Goal Conditioned Reinforcement Learning for Photo
Finishing Tuning

Jiarui Wu'! 2%, Yujin Wang'f, Lingen Li'-2, Fan Zhang', Tianfan Xue?

!Shanghai AI Laboratory 2The Chinese University of Hong Kong

{wjO024,tfxue}@ie.cuhk.edu.hk, 1gli@link.cuhk.edu.hk,
{wangyujin,zhangfan}@pjlab.org.cn

Abstract

Photo finishing tuning aims to automate the manual tuning process of the photo
finishing pipeline, like Adobe Lightroom or Darktable. Previous works either use
zeroth-order optimization, which is slow when the set of parameters increases,
or rely on a differentiable proxy of the target finishing pipeline, which is hard
to train. To overcome these challenges, we propose a novel goal-conditioned
reinforcement learning framework for efficiently tuning parameters using a goal
image as a condition. Unlike previous approaches, our tuning framework does not
rely on any proxy and treats the photo finishing pipeline as a black box. Utilizing
a trained reinforcement learning policy, it can efficiently find the desired set of
parameters within just 10 queries, while optimization-based approaches normally
take 200 queries. Furthermore, our architecture utilizes a goal image to guide
the iterative tuning of pipeline parameters, allowing for flexible conditioning on
pixel-aligned target images, style images, or any other visually representable
goals. We conduct detailed experiments on photo finishing tuning and photo
stylization tuning tasks, demonstrating the advantages of our method. Project
website: https://openimaginglab.github.io/RLPixTuner/.

1 Introduction

Image processing pipelines (ISPs) are widely used by photographers and artists to retouch images
to match their desired appearance. Existing pipelines like Adobe Lightroom and Darktable allow
users to interactively tweak meaningful sliders such as exposure, white balance, and contrast, which
control the pipeline to perform a series of non-destructive edits to the input image. Though users can
manually tune the slider parameters, it is laborious and time-consuming even for experienced experts.
To this end, automatic photo finishing algorithms have been introduced to automate the process and
have drawn growing attention in the community [11].

In this work, we aim to design an automatic tuning algorithm for black-box non-differentiable image
processing pipelines. Although some preliminary research tries to propose fully differentiable image
processing pipelines [L1 7] or approximate the existing pipelines using neural networks [29]], they
only support a limited set of image processing operations. On the other side, most commercial image
processing pipelines, like Adobe Lightroom, are still black-box and non-differentiable, with a set of
tunable parameters exposed to users. Under this setup, the goal of pipeline tuning is to automatically
find the set of optimal parameters to achieve a desired image appearance, named the tuning target.
More specifically, in this work, we study two different tuning targets. One is a target image with the
same content as the input, but with a different rendering style, and we call it photo finishing tuning.
The other is a target style image with different content, and the algorithm is to render the target in a
similar way as the style target, and we call that photo stylization tuning.

*This work was done while Jiarui Wu interned at Shanghai AI Laboratory.
TCorresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

46294 https://doi.org/10.52202/079017-1471

https://openimaginglab.github.io/RLPixTuner/

Method
.0.27 seconds
Ours
RL-bésed v No Proxy Needed
Tuning v High-Quality
v Fast Convergence . .
Input Image
1
) 70.45 seconds
Cascaded
. Proxy X Requires Proxy &
Flrﬁt-c_)rder X PoorQuality o
uning ¥ Y X Slow Convergence i
15.82 dB 9 Tuning Target
' 90.4 seconds
CMAES
Zeroth-Order | ... v No Proxy Needed
Tuning v Reasonable Quality
X Slower Convergence

O (Start from Input) 10 200 Tuning Step
Figure 1: In this work, we propose an RL-based photo finishing tuning algorithm that efficiently tunes
the parameters of a black-box image processing pipeline to match any tuning target. The RL-based
solution (top row) takes only about 10 iterations to achieve a similar PSNR as the 500-iteration output
of a zeroth-order algorithm (bottom row). Our method demonstrates fast convergence, high quality,
and no need for a proxy.

One previous solution for photo finishing tuning is to use zeroth-order or first-order optimization.
However, both of them are either time-consuming or limited to a small set of parameters. Zeroth-order
optimizations [9, 21,20} 4]] are gradient-free searching methods and thus are normally very slow when
the search space increases. First-order optimizations [28] 32} 29] accelerate the searching process
using gradient descent, but they either require the processing pipeline itself to be differentiable, or
a neural proxy is pre-trained to find a differentiable proxy of the original pipeline. For a complex
commercial imaging pipeline, like cellphone camera pipelines, this proxy may not fully reproduce
original pipelines [28]. Neural photo-finishing [29] improves the proxy accuracy by breaking a com-
plex pipeline into small modules, but this does not apply to black-box or dynamically reconfigurable
pipelines [32]. Considering all these limitations, this brings a challenging question: Is there an
efficient parameter-searching algorithm that is applicable to non-differentiable finishing pipelines?

To solve this challenge, we propose a novel goal-conditioned reinforcement learning (RL) approach
dedicated to photo finishing tuning. At each RL iteration, the policy network takes the tuning target
and the currently tuned image as input, and finds a better set of parameters that makes the finishing
results closer to the target. This RL-based searching algorithm has several advantages over traditional
optimization methods. Compared with the zeroth-order solution, the RL policy can more accurately
predict the potential searching direction, while zeroth-order searching can only rely on less effective
tries. As a result, RL searching is much more efficient. As shown in Fig.[T] the RL-based solution
(top row) only takes about 10 iterations to reach a similar PSNR as the 500-iteration output of
a zeroth-order algorithm (bottom row). Also, compared with first-order optimization, RL-based
tuning directly optimizes the non-differentiable image processing pipeline without a differential
proxy. Therefore, it is not limited by the variety and complexity of image processing operations
and pipelines, achieving much better tuning results. As shown in Fig.[I] RL-based tuning reaches
38.92dB (top row), while the first-order solution only obtains 18.69dB (middle row).

