases the sampling towards goals that are less likely under the current achieved goal
distribution, promoting exploration in under-explored regions.

KL-regularized RL [67, 66, 7, 27] is employed as the on-policy RL algorithm to optimize the policy,
as indicated in line 20 of Algorithm 1. To prevent catastrophic forgetting of latent skills and to
continuously improve exploration during the RL fine-tuning phase [7], the policy πθ is initially set to
the pre-trained policy πθ0 and is then fine-tuned by maximizing the following objective:

Jkl(πθ) = E
[∑

t γ
t
(
r − λlog( πθ(at|st)

πθ0
(at|st) )

)]
, (3)

where r can represent both Markovian r(st, at) and non-Markovian r(s0:t, a0:t) rewards, and λ ∈
[0, 1] controls the strength of the KL regularization. Optimizing Eq. 3 is analogous to optimizing the
original RL objective within the log-barrier of πθ0 , and can be viewed as a trust-region-style [56]
learning objective [36].

4 Experiments

4.1 Experimental Setups

RL environment. Experiments are conducted on the Fixed-Wing UAV Velocity Vector Control
(VVC) task [26], which is a representative multi-goal problem. The VVC task is characterized
by a long horizon, with the average length of demonstrations exceeding 280 steps (detailed in
Appendix A.5). Even for well-trained policies, the average number of steps required to achieve a
goal is over 100, and more challenging goals can demand upwards of 300 steps to achieve [27].
This exceeds the horizon typically used in most previous studies [41, 47, 28, 59]. Additionally,
the rewards for VVC can be designed as either MR or NMR, thereby accommodating a range of
real-world requirements and complexities. The specifics of the VVC environment setup are detailed
in Appendix A. Thus, VVC presents a challenging multi-goal, long-horizon problem that poses
significant difficulties for policy learning. Standard SAC+HER [3] and PPO [57] are unable to solve
the VVC task, as demonstrated in Appendix A.6, further highlighting the task’s complexity. To our
knowledge, previous research on NMR algorithms has primarily been tested in simpler environments
such as multi-arm bandits [24] and grid worlds [52, 24, 2, 1, 31]. Our work is the first to evaluate the
performance of algorithms on complex, real-world NMR problems. Additionally, to demonstrate
the broad applicability of GCPO, we conduct experiments on the commonly used RL environments
Reach and PointMaze. The corresponding results and analysis can be found in Appendix D.

Demonstrations. We collect a demonstration set DE , also denoted as D0
E , with a PID controller

(detailed in Appendix A.5). Subsequently, we employ the IRPO algorithm [27], which iteratively
optimizes policies and demonstrations, to generate D1

E ,D2
E ,D3

E . Table 2 presents the quantity and
quality of these four demonstration sets. The ’#traj’ column represents the number of demonstrations
contained within each demonstration set, while ’traj length’ indicates the average length of demon-
strations in the set. A shorter demonstration length suggests a faster completion of the corresponding
goal, indicative of higher demonstration quality. It can be observed that the demonstration quantity
and quality of D0

E ,D1
E ,D2

E ,D3
E increase sequentially.

4.2 Main Results

We compare GCPO with several baselines on the VVC task under different demonstration condi-
tions, including (1) SAC [29] + HER + MEGA, which is a strong baseline in GCRL; (2) BC, a
fundamental yet effective IL algorithm; (3) GCPO without pre-training, which corresponds to PPO
+ self-curriculum; (4) GCPO without self-curriculum, which corresponds to BC + KL-regularized
RL. GCPO itself is equivalent to BC + KL-regularized RL + self-curriculum. Table 2 reports the
performance of GCPO and the baselines on NMR, and Fig. 3 visualizes the learning progression on
both NMR and MR, as well as the final learned policy of GCPO.

GCPO is applicable to both MR and NMR problems. Table 2 shows that GCPO outperforms all
baselines on NMR, with SAC+HER+MEGA achieving only 20% of GCPO’s performance. This
demonstrates the limitations of HER in addressing NMR problems and highlights the superiority
of GCPO in these contexts. Furthermore, Fig. 3a illustrates the learning progression of GCPO for
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Table 2: Comparison between GCPO and baselines on NMR. The mean and variance of % success
rates are presented over 5 random seeds. Optimal values are highlighted in bold, and sub-optimal
values are underlined.

