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Abstract

In this paper, we study differentially private (DP) algorithms for computing the
geometric median (GM) of a dataset: Given n points, x1, . . . , xn in Rd, the goal is
to find a point θ that minimizes the sum of the Euclidean distances to these points,
i.e.,

∑n
i=1 ∥θ − xi∥2. Off-the-shelf methods, such as DP-GD, require strong a

priori knowledge locating the data within a ball of radius R, and the excess risk
of the algorithm depends linearly on R. In this paper, we ask: can we design an
efficient and private algorithm with an excess error guarantee that scales with the
(unknown) radius containing the majority of the datapoints? Our main contribution
is a pair of polynomial-time DP algorithms for the task of private GM with an
excess error guarantee that scales with the effective diameter of the datapoints.
Additionally, we propose an inefficient algorithm based on the inverse smooth
sensitivity mechanism, which satisfies the more restrictive notion of pure DP. We
complement our results with a lower bound and demonstrate the optimality of our
polynomial-time algorithms in terms of sample complexity.

1 Introduction
Differentially private (DP) convex optimization is a fundamental task where we approximately
minimize a data-dependent convex loss function while limiting what can be learned about individual
data points. The predominant algorithm for DP convex optimization is DP (stochastic) gradient
descent, or DP-(S)GD, for short [SCS13; BST14]. Given a dataset X(n) which contains private
information, and a loss function F (θ;X(n)), DP-(S)GD starts with an initial value θ0 ∈ Rd and
iteratively updates it using θt+1=ΠΘ

(
θt−η ·

(
∇θtF (θt;X

(n))+ξt
))

where η > 0 is the step size, ξt
is noise to ensure DP, Θ ⊆ Rd is a closed convex feasible set, and ΠΘ is the Euclidean projection
operator. In the most general setting of Lipschitz convex functions, the excess error depends linearly
on the radius of the set Θ, and this linear dependence is necessary in the worst-case [BST14]. This
linear dependence is problematic because we can think of the diameter of the set Θ as capturing a
measure of the uncertainty we have about the location of the minimizer, and we want our algorithm
to perform well even with a high degree of uncertainty. This linear dependence can be improved
under certain unrealistically strong assumptions, such as strong convexity, but it is unclear whether
we can improve the dependence on the radius under weaker, more natural conditions. In this paper,
as a step towards answering this question, we identify a simple, optimization task—computing the
geometric median—where we can exponentially improve the dependence on the radius.

We study private algorithms for computing the geometric median (GM) of a dataset: We are given a
set of n data points X(n) ≜ (x1, . . . , xn) ∈ (Rd)n, where xi represents the private information of
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Algorithm Privacy Utility [F (An(X
(n));X(n))] Run-time Samples

LocDPSGD
(Section 3.1) Approx

(
1 +

√
d

nε

)
OPT n2 log(R/r) +n2d

√
d log(R/r)

ε

LocDPCuttingPlane

(Section 3.2) Approx
(
1 +

√
d

nε

)
OPT n2 log(R/r) +nd2 + d2+ω

√
d log(R/r)

ε

SInvS
(Section 4) Pure

(
1 + d log(R/r)

nε

)
OPT Exponential d log(R/r)

ε

Baseline: DP-(S)GD Approx OPT+ R
√
d

ε
n2d N/A

Table 1: Summary of our results. Here OPT = argminθ∈Rd F (θ;X(n)) denotes the optimal loss and ω is the
matrix-multiplication exponent. The highlighted part is the runtime of the warm-up phase which is the same
for LocDPSGD and LocDPCuttingPlane. We also assume that maxi∈[n]|X(n) ∩ Bd(xi, r)| < 3n/4. (See
Section 3.1, Section 3.2, and Section 4 for the general results without this restriction.) For readability, we omit
logarithmic factors that depend on n and d.

one individual, and we are interested in approximately solving the following optimization problem:

θ⋆ ≜ GM(X(n)) ∈ arg min
θ∈Rd

F (θ;X(n)), where, F (θ;X(n)) ≜
∑
i∈[n]

∥θ − xi∥2. (1)

The geometric median generalizes the standard one-dimensional median. The geometric median is a
useful tool for robust estimation and aggregation, because it is less sensitive to outliers than the mean
of the data, i.e., it is a nontrivial estimator even when ≤ 49% of the input data is arbitrarily corrupted.
These properties make GM a popular tool for designing robust versions of distributed optimization
methods [CSX17; WLCG20; FGGPS22; AHJSDT22; PKH22; EFGH23], boosting the confidence of
weakly concentrated estimators [Min15], clustering [BMM03], etc.

Baseline for Private GM. Since the geometric median is the minimizer of a Lipschitz convex loss
function, we can privately approximate it using the standard approach of DP-(S)GD. In particular, if
we know a priori that all the data points lie in a known ball of radius R (without loss of generality this
ball is centered at the origin, i.e., ∥xi∥2 ≤ R for every i ∈ [n]), then DP-(S)GD guarantees (ε, δ)-DP
with the following excess error [BST14]:

F (DPGDn(X
(n));X(n))− F (θ⋆;X(n)) = O

(
R
√
d log(1/δ)

ε

)
. (2)

As discussed in the beginning of this section, this guarantee has a significant drawback: the excess
error of the algorithm depends linearly on the radius R of the a priori bound on the data. This bound
could be very loose; it does not scale with the data. Can we do better? What quantity should the
excess error guarantee scale with?

It is known that the GM is inside the convex hull of the datapoints. However, this convex hull can
have a very large diameter due to a small number of outliers, while most of the datapoints live in a
ball with a small diameter. A key property of GM is robustness to outliers, so we want our accuracy
guarantee to also be robust to some outliers. Specifically, if ≥ 51% of the points lie in a ball of
diameter ∆ ≪ R then the geometric median is O(∆) far from that ball (see Lemma C.6 for a more
precise statement). Thus, we aim to design a DP algorithm whose error is proportional to the actual
scale of the majority of the data, rather than the a priori worst-case bound. However, the algorithm
designer does not have a priori knowledge of the location or diameter of a ball that contains most
of the data; the algorithm must discover this information from the data. This prompts the following
question: Can we design an efficient and private algorithm with an excess error guarantee that scales
with the radius that contains majority of the datapoints? Our results provide a positive answer.

1.1 Contributions

Our main contribution is a pair of polynomial-time DP algorithms for approximating the geometric
median with an excess error guarantee that scales with the effective diameter of the datapoints. Also,
the sample complexity and the runtime of our algorithms depend logarithmically on the a priori
bound R. Both of our algorithms achieve the same excess error bounds up to logarithmic factors,
but have incomparable running times. We also give a simple numerical experiment on synthetic data
as a proof of concept that our algorithm improves over DP-(S)GD, as presdicted by the theory. In
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terms of optimality, we show the our proposed algorithms is optimal in terms of sample complexity.
Furthermore, we propose an algorithm based on the inverse smooth sensitivity mechanism for the
private geometric median problem that satisfies the more restrictive notion of pure DP. Below, we
give an overview of these algorithms and the techniques involved.

Polynomial-Time Algorithms. Both of our algorithms for the private geometric median problem are
two-phase algorithms: in the first phase, which we refer to as warm-up, the algorithm shrinks the
feasible set to a ball whose diameter is proportional to what we call the quantile radius in time that
depends logarithmically on R. The second phase, which we call fine-tuning, uses the output of the
warm-up algorithm to further improve the error.

First, we formalize the notion of the quantile radius as the radius of the smallest ball containing
sufficiently many points.
Definition 1.1 (Quantile Radius). Fix a dataset X(n) = (x1, . . . , xn) ∈ (Rd)n and θ ∈ Rd. For
every γ ∈ [0, 1], define ∆γn(θ) ≜ min{∆ : |i ∈ [n] : ∥xi − θ∥ ≤ ∆| ≥ γn}.

To motivate the idea behind our algorithms, assume the algorithm designer knew a ball, with center
θ0 and radius ∆̂ such that ∥θ0 − θ⋆∥ ≤ O(∆̂) and ∆̂ = Õ(∆4n/5(θ

⋆)). Then, running DP-(S)GD
over this ball would give excess error O(∆4n/5(θ

⋆)
√
d/ε). This guarantee is particularly interesting

as the excess error scales with the quantile radius and not the largest possible norm of any point.
Also, by definition of the quantile radius and the geometric median loss function, we have that
F (θ⋆;X(n)) ≥ (1 − γ)n∆γn(θ

⋆). This inequality shows that an algorithm whose excess error
depends on ∆γn(θ

⋆) has a multiplicative guarantee rather than the standard additive guarantee
for DP-(S)GD. This type of guarantee is particularly desirable for the geometric median since an
algorithm with a multiplicative guarantee will be scale free and be adaptive to the niceness of the
dataset. However, since we do not know such a pair θ0 and ∆̂ a priori, the objective of the warm-up
algorithm is to privately find these quantities.

The warm-up algorithm is based on the following structural result: given a point θ that satisfies
∥θ − θ⋆∥ ≳ ∆3n/4(θ

⋆), we have F (θ;X(n)) − F (θ⋆;X(n)) ≳ ∥θ − θ⋆∥. (See Lemma 2.6 for a
formal statement.) This result implies that, even though F (θ;X(n)) is not a strongly convex function,
we have a growth condition such that the excess error increases with the distance to the global
minimizer, at least when the excess error is large enough. (In contrast, strong convexity would imply
quadratic growth F (θ;X(n))−F (θ⋆;X(n)) ≳ ∥θ − θ⋆∥2, rather than linear growth.) Intuitively, this
growth condition allows us to take larger step sizes and make progress faster, consuming less of the
privacy budget. However, since this growth condition only holds for θ that is more than ∆3n/4(θ

⋆)
away from the minimizer, which is a data-dependent property, we first need to develop a private
algorithm to estimate ∆3n/4(θ

⋆) in order to make use of this property. In Section 2.1, we develop
an efficient algorithm, RadiusFinder, for this task, which is inspired by [NSV16]. Our procedure
assumes that we know some potentially very small lower bound r ≤ ∆3n/4(θ

⋆), which is necessary
by the impossibility results in [BNSV15]. Since the sample complexity of this procedure depends
only on log(1/r), we can choose this parameter to be very small. In Section 2.1, we show how to
eliminate this assumption at the cost of a small additive error. With high probability, RadiusFinder
(see Theorem 2.4) outputs ∆̂ such that ∆3n/4(θ

⋆) ≤ ∆̂ ≤ O(∆4n/5(θ
⋆)). Having obtained ∆̂, the

second step of the warm-up algorithm is finding a good initialization point. In Section 2.2, we propose
Localization, based on DP-GD with geometrically decaying step sizes, to perform this task. Due
to the growth condition we show that DP-GD makes a fast progress towards some point that is within
O(∆4n/5(θ

⋆)) from the optimizer: in log(R) iterations, with high probability, it outputs θ0 such that
θ⋆ is in the ball of radius O(∆̂) = O(∆4n/5(θ

⋆)) centered at θ0.

DP Cutting Plane Method for Private GM. The main drawback of using DP-SGD for the fine-
tuning stage is that its run-time can be large when n ≫ d. To address this, we design the second
fine-tuning algorithm, LocDPCuttingPlane, based on private variant of the cutting plane method
that has faster running time when n is large. There are two challenges in the analysis: by using the
noisy gradients, we cannot argue that the optimal point always lives in the intersection of the cutting
planes, which is a crucial part of the standard analysis. The second challenge is that the cutting plane
method is not a descent method in the sense that the loss function is not decreasing with the iteration,
and we need to privately select an iterate with small loss. The challenge for developing the private
variant here is that the loss F (θ;X(n)) has sensitivity proportional to R, so running the exponential
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mechanism in the natural way incurs loss proportional to R. We address both of these challenges and
develop an algorithm whose excess error is proportional to ∆4n/5(θ

⋆).

Pure DP algorithm for Private Geometric Median Problem. In Section 4, we propose a pure
(ε, 0)-DP algorithm for the geometric median problem, albeit a computationally inefficient one.
Our algorithm is based on the inverse smooth sensitivity mechanism of [AD20]. At a high level,
the algorithm outputs θ ∈ Rd with a probability proportional to exp(−ε · len(X(n), θ)/2) where
len(X(n), θ) is the minimum number of data points from X(n) that needs to be modified to obtain a
dataset X̃(n) such that the geometric median of X̃(n) be equal θ. Our analysis shows that the proposed
mechanism outputs θ̂ = GM(X̃(n)) such that X̃(n) and X(n) differ in at most k⋆ = O(d log(R)/ε)

with a high probability. Then, by a careful sensitivity analysis, we show ∥θ̂ − θ⋆∥ can be upper
bounded by the F (θ⋆;X(n)). Using this result we provide an algorithm with a multiplicative
guarantee. Moreover, we show ∥θ̂ − θ⋆∥ is upper bounded O(∆γn(θ

⋆)) for some γ ∈ (1/2, 1].

Lower bound on the Sample Complexity. We show every (ε, δ)-DP algorithm requires Ω̃(
√
d/ε)

samples so that it satisfies Eθ̂∼An(X(n))[F (θ̂;X(n))] ≤ (1 + α)minθ∈Rd F (θ,X(n)) for a constant
α. This result shows that the sample complexity of our polynomial-time algorithms is nearly optimal.

A summary of the results is provided in Table 1, comparing the proposed algorithms in terms of
privacy, utility, runtime, and sample complexity. As discussed earlier, algorithms with error adaptive
to the quantile radius can achieve a nearly multiplicative guarantee. The utility column in Table 1
compares the algorithms based on the achievable αmul and αadd in order to F (An(X

(n));X(n)) ≤
(1 + αmul)F (θ⋆;X(n)) + αadd with a high probability.

1.2 Related Work

DP convex optimization is a well-studied problem [CMS11; KST12; BST14; ACGMMTZ16; STU17;
FKT20]. There has been significant interest in developing new algorithms that offer improved guaran-
tees compared to DP-(S)GD for specific problem classes or by leveraging additional information. For
instance, [LUZ20; SSTT21; ABGMU22; BMS22] demonstrate that for linear models the dependency
of the excess error on the dimension can be improved, [GHST24; ABL23] study the impact of the
second-order information on the convergence, [KDRT21; AGMRSSSTT22; GHNOSTTW23] explore
the impact of public data, etc. The current paper addresses a drawback of DP-(S)GD, namely, the
linear dependence of the excess error on the distance from the initializer to the optimal point in
non-strongly convex settings.