To train an efficient RL policy for tuning, we also propose a novel state representation dedicated to
this task. The state representation should model the relationship between the photo editing space and
our policy. To achieve that, our state representation consists of three key components: a CNN-based
feature representation to encode global and local features, a photo statistics representation to match
the photographic statistics between the input and the goal, and an embedding of historical actions.
These representations better fit the RL policy into our task and guide the policy to generate the next
set of parameters effectively. Lastly, we also design reward functions for both photo finishing tuning
and photo stylization tuning, enabling our framework to tune photos to different targets.

We validate the effectiveness of our framework with extensive experiments on both photo finishing
tuning and photo stylization tuning. Our RL-based framework significantly outperforms previous
methods in both tasks in terms of both efficiency and image quality. Experimental results demonstrate

https://doi.org/10.52202/079017-1471 46295

that our goal-conditioned policy is an efficient photo finishing tuner capable of performing fine-
grained control on image processing pipeline parameters to achieve various goals.

2 Related Work

ISP tuning. Recent developments in end-to-end Al-based ISP pipelines show potential as alternatives
to traditional mobile ISPs |13} 14} 25]]. Yet, traditional parametric ISPs remain preferred in consumer
cameras for their controllability, efficiency, and interpretability. These systems require expert-driven,
labor-intensive tuning to enhance image quality and achieve desired aesthetic effects. Efforts to
streamline this process are ongoing, aiming to reduce the need for manual adjustments. Gradient-
based optimization is a notable strategy in this area. Tseng et al. [28] have applied differentiable
black-box proxies to simplify ISP tuning. Further research by Tseng et al. [29] has opened up the ISP
pipeline into white-box manageable modules, learning differentiable proxies for each module and
subsequently integrating them, which improves the tuning performance. Additionally, Qin et al. [23]]
introduced an attention-based CNN approach for scene-aware ISP tuning. However, this method lacks
integration of sequence-specific prior knowledge. They later developed a framework for predicting
ISP hyper-parameters sequentially [24]], optimizing parameters based on their relationships and
similarities. In a different approach, Mosleh et al. [20] utilized a genetic evolutionary algorithm with
a zero-order stochastic solver[9] to directly optimize hardware-specific image processing pipelines,
circumventing the constraints of gradient-based methods. Moreover, Nishimura et al. [21]] explored
derivative-free optimization, employing nonlinear techniques and automatic reference generation for
effective automation of image quality adjustments. Despite these advancements, the complexity of
the image processing pipeline and the vast parameter space continue to challenge the efficiency of
tuning methods.

Photo stylization. Automating image stylization, which is straightforward for humans, poses
challenges for machines. Significant research has been conducted to bridge this gap. Karras et al.
[L5] pioneered StyleGAN, a network manipulating the latent space to control image styles at various
scales. Building on this, Brooks et al. [2] developed InstructPix2Pix, which allows users to guide
the stylization process through textual instructions, enhancing user-machine interaction. However,
these methods often lack explainability and may alter the original image content. Further exploring
transparency, Hu et al. [[L1] proposed a reinforcement learning-based white-box photo-finisher,
though its need for explicit gradients limits compatibility with traditional systems. Kosugi et al.
[L8] addressed style diversity using unpaired data based on reinforcement learning. Despite these
advances, these methods are restricted to a single style during training, limiting the user’s ability to
control the pipeline to produce images of any desired style during inference. Moreover, Tseng et al.
[29] optimized proxy networks for image processing modules via a style loss function, achieving
promising results but facing limitations in handling complex modules and style variability during
inference.

3 Method
3.1 Problem Definition

Throughout this paper, we aim to tackle the photo finishing tuning problem. Given an input image
Iy, an image processing pipeline fppg maps the input to a finished image Irnisuep = feee (Lo, P),
controlled by a set of parameters P. Our task is to solve the inverse problem: given an input image
Iy and a tuning target I, (the goal condition in the RL framework), how to find the parameters that
reach this target:

argm}inﬁ(lg,fmpg([o,P)). (1)

The goal image I, can vary between different tasks. For photo finishing tuning, the goal image
shares the same content as the input, and the tuning target is to minimize the distance between the
pipeline output and the goal image I,. For photo stylization tuning, the goal image is a style target
with different content than the input, and the tuning target is to generate an output that matches the
style of the goal image. Note that unlike artistic style transfer [[6], we focus on photorealistic style
transfer [31]], where the processing pipeline does not change the content of an image.

3.2 Goal Conditioned Reinforcement Learning

We are the first to introduce a reinforcement learning (RL) approach to the photo finishing tuning
task by formulating it as an end-to-end policy learning problem. Inspired by human experts who use

46296 https://doi.org/10.52202/079017-1471

Goal (Target) Image . Dual-path Feature Representation {state Rip.‘= . e Concat
. 1 ty = ————=
W i
:FDO ! Policy Network
@ i
‘>,- Local path —>: 1
- 1
(7] o) : FS U :
5 - 1 ©
- g CNN Encoder : O :
® H H -
c S Global path :F I Action a;
s = A — ’
e T — 7 Temp
[e) S S L . H st 2
8 Photo Statistics Representation F Historical Actions F' ont .
C . 2
©) -
o | Berisiets param(t) Ly Igoar) Pipeline
(O] A | & Parameters
/ Goal Image -
Histograms Statistics param(0) lgy.(To Igoar)
\
RL Tuning Step 1 RL Tuning Step 2 RL Tuning Step 3 RL Tuning Step N
Tint. 22 Tint. A Tint. 9 Tint, 3
@ - - @ s @ = @
o 2 ; /‘ 2 2 g / 3 S B
o N o
[» o « v 2
2 T L T A T
o =
2
1]
S
i
(=]
£
c
=
'—

Step 1 Image Step 2 Image Step 3 Image Output Image

Figure 2: The overall framework. Top row: at each step, our policy maps the current image and
the goal image to action (new parameters), with the help of our state representation consisting of
dual-path features, photo statistics, and historical actions. Bottom row: visualization of iterative
tuning trajectory of our RL-based photo finishing framework.

iterative trial and error in photo finishing, our method models the task as a decision process with
multi-step feedback, akin to a Markov Decision Process. As shown in the bottom row of Fig. 2}
our policy iteratively tunes the parameters of a given image processing pipeline to match a goal
image. At each step, it takes the currently retouched image and the goal image as inputs, and then
outputs the next action. This RL-based framework efficiently predicts pipeline parameters, requiring
only minimal iterations (e.g., 10 queries to the image processing pipeline). Additionally, since RL
optimization bypasses the need for gradient flow from the image processing pipeline, our system can
handle any black-box pipeline, regardless of complexity.

