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Abstract

In this work, we introduce Scribbles for All, a label and training data genera-
tion algorithm for semantic segmentation trained on scribble labels. Training or
fine-tuning semantic segmentation models with weak supervision has become an
important topic recently and was subject to significant advances in model quality.
In this setting, scribbles are a promising label type to achieve high quality segmen-
tation results while requiring a much lower annotation effort than usual pixel-wise
dense semantic segmentation annotations. The main limitation of scribbles as
source for weak supervision is the lack of challenging datasets for scribble segmen-
tation, which hinders the development of novel methods and conclusive evaluations.
To overcome this limitation, Scribbles for All provides scribble labels for several
popular segmentation datasets and provides an algorithm to automatically generate
scribble labels for any dataset with dense annotations, paving the way for new
insights and model advancements in the field of weakly supervised segmentation.
In addition to providing datasets and algorithm, we evaluate state-of-the-art seg-
mentation models on our datasets and show that models trained with our synthetic
labels perform competitively with respect to models trained on manual labels.
Thus, our datasets enable state-of-the-art research into methods for scribble-labeled
semantic segmentation. The datasets, scribble generation algorithm, and baselines
are publicly available at https://github.com/wbkit/Scribbles4All.

1 Introduction

Semantic segmentation is one of the most crucial tasks for computer vision research and a key
component to scene understanding in many applications. While substantial advancements have
been made in designing highly accurate segmentation architectures [25, 6, 8, 7, 17], those models
heavily rely on detailed labels. The crafting of such dense labels constitutes a laborious and resource-
intensive process. This limitation impedes the availability of specialized datasets and the practical
deployment of vision algorithms in real-world scenarios. It is particularly pronounced in self-
driving applications, which demand immense amounts of training data [2, 32, 9] or in domains with
fine-grained classes [24, 54]. Those settings necessitate models capable of dealing with complex inter-
object relations, varying shapes, and scales. Even in the current era of large pre-trained foundation
models [27, 19], fine-tuning these models on custom, labeled data still remains a necessity for many
applications [48, 4, 42].

One popular approach to addressing the issue of label cost is weakly supervised semantic segmen-
tation (WSSS) [3, 49, 43] which has made significant progress in recent years. WSSS methods use
incomplete labelling in the form of image level labels [51] or bounding boxes [18, 26, 50] to label
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Figure 1: Visual difference in scribble-supervised performance – While predictions from scribble
supervised models are almost identical to fully supervised models for PascalVOC, the quality
of segmentation for scribble supervised Cityscapes models is visibly poorer (see dotted boxes),
highlighting the greater complexity of the dataset and the need for further research.

objects. Similarly, Sparsely Annotated Semantic Segmentation (SASS) is defined by labelling a
subset of the image pixels through coarse labels [11, 10], labelling every object through points [1]
or drawing scribbles [23, 37]. Previous research has shown that especially scribbles are a promising
means of attaining cheap yet powerful labels [23, 40]. While they take only slightly longer for the
annotator to label than points, they have been shown to enable stronger segmentation results [45, 21].
Annotating full segmentation images takes several minutes for object centric datasets like Pascal [24]
or even hours for more complex driving scenes [9, 30] while labelling ScribbleSup [23] took on
average about 25 seconds. Moreover, state-of-the-art methods gain 7–10% mIoU on PascalVOC [14]
for scribble labels over point labels [31, 45, 21]. This success has lead to a series of promising training
methods for SASS with scribbles [13, 39, 44].

However, currently, there exists only one popular segmentation dataset with scribble labels, namely
ScribbleSup, introduced by Lin et al. [23] for the PascalVOC dataset. An example image of it is
shown in Fig. 2. Two challenges arise for the research area of scribble-supervised segmentation
methods. Firstly, generalization of methods to other datasets cannot be verified. Secondly, PascalVOC
is too easy to serve as the sole benchmark for scribble-supervised methods as visualized in Fig. 1. It
consists mostly of images with one object class and the background class. By learning precise class
boundaries of the dominant background class, a model can already achieve high performance while
the challenge of learning object-to-object boundaries is less relevant. In contrast, modern semantic
segmentation faces additional challenges such as small object instances (e.g. poles in Cityscapes)
or a large number of semantic classes (e.g. 150 classes in ADE20K), which cannot be properly
benchmarked with PascalVOC (see Fig. 1).

We present an algorithm that derives scribble labels from fully labeled datasets which are functionally
equivalent to hand-drawn scribbles allowing us to bring scribble-supervision to a variety of popular
and challenging segmentation datasets. Our datasets enable future research on segmentation methods
trained or fine-tuned on scribble labels. Explicitly, we extend the applicability of scribble-based
segmentation methods to the broad range of available datasets such as Cityscapes [9], ADE20K [54],
KITTI360 [22], and more. Our main contributions can be summarised as follows:

• We present an automatic scribble generator for any fully labeled segmentation dataset, enabling
future research into state-of-the-art models for scribble-supervised segmentation.

• We introduce s4Pascal, s4KITTI360, s4Cityscapes and s4ADE20K, four automatically generated
datasets with scribble labels.

• We benchmark state-of-the-art segmentation methods on our datasets, showing that models
trained with our scribbles perform on-par with models trained on manually created scribbles.

2
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Figure 2: Overview of label types
– Left to right: Full PascalVOC se-
mantic label, scribble labels created
by our scribble generation algorithm
for s4Pascal, hand-drawn scribble la-
bels from ScribbleSup.

2 Related Work

In this section, we provide a structured overview of the research that is of particular relevance for our
work and the current state-of-the-art with respect to scribble labelled datasets.