Another related line of work to our warm-up strategy is private averaging of [NSV16; NS18;
CKMST21; TCKMS22]. The advantage of the algorithm proposed in this work is its simplicity
while being optimal in terms of sample complexity: we exploit a structural property of the geometric
median and show that running DPGD with the geometrically decaying stepsizes can yield a suitable
initialization point without the need for preprocessing steps such as filtering [CKMST21; TCKMS22],
coordinate-wise discretization [NSV16], hashing [NS18], etc. The proposed quantile radius can be
seen as a robust notion of radius proposed in [BHI02].

In one dimension (i.e., d = 1), private versions of the median are well studied [DNPR10; BNS13;
BNSV15; DNRR15; BDRS18; ALMM19; KLMNS20; ASSU23; CLNSS23]. In particular, these
works improve the dependence on the a priori bound R to log∗ R, rather than logR in our results.

1.3 Notation

Let d ∈ N. For a vector x ∈ Rd, ∥x∥ denotes the ℓ2 norm of x. We use the following notation
for the ball of radius R: Bd(a,R) = {x ∈ Rd : ∥x− a∥ ≤ R}. Also, B∞

d (a,R) denotes {x ∈
Rd : ∥x− a∥∞ ≤ R}. We refer to Bd(0, R) = Bd(R), similarly, it holds for B∞

d (0, R) = B∞
d (R).

Let ⟨·, ·⟩ denote the standard inner product in Rd. For a convex and closed subset Θ ⊆ Rd, let
ΠΘ : Rd → Θ be the Euclidean projection operator, given by ΠΘ(x) = argminy∈Θ∥y − x∥2. For a
(measurable) space R, M1(R) denotes the set of all probability measures on R. Let Z be the data
space and let Θ ⊆ Rd be the parameter space. Let f : Θ×Z → R be a loss function. We say f is
L-Lipschitz iff there exists L ∈ R such that ∀z ∈ Z , ∀w, v ∈ Θ : |f(w, z)− f(v, z)| ≤ L∥w − v∥.
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1.4 Notions of DP

Definition 1.2. Let ε > 0 and δ ∈ [0, 1). A randomized mechanism An : Zn → M1(Θ) is
(ε, δ)-DP, iff, for every neighbouring dataset (i.e., replacement) X ∈ Zn and X′ ∈ Zn, and for every
measurable subset M ⊆ Θ, it holds Pθ∼An(X)(θ ∈ M) ≤ eε · Pθ∼An(X′)(θ ∈ M) + δ.

For some of our privacy analysis, we use concentrated differential privacy [DR16; BS16], as it
provides a simpler composition theorem – the privacy parameter ρ adds up when we compose.
Definition 1.3 ([BS16, Def. 1.1]). A randomized mechanism A : Zn → M1(R) is ρ-zCDP, iff, for
every neighbouring dataset (i.e., replacement) X ∈ Zn and X′ ∈ Zn, and for every α ∈ (1,∞), it
holds Dα(An(X)∥An(X

′)) ≤ ρα, where Dα(An(X)∥An(X
′)) is the α-Renyi divergence between

An(X) and An(X
′).

We should think of ρ ≈ ε2: to attain (ε, δ)-DP, it suffices to set ρ = ε2

4 log(1/δ)+4ε [BS16, Lem. 3.5].

Lemma 1.4 ([BS16, Prop. 1.3]). Assume we have a randomized mechanism A : Z → M1(R) that
satisfies ρ-zCDP, then for every δ > 0, A is (ρ+ 2

√
ρ log(1/δ), δ)-DP.

2 Private Localization
In this section, we present the proposed algorithm for the warm-up stage; it has two steps: Private
Estimation of Quantile Radius and Private Localization.

2.1 Step 1: Private Estimation of Quantile Radius

Algorithm 1 describes our private algorithm RadiusFinder for quantile radius estimation.

Algorithm 1 RadiusFindern

1: Inputs: data set X(n) ∈ (Bd(R))n, fraction γ ∈ (1/2, 1], privacy budget ρ-zCDP, failure
probability β, discretization error 0 < r < R .

2: m = ⌈γn⌉.
3: For every ν ≥ 0 and i ∈ [n], let

Ni(ν) ≜ |X(n) ∩ Bd(xi, ν)|.

▷ Number of datapoints within distance of ν from xi

4: For every ν ≥ 0, define

N(ν) ≜
1

m
max

distinct{i1,...,im}⊆[n]

{Ni1(ν) + · · ·+Nim(ν)}.

5: Grid = {r, 2r, 4r · · · , 2⌈log(
2R
r )⌉r}.

6: Queries = {N(v) : v ∈ Grid}
7:

î = AboveThreshold

(
Queries, ρ,m+

18√
2ρ

log

(
2

β
·
⌈
log

(
2R

r

)⌉))
▷ Algorithm 7

8: Output ∆̂ = 2îr if î ̸= Fail; else Output Fail.

Remark 2.1. The runtime of RadiusFinder is Θ((n2 + n log(n)) log(⌈R/r⌉)): First, we need to
compute the pairwise distances which take n2 time. Then, for a fixed ν, we can compute N(ν) using
the pairwise distances in time Θ(n2). To compute N(ν), we need to sort {Ni(ν)}i∈[n], in Θ(n log(n))

time, and pick top m. Finally, we need to repeat this for each ν ∈ [r, . . . , 2⌈log(
2R
r )⌉r]. ◁

Notice that Algorithm 1 uses the datapoints as centers for computing the number of the datapoints in
a given distance. The privacy proof of Algorithm 1 is based on the following lemma.

Lemma 2.2. Fix n ∈ N. For every dataset X(n), for every 1/2 ≤ γ ≤ 1 and for every fixed ν, the
query N(ν) ≜ 1

m max{i1,...,im}⊆[n]{Ni1(ν) + · · ·+Nim(ν)}, has a sensitivity upper-bounded by 3
where m = ⌈γn⌉ and Ni(ν) ≜ |X(n) ∩ Bd(xi, ν)|. Here Bd(x, ν) := {y ∈ Rd : ∥y − x∥ ≤ ν}.

5

46258 https://doi.org/10.52202/079017-1470



The objective of Algorithm 1 is to privately approximate ∆γn(θ
⋆). Nonetheless, Algorithm 1 relies

on computing the pairwise distances between datapoints. The following lemma elucidates why
computing these pairwise distances serves as an effective proxy for computing ∆γn(θ

⋆).

Lemma 2.3. Fix n ∈ N, 1 ≤ m ≤ n, γ1, γ2 ∈ (1/2, 1] such that γ2 ≥ γ1, and dataset X(n).
For every ν ≥ 0, define N(ν) ≜ 1

m max{i1,...,im}⊆[n]{Ni1(ν) + · · ·+Nim(ν)}, where Ni(ν) ≜

|X(n)∩Bd(xi, ν)|. Let θ⋆ = GM(X(n)). For every ν̂ such that N(ν̂) ≥ ⌈γ1n⌉ and N(ν̂/2) < ⌈γ2n⌉,
we have

∆γ1n(θ
⋆) · 2γ1 − 1

4γ1 − 1
≤ ν̂ ≤ 4∆γ2n(θ

⋆).

Using these two lemmas, in the next theorem, we present the privacy and utility guarantees of Algo-
rithm 1. As we are interested in finding the smallest radius, we use the standard AboveThreshold
from [DNRRV09; DR+14] as a subroutine in Algorithm 1. The algorithmic description of
AboveThreshold is provided in Appendix B for completeness.
Theorem 2.4. Let RadiusFindern denote Algorithm 1. Fix d ∈ N, R > 0, r > 0, β ∈ (0, 1], and
ρ > 0. Then, for every n ∈ N and every dataset X(n) ∈ (Bd(R))n the output of RadiusFindern
satisfies ρ-zCDP. Also, the output of RadiusFindern satisfies the following utility guarantees:

1. Given n > 18
(1−γ)

√
2ρ

log(4/β), then P
(
∆γn(θ

⋆) 2γ−1
4γ−1 ≤ ∆̂

)
≥ 1− β.

2. Assume that the data points satisfies N(r) < m. Let γ̃ ≜ min{γ +
1
n

36√
2ρ

log
(
2(
⌈
log
(
2R
r

)⌉
+ 1)/β

)
, 1}, then, given n > 18

(1−γ)
√
2ρ

log(4/β), we have

P
(
∆γn(θ

⋆)
2γ − 1

4γ − 1
≤ ∆̂ ≤ 4∆γ̃n(θ

⋆)

)
≥ 1− 5

2
β.

3. Let γ̃ ≜ min{γ + 1
n

36√
2ρ

log
(
2(
⌈
log
(
2R
r

)⌉
+ 1)/β

)
, 1}. Given n > 18

(1−γ)
√
2ρ

log(4/β), we have

P
(
∆γn(θ

⋆)
2γ − 1

4γ − 1
≤ ∆̂ and

{
∆̂ ≤ 4∆γ̃n(θ

⋆) or ∆̂ = r
})

≥ 1− 2β.

Remark 2.5. A sufficient condition for N(r) < m in Item 2 is that maxi∈[n]|X(n) ∩ Bd(xi, r)| <
m = ⌈γn⌉. Intuitively, this means that no data point should have a significant portion of other data
points within a ball of radius r centered on it. ◁

2.2 Step 2: Fast Localization

In the second step of the warm-up phase, we develop a fast algorithm for finding a good initialization
point using the private estimate of the quantile radius. The main structural result that we use for the
algorithm design is stated in the next lemma.

Lemma 2.6. Fix n ∈ N, X(n) ∈ (Rd)n and θ1, θ0 ∈ Rd. For every γ ∈ [0, 1], define ∆γn(θ0) ≜
min{r ≥ 0 : |i ∈ [n] : ∥xi − θ0∥ ≤ r| ≥ γn}. Assume there exists ζ ≥ 0 such that F (θ1;X

(n))−
F (θ0;X

(n)) ≤ ζn. Then, for every γ ∈ (1/2, 1], we have

(2γ − 1)∥θ1 − θ0∥ − 2γ∆γn(θ0) ≤ ζ

To gain some intuition behind Lemma 2.6, let us instantiate θ0 = θ⋆. This result implies that
for a θ ∈ Rd such that ∥θ − θ⋆∥ ≳ ∆γn(θ

⋆), the loss function of the geometric median satisfies
F (θ;X(n))−F (θ⋆;X(n)) ≳ ∥θ − θ⋆∥. Using this result, we propose Algorithm 2 for finding a good
initialization. The next theorem states the privacy and utility guarantees of Algorithm 2.
Theorem 2.7. Let Localizationn denote Algorithm 2. Fix d ∈ N, R > 0, r > 0, ρ > 0, and
β ∈ (0, 1). Then for every dataset X(n) ∈ (Bd(R))n the outputs of Localizationn satisfies
ρ-zCDP. Moreover, let (θ̂, ∆̂) = Localizationn(X

(n), ρ, r, β) and define random set Θloc = {θ ∈
Bd(R) :

∥∥∥θ − θ̂
∥∥∥ ≤ 25∆̂}. Then, given

n ≥ Ω

(
max

{√
d log(⌈R/r⌉)

√
ρ

√
log

(
log(⌈R/r⌉)

β

)
,
1
√
ρ
log

(
⌈R/r⌉

β

)})
,

6
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Algorithm 2 Localizationn

1: Inputs: dataset X(n) ∈ (Bd(R))n, privacy parameters ρ-zCDP, discretization error r, failure
probability β

2: γ = 3/4

3: ∆̂ = RadiusFindern

(
X(n), γ, ρ

2 ,
β
2 , r
)

▷ Algorithm 1

4: if ∆̂ = Fail then
5: Output Fail and Halt.
6: kwu = 1

log(2) log
(
R/∆̂

)
▷ kwu ≤ 1

log(2) log(R/r) with probability one

7: θ0 = 0 ∈ Rd, Twu = 500, rad0 = R
8: for t ∈ {0, . . . , kwu − 1} do
9: Θt = {θ ∈ Bd(R) : ∥θ − θt∥ ≤ radt}

10: ηt = radt
√

2dkwu
3ρn2

11: θt+1 = DPGD
(
θt,X

(n), ρ
2kwu

,Θt, ηt, Twu

)
▷ Algorithm 6

12: radt+1 = 1
2 radt + 12∆̂

13: Output θkwu and ∆̂.

we have P
(
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and
{
∆̂ ≤ 4∆0.8n(θ

⋆) or ∆̂ = r
})

≥ 1 − 2β. Also,

assuming that the datapoints satisfies maxi∈[n]|X(n) ∩ Bd(xi, r)| < 3n/4, we have

P
(
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and ∆̂ ≤ 4∆0.8n(θ
⋆)
)
≥ 1− 2β.

3 Private Fine-tuning
In Section 2, we developed an algorithm for the warm-up stage. The output of the warm-up stage is
θ0 and radius ∆̂ such that ∥θ0 − θ⋆∥ ≤ O(∆̂) and ∆̂ = Õ(∆4n/5(θ

⋆)) as formalized in Theorem 2.7.
In this section, we build upon the output of the warm-up algorithm to develop two polynomial-time
algorithms for the fine-tuning stage.

3.1 Fine-tuning Using DPGD

Our first algorithm is based on DP-GD [BST14]. The main ideas behind Algorithm 3 is as follows:
1) from the utility guarantee of the warm-up phase in Theorem 2.7, the distance of the initialization
and θ⋆ only depends on ∆̂, i.e., it does not depend on R, 2) By definition of the quantile radius in
Definition 1.1 and Equation (1), we have that F (θ⋆;X(n)) ≥ (1− γ)n∆γn(θ

⋆), 3) in the case that
the data satisfies some regularity conditions, we have ∆̂ ≤ 4∆0.8n(θ

⋆) from Theorem 2.7. The next
theorem summarizes the utility and privacy guarantees of this algorithm.

Algorithm 3 LocDPGDn

1: Inputs: dataset X(n) ∈ (Bd(R))n, privacy parameters ρ-zCDP, discretization error r, failure probability β.