Demonstration SAC + HER
+ MEGA BC GCPO w/o

pre-training
GCPO w/o

self-curriculum GCPO
notation #traj traj length

D0
E 10264 281.83±149.48

8.32±1.86

17.08±0.57

0.04±0.03

31.28±8.97 45.87±3.09
D1

E 27021 119.64±47.55 36.54±1.97 43.49±3.85 49.12±1.67
D2

E 34952 115.76±45.65 41.79±0.44 51.28±2.07 57.45±2.49
D3

E 39835 116.56±47.62 42.77±1.35 53.51±3.18 59.90±1.78
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Figure 3: Main results of GCPO. ‘expert’ refers to the demonstrator that generates demonstrations.
‘BC’ refers to the pre-trained policy. Results are derived from experiments across 5 random seeds.
For sub-figure (a), expert and BC are both evaluated in the NMR setting. For sub-figure (c), the
vertical axis represents the training progress, where 0, 1, · · · , 9 correspond to 10%, 20%, · · · , 100%
of the training progress, respectively.

both NMR and MR, showing that GCPO is effective in solving both types of problems. In summary,
GCPO exhibits versatility and applicability across both MR and NMR problems.

Pre-training is crucial for the success of GCPO. As evidenced by the experiments in Table 2 for
BC, GCPO w/o pre-training, and GCPO, it is observed that without pre-training, GCPO struggles
to learn meaningful skills. However, a policy that is merely pre-trained, albeit with non-optimal
performance, plays a crucial role in enabling GCPO to develop an effective policy. Fig. 3b provides a
histogram of the achieved goals for the trained policies. It is evident that, even with a pre-trained
policy that initially exhibits inferior performance compared to the demonstrator, GCPO’s online
self-curriculum learning facilitates significant improvement in the policy’s performance, surpassing
that of the demonstrator.

Online self-curriculum facilitates the mastery of challenging goals. Table 2 demonstrates that the
application of self-curriculum within GCPO leads to an average 8.2% increase in policy performance
compared to its absence. This enhancement is illustrated in Fig. 3c, which shows that the online self-
curriculum mechanism systematically introduces more difficult goals into the learning progression as
the policy gains proficiency. This mechanism effectively explains the advantages of self-curriculum
for GCPO in mastering challenging goals.

4.3 Ablation Studies

In this section, we conduct ablation studies on the demonstration’s quantity and goal distribution, ana-
lyze the sensitivity of GCPO to the parameters used for estimating pag , and compare the effectiveness
of different self-curriculum methods.

4.3.1 Ablation on Quantity of Demonstrations

To illustrate the influence of the quantity of demonstrations on GCPO, we train GCPO with 10%,
50%, and 100% of DE and present the performance of pre-trained policies and GCPO policies in
Fig. 4a.
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Figure 4: The influence of demonstration quantity and the distribution of goals covered by demon-
strations on GCPO. D1,D2,D3 represent sets of demonstrations that are difficult, medium, and easy,
respectively. The pre-trained policies obtained from D1, D2, and D3 are denoted as π0

1 , π0
2 , and π0

3 ,
respectively. The corresponding GCPO policies are denoted as π∗

1 , π∗
2 , and π∗

3 , respectively. Results
are derived from experiments across 5 random seeds.

Table 3: Performance of GCPO policies trained with different N and κ. In our settings, N = 32
implies that the number of evaluations throughout the training is approximately equal to the number
of goals obtained through discretizing the entire goal space during sampling demonstrations (detailed
in Appendix A.5). The mean and variance of % success rates are shown over 5 random seeds. Optimal
values are highlighted in bold, and sub-optimal values are underlined.