Weakly Annotated Semantic Segmentation (WASS) Methods for WASS have been trained using
image-level labels [29, 49, 43] or bounding-box labels [18, 26]. While image-level labels are fast
to obtain, they suffer from the lack of pixel-level information, which renders them unsuitable for
complex scenes. Bounding-boxes offer spatial supervision on individual objects but fail to deal
with overlapping, not box-aligned objects. In contrast to WASS labels, scribbles provide a better
supervision signal and are cheaper to obtain than bounding boxes [45]. The latter suffer from added
challenges such as the overlap of boxes.

Sparsely Annotated Semantic Segmentation (SASS) Related to supervision with weak labels,
SASS is concerned with using labeled pixel subsets, allowing direct supervision on sparse regions
of the image. The two main label types for SASS are point labels [1] and scribbles [23], which led
to several follow-up representations [11]. Depending on the requirements and domain, those other
labelling strategies are also used, such as coarse annotation [11, 10]. The latter comes with the
benefit of being more expressive but also requires more effort. Scribbles have been demonstrated
to be a Pareto-optimal choice between labelling effort and segmentation quality. Unal et al. [36]
introduce ScribbleKITTI for SemanticKITTI and demonstrate that scribbles can lead to approximately
supervised performance in the 3D domain. Scribbles, traditionally, require a human annotator, which
entails the need for further resources to provide the respective labels, hindering model research and
development. In this work, we propose a method to automatically generate scribble labels from dense
2D annotations, providing excellent benefits for the development of future SASS methods.

Training SASS models. In contrast to a dense semantic label, the labels used for SASS do not
provide information on the object outline, leading to challenges in class boundary estimation [23].
Several methods utilise auxiliary tasks such as edge detection [40] or saliency [52] to improve
performance. However, those methods tend to suffer from model errors in the auxiliary task, which
limit their prediction capabilities[21]. Other approaches [34, 33, 37] use regularised losses that model
interdependencies of the labeled and unlabeled pixels. Often, these are combined with CRFs [20],
which are adapted for region growing on the pseudo labels generated by the model and for overall
refinement of the predictions [49, 41, 44]. For example, URSS [28] addresses the inherent model
uncertainty in semi-supervised training by applying random walks and consistency losses in a self-
training framework. Similarly, Valvano et al. [38] uses self-training but with multi-scale consistency
while TEL [21] achieve performance increases by introducing a similarity prior through a novel
tree-based loss. Most recently, SASformer [31] utilises the attention mechanisms in transformer
architectures, using global dependencies to achieve more accurate segmentation results, marking the
trend away from auxiliary tasks and two-stage approaches towards end-to-end trainable frameworks.
To validate our automatic scribble labels, we train and evaluate a subset of these recent methods on
our datasets and show performance comparative to manual labelling.

Scribble Annotation Datasets We present the second scribble image dataset so far, only preceded by
ScribbleSup [23]. ScribbleSup only contains labels for the older PascalVOC [14] dataset. In contrast,
we provide labels for a larger set of currently relevant datasets and, additionally, a method for the
automatic generation of scribbles for any fully-annotated dataset.

3 Automated Scribble Generation

This section introduces our automatic scribble generation method, before the individual generated
datasets are described in Sec. 4. We begin by shortly outlining design objectives in Sec. 3.1, before
describing the detailed algorithm in Sec. 3.2.

3
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a) b) c) d) e)

Figure 3: Scribble Generation – a) Size dependent erosion, b) COM in red, sampling of points on
the edge in green, determination of the approx. farthest pair in darker green and tentative scribble
in blue c) Sampling of two extra points along the tentative scribble d) Fitting final scribble through
points e) Scribble overlayed on initial segmentation map.

3.1 Design Objectives

The presented scribble generation algorithm takes an image with corresponding dense segmentation
labels as input and produces a single scribble, represented as a set of points, for each object in the
image. We formulate the following design objectives:

1. Mimic human annotations. The generated scribbles should approximately resemble scribbles
that human annotators draw. Specifically, they are supposed to be more coarse for larger, simple
geometries and more precise for detailed objects, as would be the case with hand-crafted labels.
Also, the scribble is expected to go roughly through the centre part of an object and not to come
too close to its margins for a large portion of its length.

2. Probabilistic generation. The generation of labels should occur in a probabilistic fashion to
prevent mean collapse when confronted with similar shapes, maintaining enough variance in the
labelling process.

3. No boundary violation. We also apply hard constraints that prevent scribbles from violating
any class boundaries.

We design the algorithm described in Sec. 3.2 to reach these objectives.

3.2 Scribble Generation Algorithm

This section describes the scribble generation algorithm, as detailed in Alg. 1 and visualized in Fig. 3.

Preprocessing. The algorithm commences by separating the semantic maskGTmask of an image by
classC. Then, we apply class-wise connected component analysis to obtain separate masks for each
instance of the respective class. Each object mask b ∈ B of J total objects masks is subsequently
subjected to morphological erosion in an amount ϵ1 depending on the object area to comply with
design objective 1 as shown in Fig. 3a). If an object is separated into multiple masks at this stage,
each mask will be considered an individual object for further processing. Through this, we ensure
that objects with complex non-convex shapes are properly labeled as well by generating multiple
scribbles. If two objects overlap in a single connected component, they are considered as a single
instance. This splitting procedure is only applied in the first erosion step. After the following ones
(see below), smaller separated objects are removed instead.