The RL process is formally defined as follows. Let S be the state space, O be the observation space, A
be the action space, 7 be the transition function, R be the reward function, G be the goal distribution,
po be the initial state distribution, and ~y the discount factor. All these forms a Goal-conditioned
Partially-Observed Markov Decision Process (S, 0, A, T, R, G, po,7) [19].

In each tuning episode ¢, the agent is given a goal image I, € G, as well as an observation o, € O
consists of the retouched image I; at step ¢ along with all historical actions and observations. The
action ay is the parameter set P used by image processing pipeline to generate the output image
at the next step. And the transition function 7 : § x A — § is the image processing pipeline
fripe defined in Sec. The reward function is R(s, I,) for s € S and I, € G. We aim to learn
a goal-conditioned policy 7r(a|o I;) : § x G — A that maps from observation o and goal I, to
the next action a, maximizing the sum of discounted rewards Esompo,y~G D¢ VR8¢, Ig). Our
policy m(alo, I,) is a deterministic policy py parameterized by 6, outputting continuous actions

ay = ﬂ9(0t’ Ig)

3.3 Photo Finishing State Representation

State presentation is also critical for the success of the proposed RL policy. This is particularly
important in challenging scenarios where the policy must tune parameters for unseen goals of any
style. Our experiment in Sec.[4.3]also shows that a simple concatenation of the input and goal images

https://doi.org/10.52202/079017-1471 46297

yields a sub-optimal result. Therefore, we design a comprehensive photo finishing state representation
to extract features from observations that are critical for photo finishing tuning.

Specifically, our representation consists of three components: a CNN-based dual-path feature rep-
resentation to encode both global and local features, a photo statistics representation to match the
traditional photographic statistics between input and goal images, and an embedding of historical
actions. Details of each component are described below.

Dual-path feature representation. In our dual-path feature representation, we seek to extract both
global and local features from both input and goal images, inspired by [8]]. This is because the tuning
task requires not only global image characteristics such as overall color, tone, average intensity, and
scene category, but also local features associated with texture, highlight, and shadow. As shown in
Fig.2] the architecture begins with a stride-2 convolutional encoder to reduce spatial resolution and
extract initial low-level features. It then splits into two paths: a local path and a global path. The
local path {Li}izl___ ~,, includes two stride-1 convolutional layers, preserving spatial resolution to
extract local features. The global path {Gi}i=1_,, N, has one stride-2 convolutional layer and three
fully-connected layers, providing a global scene summary vector. This global feature encapsulates
essential global image characteristics such as overall color and tone, as well as a global notion of
scene category (light condition or indoor/outdoor). We fuse the global and local features by adding
the global feature at each x, y spatial location of the local feature: F:Ey = o(GNe + LOL), where o

is the ReLU activation. This results in a dual-path feature representation F'".

Photo statistics representation. Simply relying on a CNN-based policy may lead to unsatisfactory
results with input and goal images outside of training distribution. To better represent invariant
features across diverse styles and content of both input and goal images, we introduce a photo
statistics representation, which matches traditional image statistics such as a histogram between input
and goal. Global photo statistics, such as histograms, are critical in global image processing operations,
such as exposure control [22], highlight, and shadow. Since they cannot be well represented by
conventional convolutional neural networks due to limited receptive fields [29], we propose to pre-
compute these statistics and concatenate them into our state representation. Specifically, we compute
histograms H,.g;, on the RGB channels of input and goal images and map these to a fixed dimension
using a linear layer H' = Linear((H, 4 (1;); Hrg(I,)). This feature is then concatenated with the
luminance, median, contrast, and saturation of both input and goal images to form the photo statistics
representation F'°.

Policy network. At last, we combine the dual-path feature representation and photo statistics
representation with a historical action embedding FtH = Linear(ay.¢; ¢1.¢), where ¢; is the {5-
distance of image I; and goal image I,. As shown in Fig. [2| the input of policy network can be
formulated as s; = Concat(F}”; F;°; F/). The policy network is a multi-layer perceptron network
(MLP) that maps from the current state and the goal representation to the next action to take. We
choose deterministic policy to directly output continuous action a; = (0t g) = pg(s:). We use
the same architecture to estimate the value function for RL updates.

3.4 Reward Function and Training Objectives

We provide a general RL-based framework for photo tuning tasks. One can train our goal-conditioned
end-to-end policy with different reward functions to resolve different photo tuning tasks including
photo finishing tuning and photo stylization tuning. The policy is optimized with twin-delayed DDPG
(TD3) algorithm [S]].

Reward function for photo finishing tuning. When goal image I, is the photo-finished input image,
we measure the distance between current image I; and I, with PSNR metric. The reward function is
calculated as the difference between PSNR values of consecutive steps:

ry = PSNR(I;41,1,) — PSNR(I}, Iy). 2)
Instead of using /2-distance to measure image distance, we use PSNR, the negative logarithm of
{5-distance. This design ensures the policy receives appropriate rewards even when the current image
is close to the goal, encouraging fine-grained tuning of pipeline parameters.