(a) RIG

κ
N 32 96 320

0.9 46.28±1.10 47.22±1.51 49.03±1.54
0.99 47.23±0.88 46.49±2.97 47.62±1.34

0.995 46.14±4.79 47.75±1.70 48.13±2.01
avg. 46.55 47.15 48.26

(b) DISCERN

κ
N 32 96 320

0.9 46.92±3.54 47.20±2.49 49.36±1.91
0.99 45.43±1.52 48.59±3.94 48.18±2.51

0.995 47.06±2.51 47.36±1.98 50.08±1.07
avg. 46.47 47.72 49.21

(c) MEGA

κ
N 32 96 320

0.9 42.58±1.69 45.87±3.09 48.62±2.35
0.99 43.35±1.00 45.06±1.30 49.21±2.23

0.995 43.56±0.63 46.42±2.42 46.19±4.27
avg. 43.16 45.78 48.01

As shown, a policy pre-trained with 10% of DE achieves 81.12% of the performance of the policy
pre-trained with 100% of DE , while a policy pre-trained with 50% of DE achieves 96.53% of
the performance. Similarly, a policy trained by GCPO with 10% of DE achieves 86.95% of the
performance of the policy trained by GCPO with 100% of DE , whereas a policy trained by GCPO
with 50% of DE achieves 95.94% of the performance. These results suggest that an increase in the
quantity of demonstrations can enhance the performance of GCPO, yet the marginal gains diminish
as the quantity of demonstrations grows. Furthermore, these results also indicate that GCPO can still
perform well when only a relatively small number of demonstrations are available.

4.3.2 Ablation on Goal Distribution of Demonstrations

To demonstrate the influence of the distribution of goals covered by the demonstrations on GCPO,
we collect three demonstration sets with significantly different goal difficulty distributions (detailed
in Appendix A.4) and train GCPO with them. Fig. 4b presents the distribution of achieved goals of
the pre-trained policies, while Fig. 4c depicts that of the GCPO policy.

It is evident that for both pre-trained policies and GCPO policies, their distributions of achieved goals
are centered around the distribution of goals covered by the demonstrations. The reason for this is
that the self-curriculum, starting with the distribution of achieved goals of the pre-trained policy,
which is determined by the distribution of goals covered by the demonstrations, gradually expands
the distribution of achieved goals. The preference for goals in the demonstrations thus influences
the learning progression of GCPO, leading the policy learned by GCPO to also exhibit a similar
preference for goals. This suggests that when preparing demonstrations for GCPO, it is preferable to
sample goals and generate demonstrations as closely as possible to the desired goal distribution pdg .

Furthermore, in Appendix E.1, we provide a more intuitive case and directly visualize the achieved
goals in three-dimensional space, yielding the same conclusions as those from the above analysis.
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Figure 5: Analysis of the influence of different self-curriculum methods on the learning progression
of GCPO, as well as a comparison between self-curriculum and non-curriculum methods. ‘expert’
and ‘None’ are two non-curriculum methods, where ‘expert’ refers to sampling goals from those that
the demonstrator can achieve, and ‘None’ signifies directly sampling from pdg. Results are derived
from experiments across 5 random seeds.

4.3.3 Sensitivity to Parameters of Estimating pag

To evaluate the influence of the estimation of pag on GCPO, we conduct experiments with GCPO
across a range of values for N and κ, employing various self-curriculum methods. The results are
presented in Table 3.

The internal three-by-three layout of each sub-table reveals that policies with the highest performance
tend to be situated at configurations where N is larger and κ is smaller. This trend suggests that
under these conditions, the estimation of pag is more precise. Ideally, as N → inf and κ→ 0, the
estimation of pag could be perfectly fitted. when examining N and κ independently, the last row
of each sub-table indicates that conducting more evaluations during online learning helps GCPO to
obtain a well-performing policy, although this comes at the cost of additional computational resources.
Conversely, the sum of each row of each sub-table shows no significant difference, implying that
GCPO is less sensitive to the setting of κ.

In summary, from the perspective of estimating pag, to enhance the performance of GCPO, it is
primarily advisable to increase the number of evaluations within the tolerable computational resource
constraints.

4.3.4 Comparison on Different Self-Curriculum Methods

To demonstrate the influence of different self-curriculum methods on the learning progression and
final policy of GCPO, we train GCPO with three distinct self-curriculum methods: RIG, DISCERN,
and MEGA. The learning curve and the final policy performance are illustrated in Fig. 5.

Fig. 5a presents the curve of goal difficulty sampled during learning. It is noted that RIG rapidly
samples more challenging goals, followed by DISCERN, and then MEGA. However, when consider-
ing the difficulty of the goals sampled at the final stage of learning, DISCERN and MEGA select
harder goals than RIG. This observation suggests that RIG, DISCERN, and MEGA exhibit distinctly
different learning progressions.