Polynomial fitting. After the preprocessing procedure, the algorithm fits a curve through each
obtained mask by iteratively repeating the following process until a valid scribble annotation is found
or the blob is completely eroded: A fixed-rate ϵ2 binary erosion is applied. After that, the edge image
of the blob e and its centre-of-mass (COM) cM is calculated. In the case of strongly non-convex
shapes, it can occur that the COM is not part of the image. If that happens, the object is subjected to
a skeletonisation operation in the style introduced by Zhang et al. [53] and the closest point in terms
of L2-distance of the skeleton wrt. to the true COM is used as a COM substitute.

Hand-drawn scribbles usually follow the object’s predominant direction up to some human noise
factor. To imitate this behaviour, we randomly sample Q points on the object edges and select a
pair (p1, p2) with the maximum distance ∥p1 − p2∥2 by farthest point sampling. The pair spans the
furthest distance of the object most of the time while retaining a chance of suboptimal solutions and
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Algorithm 1 Scribble Generation
Input: GTmask ∈ Nm×n

0

Cmask ← separateClass(GTmask) ▷ Cmask ∈ ZC×m×n
2

B ← componentAnalysis(Cmask) ▷ B ∈ ZJ×m×n
2

for b ∈ B do ▷ b ∈ Zm×n
2

b̂← binaryErosion(b, ϵ1(area(b))) ▷ b̂ ∈ Zm×n
2

while b̂ ̸= ∅ do
b̂← binaryErosion(b̂, ϵ2)

e←
√

(Sx ∗ b̂)2 + (Sy ∗ b̂)2 ▷ S - Sobel operator, e ∈ Zm×n
2

cM ← centerOfMass(b̂) ▷ cM ∈ Z2
+

if cM /∈ b̂ then
cM ← skeletonCOM(b̂, cM ) ▷ Closest pt. in L2-dist. to COM in skeleton of b̂

end if
for i ∈ N do

P ← sample(e, Q) ▷ Q ∈ Z+, P ∈ ZQ×2
+

(p1, p2)← furthest-pair(P , L2) ▷ max. dist. by L2-norm, p1, p2 ∈ Z2
+

ĉM ← cM + ϵ, ϵ ∼ N (0, σcom)

β̂0, β̂1, β̂2 ← argminβ0,β1,β2
||
∑

j∈{p1,p2,ĉM} jy − (β0 + β1jx + β2j
2
x)||2

F2(x) = β̂0 + β̂1x+ β̂2x
2

σ ←area(b̂)/α
(p3, p4)← sample(F2(x), 2) + ϵ, ϵ ∼ N (0, σ) ▷ Sample from polynomial F2

β̂0, β̂1, ..., β̂4 ← argminβ0,...,β4
||
∑

j∈{p1,..,4,ĉM} jy − (β0 + ...+ β4j
4
x)||2

F4(x) = β̂0 + β̂1x+ ...+ β̂4x
4

if F4(x), x ∈ [p1, p2] ⊂ b̂ then
break

end if
end for

end while
end for
return F4(x), x ∈ [p1, p2]

variance like in the case of a human annotator. Random sampling allows the algorithm to explore an
extended solution space if the scribble generation takes multiple iterations for the object. The returned
point pairs and the COM with added noise ĉM are utilised to obtain a second-order polynomial F2 as
depicted in Fig. 3b), by solving the linear least-squares problem. We choose x as the coordinate with
the largest distance between p1 and p2.

The next step improves the label variance of the scribble shapes and satisfies design objective 2. For
this, two points p3, p4 are sampled from F2, adding area-dependent Gaussian noise. As the final step,
ĉM , p1, ..., p4 are used to find a 4th-order polynomialF4 as shown in Fig. 3d).

If the curve is entirely within the blob and does not violate any class boundaries (objective 3), the
label is considered valid. Otherwise, the process of sampling from the edge and fitting curves is
repeated up to N -times. If this does not yield a valid scribble, the algorithm is restarted.

4 Automatic Scribble Datasets

We now describe the datasets we created with the algorithm presented in Sec. 3.2. All datasets are
publicly available and can be used to advance research in the area of scribble-supervised models.

s4Pascal Dataset The Pascal VOC 2012 dataset [14] is a widely used benchmark dataset in the
field of object detection, image classification and semantic segmentation. It consists of images
collected from various sources and covers 20 object classes and the background class. In terms of
size, the Pascal VOC 2012 dataset for semantic segmentation contains 10,582 training images and
1,449 validation images when using the augmented version introduced by Hariharan et al. [15]. The
dataset’s semantic mask includes a “do not care” label that is applied between class boundaries and
fine-grained structures of the same class.

5
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Table 1: Quantitative Evaluation of the Scribbles for All (s4) datasets – When compared, Scrib-
bleSup and s4Pascal show very similar characteristics with respect to the number of labeled pixels
and the number of labeled pixels that are within a defined distance to the class boundary. The average
number of scribbles per image differs, however.

Dataset Statistical Property
ours train/val # cls. % px. lab. α10px α20px α30px avg. scribbles

ScribbleSup 10,582/1449 21 2.07 % 11.3 % 27.49 % 44.38 % 3.89
s4Pascal ✓ 10,582/1449 21 2.25 % 10.1 % 30.08 % 46.50 % 5.11
s4Cityscapes ✓ 2975/500 19 2.36 % 13.8 % 27.45 % 35.24 % 42.27
s4KITTI360 ✓ 49,000/12,000 16 2.49 % 5.09 % 16.93 % 29.80 % 14.94
s4ADE20K ✓ 25,574/2,000 150 4.71 % 4.35 % 9.10 % 12.03 % 17.27
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Figure 4: Class distribution for s4Pascal and
ScribbleSup – The object class distribution wrt.
to the entirety of GT-pixels is very similar with
the exception of the background class that is more
heavily labeled in the s4Pascal dataset.
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Figure 5: Class distribution for s4KITTI360
and s4Cityscapes – The share of pixels labeled
for each class is depicted in bright colors while
the transparent bars represent the share of that
class in the fully supervised dataset.