2: θ0, ∆̂ = Localizationn

(
X(n), ρ

2
, r, β

2

)
▷ Algorithm 2

3: Θ0 = {θ ∈ Bd(R) : ∥θ − θ0∥ ≤ 25∆̂}
4: ηft = 50∆̂

√
d

6ρn2 and Tft =
n2ρ
256d

5: θ̂ = DPGD
(
θ0,X

(n), ρ
2
,Θ0, ηft, Tft

)
▷ Algorithm 6

6: Output θ̂

Theorem 3.1. Let LocalizedDPGDn denote Algorithm 3. For every d ∈ N, R > 0, r > 0, ρ > 0,
and β ∈ (0, 1], A = {LocalizedDPGDn}n≥1 satisfies the following: for every n ∈ N and every
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dataset X(n) ∈ (Bd(R))n the output of LocalizedDPGDn satisfies ρ-zCDP. Also, given

n ≥ Ω

(
max

{√
d log(⌈R/r⌉)

√
ρ

√
log

(
log(⌈R/r⌉)

β

)
,
1
√
ρ
log

(
⌈R/r⌉

β

)})
,

we have

P

(
F
(
θ̂;X(n)

)
≤

(
1 +O

( √
d

n
√
ρ

√
log(1/β)

))
F
(
θ⋆;X(n)

)
+O

(√
d log(1/β)

ρ

)
r

)
≥ 1− 2β.

Moreover, given that the datapoints satisfies maxi∈[n]|X(n) ∩ Bd(xi, r)| < 3n/4, we have

P

(
F
(
θ̂;X(n)

)
≤

(
1 +O

( √
d

n
√
ρ

√
log(1/β)

))
F
(
θ⋆;X(n)

))
≥ 1− 2β,

where θ̂ is the output of Algorithm 3.

3.2 Fine-tuning Using Noisy Cutting Plane Method

In this section, we present the second fine-tuning algorithm: LocDPCuttingPlane of Algorithm 4.
This algorithm is based on the well-known cutting plane method [New65; Lev65; Nes98].

Algorithm 4 LocDPCuttingPlanen

1: Inputs: dataset X(n) ∈ (Bd(R))n, privacy parameters (ε, δ)-DP, discretization error r, failure probability β

2: ρ = ε2

16 log(2/δ)+8ε

3: θ0, ∆̂ = Localizationn

(
X(n), ρ

2
, r,min{β

3
, δ
2
}
)

▷ Algorithm 2

4: Θ0 = {θ ∈ Bd(R) : ∥θ − θ0∥ ≤ 25∆̂}
5: kft = Θ

(
d
τ
log

(
n
√
τ ·ρ√
d

+
√
d
))

▷ See Assumption 1 for definition of τ

6: for t ∈ {0, . . . , kft − 1} do
7: θt = Centre(Θt) ▷ See Assumption 1

8: ξdir,t ∼ N
(
0, kft

ρ
Id
)

9: Θt+1 =
{
θ ∈ Θt

∣∣〈∇F (θt;X
(n)) + ξdir,t, θ − θt

〉
< 0

}
10: Define Probability Measure: π(t) ∝ exp

(
− ε

448∆̂
F
(
θt;X

(n)
))

for t ∈ {0, . . . , kft − 1}

11: Output θt̂ where t̂ ∼ π

Similar to non-private cutting plane method, LocDPCuttingPlane is not a descent algorithm. As a
result, we need to devise a mechanism for selecting an iterate with minimal loss. In the next lemma,
we provide a bespoke analysis of the exponential mechanism with the score function F (θ;X(n))
defined in Equation (1). Note that the sensitivity of F (θ;X(n)) is R. However, the next result
demonstrates that through a novel analysis of the sensitivity of F (θ;X(n)), the noise scale due to
privacy can be significantly reduced. Proof can be found in Appendix E.
Lemma 3.2. Let ε ∈ R, k ∈ N, and d ∈ N be constants. Let Θ ⊆ Rd be a set with a bounded
diameter of diam. Let X(n) ∈ (Rd)n be a dataset and θ⋆ ∈ GM(X(n)). Let {θ1, . . . , θk} ⊆ Θ be k
fixed vectors. Also, assume that θ⋆ ∈ Θ. Let ∆ be such that 3∆3n/4(θ

⋆) + 2diam ≤ ∆. Consider
the following probability measure over {1, . . . , k}:

π(i;X(n)) =
exp
(
− ε

2∆F (θi;X
(n))
)∑

j∈[k] exp
(
− ε

2∆F (θj ;X(n))
) , i ∈ [k].

1. Let î ∼ π(·;X(n)) and OPT ≜ mini∈[k]{F (θi;X
(n))−F (θ⋆;X(n))}. Then, for every β ∈ (0, 1],

we have

P
(
F (θî;X

(n))− F (θ⋆;X(n)) ≤ OPT +
2∆

ε
log(k/β)

)
≥ 1− β.

8
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2. Let X̃(n) be a dataset of size n that differs in one sample from X(n). Then, for every i ∈ [k], we
have

exp(−ε)π(i; X̃(n)) ≤ π(i;X(n)) ≤ exp(ε)π(i; X̃(n)).

The next theorem provides the privacy guarantee of Algorithm 4. The privacy analysis differs from
the rest of the algorithms in the paper. This deviation arises from the fact that for analyzing the
privacy guarantee of Line 10 of Algorithm 4, we use Lemma 3.2. Notice that the guarantee in
Lemma 3.2 holds provided that Θ0, defined in Line 4 of Algorithm 4, satisfies θ⋆ ∈ Θ0. Ergo, the
privacy guarantee of Algorithm 4 only satisfies approximate-DP.

Theorem 3.3. Let LocDPCuttingPlanen denote Algorithm 4. Fix d ∈ N, R > 0, r > 0, ε > 0,
δ ∈ (0, 1], and β ∈ (0, 1]. Then, for every n ∈ N and every dataset X(n) ∈ (Bd(R))n the output of
LocDPCuttingPlanen satisfies (ε, δ)-DP.

We also make the following assumption about the performance of Centre subroutine in Algorithm 4.

Assumption 1. There exists some τ ∈ (0, 1] such that for all t ∈ {0, . . . , kft − 1}, the subroutine of
Centre in Algorithm 4 satisfies vol(Θt+1) ≤ (1− τ)vol(Θt). Furthermore, the time for calling the
routine Centre is Tc.

Using the John Ellipsoid [Joh14] as the Centre makes τ a dimension independent constant and
Tc = Õ(d1+ω) (by [LSW15]). Now we are ready to state the utility guarantee of Algorithm 4.

Theorem 3.4. Let LocDPCuttingPlanen denote Algorithm 4. For every d ∈ N, R > 0, r > 0,
ε > 0, δ ∈ (0, 1], and β ∈ (0, 1], A = {LocDPCuttingPlanen}n≥1 satisfies the following: for
every n ∈ N and every dataset X(n) ∈ (Bd(R))n, given

n ≥ Ω

(
max

{√
d log(⌈R/r⌉)

√
ρ

√
log

(
log(⌈R/r⌉)

β

)
,
1
√
ρ
log

(
⌈R/r⌉

β

)})
,

where ρ = ε2

16 log(2/δ)+8ε , we have the following: Let κ ≜ n
√
ρ√
d

+
√
d and α =

O

(√
d log(κ)

τρ · log
(

d log(κ)
τβ

))
. Then,

P
(
F
(
θ̂;X(n)

)
≤
(
1 +

α

n

)
F (θ⋆;X(n)) + rα

)
≥ 1− 3β,

Moreover, assuming that the datapoints satisfies maxi∈[n]|X(n) ∩ Bd(xi, r)| < 3n/4, we have

P
(
F
(
θ̂;X(n)

)
≤
(
1 +

α

n

)
F (θ⋆;X(n))

)
≥ 1− 3β,

where θ̂ is the output of Algorithm 4.

4 Pure-DP Algorithm for Geometric Median
In this section, we propose an algorithm based on the assumption that we have an access to an oracle
that outputs an exact GM

(
X(n)

)
. Before presenting the algorithm, we need a definition: For two

sequences of a = (a1, . . . , an) ∈ (Rd)n and b = (b1, . . . , bn) ∈ (Rd)n, we define the hamming
distance as dH(a, b) =

∑n
i=1 1[ai ̸= bi]. The proposed algorithm is shown in Algorithm 5, and its

utility and privacy guarantees are presented in the following theorem.

Theorem 4.1. Let SInvSn denote the algorithm in Algorithm 5. Fix d ∈ N, R > 0, r > 0, and ε > 0.
Then, for every n ∈ N and every dataset X(n) ∈ (Bd(R))n the output of SInvSn satisfies ε-DP. Also,

for every β ∈ (0, 1) and for every n > 2k⋆ ≜ 2
⌊
2
ε (log(1/β) + d log(R/r))

⌋
, with probability at

least 1− β, we have:

1. The value of the cost function satisfies

F (θ̂;X(n)) ≤
(
1 +

4k⋆

n− 2k⋆

)
F (θ⋆;X(n)) + nr.

9
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Algorithm 5 SInvSn

1: Input: dataset X(n) ∈ (Bd(R))n, privacy parameter ε-DP, discretization error r.
2: For every y ∈ Bd(R)

lenr(X, y) ≜ min
X̃∈(Rd)n

{dH(X
(n), X̃(n)) such that ∃z ∈ Bd(y, r) with GM(X̃(n)) = z}

3: Define density: dπ(y) =
exp
(
− ε

2 · lenr(X, y)
)∫

y∈Bd(R)
exp
(
− ε

2 · lenr(X, y)
)
dy
1[y ∈ Bd(R)]

4: Output θ̂ ∼ π

2. In terms of distance,∥∥∥θ̂ − θ⋆
∥∥∥ ≤ r + min

γ∈(1/2,1]:γ> k⋆

n + 1
2

∆γn(θ
⋆)√

2(γ − k⋆/n)− (γ − k⋆/n)
2
.

The proof of Theorem 4.1 is provided in Appendix F. The proof is based on showing that the output
θ̂ = GM

(
X̃(n)

)
is such that X̃(n) and X(n) differ in at most k⋆ = O(d log(R)/ε) datapoints with a

high probability. Then, we use the properties of the geometric median to show that the sensitivity of
GM to changing k < n/2 points can be bounded by the value of the optimal loss at θ⋆ = GM(X(n)).
Lemma 4.2. For every n ∈ N and for every k < n

2 , and for every (x1, . . . , xn, y1, . . . , yk) ∈
(Rd)n+k, define θ0 = GM((x1, . . . , xn)) and θk = GM((x1, . . . , xn−k, y1, . . . , yk)). Then,

∥θk − θ0∥ ≤ 2

n− 2k
F (θ0; (x1, . . . , xn)).

5 Lower Bound on the Sample Complexity
In this section we prove a lower bound on the sample complexity of any (ε, δ)-DP algorithm for the
task of private geometric median with a multiplicative error.
Theorem 5.1. Let ε0, α0, d0 be universal constants. Then, for every ε ≤ ε0, α ≤ α0, and d ≥ d0 and
every (ε, δ)-DP algorithm An : (Rd)n → M1(Rd) (with δ = Õ(

√
d/n)) such that for every dataset

X(n) ∈ (Rd)n its output satisfies Eθ̂∼An(X(n))

[
F
(
θ̂;X(n)

)]
≤ (1 + α)minθ∈B∞

d (1) F (θ;X(n)),

we require n = Ω̃
(√

d
ε

)
.

This result, whose proof can be found in Appendix G, shows that the sample complexity of the
proposed polynomial time algorithms is tight in terms of the dependence on ε and d.

6 Numerical Example

103 104 105 106 107 108 109 1010

R

100

101

102

103

104

105

106

F(
;X

(n
) )/

F(
;X

(n
) )

d = 200, n = 3000, = 2, = 1/n
Ours
DPGDIn this section, we numerically compare LocDPGDn (Algorithm 3)

and DPGD on a synthetic dataset. The dataset consists of two subsets:
one tightly clustered at a random location on Bd(R), and the other
uniformly distributed over Bd(R). We plot F (θ;X(n))/F (θ⋆;X(n))
for both algorithms as R varies. The results show that LocDPGDn’s
performance degrades more gracefully than DP-GD with increasing
R. See Appendix H for experimental details and more results.

7 Conclusion and Limitations
In this paper, we presented three private algorithms for the geometric median task, ensuring an excess
error guarantee that scales with the effective data scale. Our results open up many directions: we
believe our warm-up algorithm has broader applications, and finding other problems where it can be
used as a subroutine is interesting. Another direction is to characterize the optimal run-time: is it
possible to develop a linear time algorithm, i.e. Θ̃(nd), with an optimal excess error?
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction completely summarize our findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 7, we discussed two limitations of our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In our problem setup, we completely discussed all the assumptions. Also, a
complete proof of every claim is presented in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix H, we discussed all the details behind our implementation. Also,
we release the code. Since the dataset considered is synthetic, there is no concern regarding
the dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have released the code along with a Colab notebook.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In our experiments, we compare our proposed algorithm with a well-known
baseline. We implemented our algorithm from scratch. Also, all the details are included in
the code and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have included the error bars in the plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer:[Yes]
Justification: Our results can be produced using public Google Colab.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[NA]
Justification: This question is not applicable to our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work does not have any societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is not applicable to our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable to our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: It is not applicable to our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: It is not applicable to our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: It is not applicable to our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Preliminaries
A.1 Gradient of the Geometric Loss

∇θ(∥θ − x∥) =

{
θ−x

∥θ−x∥ θ ̸= x

0 θ = x
. (3)

A.2 DP Gradient Descent (DPGD)

In this section, we provide the algorithmic description of DPGD and its privacy and utility analysis
for completeness.

Algorithm 6 DPGD

1: Inputs: initialization point θ1 ∈ Rd, dataset X(n) ∈ (Rd)(n), privacy budget ρ, feasible set Θ, stepsize η, number of iterations T .
2: σ2 = T

2ρn2

3: for t ∈ {1, . . . , T} do
θt+1 = ΠΘ(θt − η(∇F (θt;X

(n)
) + ξt)),

where ξt ∼ N (0, σ2Id).
4: Output 1

T

∑T
t=1 θt

Lemma A.1. Let Θ ⊆ Rd be a closed and convex set with a finite diameter diam. Let ℓ : Θ×Z → R
be a loss function such that for every z ∈ Z , ℓ(·, z) is convex and L-Lipschitz. Let X(n) =

(z1, . . . , zn) ∈ Zn and L̂n(θ) = 1
n

∑
i∈[n] ℓ(θ, zi). Consider DP-Gradient descent algorithm

θt+1 = ΠΘ(θt − η(∇L̂n(θt) + ξt)), where ξt ∼ N (0, σ2Id). Then, for every T ∈ N, by setting

η = diam
√

d
12L2ρn2 , and σ2 = L2T

2ρn2 , we have the following: {θt}t∈[T ] satisfies ρ-zCDP. Also, for

every β > 0, given Td ≥ log(4/β) and 1 ≤
√

56 log(2/β), with probability at least 1− β, we have

L̂n

 1

T

∑
t∈[T ]

θt

−min
θ∈Θ

L̂n(θ) ≤ L · diam

[
16

√
d

n
√
ρ

√
log(2/β) +

√
2√
T

]
.