Fig. 5b depicts the trend of success rate during learning, and Fig. 5c and 5d present the histograms of
achieved goals for the policies trained by self-curriculum and non-curriculum methods, respectively.
By combining Figs. 5b and 5c, it is evident that there is no significant difference in performance
between different self-curriculum methods, whether in the learning progression or in the final policy.
In contrast, when combining Figs. 5b and 5d, it is clear that self-curriculum methods outperform
non-curriculum methods in both the learning progression and the final policy performance.

In summary, within the GCPO framework, while different self-curriculum methods exhibit distinct
learning progressions, there is no discernible difference in the final policy obtained. Moreover,
the self-curriculum methods consistently outperform non-curriculum methods, highlighting the
effectiveness of the self-curriculum mechanism in promoting goal-conditioned policy learning.
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5 Conclusion and Limitations

In this paper, we propose an on-policy goal-conditioned reinforcement learning framework, GCPO,
designed to address the limitations of existing methods in solving non-Markovian reward (NMR)
problems. Through experimental evaluation on the fixed-wing Velocity Vector Control task, we
demonstrate the effectiveness of GCPO in handling both Markovian reward (MR) and NMR problems.

Some limitations should be addressed in future work. Firstly, in the implementation of the two
components within GCPO, we employ relatively simple methods, such as behavioral cloning and
Gaussian mixture model. Whether the use of alternative methods could lead to more efficient learning
and better-performing policies is yet to be further validated. Secondly, under the sparse reward
setting, the successful training of GCPO relies on the pre-trained policy possessing a certain level
of goal-achieving capability. Otherwise, if the policy achieves nothing, it becomes ineffective in
establishing a self-curriculum. Lastly, although the GCPO framework does not have a component
like HER that is unsuitable for solving NMR problems and thus capable of solving both MR and
NMR problems, the specific implementation of GCPO as introduced in Section 1 does not explicitly
incorporate components that are specifically designed to handle NMR problems. In Appendix F, we
introduce a simple component to address NMR problems within GCPO and observe some effects.
However, it is not clear whether integrating the most advanced methods for handling NMR problems
within GCPO would lead to a more effective resolution.
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Appendix
A The Fixed-Wing Velocity Vector Control Task

The fixed-wing UAV’s VVC task is to target its velocity vector to a target velocity vector.

A.1 State, Action, and Goal Space

The state consists of pitch angle θ, roll angle ϕ, yaw angle ψ, flight path azimuth angle χ, flight path
elevator angle µ, altitude h, roll angular velocity p, true airspeed v, and goal (vg, µg, χg). The action
consists of ail, ele, rud, pla, which denotes the actuator position of the aileron, elevator, rudder, and
power level actuator. The goal space is defined as G := [vmin, vmax]× [µmin, µmax]× [χmin, χmax].
When the environment is reset, a goal g := (v, µ, χ) is sampled randomly from G.

A.2 Transition

The action (ail, ele, rud, pla) is sent to the Flight Dynamics Model (FDM) to get the next state with
the F-16 model. The episode terminates when triggers one of the following two conditions: (1) if
v, µ, χ is close to (vg, µg, χg) within the tolerant error δ which is described in the Appendix A.3. (2)
if does not trigger the first condition for Tmax steps.

A.3 Reward Function

The Markovian reward function is defined as

rg(st) =

{
0, if d(ϕ(st), g) < δ

−1, else, (4)

where d(ϕ(st), g) = wv
∥v⃗t−v⃗g∥v

σv
+wd

∥v⃗t−v⃗g∥d

σd
, wv ∈ [0, 1], wd ∈ [0, 1], wv +wd = 1.0 are weight

factors for velocity and direction, σv, σd are scaling factors for velocity and direction, ∥.∥v calculates
the difference in modulus of two velocity vectors, ∥.∥d calculates the difference in direction of two
velocity vectors, and δ is a pre-defined tolerant error.

The non-Markovian reward function is defined as

rg(st−Nr+1, · · · , st) =
{

0, if all d(ϕ(st′), g) < δ, t′ ∈ [t−Nr + 1, t−Nr + 2, · · · , t]
−1, else,

(5)

where Nr is the horizon length that the NMR depends on.