Reward function for photo stylization tuning. When goal image I, is a style image with arbitrary
content and style, we measure the distance between the input and goal images with a style score:

Ns
StyleScore, = [|Gi[T,] = GilLi]l|, + Aol H (LY), H(I) |2 + M HITY), HITV)[l2, 3)
=1

46298 https://doi.org/10.52202/079017-1471

where Ng denotes the number of layers from a pre-trained VGG-19 [27]] model used to extract
features. Following [6], the style is captured using Gram matrices G;[-] = F;[]F;[-]7, with F;
representing feature maps. Additionally, the /5-distances of histograms for the Y and UV channels
are included to align luminance and color palettes. The overall reward is calculated by the change in
style score across consecutive steps, penalized by the difference in content features Fj:

Nc
ry = StyleScore, — StyleScore, ,; — Ay > _ ||Fi[I,] — Fi[L]]l, - 4)
i=1

Policy optimization. We optimize our goal-conditioned policy with off-policy TD3 [5] algorithm.
Specifically, TD3 learns two Q value function (), and @4,, optimized by mean square Bellman
error minimization:

Y(re, se41,d) = ¢ + (1 = d) min Qg vy (514150 (5611)), (5)
L(¢;) = .]ED [(Q@-(St, ay) — y(re, 3t+17d))2} , (6)

where Qg, ., is the exponential moving average of Qg,, a/(s;41) is given by target policy with
clipped gaussian noise, and d is the termination signal. The state transition pair (s, at, ¢, St41,d) is
sampled from a replay buffer D. With Q functions, the policy () is learned by maximizing Q 4, :

LO) = E_ Qo (st o(s:))]- o
Sprv
More details about our reward functions and policy optimization are in the appendix.

4 Experiments

In the first subsection, we provide the details of datasets and task settings for photo finishing tuning
and photo stylization tuning, along with a description of the evaluation metrics. In the second
subsection, we demonstrate our experimental results and compare them to zeroth-order optimization
[20] and first-order optimization [28}|29]] baseline methods. Ablation studies are conducted in the last
subsection, which investigates the impact of each component of our state representation. We also
provide supplementary qualitative results in the Appendix.

4.1 Tasks Settings and Datasets

Datasets. We use the MIT-Adobe FiveK Dataset [3]], a renowned resource in the field of photo
retouching, which comprises 5,000 photographs captured using DSLR cameras by various photogra-
phers. This dataset is notable for providing images in raw format alongside the retouching outcomes
of five experts. For our study, we selected 4,500 images to serve as the training dataset, with the
remaining 500 images designated as the validation dataset. In our method, random parameters are
employed to generate the target images, which are used as training data pairs. In the task of photo
finishing tuning, the datasets including both the expert C retouched targets and randomly generated
targets are utilized for evaluation. The expert C retouched targets are optimized using CMA-ES to
ensure they are reachable by our image processing pipeline. For the photo stylization tuning task,
we have curated a collection of 200 diverse style images from the Lightroom Discover website El,
following [26]].

To further evaluate our method and demonstrate its generalizability, we test our RL-based framework
directly on the HDR+ dataset [10]]. We used the official subset of the HDR+ dataset, which consists
of 153 scenes, each containing up to 10 raw photos. The aligned and merged frames are used as the
input, expertly tuned images serve as the photo-finishing targets.

Implementation details. We conduct all experiments on an image processing pipeline consisting
of standard image processing operations, including exposure, color balance, saturation, contrast,
tone mapping (highlight and shadow), and texture (sharpness and smoothing), with nine adjustable
parameters in total, similar to [29]]. Thus, the agent’s action space is comprised of fine continuous
actions corresponding to these nine pipeline parameters. During the policy inference, the input and
goal images are resized to the resolution of 64 x 64. Additionally, a 3-level Laplacian pyramid of

3https://lightroom.adobe.com/learn/discover

https://doi.org/10.52202/079017-1471 46299

Table 1: photo finishing tuning experimental results on the FiveK validation datasets with FiveK
targets (expert-C) and random targets. Queries represent the times of query image processing pipeline.

Eval Dataset \ FiveK-Target \ Random-Target
Method |PSNRT SSIM? LPIPS| Queries|PSNRT SSIM{ LPIPS| Queries)
CMAES [9]20] 28.53 0.9586 0.0968 200 32.29 0.9754 0.0827 200
Monolithic Proxy [28] | 21.71 0.9104 0.2144 - 21.08 0.9251 0.2785 -
Cascaded Proxy 22.31 09115 0.1939 - 21.40 0.9213 0.2613 -
Ours 35.89 0.9764 0.0305 10 3846 0.9814 0.0128 10

Input Monolithic Proxy Cascaded Proxy CMAES Ours Target

Figure 3: Photo finishing tuning results on FiveK dataset with expert C target. The visual results of
our method are closest to the target image, especially in terms of color and brightness.

both input and goal images is constructed and fed into the policy network to capture high-frequency
details from the original resolution. Then the output parameters from the policy network are fed to
the image processing pipeline along with full-resolution images to produce high-resolution results.
We train our policy using the standard TD3 algorithm [5]] and set the termination of our RL policy
to trigger when the episode length reaches the maximum threshold (10 steps), ensuring efficiency.
Further details can be found in the appendix.

Evaluate metrics. Similar to [T}, 28] 29], we employ the Peak Signal-to-Noise Ratio (PSNR), the
Structural Similarity Index Measure (SSIM) [30], and the Learned Perceptual Image Patch Similarity
(LPIPS) [33] as our evaluation metrics. To assess the quality of stylization, we conduct user studies
to evaluate our methods, offering a subjective measure of image quality based on viewer assessments.

4.2 Results

Results of photo finishing tuning. To evaluate the efficacy of our framework on the photo finishing
tuning Task, we conduct two experiments on the FiveK validation datasets, using both expert-C targets
and random targets. Our method is compared against the monolithic proxy-based approach [28]], the
cascaded proxy-based method [29]], and the search-based method proposed [20]. Consistent with [29],
we utilize 100 iterations during inference for the proxy-based methods. Additionally, we record the
number of times that the photo-finishing pipeline was queried in both search-based methods and our
approach.