Proof. The privacy proof is based on the zCDP analysis of the Gaussian mechanism and the compo-
sition property of zCDP [BS16].

Let gt ≜ ∇L̂n(θt) + ξt and θ⋆ ∈ argminθ∈Θ L̂n(θ). Note that we can replace ∇L̂n(θt) by any
subgradient at θt. By the convexity of ℓ and the first-order convexity condition we can write

L̂n

 1

T

∑
t∈[T ]

θt

− L̂n(θ
⋆) ≤ 1

T

∑
i∈[T ]

L̂n(θt)− L̂n(θ
⋆)

≤ 1

T

∑
t∈[T ]

〈
∇L̂n(θt), θt − θ⋆

〉
.

Then, by the contraction property of the projection, we can write

∥θt+1 − θ⋆∥2 = ∥ΠΘ(θt − ηgt)− θ⋆∥2

≤ ∥θt − θ⋆ − ηgt∥2

= ∥θt − θ⋆∥2 + η2∥gt∥2 − 2η⟨gt, θt − θ⋆⟩

≤ ∥θt − θ⋆∥2 + 2η2
(∥∥∥∇L̂n(θt)

∥∥∥2 + ∥ξt∥2
)
− 2η⟨gt, θt − θ⋆⟩

≤ ∥θt − θ⋆∥2 + 2η2L2 + 2η2∥ξt∥2 − 2η⟨gt, θt − θ⋆⟩.

Here, we have used for every a, b ∈ Rd, ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, and
∥∥∥∇L̂n(θ)

∥∥∥ ≤ L for every
θ. Therefore, we conclude that

⟨gt, θt − θ⋆⟩ ≤ 1

2η

(
∥θt − θ⋆∥2 − ∥θt+1 − θ⋆∥2

)
+ η∥ξt∥2 + ηL2. (4)
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Define the following random variable for every t ∈ [T ]

Yt =
〈
∇L̂n(θt), θt − θ⋆

〉
− ⟨gt, θt − θ⋆⟩. (5)

Also, define the following filtration

Ft = σ(θ0, . . . , θt), (6)

which is the sigma-field generated by θ0, . . . , θt.

Lemma A.2. {Yt}t∈[T ] is a martingale difference sequence adapted to {Ft}t∈[T ].

Proof. Notice that ∇L̂n(θt), θt, and θ⋆ are Ft-measurable. Therefore, we can write

E[Yt|Ft] = E[⟨gt, θt − θ⋆⟩ −
〈
∇L̂n(θt), θt − θ⋆

〉
|Ft]

= ⟨E[gt|Ft], θt − θ⋆⟩ −
〈
∇L̂n(θt), θt − θ⋆

〉
.

By definition ξt is independent of the history up to time t. Therefore, E[ξt|Ft] = 0 since E[ξt] = 0
which gives

E[gt|Ft] = E[∇L̂n(θt) + ξt|Ft] = ∇L̂n(θt), (7)

Therefore, E[Yt|Ft] = 0. Moreover, by Cuachy-Schwartz inequality and the boundedness of Θ we
can write

E[|Yt|] = E[|⟨ξt, θt − θ⋆⟩|] ≤ E[∥ξt∥∥θt − θ⋆∥] ≤ RE[∥ξt∥] < ∞. (8)
Therefore, {Yt}t∈[T ] is a martingale difference sequence as was to be shown.

Using Equation (4) and by the definition of Yt in Equation (5), we can write〈
∇L̂n(θt), θt − θ⋆

〉
≤ 1

2η

(
∥θt − θ⋆∥2 − ∥θt+1 − θ⋆∥2

)
+ η∥ξt∥2 + ηL2 + Yt.

Summing it from 0 to T − 1 gives

1

T

∑
t∈[T ]

〈
∇L̂n(θt), θt − θ⋆

〉
≤ 1

2ηT
∥θ0 − θ⋆∥2 + η

T

∑
t∈[T ]

∥ξt∥2 + ηL2 +
1

T

∑
t∈[T ]

Yt

≤ R2

2ηT
+ ηL2 +

η

T

∑
t∈[T ]

∥ξt∥2︸ ︷︷ ︸
(A)

+
1

T

∑
t∈[T ]

Yt︸ ︷︷ ︸
(B)

.
(9)

Analyzing (A) in Equation (9)

Notice that
∑

t∈[T ]∥ξt∥
2 d
= σ2∥Y ∥2. Therefore, for every β ∈ (0, 1) provided that Td ≥ log(4/β),

with probability at least 1− β/2, we have

η

T

∑
t∈[T ]

∥ξt∥2 ≤ ησ2d

(
1 + 4

√
log(2/β)

Td

)
. (10)

Analyzing (B) in Equation (9)

Lemma A.3 (Shamir [Sha11]). Let m ∈ N. Let {Zm}m∈[M ] be a martingale difference sequence
adapted to a filtration {Fm}m∈[M ], and suppose there are constants b > 1 and c > 0 such that for
any m and any α > 0, it holds that

P(|Zt| ≥ α|Ft) ≤ b exp(−cα2).

Then for any β > 0, it holds with probability at least 1− β that

1

M

∑
m∈[M ]

Zm ≤
√

28b log(1/β)

cM
.
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We can rephrase Equation (5) as

Yt =
〈
∇L̂n(θt), θt − θ⋆

〉
− ⟨gt, θt − θ⋆⟩ = ⟨ξt, θ⋆ − θt⟩.

Notice that condition on Ft, ⟨ξt, θ⋆ − θt⟩|Ft ∼ N (0, σ2∥θt − θ⋆∥2). Therefore,

P(|⟨ξt, θ⋆ − θt⟩| ≥ α|Ft) ≤ 2 exp

(
− α2

2σ2∥θt − θ⋆∥2

)
≤ 2 exp

(
− α2

2σ2R2

)
.

Note that the bound holds for every t ∈ [T ]. Therefore, using Lemma A.3, with probability at least
1− β/2, we have

1

T

∑
t∈[T ]

⟨ξt, θ⋆ − θt⟩ ≤ 2σR

√
28 log(2/β)

T
. (11)

From Equation (9), Equation (10), and Equation (11), we have with probability at least 1− β

L̂n

 1

T

∑
t∈[T ]

θt

−min
θ∈Θ

L̂n(θ) ≤
R2

2ηT
+ ηL2 + ησ2d

(
1 + 4

√
log(4/β)

Td

)
+ 2σR

√
28 log(2/β)

T
,

(12)
provided that Td ≥ log(4/β). Let

σ2 =
L2T

2ρn2
, η =

R

L
√
T

· 1√
2 + 5dT

ρn2

.

Using these parameters, we obtain that

L̂n

 1

T

∑
t∈[T ]

θt

−min
θ∈Θ

L̂n(θ) ≤
RL

√
d

n
√
ρ

[√
1 +

2ρn2

Td
+
√
56 log(2/β)

]

≤ 2RL
√
d

n
√
ρ

√
56 log(2/β) +

RL
√
2√

T
,

(13)

where the last step is by assuming that 1 ≤
√

56 log(2/β).

B Above Threshold Algorithm

Algorithm 7 AboveThreshold

1: Inputs: Queries {f0, . . . , fk−1}, Privacy Budget ρ-zCDP, Threshold T .

2: ξtresh ∼ Lap
(

6√
2ρ

)
3: T̂ = T + ξtresh
4: for i ∈ [k] do
5: ξi ∼ Lap

(
12√
2ρ

)
6: if fi + ξi > T̂ : then
7: Output ∆̂ = i.
8: Halt
9: Output Fail.

C Technical Lemma

Lemma C.1. Let σ > 0. Let Y be a random variable with the distribution N (0, σ2). Then, for every

β ∈ (0, 1], we have P
(
|Y | > σ

√
2 log(2/β)

)
≤ β.
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Lemma C.2 (Laurent and Massart [LM00]). Let m ∈ N. Consider random vector Y ∼ N (0, Im).
Then, for every t ≥ 0,

P
(
∥Y ∥2 ≥ m+ 2

√
tm+ 2t

)
≤ exp(−t)

Corollary C.3. Let β ∈ (0, 1), m ∈ N, and m ≥ log 2
β . Consider Y ∼ N (0, Im), then

P

(
m

(
1− 2

√
log(2/β)

m

)
≤ ∥Y ∥2 ≤ m

(
1 + 4

√
log(2/β)

m

))
≥ 1− β,

Lemma C.4. Let n ∈ N and n ≥ 4. Let X(n) ∈ (Rd)n and X̃(n) ∈ (Rd)n be two datasets that
differ in one sample. Let θ⋆ ∈ GM(X(n)) and θ⊛ ∈ GM(X̃(n)). Let ∆3n/4(θ

⋆) be the radius of the
ball around θ⋆ that contains at least 3n/4 of X(n). Then,∥∥θ⊛ − θ⋆

∥∥ ≤ 3

2
∆3n/4(θ

⋆).

Proof. The proof is by contrapositive. In particular, we show that for every θ ∈ Rd such
that ∥θ − θ⋆∥ > 3

2∆3n/4(θ
⋆), we have, θ /∈ GM(X̃(n)). Let I = {i ∈ [n] : xi ∈

Bd(θ
⋆,∆3n/4(θ

⋆)) and xi ∈ X̃(n)}. Using the variational representation of ∥·∥2, we can write∥∥∥∇F (θ; X̃(n))
∥∥∥ ≥

〈
∇F (θ; X̃(n)),

θ − θ⋆

∥θ − θ⋆∥

〉
=
∑
i∈I

〈
θ − xi

∥θ − xi∥
,

θ − θ⋆

∥θ − θ⋆∥

〉
+

∑
i∈[n]\I

〈
θ − xi

∥θ − xi∥
,

θ − θ⋆

∥θ − θ⋆∥

〉

≥
∑
i∈I

〈
θ − xi

∥θ − xi∥
,

θ − θ⋆

∥θ − θ⋆∥

〉
− (n− |I|)

where the last step follows from Cauchy–Schwarz inequality. Then, we can write

∥∥∥∇F (θ; X̃(n))
∥∥∥ ≥ |I|

√
1−

(
∆3n/4(θ⋆)

∥θ − θ⋆∥

)2

− (n− |I|)

= |I|

1 +

√
1−

(
∆3n/4(θ⋆)

∥θ − θ⋆∥

)2
− n

≥ (3n/4)

1 +

√
1−

(
∆3n/4(θ⋆)

∥θ − θ⋆∥

)2
− n

≥ (3n/4)
(
1 +

√
1− 4/9

)
− n

> 0.

(14)

Therefore ∥θ⊛ − θ⋆∥ ≤ 3/2∆3n/4(θ
⋆).

Lemma C.5. For every n ∈ N and for every X(n) = (x1, . . . , xn), we have GM(X(n)) lies in the
convex hull of {x1, . . . , xn}.

Lemma C.6. Let (x1, . . . , xn) ∈ (Rd)n be a dataset and θ⋆ = GM((x1, . . . , xn)). Let B ⊆ [n]
such that |B| < n/2. Then, for every θ, we have

∥θ − θ⋆∥ ≤ 2n− 2|B|
n− 2|B|

max
i/∈B

∥θ − xi∥.

Proof. It is a simple modification of [CLMPS16, Lemma. 24].
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D Proof of Section 2
Proof of Lemma 2.2. The proof follows closely [NSV16, Lemma 4.5]. Let X and X′ are two
neighboring datasets of size n that differ in the first sample. For a fixed ν and i ∈ [n], if i ̸= 1, Ni(ν)
can change by one. Also, in the worst-case the new datapoint can be close to the rest of the datapoints.
Therefore, the sensitivity is bounded by 1

m ((m− 1) + n) ≤ 1 + n
m ≤ 1 + 1

γ ≤ 3 where the last step
follows from γ ≥ 1/2.

Proof of Lemma 2.3. Let ν̂ be such that N(ν̂) ≥ ⌈γ1n⌉, by definition of N(·) it means that there
exists a datapoint xi such that the ball of radius ν̂ around it contains at least ⌈γ1n⌉ datapoints. Let
B = {j ∈ [n] : ∥xi − xj∥ > ν̂}. By the described argument, we have |B| ≤ (1− γ1)n. Then, we
invoke Lemma C.6 with the described B and θ = xi to obtain

∥θ⋆ − xi∥ ≤ 2n− 2(1− γ1)n

n− 2(1− γ1)n
ν̂

=
2γ1

2γ1 − 1
ν̂.

The first step follows because function h : R → R, h(z) = 2n−2z
n−2z is increasing for z < n/2. In the

next step, we use the triangle inequality to write

∆γ1n(θ
⋆) ≤ ∆γ1n(xi) + ∥xi − θ⋆∥

≤ ν̂ +
2γ1

2γ1 − 1
ν̂

=
4γ1 − 1

2γ1 − 1
ν̂,

where ∆·(·) is defined in Definition 1.1.

Next, we turn into proving the upperbound on ν̂. By assumption N(ν̂/2) < ⌈γ2n⌉. For the sake
of contradiction, assume that ν̂ > 4∆γ2n(θ

⋆). Then, consider the set G = {i ∈ [n] : ∥θ⋆ − xi∥ ≤
∆γ2n(θ

⋆)}. By definition, |G| ≥ ⌈γ2n⌉. Consider an arbitrary subset of G with the size of ⌈γ2n⌉. The
main observation, which follows from the triangle inequality, is that a ball of radius 2∆γ2n(θ

⋆) around
every point in G contains at least ⌈γ2n⌉ datapoint. Therefore, N(ν̂/2) ≥ N(2∆γ2n(θ

⋆)) ≥ ⌈γ2n⌉
which contradicts with the assumption that N(ν̂/2) < ⌈γ2n⌉.

Proof of Theorem 2.4. The privacy proof simply follows from the privacy analysis in [DR+14,
Sec. 3.6]. We focus here on the utility guarantees.

Part 1: Let k = ⌈log
(
2R
r

)
⌉. It is simple to see that

P
(
∆̂ = Fail

)
≤ P

(
N(2kr) + ξk ≤ m+ ξthresh

)
= P(n−m ≤ ξthresh − ξk)

≤ P((1− γ)n ≤ ξthresh − ξk)

where the last step follows from the assumption that maxxi,xj∈X(n)∥xi − xj∥ ≤ 2R, which gives
us N(2kr) = n by the definition of N(·). By a simple tail bound on the Laplace distribution, we
have P

(
|ξthresh| ≥ 6√

2ρ
log(4/β)

)
≤ β/4 and P

(
|ξk| ≥ 12√

2ρ
log(4/β)

)
≤ β/4. Therefore, given

n > 1
1−γ

18√
2ρ

log(4/β), P(n−m ≤ ξthresh − ξk) ≤ β/2.