A.4 Goal Difficulty

In order to evaluate the quality of demonstrations in the following sections, we introduce the goal
difficulty

dv(g, v0) = αv + (1− αv)
|vg − v0|

|vmax − vmin|
, (6)

where αv ∈ [0, 1) is a base value of difficulty for v. And the same is for dµ(g, µ0) and dχ(g, χ0).
Consequently, the difficulty of the goal is defined as

d(g, v0, µ0, χ0) = dv(g, v0) · dµ(g, µ0) · dχ(g, χ0), (7)
which describes the magnitude of changes in the UAV’s state variables.

Based on Eq. 7, we sort all goals based on their difficulty and define the following three goal sets:
the easy goal set, comprising the 100 simplest goals; the medium goal set, consisting of goals with
difficulty values ranked between 3000 and 3100; and the difficult goal set, comprising goals with
difficulty values ranked between 7000 and 7100.

A.5 Demonstrations
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Figure 6: Performance of SAC+HER and PPO on the VVC task. Results come from experiments on
attitude control over 5 random seeds.

Table 5: Parameters used in Environment
(a) Easy Version

Parameter Value

vmin, vmax 150, 250
µmin, µmax -10, 10
χmin, χmax -30, 30

Tmax 400
wv, wd 0.5, 0.5
σv, σd 100, 180
δ 0.058
Nr 10

(b) Hard Version

Parameter Value

vmin, vmax 100, 300
µmin, µmax -85, 85
χmin, χmax -170, 170

Tmax 400
wv, wd 0.5, 0.5
σv, σd 100, 180
δ 0.058
Nr 10

Table 4: Attitude control
min max ∆

v 100 300 10
µ -85 85 5
χ -170 170 5

#goals: 50715

A PID controller is used to sample trajectories. For convenience,
the goal space is discretized with parameters listed in Table 4. Of
the 50715 discretized goals, 10184 trajectories are successfully sam-
pled with an average length of 282.01. These 10184 successful
trajectories form the DE . DE are imperfect: firstly, the quantity
of demonstrations is limited with only about 20% goals success-
fully sampled; secondly, the quality of demonstrations is low as a
well-trained policy can usually finish the goal within 150 steps.

A.6 The multi-goal long-horizon problem

The VVC task represents typical multi-goal long-horizon problems. On the one hand, the average
length of individual goals (without further division into sub-goals) in expert demonstrations exceeds
280 steps. Even for policies that have been trained thoroughly, the average steps to achieve a goal is
over 100, with more challenging goals requiring more than 300 steps to complete, which is longer
than the horizon used in most previous studies [41, 47, 28, 59]. On the other hand, when trained with
classical RL algorithms, as illustrated in Fig. 6, neither the off-policy SAC+HER nor the on-policy
PPO algorithms are able to solve the VVC task. This also indicates the challenges that the long
horizon of VVC poses for GCRL algorithms.

A.7 Environment Hyper-Parameters Details

In the specific experiments, we only used the easy version, listed by Table 5a, of the VVC task in
Fig. 1 of Sec. 1. In all experiments within the Sec. 4, we utilized the hard version, listed by Table 5b,
of the VVC task.
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Table 6: Parameters used in BC
(a) BC

Parameter Value

l2_weight 0
ent_weight 10−2

batch_size 4096
epochs 300

(b) PPO

Parameter Value

ent_coef 10−2

gamma 0.995
gae_lambda 0.95

lr 10−4

batch_size 4096
train_steps 2 ∗ 108

rollout_process_num 64
n_steps 2048

n_epochs 5
use_sde True

normalize_advantage True

B Calculation of GMM

We employ GMM with weighted samples [21] to estimate pag. For a set of N weighted sam-
ples {(xi, wi)}, where xi is the ith sample and wi is the weight of xi, we want to find a Guas-
sian Model density function with M Guassian components f(x) =

∑M
i=1 πiN(x|µi,Σi), where

N(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp{− 1

2 (x − µi)
TΣ−1

i (x − µi)} is the ith Guassian component, D
is the dimension of sample, µi,Σi, πi are the mean vector, covariance matrix, and the weight of
N(·|µi,Σi), correspondingly.