The scribble labels for PascalVOC were introduced by Lin et al. [23] as the ScribbleSup dataset. Fig. 2
depicts a segmentation map and scribble labels from ScribbleSup on the right. Given that ScribbleSup
is the only available dataset with hand-crafted scribble labels and provides dense semantic maps as
well, it is the suitable reference to evaluate the synthetic scribble generation algorithm described in
Sec. 3. Dense segmentation maps are required since those serve as the input for the synthetic scribble
generation. The new synthetic scribble dataset is created using the dense labels of the Pascal VOC
21-class dataset. It is from now on referred to as s4Pascal. Label generation includes all object
classes as well as the background class. The “do not care” areas of the segmentation maps are
omitted. Therefore, those are also not valid points for the scribble generation algorithms, while the
hand-crafted labels appear to have no clear policy on whether scribbles are allowed to intersect “do
not care” regions. Overall, s4Pascal adds synthetic scribbles to the PascalVOC dataset, allowing for
model training with three different types of segmentation labels.

In general, the scribble labels of ScribbleSup and s4Pascal are statistically very similar. As shown
in Tab. 1 both contain approximately the same share of labeled pixels and exhibit similar closeness
of scribbles very close to the class boundaries (α10px). The same is true for the overall spatial
distribution of scribbles within the objects the label (α20px, α30px) corresponds to. Being this similar,
their visual appearance is close as well, as depicted in Fig. 2. Likewise, the class-wise distribution
of scribbles depicted in Fig. 4 shows no significant aberrations when comparing the two label sets.
Consequently, the scribbles generated by our scribble algorithm mimic the human-annotated labels
closely. The only significant difference lies in the average number of scribbles used to label each
image as shown in Tab. 1. This behaviour is explained by the human scribbles partially drawing over
the don’t care areas of the dataset which is prohibited for the algorithm and for more complex objects,
the automatically generated labels may be broken down into multiple scribbles while the human may
draw a single more complex line.

Importantly, as can be seen from Tab. 2 and as discussed in Sec. 5.2, the results obtained with
ScribbleSup and s4Pascal are similar for various segmentation algorithms, further highlighting the
similarity of our generated scribbles to human scribbles.

6
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Table 2: Quantitative comparison of SOTA methods on s4-datasets – Alongside the absolute
performance expresssed in mIoU, we also list the segmentation results with respect to the fully
supervised model (Sup.). The methods are grouped by their respective encoder backbone. The *
marks values taken from literature.

Dataset mIoU ↑
SegFormer-B4 [46] DeepLabV3+ [5]

Ours Sup. EMA SASformer [31] Sup. TEL [21] AGMM [45]

ScribbleSup [23] 86.6 79.2 79.5∗ 84.6∗ 76.4 76.8
s4PASCAL ✓ 86.6 78.8 79.0 84.6∗ 76.8 73.8

s4Cityscapes ✓ 83.8∗ 67.7 65.8 78.3∗ 64.5 56.6
s4KITTI360 ✓ 66.6 57.4 49.7 64.8∗ 59.7 49.6
s4ADE20K ✓ 51.1∗ 37.7 41.4 46.8∗ 39.6 35.4

Rel. Performance ↑
Ours Sup. EMA SASformer Sup. TEL AGMM

ScribbleSup - 91.5 % 91.8 % - 90.3 % 90.7 %
s4PASCAL ✓ - 91.0 % 91.2 % - 90.8 % 87.2 %

s4Cityscapes ✓ - 80.8 % 78.5 % - 82.4 % 72.2 %
s4KITTI360 ✓ - 86.2 % 74.6 % - 92.1 % 83.1 %
as4ADE20K ✓ - 73.8 % 80.4 % - 84.6 % 69.3 %

Further Automatic Scribble Labeled Datasets The lack of different scribble labeled datasets
impedes thorough benchmarking of scribble-supervised methods under different domains. To alleviate
this, we apply the scribble generation algorithm to a selection of popular segmentation datasets.
Labeling these provides the foundation for benchmarking SOTA methods in the next step. We
introduce s4Cityscapes which is a set of scribble labels for the Cityscapes dataset [9] that is known for
the broad range of object scales and object sizes it requires the segmentation model to learn. Due to
the high level of detail in the data, the scribble algorithm is parameterized such that also small objects
are labeled. Furthermore, we provide s4KITTI360 which contains scribble labels for KITTI360 [22]
which like Cityscapes is a self-driving domain dataset. In contrast to the latter, it contains a notably
higher number of labeled images but a lower level of detail in ita annotations. Like Pascal, those
datasets only contain a small number of object classes. It is also important to asses how models can
cope with fine-grained classes. Thus, we further provide scribble labels s4ADE20K for the ADE20K
dataset [54], which consists of 150 classes.

The different properties of these datasets translate into different dataset statistics for the automated
scribbles. While the number of scribbles per scene is similar for ADE20K and KITTI360, the share of
labeled pixels is higher for ADE20K due to the lower image size as shown in Tab. 1. The dominance
of furniture-related classes, doors, windows and other convex geometric objects further leads to
s4ADE20K having scribbles with a relatively high distance to class boundaries. When looking at the
two self-driving datasets, the higher level of detail and small objects in Cityscapes becomes apparent
as the average number of scribbles per image is more than double that of KITTI360. The higher
prevalence of slim objects such as poles and traffic-lights/signs moreover entails greater closeness to
class boundaries. Further details on the class distribution are visualised in Fig. 5.