Part 2: Lemma C.6 implies that for every ν such that N(ν) ≥ ⌈γn⌉, we have, ∆γn(θ
⋆) · 2γ−1

4γ−1 ≤ ν.
Therefore, we can write

P
(
∆γn(θ

⋆)
2γ − 1

4γ − 1
≤ ∆̂

)
≥ P

(
N
(
∆̂
)
≥ ⌈γn⌉

)
⇔ P

(
∆γn(θ

⋆)
2γ − 1

4γ − 1
> ∆̂

)
≤ P

(
N
(
∆̂
)
< ⌈γn⌉

)
.

Consider

P
(
N
(
∆̂
)
< ⌈γn⌉

)
≤ P

(
N
(
∆̂
)
< ⌈γn⌉ and ∆̂ ̸= Fail

)
+ P

(
∆̂ = Fail

)
. (15)
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Under the event that ∆̂ ̸= Fail, there exists i ∈ {0, . . . , k − 1}, such that

N(∆̂) + ξi ≥ m+
18√
2ρ

log(2(k + 1)/β) + ξthresh

By a simple tail bound and union bound, we have

P(B) ≜ P
(
|ξthresh| ≥

6√
2ρ

log(2(k + 1)/β) and {max
i

|ξi| ≥
12√
2ρ

log(2(k + 1)/β)}
)

≤ β/2,

(16)

where k = ⌈log
(
2R
r

)
⌉. We further upperbound the first term in Equation (15) as follows

P
(
N
(
∆̂
)
< ⌈γn⌉ and ∆̂ ̸= Fail

)
≤ P

(
N
(
∆̂
)
< ⌈γn⌉ and ∆̂ ̸= Fail and Bc

)
+ P(B).

We claim that the first term in this equation is zero. Recall that m = ⌈γn⌉. Under the event Bc,
ξthresh − ξi ≥ − 18√

2ρ
log(2(k + 1)/β) and as a result, m+ 18√

2ρ
log(2(k + 1)/β) + ξthresh − ξi ≥ m.

Therefore, it shows that the probability of the first term is zero. Also, as showed above, P(B) ≤ β/2.
Therefore, P

(
N
(
∆̂
)
< ⌈γn⌉

)
≤ P(B)+P

(
∆̂ = Fail

)
. Combining it with P

(
∆̂ = Fail

)
≤ β/2

concludes the proof.

Part 3: Assume that N(r) < m. Let k = ⌈log
(
2R
r

)
⌉. Let γ̃ = γ + 1

n
18√
2ρ

log(2(k + 1)/β). In
Part 2, we showed that given n > 18√

2ρ
log(4/β), we have

P
(
∆γn(θ

⋆)
2γ − 1

4γ − 1
≤ ∆̂

)
≥ 1− β.

We only focus on the upperbound. From Lemma 2.3, we have

P
(
∆̂ ≤ 4∆γ̃n(θ

⋆)
)
≥ P

(
N
(
∆̂/2

)
≤ ⌈γ̃n⌉

)
⇔ P

(
∆̂ > 4∆γ̃n(θ

⋆)
)
≤ P

(
N
(
∆̂/2

)
> ⌈γ̃n⌉

)
.

(17)
We can write

P
(
N
(
∆̂/2

)
> ⌈γ̃n⌉

)
≤ P

(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ /∈ {r, Fail}

)
+ P

(
∆̂ ∈ {r, Fail}

)
≤ P

(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ /∈ {r, Fail}

)
+ P

(
∆̂ = r

)
+ P

(
∆̂ = Fail

)
,

where the last step follows from the union bound. For the first term, we have

P
(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ /∈ {r, Fail}

)
= P

(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ /∈ {r, Fail} and N(∆̂/2) + ξî < m+

18
√
ρ
log

(
2

β
·
⌈
log

(
2R

r

)⌉)
+ ξthresh

)
,

(18)
where î = log

(
∆̂/2r

)
− 1. The last step follows from the following observation: under the event

that ∆̂ /∈ {r, Fail}, during the execution of Algorithm 7, both N(∆̂) and N(∆̂/2) are compared
to the noisy threshold. Using the tail bounds in Equation (16), we have under the event Bc, with
probability at least 1− β/2,

m+
18√
2ρ

log

(
2

β
·
⌈
log

(
2R

r

)⌉)
+ ξthresh − ξî ≤ m+

18√
2ρ

log

(
2

β
·
⌈
log

(
2R

r

)⌉)
+

18√
2ρ

log(2(k + 1)/β)

≤ m+
36√
2ρ

log(2(k + 1)/β).

This shows that we have

P
(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ /∈ {r, Fail} and N(∆̂/2) + ξî < m+

18
√
ρ
log

(
2

β
·
⌈
log

(
2R

r

)⌉)
+ ξthresh

)
≤ β/2.
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In the next step, we bound P
(
∆̂ = r

)
. Notice that

P
(
∆̂ = r

)
= P

(
N(r) + ξ1 > m+

18√
2ρ

log

(
2

β
·
⌈
log

(
2R

r

)⌉)
+ ξthresh

)
.

Using simple tail bound, we have P
(
ξthresh − ξ1 ≤ − 18√

2ρ
log
(

2
β ·
⌈
log
(
2R
r

)⌉))
≤ β/2 which shows

that P
(
∆̂ = r

)
≤ β/2 since we assume that N(r) < m. Therefore, combining all the pieces together,

we proved

P
(
∆γn(θ

⋆)
2γ − 1

4γ − 1
≤ ∆̂ ≤ 4∆γ̃n(θ

⋆)

)
≥ 1− 5β

2
.

Part 4: In Part 2, we showed that given n > 18
(1−γ)

√
2ρ

log(4/β), we have

P
(
∆̂ ≤ ∆γn(θ

⋆)
2γ − 1

4γ − 1

)
≤ β. (19)

Consider the following event E =
{
∆̂ ≤ 4∆γ̃n(θ

⋆) or ∆̂ = r
}

. We have

P(Ec) = P
(
∆̂ > 4∆γ̃n(θ

⋆) and ∆̂ ̸= r
)

≤ P
(
∆̂ > 4∆γ̃n(θ

⋆) and ∆̂ ̸= {r,Fail}
)
+ P

(
∆̂ = Fail

)
≤ P

(
N
(
∆̂/2

)
> ⌈γ̃n⌉ and ∆̂ ̸= {r,Fail}

)
+ P

(
∆̂ = Fail

)
.

Here, the last step follows from Equation (17). Notice that in Equation (18), we analyzed the
probability of the first term and we showed that it is as most β/2. We also have that P

(
∆̂ = Fail

)
≤

β/2 from Part 1. Therefore, P(Ec) ≤ β. Combining it with Equation (19) concludes the proof.

Proof of Lemma 2.6. Let I = {i ∈ [n] : ∥θ0 − xi∥ ≤ ∆γn(θ0)}. For every i ∈ I, we have
∥xi − θ0∥ ≤ ∆γn(θ0). Using the triangle inequality, for every i ∈ I, we can write

∥θ1 − xi∥ ≥ ∥θ1 − θ0∥ − ∥θ0 − xi∥
≥ ∥θ1 − θ0∥ − (2∆γn(θ0)− ∥θ0 − xi∥).

The last equation is equivalent to
∥θ1 − xi∥ − ∥θ0 − xi∥ ≥ ∥θ1 − θ0∥ − 2∆γn(θ0). (20)

Then, for every i /∈ I, by an application of the triangle inequality
∥θ1 − xi∥+ ∥θ1 − θ0∥ ≥ ∥θ0 − xi∥
(⇔)∥θ1 − xi∥ − ∥θ0 − xi∥ ≥ −∥θ1 − θ0∥.

(21)

Then, by adding both sides of Equation (20) and Equation (21), we have

F (θ1;X
(n))− F (θ0;X

(n)) ≥ |I|∥θ1 − θ0∥ − (n− |I|)∥θ1 − θ0∥ − 2|I|∆γn(θ0).

This equation can be represented as

∥θ1 − θ0∥ ≤ F (θ1;X
(n))− F (θ0;X

(n)) + 2|I|∆γn(θ0)

2|I| − n

≤ ζn+ 2|I|∆γn(θ0)

2|I| − n
.

(22)

Let γ′n = |I|. We know that γ′ ≥ γ. Using this representation we can write

∥θ1 − θ0∥ ≤ ζ + 2γ′∆γn(θ0)

2γ′ − 1
.

For a fixed a, b > 0 define h(x) ≜ a+2xb
2x−1 . For x > 1/2, dh(x)

dx = − 2(a+b)
(2x−1)2 . This shows that h(x) is

decreasing for x > 1/2. Therefore using this observation
ζ + 2γ′∆γn(θ0)

2γ′ − 1
≤ ζ + 2γ∆γn(θ0)

2γ − 1
,

as was to be shown.
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Proof of Theorem 2.7. The privacy proof is straightforward. Algorithm 2 uses the data in Line 3 and
Line 11. Based on the privacy budget allocation and the composition properties of zCDP, we can
show that the output satisfies ρ-zCDP.

For the claim regarding utility, in the first step, consider the recursion in Line 12 of Algorithm 2,
i.e., radt+1 = 1

2 radt + 12∆̂ initialized at rad0 = R. It can be easily shown that radm = 1
2m rad0 +

12∆̂
∑m−1

i=0 (1/2)i for m ≥ 1. In particular, let kwu = 1
log(2) log

(
R/∆̂

)
, then, we obtain that

radkwu ≤ 25∆̂.

Let γ = 3/4 and

γ̃ = γ +
1

n

36
√
2√

2ρ
log

(
2

(⌈
log

(
2R

r

)⌉
+ 1

)
2

β

)
≤ 0.75 + 0.05 = 0.8,

where the last step follows because n ≥ Ω
(

1√
ρ log((⌈log(R/r)⌉+ 1)/β)

)
. Then, define the follow-

ing event
G1 =

{
∆0.75n(θ

⋆) ≤ 4∆̂ and
{
∆̂ ≤ 4∆0.8n(θ

⋆) or ∆̂ = r
}}

.

In the next step, we analyze the probability that θ⋆ ∈ Θloc. We claim that

P
(
θ⋆ ∈ Θloc

∣∣G1

)
≥ (1− β/(2kwu))

kwu .

We prove this by induction. In particular, we claim that for every m ∈ {0, . . . , kwu} we have
P
(
θ⋆ ∈ Θm

∣∣G1

)
≥ (1− β/(2kwu))

m. Note that we Θloc = Θkwu .

For the base case, by the assumption that the datapoints are in Bd(R), we have P(θ⋆ ∈ Θ0|G1) =
P(θ⋆ ∈ Θ0) = 1 since Θ0 is trivially independent of every random variable. Then, we show the
claim for m ∈ {1, . . . , kwu} assuming the claim holds for m− 1. We can write

P
(
θ⋆ ∈ Θm

∣∣G1

)
= P

(
∥θ⋆ − θm∥ ≤ radm

∣∣G1

)
≥ P

(
∥θ⋆ − θm∥ ≤ radm

∣∣θ⋆ ∈ Θm−1 and G1

)
P
(
θ⋆ ∈ Θm−1

∣∣G1

)
.

(23)

We claim that

P
(
∥θ⋆ − θm∥ ≤ radm

∣∣θ⋆ ∈ Θm−1 and G1

)
≥ P

(
2
(
F (θm;X(n))− F (θ⋆;X(n))

)
n

≤ 1

2
radm−1

∣∣θ⋆ ∈ Θm−1 and G1

)
.

To show this lets instantiate Lemma 2.6 with θ0 = θ⋆ and γ = 3/4 to obtain that for every θ ∈ Rd,

∥θ⋆ − θ∥ ≤
2
(
F (θ;X(n))− F (θ⋆;X(n))

)
n

+ 3∆γn(θ
⋆).

Notice that conditioned on G1, we have 3∆γn(θ
⋆) ≤ 12∆̂. This shows that

2(F (θm;X(n))−F (θ⋆;X(n)))
n ≤ 1

2 radm−1 implies that ∥θ⋆ − θm∥ ≤ radm conditioned on G1 by the
definition of radm in Line 12. In the next step, we invoke Lemma A.1. Conditioned on θ⋆ ∈ Θm−1

and G1, with probability at least 1− β
2kwu

, we have

F (θm;X(n))− F (θ⋆;X(n)) ≤ 2radm−1 ·

[
16

√
2dkwu

n
√
ρ

√
log(4kwu/β) +

√
2√
Twu

]
.

Notice kwu ≤ 1
log(2) log(R/r) a.s. By setting Twu = 128 and the bound on the sample size, we have

F (θm;X(n))− F (θ⋆;X(n)) ≤ radm−1

2 . Also, notice that the randomness in DPGD is independent
of history. Therefore,

P

(
2
(
F (θm;X(n))− F (θ⋆;X(n))

)
n

≤ 1

2
radm−1

∣∣θ⋆ ∈ Θm−1 and G1

)
≥ 1− β

2kwu
, (24)

Therefore, combining Equations (23) and (24), we obtain

P
(
θ⋆ ∈ Θm

∣∣G1

)
≥
(
1− β

2kwu

)m

,
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as was to be shown. From Theorem 2.4, given n ≥ Ω
(

1√
ρ log((⌈log(R/r)⌉+ 1)/β)

)
, we have

P(G1) ≥ 1− β.

Therefore,

P(θ⋆ ∈ Θloc and G1) = P
(
θ⋆ ∈ Θloc

∣∣G1

)
P(G1) ≥

(
1− β

2kwu

)kwu

· (1− β) ≥ (1− 2β). (25)

This proves the first claim.

Regarding the second claim, define the following event

G2 =

{
∆0.75n(θ

⋆)
1

4
≤ ∆̂ ≤ 4∆0.8n(θ

⋆)

}
.

Notice that in the proof of P(θ⋆ ∈ Θloc) we only used the fact that with a high probability
∆γn(θ

⋆) 14 ≤ ∆̂. Since G2 ⊆ G1, we can write

P(θ⋆ ∈ Θloc and G2) = P
(
θ⋆ ∈ Θloc

∣∣G2

)
P(G2) ≥ (1− β

2kwu
)kwu · (1− 5β/4) ≥ 1− 2β,

where the last step follows from Part 3 of Theorem 2.4 which states that P(G2) ≥ 1− 5β/4.