As illustrated in Tab. [T} our method outperforms the others across all metrics on both FiveK-Target
and Random-Target. The monolithic proxy-based method struggles with accurately representing the
complex image processing pipeline, leading to suboptimal performance. While the cascaded proxy
method can incrementally enhance tuning performance over its monolithic counterpart, it suffers from
accumulated errors and difficulties in approximating certain operations, such as texture, resulting in
poorer performance. Notably, our method only requires querying 10 times image processing pipeline,

46300 https://doi.org/10.52202/079017-1471

Table 2: Experimental results demonstrating efficiency across varying input resolutions. Our method
significantly outperforms other methods, achieving a speed enhancement of 260 times relative
to the cascaded proxy method [29] at 720P resolution, and 117 times faster than the CMAES
approach [9] 20] at 4K resolution.

Methods | Monolithic Proxy | Cascaded Proxy | CMAES [9]20] | Ours

720P 1K 2K 4K | 720P 1K 2K 4K | 720P 1K 2K 4K 720p IK 2K 4K
7.67 17.89 33.07 OOM | 7045 OOM OOM OOM | 36.16 51.82 91.86 144.02 | 0.27 033 047 1.23

Resolution
Time(s)

Input Monolithic Proxy Cascaded Proxy CMAES Ours Target

Figure 4: Photo stylization tuning results. Compared with CMAES [9] 20]], monolithic proxy [28]],
and cascaded proxy [29]], our output matches the best with the style goal.

whereas the performance of the search-based method, even with 200 queries, remained inferior to
ours. Further, the visualization results depicted in Fig.] demonstrate that our method produces visual
outcomes that most closely match the target images, particularly in terms of color and brightness,
when compared to all other methods. More visualization can be found in Fig. [7]of Appendix [AT]

Efficiency. To evaluate the efficiency of our approach, we conducted speed testing experiments on a
system equipped with an AMD EPYC 7402 (48C) @ 2.8 GHz CPU, 8 NVIDIA RTX 4090 GPUs
with 24GB of RAM each, 512 GB of memory, and running CentOS 7.9. In line with [29], we applied
200 iterations during inference for both the proxy-based methods [28] and the search-based
method [20]. We measured the execution time for each method across four different input resolutions.

As indicated in Tab. 2] our method demonstrated superior efficiency, requiring only 1.23 seconds per
execution with 4K input. While the monolithic proxy-based method outperformed the search-based
method in terms of speed, it faced limitations as input resolutions increased, leading to out-of-memory
(OOM) errors once GPU memory was exceeded. The cascaded proxy-based method, which includes
MLP networks, was the slowest and most prone to memory overflows due to its intensive memory
demands. The search-based method primarily depends on CPU performance. Despite being executed
on a high-performance server, the CMAES method [20] requires 144 seconds to process a 4K input
image, which is considerably slow.

Results of photo stylization tuning. We conduct qualitative comparisons and user studies on the
photo stylization tuning task to demonstrate the effectiveness of our goal-conditioned RL framework.
Our policy was trained using the FiveK training dataset, and all methods were evaluated on input and
style image pairs collected from the Adobe Lightroom Discover website. For all baseline methods,
we adopt the same style score described Sec[3.4]as optimization objectives, ensuring fair comparison.

As shown in Fig. @] our method produces results closer to the style goal image compared to the
baseline. Notably, our method achieves better results with only 10 queries to the image processing
pipeline, whereas the baseline methods require 200 queries, making them orders of magnitude slower.
It is important to note that the style images from the Lightroom Discover website have a different
distribution than our training dataset. Despite this, our method adapts directly to the target style image
distribution during testing, whereas the baseline methods require time-consuming optimization of
testing data. These experimental results demonstrate that our RL-based framework can efficiently tune

https://doi.org/10.52202/079017-1471 46301

Input Monolithic Proxy Cascaded Proxy Target
Figure 5: Qualitative comparison on the HDR+ photo finishing tuning task. These comparisons
illustrate that our method remains closer to the target even when dealing with input and target images

outside the training distribution.

Table 3: Photo finishing tuning experimental results on addition HDR+ datasets [10] with HDR+
expert-tuned targets.

Eval Dataset | HDR+ Target
Method ‘PSNRT SSIM?T LPIPS] Queries|

CMAES [9120] 28.08 0.9539 0.1307 200
Greedy Search 25.79 09212 0.1542 200
Monolithic Proxy 17.80 0.8940 0.3044 -
Cascaded Proxy [29] | 18.90 0.8982 0.2797 -
Ours 31.54 0.9652 0.0563 10

images to different unseen styles, showcasing that our photo finishing state representation (Sec. 3.3)
has the capability to generalize to versatile goals outside of training distributions. More visualization
with versatile goal images can be found in Fig. [8|of Appendix[AZ2]

To rigorously evaluate the effectiveness of our method in photo stylization tuning, we implemented a
subjective user study comprising 20 questions. In each question, participants were presented with
images generated by four different methods—monolithic proxy, cascaded proxy, CMAES, and our
own approach. Participants were asked to identify up to two images that most closely resembled a
given target image. The study was conducted online, garnering 65 responses from a diverse group of
individuals selected randomly from the internet.

The aggregated preferences are visually summarized in Fig.[6] The data clearly show that our method
is perceived by the majority of participants as producing results that most closely match the target
images, highlighting its superiority in stylization tuning tasks.

Cross dataset generalization. We conducted additional evaluations using the HDR+ dataset [10]
to demonstrate our RL-based framework’s ability to generalize effectively to unseen datasets. We
compare to baselines including CMAES [9} 20], Cascaded Proxy [29], Monolithic Proxy [28]], and
Greedy Search [16]. In Tab. 3] we report PSNR, SSIM, LPIPS, and queries to the ISP pipeline.
The results demonstrate that our RL policy generalizes effectively to unseen data, achieving higher
photo-finishing quality than methods directly tuned on the test dataset. Qualitative comparisons in
Fig.[5]show that our results are closer to targets, even with input and target images outside the training
distribution.