Then, Expectation-Maximization algorithm is employed to estimate the corresponding parameters. In
the Expectation Step, the new estimate of each sample corresponds to each Guassian components is
calculated, rik = πkN(xi|µk,Σk)∑M

j=1 πjN(xi|µj ,Σj)
. In the Maximization Step, calculate the weight of Guassian

component, πk =
∑N

i=1 wirik∑M
j=1

∑N
i=1 wirij

, the mean vector, µk =
∑N

i=1 wirikxi∑N
i=1 wirik

, and the covariance matrix,

Σk =
∑N

i=1 wirik(xi−µk)(xi−µk)
T∑N

i=1 wirik
.

C Implementation Details

The Imitation framework is utilized to implement BC algorithm with parameters listed in Table 6a,
and the Stable Baselines3 framework for PPO with parameters listed in Table 6b. 128*128 fully
connected network and the Tanh activation function are used for VVC.

As BC only learns a policy network, we add a warm-up for the value network at the beginning of
online learning. When online learning begins, we first freeze the parameter of the policy and train the
value network with online samples until it converges, then proceed with the normal RL training. For
the parameter λ, 10−3 is utilized for all the experiments.

D Experiments on Reach and PointMaze

We conduct two sets of experiments to demonstrate the general applicability of GCPO.

D.1 Experimental Setups

Environments: For the first set of experiments, we conduct evaluations on a customized PointMaze
environment (PointMaze_Large_DIVERSE_G-v3) from Gymnasium-Robotics [17] within the Mu-
joco physics engine. The only modification we made to the environment is to expand the number of
desired goals from 7 to 45, making our customized version of PointMaze more challenging than the
original version. For the second set of experiments, we employ a customized Reach (PandaReach-v3)
[23] task on the Franka Emika Panda robot physics engine. The only modification we made to the
environment is to change the distance_threshold used to determine goal reaching from 0.05 to 0.01.
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Table 7: Comparison between GCPO and baselines on Reach and PointMaze. The mean and variance
of % success rates are presented over 5 random seeds. Optimal values are highlighted in bold, and
sub-optimal values are underlined.

Task Reward SAC + HER + MEGA BC GCPO

Reach
MR 100.0±0.0 70.63±2.99 100.0±0.0

NMR 0.72±1.34 10.52±11.70 80.26±17.01

PointMaze
MR 100.0±0.0 75.96±5.34 93.33±3.06

NMR 4.17±0.93 22.8±3.71 47.50±8.06

Consequently, our customized version of the Reach task has a stricter criterion for determining goal
arrival, making it more difficult than the original version of Reach.

Reward Settings: The original rewards for both the PointMaze and Reach tasks are Markovian. To
evaluate the performance of our algorithm under different NMR settings, we design two distinct types
of NMRs. For the PointMaze, the NMR we designed is: the task is considered successful only if,
after the point reaches the goal, it moves away by at least a certain distance and then returns to the
goal. For the Reach task, the NMR we designed is: the Panda robot must first pass through a specific
waypoint before reaching the goal to be considered successful, and each goal has a different waypoint.
Both of these settings strictly adhere to the definition of NMR, where the reward is defined by the
states and actions over multiple steps.

Demonstrations: The demonstrations for PointMaze are sourced from Minari [18] (pointmaze-large-
v1), while the demonstrations for Reach are generated by us, with reference to the PID controller as
described in the official documentation [44].

D.2 Results

We evaluate SAC+HER+MEGA, BC, and GCPO on the PointMaze and Reach tasks under both MR
and NMR settings. Table 7 presents the success rates of these algorithms. It can be observed that
under the MR settings, GCPO exhibits similar performance to SAC+HER+MEGA. However, under
the NMR settings, where HER cannot be effective, the performance of GCPO is significantly better
than that of SAC. Taking into account the performance of GCPO on the VVC task as illustrated in
Section 4.2, we showcase the general applicability of GCPO across a variety of tasks.

E The Impact of Demonstrations on GCPO Training

In this section, we conduct a detailed experimental analysis of the impact of the distribution of goals
that Demonstrations can cover, demonstration quantity, and demonstration quality on the training of
GCPO.

E.1 Goal Distribution Covered by Demonstrations

To more intuitively illustrate the impact of the goal distribution in demonstrations on GCPO training,
we select three subsets of demonstrations from DE that are spatially distant from each other, compris-
ing all χ = 10 demonstrations for D[χ=10], all χ = 90 demonstrations for D[χ=90], and all χ = 170
demonstrations for D[χ=170].