The datasets generated in this work are chosen to demonstrate the versatility and usefulness of the
proposed scribble generator. The algorithm can be applied to all pre-existing datasets that contain
dense segmentation maps, making it universally applicable. Further information on the algorithm
runtime per dataset conversion is included in App. A.3.

5 Experiments

In this section, we perform evaluations on the proposed datasets. The section begins with providing
implementation details in Sec. 5.1, before presenting segmentation experiments in Sec. 5.2, a scribble
length ablation in Sec. 5.3, and a discussion about limitations in Sec. 5.4.
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Figure 6: Qualitative performance on the s4-datasets and ScribbleSup – Shown are the input
image overlaid with the corresponding scribbles, the EMA-model prediction and the ground truth.
Color legends can be found in App. A.1.

5.1 Implementation Details

We evaluate the s4-scribble datasets using three current SOTA methods, namely Tree Energy
Loss (TEL) [21], AGMM-SASS [45] and SASformer [31]. Both ScribbleSup and s4Pascal are trained
according to the information provided by the authors and the published code. Hyperparameters for
s4ADE20K and s4Cityscapes were also kept at the values described in TEL and AGMM-SASS. For
training ADE20K and Cityscapes on SASformer, we used the same learning rates as in TEL. For
KITTI360 we found the hyperparameters for Cityscapes to be permissive. All models were trained
on four RTX 8000 GPUs. All models were trained in a single-stage process without postprocessing
such as applying CRFs. More information is provided in App. A.5.

Additionally, we also train on a simple mean-teacher [51, 47, 35] setup with a Segformer-B4 [46]
backbone to provide a naive WSSS baseline that does not make any specific prior assumptions like
specialised losses, TEL, or architecture dependencies, SASformer. The training procedure was kept
as published for SegFormer with additional augmentations for the student through CutOut [12] and
AugMix [16]. The loss is composed of an equally weighted supervised loss from the scribbles and a
KL-divergence loss informed by the teacher.

5.2 Baseline Scribble Datasets

As revealed by Tab. 2, the majority of three of the four methods used for comparing the ScribbleSup
and s4Pascal datasets leads to very similar segmentation results differing 0.5 % mIoU or less. While
EMA, and SAS perform better on ScribbleSup, TEL performs better on s4Pascal. The only method
where the two label sets lead to different results is AGMM-SASS which shows a decline of approx. 3
% when trained with s4Pascal showing that some SASS methods are more susceptible to changes
in label distribution than others. In conclusion, these results validate our observation from Sec. 4
that our scribble generation algorithms produce labels that are almost equivalent to human-created
scribble labels. For class-wise evaluation, refer to App. A.4. Comparing scribble-supervised with
fully-supervised models, the two methods with a SegFormer-B4 backbone show about 92 % relative
performance, while the methods with ResNet101/DeepLabv3+ architectures both reach about 90 %
relative performance as listed in Tab. 2. There is no relevant performance difference on ScribbleSup
between the different methods that share the same backbone architecture, giving further evidence that
the current benchmark is saturated.

This insight is supported by the results obtained from experiments on the s4ADE20K, s4Cityscapes
and s4KITTI360 datasets. The typical relative performance drops to approx. 80 % as shown in Tab. 2.
The more challenging datasets also lead to reduced mIoU values in absolute terms which is perceivable
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Figure 7: Effect of scribble length on prediction performance – The different methods exhibit
varying robustness with respect to changes in the scribble length, evaluated here for the s4ADE20K
dataset. The TEL method is less strongly affected than the naive EMA-model, while the effects
on SASformer are the most severe. This highlights the importance of scribble length ablations for
comprehensive method benchmarking.

on the examples shown in Fig. 6. Additionally, clear disparities between method performances can
be observed as well as different best relative performances depending on the dataset. For instance,
the high number of training images enables TEL to reach more than 90 % relative performance on
s4KITTI360 while the best value for the similar but smaller dataset s4Cityscapes is approx. 10 %
mIoU lower. We therefore hope that our datasets can facilitate research into scribble-labeled semantic
segmentation models towards closing this performance gap.

5.3 Scribble Length Ablations

Shrinking the initial scribbles to different proportions leads to varying deterioration of prediction
results depending on the applied methods. Fig. 7 illustrates that TEL is the most robust towards
reductions in scribble length dropping by less than 2 % mIoU as the scribble length is reduced to a
tenth of the original size. More sensitive is SASformer with a decline of about 7 % mIoU. While
not being the best-performing SOTA method for full scribble lengths and small reductions, TEL
leads to better results for stronger degradations. The naive mean teacher shows similar behaviour
to SASformer though less pronounced. These results illustrate the importance of scribble length
ablations when benchmarking methods to aid in obtaining a more thorough understanding of how the
developed methods react to label variations.

5.4 Limitations

The proposed automatic scribble generation algorithm requires a dataset with existing semantic
segmentation ground truth. As the purpose of this paper is a more broad evaluation of scribble-
supervised methods on common segmentation scenarios, feasible basis datasets are available for
many domains. However, for new or custom use cases, this assumption might not hold and manual
scribble annotations can be necessary.