In Tab. 3] our RL-based method achieves a PSNR of 31.54 on the HDR+ photo-finishing task, and it
outperforms all baselines. This shows that our RL policy, trained on the FiveK dataset, effectively
generalizes to the HDR+ dataset. Such out-of-distribution capability is facilitated by our proposed

46302 https://doi.org/10.52202/079017-1471

N 571 Table 4: Ablation study on each component of

550 our finishing state representation. RL denotes
a baseline naively using CNN trained with RL,
cpr. M
X 108 FP FS FH denotes each of our state representa-
XM 102 tion respectively.
] 200 400 600 . 80-0 1000
HOurs BCMAES = Cascaded Proxy (C.P.) ®Monolithic Proxy (M. P.) ‘ RL FD FS FH ‘ PSNRT SSIMT
Figure 6: Results of the user study on the photo Bz, | v 3217 0.968
stylization tuning task. Each bar represents the Bry | v 3515 0973
ber of votes each method received, where Bas | v v/ 3761 0980
numbe : ed, Brs | v v v | 3596 0976
participants select the images they believed most Exs | v v v v 3846 0983

closely resembled target images.

photo-finishing state representation, which extracts invariant features for photo finishing, allowing
adaptation to diverse inputs and goals beyond the training distributions. The CMAES [9 20] baseline
shows consistent results on HDR+ compared to FiveK, as it is directly optimized on the test dataset
without prior training. However, proxy-based methods [28, 29] perform worse because the proxy
network trained on FiveK does not generalize well to HDR+, leading to incorrect gradients and poorer
photo-finishing quality.

4.3 Ablation Study on State Representation

As has been shown in our main experiment, our RL-based approach significantly outperforms the
previous method in terms of photo finishing quality and efficiency, demonstrating that RL is more
suitable for the photo finishing tuning task. In this subsection, we focus on the photo finishing state
representation we propose to better fit RL in our task. Specifically, we conduct experiments on photo
finishing tuning task using FiveK Random-Target dataset, in order to study the contribution of each
specific representation in our photo finishing state representation.

As shown in Tab.] we set our baseline RL as RL policy trained with a naive CNN-based encoder
taking the concatenated input and goal images as input. This baseline achieves only 32.17 dB of
PSNR. In Ex5, our dual-path feature representation F'” improves the photo finishing quality, as it
better encodes local features and global image characteristics critical to our photo tuning task. Since
traditional photo statistics contain invariant features about global statistics that are difficult to learn
solely using a network, the photo statistics representation F'* also helps to boost photo finishing
quality as shown in Fx3. Moreover, as parameters and results from all previous RL steps help in
the decision process, the historical action representation is also useful as shown in Ex4. With the
proposed three representations combined, our RL policy can be guided to effectively tune image
processing pipeline parameters given input and goal images of any photo finishing style, as evidenced
by the superior performance in Ezs.

5 Conclusion

In this work, we propose an RL-based photo finishing tuning algorithm that efficiently tunes the
parameters of a black-box image processing pipeline to match any tuning target. Our approach
encompasses several key innovations. Firstly, we integrate goal-conditioned RL into the realm of
photo-finishing tuning. Secondly, we propose a photo finishing state representation comprising three
principal components essential for training an effective RL policy network: a CNN-based feature
representation that encodes both global and local image features, a photo statistics representation
designed to align the photographic statistics between the input and the target, and an embedding of
historical actions. We assess the effectiveness of our framework through comprehensive experiments
on both photo finishing tuning and photo stylization tuning. The experimental results affirm that
our goal-conditioned policy is an adept photo-finishing tuner, capable of exerting efficient and fine-
grained control over image processing pipeline parameters to fulfill a variety of objectives. Currently,
our method exclusively supports conditional inputs in the form of images and lacks the capability to
process non-image types such as textual inputs. Moving forward, we intend to broaden our research
to include multi-modal conditional inputs.

https://doi.org/10.52202/079017-1471 46303

Acknowledgements

This work is supported by Shanghai Artificial Intelligence Laboratory and RGC Early Career Scheme
(ECS) No. 24209224. We also extend our gratitude to Quanyi Li for his insightful discussions and
valuable comments.

References

[1] J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497—
89509, 2020.

[2] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18392-18402, 2023.

[3] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photographic
global tonal adjustment with a database of input / output image pairs. In CVPR, 2011.

[4] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.

In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15-26,
2017.

[5] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587-1596.
PMLR, 2018.

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414-2423, 2016.

[7] Michaél Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint demosaicking
and denoising. ACM Transactions on Graphics (ToG), 35(6):1-12, 2016.

[8] Michaél Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand.
Deep bilateral learning for real-time image enhancement. 70G.

[9] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pages 75-102, 2006.

[10] Sam Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron, Florian Kainz,
Jiawen Chen, and Marc Levoy. Burst photography for high dynamic range and low-light imaging
on mobile cameras. SIGGRAPH Asia, 2016.

[11] Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and Stephen Lin. Exposure: A white-box
photo post-processing framework. 7OG.

[12] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In ICCV, 2017.

[13] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replacing mobile camera isp with a single
deep learning model. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pages 536-537, 2020.

[14] Wooseok Jeong and Seung-Won Jung. Rawtobit: A fully end-to-end camera isp network. In
European Conference on Computer Vision, pages 497-513. Springer, 2022.

[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401-4410, 2019.

[16] Heewon Kim and Kyoung Mu Lee. Learning controllable isp for image enhancement. /[EEE
Transactions on Image Processing, 33:867-880, 2023.

46304 https://doi.org/10.52202/079017-1471

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Satoshi Kosugi and Toshihiko Yamasaki. Unpaired image enhancement featuring reinforcement-
learning-controlled image editing software. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 1129611303, 2020.

[19] Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning:
Problems and solutions, 2022.

[20] Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux, and Felix
Heide. Hardware-in-the-loop end-to-end optimization of camera image processing pipelines. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7529-7538, 2020.

[21] Jun Nishimura, Timo Gerasimow, Rao Sushma, Aleksandar Sutic, Chyuan-Tyng Wu, and Gilad
Michael. Automatic isp image quality tuning using nonlinear optimization. In 2018 25th IEEE
International Conference on Image Processing (ICIP), pages 2471-2475. IEEE, 2018.