It is evident that, for both the pre-trained policy and the GCPO policy, the achieved goals are
distributed around the goal distribution of the demonstrations. This suggests that the goal distribution
in the demonstrations biases the learning of both pre-training and GCPO, leading to policies that
share a similar goal distribution as the demonstrations. Therefore, the best practice when preparing
demonstrations is to make the distribution of goals covered by the demonstrations as closely resemble
the desired goal distribution as possible.
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Figure 7: Visualization of goals covered by demonstrations and achieved by policies. The pre-trained
policies with D[χ=10], D[χ=90], and D[χ=170] are denoted as π0

1 , π0
2 , and π0

3 , respectively. The
corresponding GCPO policies are denoted as π∗

1 , π∗
2 , and π∗

3 , respectively.

Table 8: Performance of GCPO on Reach, PointMaze, and VVC with 1000 demonstrations, and more
results on VVC with various demonstration quantities. The mean and variance of % success rates are
presented over 5 random seeds.

Task Demo Quantity Transition Quantity BC GCPO

Reach 1000 82589 70.63±2.99 100.0±0.0
PointMaze 1000 1000000 75.96±5.34 93.33±3.06

VVC + 10%DE 1000 294702 13.74±0.99 39.18±2.64
VVC + Dχ=90 144 42177 1.18±0.38 3.34±0.61

VVC + DE 10264 3106516 17.08±0.57 45.06±1.3

E.2 Demonstration Quantity

We note that commonly used RL demonstration datasets typically consist of 1000 demonstrations
[22]. Consequently, we evaluate the performance of GCPO on Reach, PointMaze, and VVC with
1000 demonstrations. In addition, we conduct an ablation study on demonstration quantity on VVC.
The results are presented in Table 8.

Demonstrations: The source of demonstrations for PointMaze and Reach is elaborated in Section D.
For GCPO, 10%DE is employed, as detailed in Section 4.3.1. Additionally, for comparison purposes,
we also present the performance of GCPO on the VVC task using D[χ=90], which comprises only
144 demonstrations with a flight path azimuth angle of 90, as described in detail in Appendix E.1,
and using DE . The results are presented in Table 8. It can be observed that on the relatively
simple PointMaze and Reach tasks, GCPO achieved nearly 100% success rate when using 1000
demonstrations. On the more challenging VVC task, the success rate with 1000 demonstrations
reached 81.12% of the success rate achieved with 10264 demonstrations, while also being significantly
higher than the success rate achieved with 144 demonstrations. These results indicate that across tasks
of varying complexity, GCPO can achieve good performance with the use of 1000 demonstrations.

E.3 Demonstration Quality

To obtain a demonstration set for comparison with DE , we generate trajectories for these goals using
all the policies trained in our experiments. For a specific goal, we retain only the shortest trajectory.
These generated trajectories are denoted as D′.
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Table 9: Demonstration quality of DE and D′.

Demonstrations Quantity Il Is

DE 10264 282.02±149.98 2.11±2.21
D′ 10264 101.42±32.41 10.19±8.74

Table 10: Performance of GCPO on VVC with demonstrations of different demonstration qualities.
s(π) indicates the success rate of policy π. The mean and variance of % success rates are presented
over 5 random seeds.

Demonstrations s(πBC) ↑ Il(πBC) ↓ Is(πBC) ↓ s(πGCPO) ↑ Il(πGCPO) ↓ Is(πGCPO) ↓

DE 17.08±0.57 241.72±81.36 1.97±1.97 45.87±3.09 133.86±53.24 6.84±5.60
D′ 19.10±0.22 122.81±54.36 8.85±9.60 39.26±2.02 150.59±63.89 18.11±12.69

We use two metrics to measure demonstration quality: Trajectory length Il. Since we employ (−1, 0)
sparse rewards, this implies that shorter trajectories yield a higher cumulative reward. Control
smoothness Is. In control problems, minimal control gains is expected to reduce wear on actuators.
Hence, we refer to [39] to define the control smoothness. Trajectory length and control smoothness
each describe certain characteristics of demonstrations from the distinct perspectives of reinforcement
learning optimization and optimal control, respectively. Table 9 shows the demonstration quality
of these two demonstration sets. It can be observed that: From an RL perspective, D′ is of higher
quality because the trajectories are shorter, leading to a higher expected cumulative reward. From a
control perspective, DE is better because the trajectories are smoother.