6 Conclusion

We presented new scribble annotations for four popular semantic segmentation datasets and a generally
applicable method to generate those. Our work has shown that using more complex datasets reveals a
widening gap between full supervision and scribble SOTA methods, compared to previous datasets.
Furthermore, we demonstrated that different methods cope differently well with challenges such as
shorter scribbles. Therefore, we suggest expanding the evaluation procedures for scribble-supervised
segmentation to multiple datasets and also providing scribble-length ablations to show the robustness
of the methods. We hope that our s4-datasets will drive a robust benchmarking of future scribble-
supervised methods to close the gap to densely-supervised segmentation training. In particular, we
see a strong potential in adapting vision foundation models with scribbles to custom applications.
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A Supplementary Material

A.1 Color Legends

This section provides the color legends for the segmentation maps and ground-truth images that are
displayed in Fig. 6 of the main paper. Colormaps are provided for (s4)ADE20K, (s4)Cityscapes and
(s4)KITTI360. As only two classes, background and areoplane, are present in the (as)PascalVOC
example, no additonal colort legend is provided for this dataset.

Figure 8: Color legend for (s4)Cityscapes and (s4)KITTI360 – The driving datasets are colored
according to the same color-scheme in this paper to aid comprehension. Note that some classes of
Cityscapes do not exist in KITTI360. Also not all classes may be present in the images shown in
Fig. 6.

Figure 9: Color legend for (s4)ADE20K – Only the classes that are actually present in the segmenta-
tion map and ground-truth displayed in Fig. 6 are shown here. Since ADE20K contains 150 classes,
providing a full color legend would not be expedient.

A.2 Parameterization of the Scribble Generation Algorithm

The parameters for the scribble generation algorithm were adjusted according to the resolution and
image scales of the respective datasets. For instance, the higher resolution of Cityscapes requires
different settings for the ϵ-variables of the algorithm. The exact values are listed in Tab. 3 respectively
Tab.,4. The scribble generation code can be found under https://github.com/wbkit/Scribbles4All.

Table 3: Scribble Generation Parameters for s4Pascal & s4KITTI360 – The parameters are
explained in Sec. 3.2. Min. blob size refers to the minimum size of a dense label instance to be
assigned a corresponding scribble. area refers to the area of the label instance occupied in pixels
from which the scribble is created.

Parameter s4Pascal s4KITTI360

ϵ1(x)


2 x ≤ 0.003

2 + x−0.007
0.063

0.003 ≤ x ≤ 0.15

20 0.15 ≤ x


3 x ≤ 0.007

3 + x−0.007
0.063

0.007 ≤ x ≤ 0.07

20 0.07 ≤ x

ϵ2 2 3
σcom

area
20

area
20

σ area
10

area
10

N 20 10
Q 25 25
min. blob size 80 px 200 px
line thickness 3 3
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Table 4: Scribble Generation Parameters for s4Cityscapes & s4ADE20K – The parameters are
explained in Sec. 3.2. Min. blob size refers to the minimum size of a dense label instance to be
assigned a corresponding scribble.

Parameter s4Cityscapes s4ADE20K

ϵ1(x)


5 x ≤ 0.007

5 + x−0.007
0.063

0.007 ≤ x ≤ 0.07

40 0.07 ≤ x


2 x ≤ 0.003

2 + x−0.003
0.147

0.003 ≤ x ≤ 0.15

20 0.15 ≤ x

ϵ2 2 2
σcom

area
20

area
20

σ area
10

area
10

N 10 20
Q 25 25
min. blob size 400 px 80 px
line thickness 5 3

A.3 Runtime of the Scribble Generation Algorithm

In the following, we list the processing speed of the proposed scribble generation algorithm. The
algorithm’s image throughput is dependent on the complexity of the processed datasets and the
chosen parameters. For the four datasets presented in our work, the processing speed is listed in
Tab. 5. Evaluations were performed on a workstation with an Intel Xeon Gold 6144 processor (8
cores w. hyperthreading). The algorithm is parallelizable and performance scales linearly per core.
On a single workstation, the conversion of Pascal and Cityscapes is taking less than an hour while the
bigger datasets are in the range of a couple of hours. In practice, the algorithm’s runtime is secondary
as a dataset only needs to be converted once.

Table 5: Processing speed for the presented datasets – Average processing speed to process the
listed datasets with the scribble generation algorithm to create the s4-Version of those datasets.

Dataset Processing Speed

PascalVOC 12.97 img/s
ADE20K 7.43 img/s
KITTI360 4.53 img/s
Cityscapes 1.23 img/s

A.4 Further Dataset Information

This section provides class-wise dataset statistics for the ScribbleSup and s4Pascal datasets for
further statistical comparison as listed in Tab. 6. Furthermore, the class-wise label distributions
of the s4KITTI360 and s4Cityscapes datasets as visualised in Fig. 4 and Fig. 5 are listed in Tab. 7
respectively Tab. 8.
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Table 9: Hyperparameters used for Benchmarking – The hyperparameters for Pascal were kept as
documented by the authors of the reference methods and are therefore not listed below. The optimiser
for all methods except the EMA was SGD with momentum. The former was trained with AdamW.
SW refers to sliding window inference, while FI denotes full image inference.

Dataset Method lr BS train_crop inference

s4KITTI360 EMA 6e-5 8 (376,512) SW
SASformer 1e-4 8 (512,512) SW
TEL 0.005 8 (376,512) SW
AGMM-SASS 0.003 8 (512,512) FI

s4Cityscapes EMA 4e-5 2 (512, 1024) SW
SASformer 0.001 4 (512,512) SW
TEL 0.006 4 (512, 1024) SW
AGMM-SASS 0.002 4 (721, 721) FI

s4ADE20K EMA 6e-5 8 (512,512) FI
SASfomer 5e-4 8 (512,512) FI
TEL 0.001 8 (512,512) FI
AGMM-SASS 0.001 8 (512,512) FI

A.5 Further Benchmarking Information

This section documents the hyperparameters used to train the models using the codebases provided
by the authors of the reference methods [21, 45, 31]. The main parameters are already provided in
Sec. 5.1. This section provides a detailed listing. further details are to be found in Tab. 9.