E Proof of Section 3
Proof of Theorem 3.1. For the privacy proof, notice that Algorithm 3 uses the training set in Line 2
and Line 5. By the privacy budget allocation and the composition properties of zCDP in [BS16], it is
immediate to see that the output satisfies ρ-zCDP.

Next, we prove the utility properties. Define the following event

G1 =
{
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and
{
∆̂ ≤ 4∆0.8n(θ

⋆) or ∆̂ = r
}}

.

Also, by the non-negativity of ∥·∥2, we have

F (θ⋆;X(n)) =

n∑
i=1

∥θ⋆ − xi∥ ≥ 0.2n∆0.8n(θ
⋆).

Using this inequality, for every θ, we can write

F
(
θ;X(n)

)
− F

(
θ⋆;X(n)

)
≤ O

(√
d

√
ρ

√
log(1/β)

)
∆0.8n(θ

⋆)

⇒ F
(
θ̂;X(n)

)
− F

(
θ;X(n)

)
≤ O

( √
d

n
√
ρ

√
log(1/β)

)
F
(
θ⋆;X(n)

)
.

(26)

Under the event that θ⋆ ∈ Θ0, we can invoke Lemma A.1 to write

P

(
F
(
θ̂;X(n)

)
− F

(
θ⋆;X(n)

)
≤ O

(√
d

√
ρ

√
log(1/β)

)
· ∆̂

∣∣∣G1

)
≥ 1− β/2,

where it follows because the internal randomness of DPGD is independent of the randomness in
Localization step.

By the definition of event G1, either ∆̂ = r or ∆̂ ≤ 4∆0.8n(θ
⋆). Note that if ∆̂ ≤ 4∆0.8n(θ

⋆), we
can use Equation (26) to provide a multiplicative guarantee. Therefore, conditioned on the event G1,
we have

P
(
F
(
θ̂;X(n)

)
− F

(
θ⋆;X(n)

)
≤ O

(√
d

√
ρ

√
log(1/β)

)
· r or

F
(
θ̂;X(n)

)
≤

(
1 +O

( √
d

n
√
ρ

√
log(1/β)

))
min
θ∈Rd

F
(
θ;X(n)

)∣∣∣G1

)
≥ 1− β/2.

(27)
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The first statement then follows because, from Theorem 2.7, we have P(G1) ≥ 1− β.

For the second statement, under the condition that maxi∈[n]|X(n)∩Bd(xi, r)| < 3n/4, we can define
the following high probability event:

G2 =
{
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and ∆̂ ≤ 4∆0.8n(θ
⋆)
}
.

The argument then proceeds in the same way as the argument for the first claim.

Proof of Lemma 3.2. We can write π(·;X(n)) as

π(i;X(n)) =
exp
(
− ε

2∆

[
F (θi;X

(n))− F (θ⋆;X(n))
])∑

j∈[k] exp
(
− ε

2∆

[
F (θj ;X(n))− F (θ⋆;X(n))

]) , ∀i ∈ [k]. (28)

It follows because F (θ⋆;X(n)) is a constant independent of i. Then, the first claim follows from the
standard utility analysis of the exponential mechanism in [MT07].

In the next step, we provide the proof for the second claim. To this end, because of Equation (28), we
analyze the sensitivity of F (θi;X

(n))−F (θ⋆;X(n)) for every i ∈ [k]. Note that θ⋆ is a data dependent
quantity. Let X̃(n) be a dataset that differ in one sample from X(n). Also, let θ⊛ ∈ GM(X̃(n)) and
assume, without loss of generality, that X̃(n) = (x1, . . . , x

′
n) and X(n) = (x1, . . . , xn). For a fixed

θ ∈ {θ1, . . . , θk}, we can write

[
F (θ;X(n))− F (θ⋆;X(n))

]
−
[
F (θ; X̃(n))− F (θ⊛; X̃(n))

]
= ∥θ − xn∥ − ∥θ − x′

n∥ − ∥θ⋆ − xn∥+
∥∥θ⊛ − xn+1

∥∥+ n−1∑
i=1

(∥∥θ⊛ − xi

∥∥− ∥θ⋆ − xi∥
)

≤ ∥θ − θ⋆∥+
∥∥θ − θ⊛

∥∥+ n∑
i=1

(∥∥θ⊛ − xi

∥∥− ∥θ⋆ − xi∥
)

≤ 2∥θ − θ⋆∥+
∥∥θ⋆ − θ⊛

∥∥+ n∑
i=1

(∥∥θ⊛ − xi

∥∥− ∥θ⋆ − xi∥
)
.

(29)

Here, the last two steps follow from the triangle inequality. Note that θ⊛ is the geometric median of
X̃n. Therefore by the first-order optimally condition, we have

n−1∑
i=1

∇
(∥∥θ⊛ − xi

∥∥) = −∇
(∥∥θ⊛ − x′

n

∥∥). (30)

Using the first-order convexity condition applied to the function h(θ) = ∥θ − x∥ for a fixed x, we
can write

n−1∑
i=1

(∥∥θ⊛ − xi

∥∥− ∥θ⋆ − xi∥
)
≤

n−1∑
i=1

〈
∇
(∥∥θ⊛ − xi

∥∥), θ⊛ − θ⋆
〉

= −
〈
∇
(∥∥θ⊛ − x′

n

∥∥), θ⊛ − θ⋆
〉

≤
∥∥θ⊛ − θ⋆

∥∥,
(31)

where the second step follows from Equation (30) and the last step follows because
∥∇(∥θ⊛ − xn+1∥)∥ ≤ 1. Therefore, using Equation (29) and Equation (31), we have[

F (θ;X(n))− F (θ⋆;X(n))
]
−
[
F (θ; X̃(n))− F (θ⊛; X̃(n))

]
≤ 2∥θ − θ⋆∥+ 2

∥∥θ⋆ − θ⊛
∥∥.

In the next step of the proof, we invoke Lemma C.4 to upperbound the sensitivity as follows
2∥θ − θ⋆∥+ 2

∥∥θ⋆ − θ⊛
∥∥ ≤ 2diam+ 3∆3n/4(θ

⋆)

≤ ∆,

where the last step follows because ∥θ − θ⋆∥ ≤ diam by the assumption. Notice that the sensitivity
analysis in the reverse direction is also the same. Therefore, the second claim follows from the
standard analysis of the privacy of the exponential mechanism.
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Proof of Theorem 3.3. The privacy proof of Algorithm 4 is relatively non-standard. Let A1

(
X(n)

)
=(

∆̂, {θi}i∈{0,...,kft−1}

)
. Also, let A2

(
X(n);

(
∆̂, {θi}i∈{0,...,kft−1}

))
= t̂. In particular, A1

(
X(n)

)
can be viewed as the first part of Algorithm 4 before Line 10. Also, A2(·; ·) denotes the exponential
mechanism in Line 10 of Algorithm 4. Using the conversion between zCDP and DP, the privacy
budget allocation, and the composition properties of zCDP, we have that A1(·) satisfies (ε/2, δ/2)-DP.

Define the following event

G = {θ⋆ ∈ Θ0 and ∆0.75n(θ
⋆) ≤ 4∆̂}.

Let µ be a measure on M1(R × (Rd)kft) that satisfies the following: for every dataset X(n),
P
(
A1

(
X(n)

)
∈ ·
)
≪ µ(·). Let P1 denote the density. Since A1 satisfies approximate-DP, we

assume for every z ∈ R× (Rd)kft , we have P1(z;X
(n)) ≤ exp(ε/2)P1(z; X̃

(n)) + δ/2.

To prove the requirement of privacy, let S ⊆ R × (Rd)kft × {0, . . . , kft − 1}. Also, let X̃(n) be a
dataset of size n that differs in one sample from X(n). Then, we can write

PA1(X(n)),A2(·;X(n))

((
∆̂, {θi}i∈{0,...,kft−1}, t̂

)
∈ S

)
=
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
dµ

=
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
1
[
(∆̂, θ0) ∈ G

]
dµ

+
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
1
[
(∆̂, θ0) ∈ Gc

]
dµ

=
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
1
[
(∆̂, θ0) ∈ G

]
dµ+ P(Gc).

Notice that under the event that (Θ̂, θ0) ∈ G, we can invoke Lemma 3.2 to reason about the privacy
properties of A2. Under the event G, we can see that 3∆3n/4(θ

⋆) + 2diam(Θ0) ≤ 112∆̂. Therefore,
by Lemma 3.2, we have

π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
≤ exp(ε/2) · π

(
t̂|∆̂, {θi}i∈{0,...,kft−1}, X̃

(n)
)
.

Moreover, by Theorem 2.7, we have P(Gc) ≤ δ/2. Therefore,∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1},X

(n)
)
dµ

≤ exp(ε/2)
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1}, X̃

(n)
)
dµ+ δ/2.

Then, we use the fact that A1

(
X(n)

)
satisfies (ε/2, δ/2):

exp(ε/2)
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1}, X̃

(n)
)
dµ+ δ/2

≤ exp(ε)
∑
t̂

∫
1[S]P1

(
∆̂, {θi}i∈{0,...,kft−1}|X̃(n)

)
· π
(
t̂|∆̂, {θi}i∈{0,...,kft−1s}, X̃

(n)
)
dµ+ δ.

It concludes the proof.

Proof of Theorem 3.4. Define the following event

G1 =
{
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and
{
∆̂ ≤ 4∆0.8n(θ

⋆) or ∆̂ = r
}}

. (32)

By Theorem 2.7, and the assumption on the minimum number of samples, we have P(G) ≥ 1− β.
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By applying the standard tail bound on the norm of a Gaussian random vector (as outlined in
Corollary C.3), we have

P(Gn,1) ≜ P

(
∀t ∈ {0, . . . , kft − 1} : ∥ξdir,t∥2 ≤ 3dkft

2ρ

(
1 + 4

√
log(10kft/β)

d

))
≥ 1− β/5.

(33)

Also, we can write

P

(
∃t ∈ {0, . . . , kft − 1} : ⟨ξdir,t, θ

⋆ − θt⟩ > 50∆̂ ·

√
3kft

ρ
log(10kft/β)

)

≤ P

(
∃t ∈ {0, . . . , kft − 1} : ⟨ξdir,t, θ

⋆ − θt⟩ > 50∆̂ ·

√
3kft

ρ
log(10kft/β)

∣∣∣G1

)
+ P(Gc

1)

≤ P

(
∃t ∈ {0, . . . , kft − 1} : ⟨ξdir,t, θ

⋆ − θt⟩ > 50∆̂ ·

√
3kft

ρ
log(10kft/β)

∣∣∣G1

)
+ β,

where the last step follows because P(Gc
1) ≤ β. Conditioned on G1, for all t ∈ {0, . . . , kft−1}, we

have ∥θt − θ⋆∥ ≤ 50∆̂ since θ⋆ ∈ Θ0, θt ∈ Θ0, and the diameter of Θ0 is 50∆̂. Also, notice that
ξdir,t ⊥⊥ (θt,Θ0). Using these observations, conditioned on the event G1, using the standard tail
bound on Gaussian random variable (as outlined in Lemma C.1), we can write

P

(
∃t ∈ {0, . . . , kft − 1} : ⟨ξdir,t, θ

⋆ − θt⟩ > 50∆̂ ·

√
3kft

ρ
log(10kft/β)

∣∣∣G1

)
≤ β/5.

Therefore, we conclude

P(Gn,2) ≜ P

(
∀t ∈ {0, . . . , kft − 1} : ⟨ξdir,t, θ

⋆ − θt⟩ ≤ 50∆̂ ·

√
3kft

ρ
log(10kft/β)

)
≥ 1− 6β/5.

(34)

To prove the claim regarding the suboptimality gap, we consider two cases:

1. There exists t ∈ {0, . . . , kft − 1} such that θ⋆ ∈ Θt and θ⋆ /∈ Θt+1,

2. θ⋆ ∈ Θkft .

Note that these two events are mutually exclusive and their union covers all the space. In what
follows, we show that in both cases there exists t ∈ {0, . . . , kft − 1} such that F (θt;X

(n)) has a
small excess loss.

For the first case, suppose t be such that θ⋆ ∈ Θt and θ⋆ /∈ Θt+1. Therefore, we can write

θ⋆ /∈ Θt+1 ⇔
〈
∇F (θt;X

(n)) + ξdir,t, θ
⋆ − θt

〉
≥ 0

⇔
〈
∇F (θt;X

(n)), θ⋆ − θt

〉
≥ −⟨ξdir,t, θ

⋆ − θt⟩.
(35)

Notice that using the first-order convexity condition, we have F (θt;X
(n)) − F (θ⋆;X(n)) ≤〈

∇F (θt;X
(n)), θt − θ⋆

〉
. Therefore, by Equation (35), we have

F (θt;X
(n))− F (θ⋆;X(n)) ≤

〈
∇F (θt;X

(n)), θt − θ⋆
〉

≤ ⟨ξdir,t, θ
⋆ − θt⟩.

(36)

Under the events G1 and Gn,2, defined in Equations (32) and (34), we have

F (θt;X
(n))− F (θ⋆;X(n)) ≤ ⟨ξdir,t, θ

⋆ − θt⟩ ≤ ∆̂ ·O

(√
kft

ρ
log(kft/β)

)
. (37)
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For the second case, i.e., θ⋆ ∈ Θkft , we have the following geometric fact [Nes98]: there exists
t ∈ {0, . . . , kft − 1} such that the distance of θ⋆ and the separating hyperplane at time t satisfies

−ν ≤

〈
∇F (θt;X

(n)) + ξdir,t∥∥∇F (θt;X(n)) + ξdir,t
∥∥ , θ⋆ − θt

〉
≤ 0. (38)

Here ν is a constant such that νd ≥ exp(−τkft)(25∆̂)d. The values of ν and kft will be determined
later. Using the first order convexity, we can write

F (θ⋆;X(n))− F (θt;X
(n))

≥
∥∥∥∇F (θt;X

(n)) + ξdir,t

∥∥∥〈 ∇F (θt;X
(n)) + ξdir,t∥∥∇F (θt;X(n)) + ξdir,t

∥∥ , θ⋆ − θt

〉
− ⟨ξdir,t, θ

⋆ − θt⟩

≥ −ν
∥∥∥∇F (θt;X

(n)) + ξdir,t

∥∥∥− ⟨ξdir,t, θ
⋆ − θt⟩

≥ −ν
(
2
∥∥∥∇F (θt;X

(n))
∥∥∥+ 2∥ξdir,t∥

)
− ⟨ξdir,t, θ

⋆ − θt⟩

≥ −ν(2n+ 2∥ξdir,t∥)− ⟨ξdir,t, θ
⋆ − θt⟩,

where the second step follows from the well-known inequality ∥a+ b∥ ≤ 2∥a∥ + 2∥b∥ for every
a, b ∈ Rd. Then, the last step follows because for every θ ∈ Rd,

∥∥∇F (θ;X(n)
∥∥ ≤ n. Therefore,

under the events G1, Gn,1, and Gn,2, defined in Equations (32) to (34), we have the following bound
on the suboptimality gap

F (θt;X
(n))− F (θ⋆;X(n)) ≤ ν(2n+ 2∥ξdir,t∥) + ⟨ξdir,t, θ

⋆ − θt⟩

≤ ν(2n+ 2∥ξdir,t∥) +O

(
∆̂

√
kft

ρ
log(kft/β)

)

≤ ν ·O

n+

√√√√dkft

ρ

(
1 +

√
log(kft/β)

d

)+O

(
∆̂

√
kft

ρ
log(kft/β)

)
.