[22] Emmanuel Onzon, Fahim Mannan, and Felix Heide. Neural auto-exposure for high-dynamic
range object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[23] Haina Qin, Longfei Han, Juan Wang, Congxuan Zhang, Yanwei Li, Bing Li, and Weiming
Hu. Attention-aware learning for hyperparameter prediction in image processing pipelines. In
European Conference on Computer Vision, pages 271-287. Springer, 2022.

[24] Haina Qin, Longfei Han, Weihua Xiong, Juan Wang, Wentao Ma, Bing Li, and Weiming
Hu. Learning to exploit the sequence-specific prior knowledge for image processing pipelines
optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22314-22323, 2023.

[25] Ardhendu Shekhar Tripathi, Martin Danelljan, Samarth Shukla, Radu Timofte, and Luc
Van Gool. Transform your smartphone into a dslr camera: Learning the isp in the wild.
In European Conference on Computer Vision, pages 625—-641. Springer, 2022.

[26] Jing Shi, Ning Xu, Haitian Zheng, Alex Smith, Jiebo Luo, and Chenliang Xu. Spaceedit:
Learning a unified editing space for open-domain image color editing. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pages 19730-19739, 2022.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognitio. In International Conference on Learning Representations (ICLR), 2015.

[28] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl ST Arnaud, Derek Nowrouzezahrai,
Jean-Francois Lalonde, and Felix Heide. Hyperparameter optimization in black-box image
processing using differentiable proxies. ACM Trans. Graph., 38(4):27-1, 2019.

[29] Ethan Tseng, Yuxuan Zhang, Lars Jebe, Xuaner Zhang, Zhihao Xia, Yifei Fan, Felix Heide, and
Jiawen Chen. Neural photo-finishing. ACM Transactions on Graphics, 41(6):3555526, 2022.

[30] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600—
612, 2004.

[31] Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, and Jiawen Chen. Joint
bilateral learning for real-time universal photorealistic style transfer. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VIII
16, pages 327-342. Springer, 2020.

[32] Ke Yu, Zexian Li, Yue Peng, Chen Change Loy, and Jinwei Gu. Reconfigisp: Reconfigurable
camera image processing pipeline. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4248-4257, 2021.

[33] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586-595, 2018.

https://doi.org/10.52202/079017-1471 46305

A Additional Results

A.1 Photo Finishing Tuning Results on FiveK Dataset

We show more photo finishing tuning visualization results on the FiveK-Target evaluation dataset in
Fig.[7} showcasing its superior performance in terms of color and brightness compared to all other
methods.

Input Monolithic Proxy Cascaded Proxy CMAES Ours Target

Figure 7: Additional results on photo finishing tuning task.

- l" X
:
E S

Photo
Stylization Goal

Input Image

Figure 8: Additional results on photo stylization tuning task.

46306 https://doi.org/10.52202/079017-1471

A.2 Photo Stylization Tuning Results

We show more photo stylization tuning visualization results in Fig. [§] showcasing its superior
performance in tuning input images to any style goal that is outside the training goal distribution.

B Image Processing Pipeline

The detailed image processing pipeline in this paper encompasses various standard operations,
including:

(1) Exposure: Adjusts the overall brightness of the image, primarily affecting the amount of
light captured. Increasing exposure makes the image brighter while decreasing it makes
the image darker. This is useful for correcting overexposed or underexposed photos. This
operation includes one slider parameter.

(2) Color Balance: Used to adjust the color temperature and tint of an image, altering its overall
color feel. Adjusting the color temperature (blue to yellow) and tint (green to magenta) can
make the image appear warmer or cooler. This operation includes three slider parameters.

(3) Saturation: Controls the intensity of colors in the image. Increasing saturation makes the
colors more vivid and lively, whereas decreasing saturation reduces color intensity, making
the image appear softer or closer to black and white. This operation includes one slider
parameter.

(4) Contrast: Adjusts the difference between the brightest and darkest parts of the image.
Increasing contrast makes dark areas darker and bright areas brighter, enhancing the depth
and dimension of the image. Decreasing contrast brings these areas closer to mid-grey,
reducing the image’s depth. This operation includes one slider parameter.

(5) Tone Mapping: This operation compresses a high dynamic range input to a smaller dynamic
range, which is affected by the Highlights and Shadows sliders, respectively. Highlights:
Adjusts the brightness of the brightest areas of the image without affecting overall exposure.
This helps recover details in overexposed areas. Shadows: Adjusts the brightness of the
darkest areas, helping reveal details in shadowed regions without changing the overall
exposure. This operation includes two slider parameters.

(6) Texture: Enhances or reduces the detail and texture in the image without affecting colors.
Enhancing texture can make details in the image clearer, while reducing texture can smooth
out the image, often used in portrait photos for skin treatment. This operation includes one
slider parameter.

C Additional Implementation Details and Training Strategy

C.1 Training Details of TD3 Algorithm

We state the details of TD3 [5] algorithm training in this subsection. TD3 is an off-policy RL
algorithm. When the policy sample transition pair (s, at, ¢, St+1,d) to form the replay buffer
D, a gaussian noise is added to encourage exploration: a = clip (pg(s) + €, Arow, @Hign), Where
e ~N(0,0). We set o = 0.1 for a trade-off between exploration and exploitation.

To compute the target action in Q update target:

L) = E,

2
(@autors00) = (re 901 =) iy Qo (101,500)] C®
The next action of s;; comes from the target policy with a clipped noise, so that incorrect action
peak produced by sub-optimal Q value estimation is smoothed out, as in the following equation:
a/(s¢41) = clip (19, (5e41) + clip(er, —¢, €), Low, amign) , €1~ N(0,0))

In this implementation, we set €; = 0.2, which is twice the value of €. TD3 updates the policy less
frequently than the Q-function. We set the policy to update half as frequently as the Q network update.
The optimization objectives of the policy are already given in the main paper. To ensure a robust

https://doi.org/10.52202/079017-1471 46307

update of the policy and Q network, TD3 adopts an Exponential Moving Average (EMA) strategy to
update the target network Q and policy network which is used to compute the Q value target above.