The performance of the BC policy πBC and the GCPO policy πGCPO trained on these two sets of
demonstrations is shown in Table 10. The results reveal that πBC closely aligns with the demon-
strations on both quality metrics, indicating that demonstration quality has a direct impact on BC.
Additionally, the BC policy trained on D′ has a slightly higher success rate, which we speculate is
due to D′ being more suitable for RL (the network architecture and training hyperparameters used to
generate D′ are the same as those for the BC policy). However, after the self-curriculum learning,
the GCPO policy corresponding to DE performs better and exhibits a shorter trajectory length. This
suggests that the influence of demonstration quality on GCPO’s online learning may not be as direct
as pre-training, and further research is required to understand this relationship.

In summary, on one hand, it is challenging to define demonstration quality suitable for RL through
a few metrics. On the other hand, demonstration quality does affect GCPO pre-training. How
demonstration quality potentially influences the self-curriculum learning of GCPO remains an
intriguing question for further exploration.

Furthermore, despite the aforementioned challenges, GCPO is capable of training well-performed
policies from non-expert demonstrations. The intrinsic reason is that GCPO employs online learning
to fine-tune pre-trained policies. Consequently, even if the demonstrations are non-expert and the
pre-trained policies perform poorly, GCPO can still continuously optimize these policies through
online learning.

In Section 4.2, although the average trajectory length of D0
E reached 281.83, covering only 20.24%

of goal space, the GCPO policy trained on it achieves a success rate of 45.87%, with an average
trajectory length of 134.47. This comparison indicates that D0

E consists of non-expert demonstrations.
On the other hand, in contrast to D3

E , which covers 78.55% of the goal space with an average
trajectory length of 116.56, D0

E is only a quarter in size and has trajectories that are 2.42 times longer,
implying a substantial decrease in its quantity and quality. Nonetheless, the GCPO policy trained on
D0

E achieves 76.58% of the success rate of the policy trained on D3
E .

F Extending GCPO with A Method for Solving NMR Problems

To demonstrate the effects of integrating a method for handling NMR problems into GCPO, we
extend GCPO with a basic method for addressing NMR problems, which involves extending the input
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Figure 8: Success rate of SAC+HER+MEGA and GCPO extended with consecutive states. ‘w/
framestack’ indicates that the policy input is extended with consecutive states, whereas ‘w/o frames-
tack’ denotes that the input remains the current state.

of the policy with consecutive states to make the reward Markovian [24]. We evaluate the extended
GCPO on the VVC task and show the result in Fig. 8.

It is evident that, regardless of whether it is the pre-trained policy or the GCPO policy or the
SAC+HER+MEGA policy, expanding the input of the policy leads to a certain degree of performance
degradation. We conjecture that this is likely due to the expansion of the policy’s search space, which
makes the original number of demonstrations and online learning resources relatively insufficient,
indirectly increasing the difficulty of solving the policy. Therefore, although expanding the input is
theoretically beneficial for addressing NMR problems, in practice, it also requires a balance between
the increased difficulty of the problem and the available resources.

G Societal Impacts

This paper introduces a general on-policy goal-conditioned reinforcement learning framework, GCPO,
which is capable of addressing both Markovian and non-Markovian reward problems. This flexibility
makes GCPO particularly well-suited for a wide range of practical applications that rely on non-
Markovian rewards, such as robotic arm control with stringent stability requirements and drone
control that demands steady goal achievement. However, in practical settings, it is imperative to pay
close attention to the evaluation of the GCPO policy, carefully analyzing the disparities between the
policy’s achieved goal distribution and the desired goal distribution of the actual task. Allowing the
policy to attempt goals beyond its capabilities in a production environment could result in hardware
failures, damage, and other problems.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim we make in the abstract and introduction is that we propose
an on-policy goal-conditioned reinforcement learning framework. We detail the proposed
framework in Sec. 3 and evaluate the effectiveness of each component in Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• If applicable, the authors should discuss possible limitations of their approach to
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our contribution poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our work does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

46001 https://doi.org/10.52202/079017-1462