(39)
Recall that ν satisfies νd ≥ exp(−τkft)(25∆̂)d. It can be easily seen that by setting

kft = Θ

(
d

τ
log

(
n
√
ρ

√
d

+
√
d

))
,

under the events G1, Gn,1, and Gn,2, we can further upperbound Equation (39) as follows

F (θt;X
(n))− F (θ⋆;X(n)) ≤ O

(
∆̂

√
kft

ρ
log(kft/β)

)
. (40)

Therefore, from Equations (37) and (40), under the event G1 ∩ Gn,1 ∩ Gn,2, for both cases we showed
that there exists t such that

F (θt;X
(n))− F (θ⋆;X(n)) ≤ ∆0.8n(θ

⋆) ·O

(√
kft

ρ
log(kft/β)

)

or F (θt;X
(n))− F (θ⋆;X(n)) ≤ r ·O

(√
kft

ρ
log(kft/β)

)
.

(41)

By the non-negativity of ∥·∥2, we have

F (θ⋆;X(n)) =

n∑
i=1

∥θ⋆ − xi∥ ≥ 0.2n∆0.8n(θ
⋆). (42)

Therefore, we conclude that for both cases there exists t such that

F (θt;X
(n)) ≤

(
1 +O

(
1

n

√
d log(κ)

τρ
· log

(
d

τβ
log(κ)

)))
F (θ⋆;X(n))

or F (θt;X
(n))− F (θ⋆;X(n)) ≤ r ·O

(√
d log(κ)

τρ
· log

(
d

τβ
log(κ)

)) (43)
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where κ ≜ n
√
ρ√
d

+
√
d.

Let us define OPT ≜ mint∈{0,...,kft−1}
{
F (θt;X

(n))− F (θ⋆;X(n))
}

. In the next step of the proof,
we show that the exponential mechanism in Line 10 with high probability can identify an iterate
whose suboptimality gap is close to OPT. Using the properties of the exponential mechanism in
Line 10 as outlied in Lemma 3.2, we have with probability at least 1− β/3 over the randomness of
the exponential mechanism

F (θt̂;X
(n))− F (θ⋆;X(n)) ≤ OPT +

448∆̂

ε
(log(3kft/β)). (44)

Notice that under the event G1 and using Equation (42), we have
448∆̂

ε
log(3kft/β) ≤

F (θ⋆;X(n))

nε
·O(log(kft/β)) or

448∆̂

ε
log(3kft/β) ≤

r

ε
O(log(kft/β)) (45)

Moreover, under the event G1 ∩ Gn,1 ∩ Gn,2, we provided an upperbound on OPT in Equation (43).
Combining Equation (43), Equation (44), and Equation (45), proves the first claim.

For the second statement, under the condition that maxi∈[n]|X(n)∩Bd(xi, r)| < 3n/4, we can define
the following high probability event:

G2 =
{
θ⋆ ∈ Θloc and ∆0.75n(θ

⋆) ≤ 4∆̂ and ∆̂ ≤ 4∆0.8n(θ
⋆)
}
.

The argument then proceeds in the same way as the argument for the first claim.

F Proof of Section 4
Proof of Lemma 4.2. For i ∈ [n− k], we can write

∥θk − xi∥ ≥ ∥θk − θ0∥ − ∥θ0 − xi∥
= ∥θk − θ0∥ − 2∥θ0 − xi∥+ ∥θ0 − xi∥.

Also for every j ∈ [k], we have
∥θk − yj∥ ≥ ∥θ0 − yj∥ − ∥θ0 − θk∥.

Summing both sides of these inequalities, we obtain
n−k∑
i=1

∥θk − xi∥+
k∑

j=1

∥θk − yj∥

≥ (n− 2k)∥θ0 − θk∥ − 2

n−k∑
i=1

∥θ0 − xi∥+
n−k∑
i=1

∥θ0 − xi∥+
k∑

j=1

∥θ0 − yj∥

(⇔)

n−k∑
i=1

∥θk − xi∥+
k∑

j=1

∥θk − yj∥ −

n−k∑
i=1

∥θ0 − xi∥+
k∑

j=1

∥θ0 − yj∥


≥ (n− 2k)∥θ0 − θk∥ − 2

n−k∑
i=1

∥θ0 − xi∥

Since
∑n−k

i=1 ∥θk − xi∥ +
∑k

j=1∥θk − yj∥ −
[∑n−k

i=1 ∥θ0 − xi∥+
∑k

j=1∥θ0 − yj∥
]

≤ 0 by the
assumption that θk = GM(x1, . . . , xn−k, y1, . . . , yk), we obtain

(n− 2k)∥θ0 − θk∥ − 2

n−k∑
i=1

∥θ0 − xi∥ ≤ 0

⇔ ∥θ0 − θk∥ ≤ 2

n− 2k
·
n−k∑
i=1

∥θ0 − xi∥

⇒ ∥θ0 − θk∥ ≤ 2

n− 2k
·

(
n−k∑
i=1

∥θ0 − xi∥+
n∑

i=n−k+1

∥θ0 − xi∥

)

⇔ ∥θ0 − θk∥ ≤ 2

n− 2k
· F (θ0; (x1, . . . , xn)).
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Proof of Theorem 4.1. We claim that for every neighbouring datasets X ∈ (Bd(R))n and X′ ∈
(Bd(R))n and for every y ∈ Bd(R), we have

|lenr(X, y)− lenr(X
′, y)| ≤ 1.

This follows from the fact that for every X̃ , we have dH(X, X̃) ≤ dH(X
′, X̃) + 1. Then, the proof

of privacy follows from the privacy proof of the exponential mechanism [MT07].

Next, we present the utility proof. Let k ∈ N be a constant that determined later. Define the following
two sets:

A1 = {y ∈ Bd(R) : lenr(X, y) ≥ k}
A2 = {y ∈ Bd(R) : lenr(X, y) = 0}

Then,

Pθ̂∼π(θ̂ ∈ A1)

Pθ̂∼π(θ̂ ∈ A2)
=

∫
y∈A1

exp
(
− ε

2 · lenr(X, y)
)
dy∫

y∈A2
exp
(
− ε

2 · lenr(X, y)
)
dy

≤
exp(− ε

2k)
∫
y∈A1

dy∫
y∈A2

dy
.

(46)

We can use the following simple facts:
∫
y∈A1

dy ≤
∫
y∈Bd(R)

dy = V1R
d where V1 is the volume of

the ball of radius one in Rd. For A2 notice that, for all y ∈ Bd(GM(X), r), we have lenr(X, y) = 0.
Thus,

∫
y∈A2

dy ≥ V1r
d. Putting these two pieces together,

Pθ̂∼π(θ̂ ∈ A1)

Pθ̂∼π(θ̂ ∈ A2)
≤ exp

(
−ε

2
k
)(R

r

)d

⇒ Pθ̂∼π(θ̂ ∈ A1) ≤ exp
(
−ε

2
k
)(R

r

)d

, (47)

where the last step follows from the fact that Pθ̂∼π(θ̂ ∈ A2) ≤ 1. Therefore, we obtain that for every
β ∈ (0, 1) with probability at least 1− β we have

lenr(X, θ̂) ≤
⌊2
ε

(
log

(
1

β

)
+ d log

(
R

r

))⌋
≜ k⋆, (48)

where θ̂ ∼ π.

Under the above event, let θ̂ ∈ Bd(R) be such that lenr(X, θ̂) ≤ k⋆. This is equivalent to the
following: there exists z ∈ Bd(θ̂, r) and X̃ ∈ (Rd)n such that z = GM(X̃) and dH(X, X̃) ≤ k⋆.
Using this observation, we can write∥∥∥θ̂ −GM(X)

∥∥∥ ≤ ∥z −GM(X)∥+
∥∥∥θ̂ − z

∥∥∥
≤ ∥z −GM(X)∥+ r

=
∥∥∥GM(X̃)−GM(X)

∥∥∥+ r.

(49)

Suboptimality Gap: Let θ⋆ ∈ GM(X), then

F (θ̂;X)− F (θ⋆;X) =

n∑
i=1

(∥∥∥θ̂ − xi

∥∥∥− ∥θ⋆ − xi∥
)

≤
n∑

i=1

(∥z − xi∥+ r − ∥θ⋆ − xi∥)

= nr +

n∑
i=1

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)
.
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Define I ⊆ [n] be the indices of the points that X and X̃ differs. We know that |I| ≤ k⋆. Then, we
can write

n∑
i=1

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)

=
∑
i∈I

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)

︸ ︷︷ ︸
A1

+
∑

i∈[n]/I

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)

︸ ︷︷ ︸
A2

. (50)

By triangle inequality, we can write

A1 =
∑
i∈I

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)

≤ |I|
∥∥∥θ⋆ −GM(X̃)

∥∥∥
≤ k⋆ ·

∥∥∥θ⋆ −GM(X̃)
∥∥∥.

(51)

For i ∈ I, let (X̃)i = x′
i where (X̃)i denote the i-th data point in X̃. Since GM(X̃) is a geometric

median of X̃, by the first-order optimality condition

∇θF (GM(X̃); X̃) = 0 ⇔
∑

i∈[n]/I

∇θ

(∥∥∥GM(X̃)− xi

∥∥∥) = −
∑
i∈I

∇θ

(∥∥∥GM(X̃)− x′
i

∥∥∥). (52)

To control A2, notice that ∥θ − xi∥ is a convex function in θ for every xi. By the first-order
convexity condition, for every θ1 and θ2, we have ∥θ1 − xi∥−∥θ2 − xi∥ ≤ ⟨∇(∥θ1 − xi∥), θ1 − θ2⟩.
Therefore, we can write∑
i∈[n]/I

(∥∥∥GM(X̃)− xi

∥∥∥− ∥θ⋆ − xi∥
)
≤

∑
i∈[n]/I

〈
∇
(∥∥∥GM(X̃)− xi

∥∥∥),GM(X̃)− θ⋆
〉
. (53)

Then, by Equation (52),

A2 =
∑

i∈[n]/I

〈
∇
(∥∥∥GM(X̃)− xi

∥∥∥),GM(X̃)− θ⋆
〉

= −
∑
i∈I

〈
∇θ

(∥∥∥GM(X̃)− x′
i

∥∥∥),GM(X̃)− θ⋆
〉
.

Finally notice that by Equation (3), for every x′
i,
∥∥∥∇θ

(∥∥∥GM(X̃)− x′
i

∥∥∥)∥∥∥ ≤ 1. Therefore, by
Cauchy–Schwarz inequality

A2 = −
∑
i∈I

〈
∇θ

(∥∥∥GM(X̃)− x′
i

∥∥∥),GM(X̃)− θ⋆
〉

≤ |I|
∥∥∥GM(X̃)− θ⋆

∥∥∥
≤ k⋆

∥∥∥GM(X̃)− θ⋆
∥∥∥.

(54)

By Equations (51) and (54), we obtain

F (θ̂;X)− F (θ⋆;X) ≤ nr + 2k⋆
∥∥∥GM(X̃)− θ⋆

∥∥∥.
Then, we invoke Lemma 4.2 which states that

∥∥∥GM(X̃)−GM(X)
∥∥∥ ≤ 2

n− 2k⋆
· F (GM(X);X).

Putting all the pieces together,

F (θ̂;X)− F (θ⋆;X) ≤ nr + 2k⋆
∥∥∥GM(X̃)− θ⋆

∥∥∥
≤ nr +

4k⋆

n− 2k⋆
· F (θ⋆;X),

(55)

as was to be shown.
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𝜃⋆

Δ𝛾𝑛(𝜃
⋆)

𝜃𝜃 − 𝜃⋆

𝑥𝑖

Figure 1: Graphical Intuition Behind Equation (57)

Distance to θ⋆: From Equation (49), we know that
∥∥∥θ̂ −GM(X)

∥∥∥ ≤
∥∥∥GM(X̃)−GM(X)

∥∥∥+ r

where X̃ is a dataset of size n such that dH(X, X̃) ≤ k⋆. The proof is based on characterizing the
worst case distance between the geometric median of two datasets that differ in at most k⋆ points.

For the dataset X(n), recall that θ⋆ = GM
(
X(n)

)
. Also, recall the definition of ∆γn(θ

⋆) from
Definition 1.1. Let θ ∈ Rd be such that ∥θ − θ⋆∥ > ∆γn(θ

⋆). Define m = |X̃ ∩ Bd(θ
⋆,∆γn(θ

⋆))|.
By the variational representation of ∥·∥, we can write∥∥∥∇F (θ; X̃)

∥∥∥ ≥
〈
∇F (θ; X̃),

θ − θ⋆

∥θ − θ⋆∥

〉
=

∑
x∈X̃∩Bd(θ⋆,∆γn(θ⋆))

〈
θ − x

∥θ − x∥
,

θ − θ⋆

∥θ − θ⋆∥

〉
+

∑
x∈X̃\{X̃∩Bd(θ⋆,∆γn(θ⋆))}

〈
θ − x

∥θ − x∥
,

θ − θ⋆

∥θ − θ⋆∥

〉

≥
∑

x∈X̃∩Bd(θ⋆,∆γn(θ⋆))

〈
θ − x

∥θ − x∥
,

θ − θ⋆

∥θ − θ⋆∥

〉
− (n−m),

(56)
where the last step follows from Cauchy-Schwarz inequality. Then, we claim that for every x ∈
X̃ ∩ Bd(θ

⋆,∆γn(θ
⋆)), we have〈

θ − x

∥θ − x∥
,

θ − θ⋆

∥θ − θ⋆∥

〉
≥

√
1−

(
∆γn(θ⋆)

∥θ − θ⋆∥

)2

(57)

To gain the intuition behind it see Figure 1. Therefore, from Equation (56),∥∥∥∇F (θ; X̃)
∥∥∥ ≥ m

√
1−

(
∆γn(θ⋆)

∥θ − θ⋆∥

)2

− (n−m).