¢targ,l — p(btarg,l + (1 - P)¢, (10)
¢targ,2 — pd)targ,Z + (]- - P)¢7, (11)
6larg — pgtarg + (]- - p)g (12)

We set the EMA update rate p = 0.99 in all our experiments. The optimizer is performed using Adam
optimizer [L7]] with (51, 82) = (0.9,0.999). We set the learning rate to specific values for policy and
value network, that is, le-4 for action and 2e-4 for Q network. We set batch size as 64 for both photo
finishing tuning and photo stylization tuning experiments. We set the discount factor v = 0.9. All
experiments are conducted on NVIDIA RTX 4090 GPUs. Furthermore, we implement the CMAES
method [28] based on open-source framework [[1].

C.2 Other Training Details

Reward design. For our detailed reward design, as described in Sec. (3.4} we utilize the PSNR metric
of consecutive steps for photo finishing tuning. In photo stylization tuning, we adopt the style score
as the main reward and add a content negative reward to prevent the policy from taking drastic actions
that hinder photo stylization quality. Specifically, we set Ao and A; in StyleScore, to 100 and 50,
respectively, and set Ao = 0.5. For the VGG features selected to compute the style score, we follow
[12] to set Ng = N¢ = 4, selecting relu_{1...4}_1 features to form {F;};—1.. 4, which is then used
to compute then gram matrix and the content regularization term.

RL termination. Since our RL policy freely explores the image processing pipeline parameter space,
we need to terminate the current episode if the state collapses, meaning the policy outputs parameters
that render an abnormal image. Specifically, we calculate the average pixel intensity of the image
I as 7, and set this value to be within the range of Z,,,;,, and Z,,,,,.. For each rollout, if Z; is out of
range, we terminate the state and do not save it to our replay buffer D.

Network architecture. Our approach learns an end-to-end policy that maps from input images
and goal specifications to the next action to take (the next parameters of the image processing
pipeline.) The state representation is s, as described in Sec.[3.3] which is fed into a 4-layer multi-layer
perceptron network (MLP), with a continuous action space of 9 parameters. Each hidden layer of the
MLP network is of width 512.

C.3 Baselines Implementation Details

Implementation details for CMAES [9, 20]. CMAES is a gradient-free search (zeroth order
optimization) method using an evolution strategy. As [20] does not provide code, we implemented
CMAES using the pymoo library [1]], enabling parallel execution on multi-core CPUs and achieving
reasonable performance. This baseline does not require training.

Implementation details for Cascaded Proxy [29]. For proxy network training, we followed the
architecture in [29]], using 3 consecutive 1 x 1 convolutions for pointwise ISP operations and 5
consecutive 3 x 3 convolutions for areawise operations. We trained with the Adam optimizer, a
learning rate of le-4, a batch size of 512, and 100 epochs, as recommended. Camera metadata was
extracted from DNG files, as described in [29]]. Since [29]] does not release its dataset, we used the
MIT-Adobe FiveK dataset, as in our method. Following Section 5 of [29], we used 1,000 raw images
from FiveK and sampled 100 points for each ISP hyperparameter.

Implementation details for Monolithic Proxy [28]. The architecture uses a single UNet to approxi-
mate the ISP pipeline, with hyperparameters conditioned by concatenating extra planes to the features.
We trained the proxy with the Adam optimizer, a learning rate of 1e-4, a batch size of 512, and 100
epochs. The training set generation and first-order optimization method are the same as for [29].

D Detailed Content of the User Study

We conduct a human subject study on the user preference among results of methods for photo
stylization tuning given target style images. In this appendix section, we provide the original
questions that we used to ask for users’ feedback.

46308 https://doi.org/10.52202/079017-1471

For each of the 20 questions in our user study, the order of the methods was randomized and labeled
as A, B, C, and D to ensure the anonymity of the techniques used. Participants were not aware of
which method corresponded to each label, eliminating any potential bias in their selections. The
prompt for all questions remained consistent: “Among the four images on the right (labeled A, B,
C, and D), which one(s) most closely resembles the target image on the left? You may select up to
two images if you believe they are equally similar to the target image. Otherwise, please choose only

Lt}

one.

Detailed below are the options provided for each of the 20 questions.

C D

Figure 9: Options in question 1 of our user study.

B C D

Figure 10: Options in question 2 of our user study.

B

Target

Target

Target

Figure 11: Options in question 3 of our user study.

https://doi.org/10.52202/079017-1471 46309

Target

Target

g

L T

Target A B C D

Target

Target

Target

Target
g
.

1

Figure 18: Options in question 10 of our user study.

46310 https://doi.org/10.52202/079017-1471

B C D
Figure 19: Options in question 11 of our user study.

Target

Target A B C D

Target

Figure 25: Options in question 17 of our user study.

https://doi.org/10.52202/079017-1471 46311

Target

B C

Figure 26: Options in question 18 of our user study.

Figure 27: Options in question 19 of our user study.

Target

Figure 28: Options in question 20 of our user study.

46312 https://doi.org/10.52202/079017-1471

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately reflect the contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[3l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

https://doi.org/10.52202/079017-1471 46313

Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experimental details are provided.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

46314 https://doi.org/10.52202/079017-1471

Answer:
Justification: Codes and datasets will be made publicly available upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are provided in Section[4.1]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This follows the convention in photo-finishing tuning research, the same as
previous works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

https://doi.org/10.52202/079017-1471 46315

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is shown in Section [4.1] and
Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no direct negative societal impact for photo-finishing tuning.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

46316 https://doi.org/10.52202/079017-1471

https://neurips.cc/public/EthicsGuidelines

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all original papers and make sure that our usage is legal.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

https://doi.org/10.52202/079017-1471 46317

paperswithcode.com/datasets

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We construct our experiments based on public datasets and models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Details of our user study, including the text of instructions and question options,
are presented in Appendix

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46318 https://doi.org/10.52202/079017-1471