A.6 Further Evaluation of EMA method on s4Pascal and ScribbleSup

Additionally, the training of the EMA methods allows for insights into the training process for
s4Pascal. As illustrated in Fig. 10 the model’s teacher maintains a relative constant certainty with
respect to object classes and iteratively refines its prediction certainty on the background class. As the
background is present in each image, the model can learn to identify this class and since most Pascal
images are one object and the background therefore refine the overall segmentation map. Hence, we
conclude that the overall setup of this dataset does not facilitate learning to apprehend inter-object
class boundaries as necessary for more complex scenes but rather focuses on the background class.
This observation is not exhaustive but provides a possible explanation for the reduced performance
gap of scribble-supervised segmentation methods on ScribbleSup and s4Pascal.

Epoch 1 Epoch 2 Epoch 4 Epoch 8 Epoch 16

Figure 10: EMA boundary learning – The EMA for s4Pascal mainly refines its class boundaries by
becoming more confident on the background class. Solid colors are areas where the model is more
than 99% certain. Light areas cover the actual prediction where certainty is below that threshold.
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B Dataset Datasheet

B.1 Motivation

• For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.
The datasets were created to provide datasets beyond ScribbleSup for the task of scribble-
supervised semantic segmentation which is a weakly-supervised segmentation task. It
aims to provide more diverse and challenging datasets to researchers in this field adding
s4KITTI360 and s4Cityscapes for segmentation in the autonomous driving domain,
asADE20K for many-class segmentation and s4Pascal as another scribble set for Pas-
calVOC to verfify and validate our scribble generation algorithm. The datasets facilitates
future research into scribble-supervised methods.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
The datasets were created by Wolfgang Boettcher as part of his Master’s thesis at ETH
Zurich, Switzerland and his PhD research for the Max-Plack Institute for Informatics,
Germany.

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
N/A

• Any other comments?
None.

B.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions be- tween them; nodes and edges)? Please provide a description.
The datasets created contain class-wise semantic labels for the aforementioned segmentation
datasets. The labels are available as semantic images and coordinate sequences. For
the instances covered by the datasets our labels are designed for, refer to the respective
documentation of the base datasets.

• How many instances are there in total (of each type, if appropriate)?
The only instances provided are the scribble labels. The statistics of those are documented
in the main paper and the first part of the supplementary material.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).
The instance coverage is defined by the underlying base datasets. For more details, refer to
the respective documentation of the base datasets.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
The datasets provided by us exclusively contain labels as semantic images and coordinate
sets. For more details, refer to the respective documentation of the base datasets.

• Is there a label or target associated with each instance? If so, please provide a description.
All instances labelled in the underlying base datasets are also labelled in the datasets we
created as we derive the scribble labels from the full semantic labels of the base dataset.

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information but might include, e.g., redacted text.
The datasets provided by us only contain the labels. For more details, refer to the respective
documentation of the base dataset.
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• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
The datasets provided by us only contain the labels. For more details, refer to the respective
documentation of the base datasets.

• Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.
We strongly recommend using the same data splits as the base datasets we created the
scribble datasets for. For more details, refer to the respective documentation of the base
datasets.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
The scribble labels are created from the semantic masks of the base datasets. Therefore,
noise or labelling errors of the datasets may have propagated to our scribble labels. Since
most label noise occurs at class edges and our scribble generation algorithm erodes the
edges before creating scribbles, it stands to assume that the label noise in our datasets is
smaller or equal to the base dataset. We have sanity checked the created scribble labels such
that we can conclude that our algorithm does not introduce additional labelling errors and is
consistent with the original semantic labels.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a dataset consumer? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.
The datasets we provide only contain the scribble-labels for already existing segmentation
datasets. Therefore, the dataset is not self-contained and relies on external sources for the
input data and fully annotated validation/test data. The external datasets our scribble datasets
rely on are all popular and established datasets in the semantic segmentation community
that have been actively maintained in the past (Cityscapes, KITTI360, ADE20K). Therefore,
the persistence of these datasets is save to assume although there are no formal guarantees.
Due to the varying licenses associated with the different base datasets, we do not provide a
"complete" dataset with our labels and the external content. Users will have to download the
base dataset first and then integrate the scribble datasets into the respective dataset structures.
Documentation on how to do this will be provided on the project GitHub page.
All external base datasets are subject to the respective license they have been published
under. Users will have to check their eligibility with respect to the base datasets on their own
and adhere to their terms. The links to the license terms of the four base datasets are listed
below. ADE20K was published under the CC-BSD3 license. KITTI360 was publsihed under
CC BY-NC-SA 3.0. Cityscapes was published under a proprietary license which limits
use to academia and requires citation of the Cityscapes paper. Therefore, we recommend
checking that license manually if in doubt.
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.cvlibs.net/datasets/kitti-360/
https://www.cityscapes-dataset.com/license/
https://groups.csail.mit.edu/vision/datasets/ADE20K/terms/

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
The scribble labels provided by us contain none of the aforementioned types of restricted
data.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why. The scribble
labels provided by us contain no offensive, insulting, threatening content or data that could
cause anxiety.
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B.3 Collection Process

• How was the data associated with each instance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If the data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.
The datasets provided by us only contain the labels, which are created using the proce-
dure described in the paper. For more details on the input data, refer to the respective
documentation of the base datasets.