We are interested on characterizing the condition under which
∥∥∥∇F (θ; X̃)

∥∥∥ > 0. A sufficient
condition is that given n < 2m

m

√
1−

(
∆γn(θ⋆)

∥θ − θ⋆∥

)2

− (n−m) > 0 (⇔) ∆γn(θ
⋆)

1√
2m

n −
(
m
n

)2 < ∥θ − θ⋆∥.

This shows that the distance of GM(X̃) and θ⋆ has to satisfy∥∥∥GM(X̃)− θ⋆
∥∥∥ ≤ ∆γn(θ

⋆)√
2m

n −
(
m
n

)2 .
The function h(x) = 1√

2x−x2
is decreasing in the range of x ∈ (0, 1]. Also, notice that m =

|X̃ ∩ Bd(θ
⋆,∆γn(θ

⋆))| ≥ γn− k⋆. Therefore,∥∥∥GM(X̃)− θ⋆
∥∥∥ ≤ ∆γn(θ

⋆)√
2
(
γ − k⋆

n

)
−
(
γ − k⋆

n

)2 ,
as was to be shown.
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G Proof of Section 5
Proof of Theorem 5.1. The proof is based on the reduction provided in Lemma G.1 and the lower-
bound on the sample complexity of the mean estimation of Gaussian distribution with known
covariance matrix in [KLSU19, Thm. 6.5].

Lemma G.1. Let ε ≤ 49× 10−5, α ≤ 49× 10−5, δ ≤ 10−4, and d ≥ 22500 be constants. Let An

be an arbitrary (ε, δ)-DP algorithm such that for every dataset X(n), its output satisfies

Eθ̂∼An(X(n))

[
F (θ̂;X(n))

]
≤ (1 + α) min

θ∈B∞
d (1)

F (θ;X(n)).

Let µ ∈ B∞
d (1) and let X(n) = (X1, . . . , Xn) ∼ N (µ, Id)⊗n. Let θ̂ ∼ An(X

(n)). Then, with
probability at least 2/3 over X(n) and the internal randomness of An, we have∥∥∥θ̂ − µ

∥∥∥ ≤ 0.2
√
d.

Proof. The proof consists of several steps:

Step 1: Bound on the Empirical Error. Let An be an arbitrary (ε, δ)-DP algorithm such that for
every dataset X(n), its output satisfies

F (θ̂;X(n)) ≤ (1 + α) min
θ∈B∞

d (R)

F (θ;X(n)).

Let µ ∈ B∞
d (R) and X(n) = (X1, . . . , Xn) ∼ N (µ, Id)⊗n. The utility guarantee of the algorithm

implies that

E
[
F (θ̂;X(n))

]
≤ (1 + α)E

[
min

θ∈B∞
d (R)

F (θ;X(n))

]
≤ (1 + α)E

[
F (µ;X(n))

]
.

To further upperbound the last step, we can use Jensen’s inequality to write
1

n
· E
[
F (µ;X(n))

]
= E[∥X1 − µ∥]

≤
√
E
[
∥X1 − µ∥2

]
=

√
d

Therefore, in-expectation over X(n) ∼ N (µ, Id)⊗n and the internal randomness of An, we have

EX(n)∼N (µ,Id)⊗n,θ̂∼An(X(n))

[
F
(
θ̂;X(n)

)
− F

(
µ;X(n)

)]
≤ nα

√
d. (58)

Step 2: Relating Empirical Error to Population Error. Let (X0, X1, . . . , Xn) ∼
N (µ, Id)⊗(n+1). With an abuse of notation, let θ = An((X1, . . . , Xn)), and, for every i ∈ [n],
let θ(i) = An((X1, . . . , Xi−1, X0, Xi+1, . . . , Xn)). Let T be a constant that will be determined
later. We can write

E
[∥∥∥θ(i) −Xi

∥∥∥] = ∫ ∞

t=0

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)

dt

=

∫ T

t=0

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)

dt+
∫ ∞

t=T

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)

dt.
(59)

Consider the first term in Equation (59). Since An satisfies (ε, δ)-DP,

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)
= E

[
P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
∣∣∣(X0, . . . , Xn)

)]
≤ E

[
exp(ε)P

(
∥θ −Xi∥ ≥ t

∣∣∣(X0, . . . , Xn)
)
+ δ
]

= exp(ε) · P(∥θ −Xi∥ ≥ t) + δ.

(60)
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Therefore, the first term can be upperbounded as∫ T

t=0

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)

dt ≤ exp(ε) ·
∫ T

t=0

P(∥θ −Xi∥ ≥ t)dt+ Tδ

≤ exp(ε) · E[∥θ −Xi∥] + Tδ.

In the next step, we upperbound the the second term in Equation (59). Notice that{
(θ(i), Xi) :

∥∥∥θ(i) − µ− (Xi − µ)
∥∥∥ ≥ t

}
⊆
{
(θ(i), Xi) : ∥Xi − µ∥ ≥ t−

∥∥∥θ(i) − µ
∥∥∥}

⊆
{
Xi : ∥Xi − µ∥ ≥ t− 2R

√
d
}
,

(61)

where the first step follows from the triangle inequality and the last step follows because µ and θ(i)

are in B∞
d (R). Using this, we can write∫ ∞

t=T

P
(∥∥∥θ(i) −Xi

∥∥∥ ≥ t
)

dt ≤
∫ ∞

t=T

P
(
∥Xi − µ∥ ≥ t− 2R

√
d
)

dt

=

∫ ∞

u=T−(2R+1)
√
d

P
(
∥Xi − µ∥ ≥ u+

√
d
)

du,
(62)

where the last step follows from the change of variable u = t− (2R+1)
√
d. In the next step, we use

the concentration bounds for the norm of multivariate Guassian random variable. Using Lemma C.2,
we can write

P
(
∥Xi − µ∥ ≥ u+

√
d
)
= P

(
∥Xi − µ∥2 ≥ u2 + d+ 2u

√
d
)

≤ exp

(
−u2

2

)
.

(63)

Let T = 2(2R+ 1)
√
d. Then, using standard bounds on the complementary error function [Ksc17],

we can write ∫ ∞

t=T

P
(
∥Xi − µ∥ ≥ u+

√
d
)
≤
∫ ∞

u=(2R+1)
√
d

exp

(
−u2

2

)
du

≤ 1

(4R+ 2)
√
d
exp
(
−2(2R+ 1)

2
d
)
.

(64)

In the last step, we claim that E[∥θ −X0∥] = E
[∥∥θ(i) −Xi

∥∥] for every i ∈ [n]. It is because
θ(i)

d
= θ,Xi

d
= X0, and θ(i) ⊥⊥ Xi. Ergo, combining and summing over i ∈ [n], we obtain

E[∥θ −X0∥]

≤ exp(ε)

(
1

n

n∑
i=1

E[∥θ −Xi∥]

)
+ (4R+ 2)

√
dδ +

1

(4R+ 2)
√
d
exp
(
−2(2R+ 1)

2
d
)

This bound implies that

E[∥θ −X0∥]− E[∥µ−X0∥]

≤ exp(ε)

(
1

n

n∑
i=1

(E[∥θ −Xi∥]− E[∥µ−X0∥])

)
+ (exp(ε)− 1)E[∥µ−X0∥]

+ (4R+ 2)
√
dδ +

1

(4R+ 2)
√
d
exp
(
−2(2R+ 1)

2
d
)
.

This equation can be rephrased as follows

E[∥θ −X0∥]− E[∥µ−X0∥] ≤ β
√
d (65)

where

β = exp(ε)α+ (exp(ε)− 1) + (4R+ 2)δ +
1

(4R+ 2)d
exp
(
−2(2R+ 1)

2
d
)
. (66)
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Step 3: Relating Population Error to Distance In Step 2, we showed that in-expectation over
(X0, . . . , Xn) ∼ N (µ, Id)⊗(n+1) and θ̂ ∼ An(X

(n)) where X(n) = (X1, . . . , Xn), we have

E
[∥∥∥θ̂ −X0

∥∥∥]− E[∥µ−X0∥] ≤ β
√
d. (67)

For notiational convenience, let h : Rd → R be h(θ) ≜ EX∼N (µ,Id)[∥θ −X∥]. Equation (67) can
be written as

EX(n)∼N (µ,Id)⊗n,θ̂∼An(X(n))

[
h(θ̂)− h(µ)

]
≤ β

√
d.

Since µ is the minimizer of h(θ), for every θ ∈ Rd we have that h(θ) ≥ h(µ). Therefore, h(θ̂)−h(µ)
is a non-negative random variable. We can invoke Markov’s inequality to write

PX(n)∼N (µ,Id)⊗n,θ̂∼An(X(n))

(
h(θ̂)− h(µ) ≤ 3β

√
d
)
≥ 2

3
. (68)

In the next step, we provide a deterministic argument: For every θ ∈ Rd such that h(θ)− h(µ) ≤
3β

√
d, we provide an upperbound on ∥θ − µ∥. By subtracting µ, we can write

h(θ)− h(µ) = EX∼N (µ,Id)[∥θ −X∥ − ∥µ−X∥]
= EZ∼N (0,Id)[∥θ − µ+ Z∥ − ∥Z∥].

(69)

Define the following events

E1 ≜

Z :

√
d

(
1− 2

√
log(4/γ)

d

)
≤ ∥Z∥ ≤

√
d

(
1 + 4

√
log(4/γ)

d

),

E2 ≜
{
Z : ⟨θ − µ,Z⟩ ≥ −∥θ − µ∥

√
2 log(2/γ)

}
.

(70)

Using Corollary C.3 and simple concentration bound for Gaussian random variable we have that
P(E1 ∩ E2) ≥ 1− γ. Let E = E1 ∩ E2. By dropping the positive term, we can write

E[∥θ − µ+ Z∥ − ∥Z∥]
= E[(∥θ − µ+ Z∥ − ∥Z∥) · 1[E ]] + E[(∥θ − µ+ Z∥ − ∥Z∥) · 1[Ec]]

≥ E[(∥θ − µ+ Z∥ − ∥Z∥) · 1[E ]]− E[∥Z∥ · 1[Ec]].

(71)

Using Cauchy-Schwarz inequality, E[∥Z∥ · 1[Ec]] ≤
√
P(Ec)

√
E[∥Z∥2] =

√
P(Ec)

√
d ≤ √

γ
√
d.

In the next step, we analyze the first term.

E[(∥θ − µ+ Z∥ − ∥Z∥) · 1[E ]]

= E
[(√

∥θ − µ∥2 + ∥Z∥2 + 2⟨θ − µ,Z⟩ − ∥Z∥
)
· 1[E ]

]
= E

[
∥Z∥

(√
1 +

∥θ − µ∥2

∥Z∥2
+ 2

⟨θ − µ,Z⟩
∥Z∥2

− 1

)
· 1[E ]

] (72)

The value of γ will be determined later. Let d be large enough such that(
1− 2

√
log(4/γ)

d

)
= 0.9 and

(
1 + 4

√
log(4/γ)

d

)
= 1.1. (73)

Then, we can write

E

[
∥Z∥

(√
1 +

∥θ − µ∥2

∥Z∥2
+ 2

⟨θ − µ,Z⟩
∥Z∥2

− 1

)
· 1[E ]

]

≥
√
0.9d

√1 +
∥θ − µ∥2

1.1d
−

2
√

2 log(2/γ)∥θ − µ∥
0.9d

− 1

.

(74)
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Notice that we assumed that h(θ)− h(µ) ≤ 3β
√
d. Therefore, we have

√
0.9d

√1 +
∥θ − µ∥2

1.1d
−

2
√
2 log(2/γ)∥θ − µ∥

0.9d
− 1

−√
γ
√
d ≤ 3β

√
d

(⇔)

√
1 +

∥θ − µ∥2

1.1d
−

2
√
2 log(2/γ)∥θ − µ∥

0.9d
≤

(3β +
√
γ)

√
0.9

+ 1.

(75)

Simple calculations show that this bound implies that

∥θ − µ∥ ≤ 3.45
√
log(2/γ) +

√
1.1d

√√√√((1 + 3β +
√
γ

√
0.9

)2

− 1

)
≤ 3.45

√
log(2/γ) + 0.1

√
d

≤ 15 + 0.1
√
d.

(76)

We would like to set the parameters such that
√
1.1d

√((
1 +

3β+
√
γ√

0.9

)2
− 1

)
= 0.1

√
d. We can

easily see that it implies 3β+
√
γ = 0.0045. For example, we can pick β = 0.0014 and γ = 9×10−8.

Recall that

β = exp(ε)α+ (exp(ε)− 1) + (4R+ 2)δ +
1

(4R+ 2)d
exp
(
−2(2R+ 1)

2
d
)
. (77)

For instance, by setting ε ≤ 49 × 10−5, α ≤ 49 × 10−5, δ ≤ 2
3 × 10−4 and d ≥ 2, we obtain

β ≤ 0.1. Finally, we need to set d such that Equation (73) holds. We can see that d ≥ 7050 satisfies
this condition.

H Details of the Numerical Experiment
Our goal in the experiments is to evaluate the impact of increasing the radius of the initial feasible set,
i.e. R, on the performance of our proposed algorithm and compare it with DPGD. Also, we want to
show that our method without any additional hyperparmeter tuning can achieve a good excess error.

Data Generation. Let n denote the number of samples. We assume that 0.9n of the data is
distributed as follows: let µ ∈ Rd be a uniformly random vector within Sd−1(50). We then sample
0.9n of the data points from N (µ, (0.01)2 · Id). The remaining 0.1n of the points are sampled
uniformly at random from Bd(100).

Hyperparameters. We set the discretization parameter to r = 0.05 in Algorithm 2 and failure
probability to 5%. Additionally, we repeat each algorithm 10 times and report the mean. For the other
hyperparameters, we used exactly the same hyperparameters as stated in Algorithm 3. For DPGD,
we use the hyperparameters in Lemma A.1, and in particular, we choose T such that
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Figure 2: Performance for Different Privacy Budget
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