• What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated?
The scribble labels in our datasets were created from the dense segmentation labels of the
underlying base datasets by the algorithm presented in the main paper. The main paper also
thoroughly validates this generation algorithm by the statistical and functional properties of
the created datasets.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
Our dataset contains scribble labels for the entirety of the labelled set of the underlying base
datasets.

• Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
The datasets were created by the main author himself as part of his master’s thesis and regu-
lar PhD work in accordance with the compensation standards of ETH Zurich respectively
Max-Planck Institute for Informatics.

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the time- frame in which the data associated with the instances was
created.
The datasets provided by us only contain the labels. For more details on the timeframe of
input data capture, refer to the respective documentation of the base datasets.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well
as a link or other access point to any supporting documentation.
Our research was not subjected to an ethical review process due to the nature of our work
and the respective guidelines at ETH Zurich and MPI for Informatics.

B.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remaining questions in this section.
The datasets provided by us only contain the labels. For more details on the processing of
input data capture, refer to the respective documentation of the base datasets.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.
N/A

• Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.
Yes, the algorithm to create our labels is publicly available on Github.

• Any other comments?
None
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B.5 Uses

• Has the dataset been used for any tasks already? If so, please provide a description.
The datasets have been used to benchmark existing state-of-the-art scribble-supervised
semantic segmentation methods.

• Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
All data and code that relates to the dataset are available from
https://github.com/wbkit/Scribbles4All.

• What (other) tasks could the dataset be used for?
The dataset is usable for all training methods for sparsely supervised semantic segmentation.
For instance, point label methods can be tested on the dataset as well. Furthermore, the
dataset can be used for finetuning vision foundation models to a specific domain.

• Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a dataset consumer might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks
or harms (e.g., legal risks, financial harms)? If so, please provide a description. Is there
anything a dataset consumer could do to mitigate these risks or harms?
To our knowledge, no aspect of our work has exposure to the aforementioned risk or
limitations.

• Are there tasks for which the dataset should not be used? If so, please provide a
description.
To our knowledge, there are no specific tasks the dataset should specifically not be used. If
in doubt, refer to the documentation of the underlying base datasets.

• Any other comments?
None.

B.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
The dataset is made available to the general public under the stated license to use
via GitHub under the CC BY 4.0 license. The links for access can be found here:
https://github.com/wbkit/Scribbles4All.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does
the dataset have a digital object identifier (DOI)?
The central access point for all items related to the datasets is the project’s GitHub reposi-
tory (https://github.com/wbkit/Scribbles4All.) The datasets are currently stored as tarballs
on the public GitHub repository and can be downloaded from there.

• When will the dataset be distributed?
The dataset has been made available with the submission to NeurIPS 2024 Datasets and
Benchmarks.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.
The datasets are distributed under the CC BY 4.0 license. As mentioned above, necessary
base datasets may have different license terms. It is up to the user to evaluate if their use
case is permissive.

• Have any third parties imposed IP-based or other restrictions on the data associ-
ated with the instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any relevant licensing terms, as well as
any fees associated with these restrictions. Our dataset provides scribble labels for un-
derlying base datasets. The dataset of the base datasets may be subject to restrictions
listed in the respective dataset licenses. Those can be found under the following links:
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http://host.robots.ox.ac.uk/pascal/VOC/
https://www.cvlibs.net/datasets/kitti-360/
https://www.cityscapes-dataset.com/license/
https://groups.csail.mit.edu/vision/datasets/ADE20K/terms/

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.
N/A

• Any other comments?
None.

B.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset?
The dataset and repository will be maintained by the main author of the paper.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
As the owner/maintainer is the main author of the paper, he can be contacted via the e-mail
address provided in the main paper (wolfgang.boettcher@mpi-inf.mpg.de). Additionally,
the project team can be reached through the issue tracker of the provided GitHub repository.

• Is there an erratum? If so, please provide a link or other access point.
Currently, there is no erratum.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communi-
cated to dataset consumers (e.g., mailing list, GitHub)?
The dataset may be updated by the maintainer in case of labelling errors or changes in the
base datasets our datasets are based on. There will be no regular update interval but updates
on request in case of errors. Changes will be announced on the GitHub repository of the
datasets as this repository serves as the central access point to all aspects of the project.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.
N/A

• Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
dataset consumers.
The datasets will be incorporated into the GitHub repository of the project alongside the
scribble generation algorithms. All changes are transparent through git commits. Changes
in the dataset will be announced in the README as well. As dataset changes are primarily
planned to remedy labelling errors or similar issues, older versions will not be actively
maintained.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to dataset consumers? If so, please provide
a description.
If others want to contribute and modify the dataset, there are no formalised procedures in
place since it is not expected to have bigger changes in the lifecycle of the dataset. Contri-
butions are nevertheless welcome and can be requested and coordinated by contacting the
main author via e-mail or preferably by using the issue tracking tool of the provided GitHub
repository.

• Any other comments?
None.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

paper provides scribble annotations for existing datasets for more robust benchmarking
of scribble supervised segmentation. There is no negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] This is a

dataset paper without theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] This is a dataset paper

without theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See
https://github.com/wbkit/Scribbles4All and further details in the supplementary materi-
als.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The essential details are provided in Sec. 5.1. Further details are
provided in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We did not have sufficient resources to run all training
multiple times.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The used resources (type/number
of GPUs) for a training are provided in Sec. 5.1. However, we did not keep track of the
overall compute used during the entire project.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] The licenses are linked in the

references.
(c) Did you include any new assets either in the supplemental material or

as a URL? [Yes] We provide the automatically generated scribbles at
https://github.com/wbkit/Scribbles4All

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not collect new data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We did not collect new data.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not use crowdsourcing or conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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