
RGFN: Synthesizable Molecular Generation Using
GFlowNets

Michał Koziarski*,1,2, Andrei Rekesh*,3, Dmytro Shevchuk*,3, Almer van der Sloot1,2,
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Abstract

Generative models hold great promise for small molecule discovery, significantly
increasing the size of search space compared to traditional in silico screening
libraries. However, most existing machine learning methods for small molecule
generation suffer from poor synthesizability of candidate compounds, making
experimental validation difficult. In this paper we propose Reaction-GFlowNet
(RGFN), an extension of the GFlowNet framework that operates directly in the
space of chemical reactions, thereby allowing out-of-the-box synthesizability while
maintaining comparable quality of generated candidates. We demonstrate that with
the proposed set of reactions and building blocks, it is possible to obtain a search
space of molecules orders of magnitude larger than existing screening libraries
coupled with low cost of synthesis. We also show that the approach scales to very
large fragment libraries, further increasing the number of potential molecules. We
demonstrate the effectiveness of the proposed approach across a range of oracle
models, including pretrained proxy models and GPU-accelerated docking.

1 Introduction

Traditionally, machine learning has been applied to drug discovery for screening existing libraries
of compounds, whether actual physical collections or pre-configured in silico collections of readily
synthesizable compounds, in a supervised fashion. However, supervised screening of the whole drug-
like space, often estimated to contain approximately 1060 [41] different compounds, is infeasible in
practice. Generative methods offer the potential to circumvent this issue by sampling directly from a
distribution over desirable chemical properties without the need to evaluate every possible molecular
structure. Despite these advances, existing generative approaches tend not to explicitly enforce
synthesizability [21], generating samples that might be either very costly or altogether impossible
to chemically synthesize. Ensuring that generative methods operate in the space of synthesizable
compounds, yet at a much larger and more diverse scale than existing chemical libraries, remains an
open challenge.

In this paper, we propose Reaction-GFlowNet (RGFN), an extension of the GFlowNet framework
[5] that generates molecules by combining basic chemical fragments using a chain of reactions. We
propose a relatively small collection of cheap and accessible chemical building blocks (reactants),
as well as established high-yield chemical transformations, that together can still produce a search
space orders of magnitude larger than existing chemical libraries. We additionally propose several
domain-specific extensions of the GFlowNet framework for action representation and scaling to a
larger space of possible actions.

Source code available at https://github.com/koziarskilab/RGFN.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

46908 https://doi.org/10.52202/079017-1488

https://github.com/koziarskilab/RGFN


We experimentally evaluate RGFN on a set of diverse screening tasks, including docking score
approximation with a trained proxy model for soluble epoxide hydrolase (sEH), GPU-accelerated
direct docking score calculations for multiple protein targets (Mpro, ClpP, TBLR1 and sEH), and
biological activity estimation with a trained proxy model for dopamine receptor type 2 (DRD2)
receptor activity and senolytic activity [74]. We demonstrate that RGFN produces similar optimization
quality and diversity to existing fragment-based approaches while ensuring straightforward synthetic
routes for predicted hit compounds.

2 Related work

Generative models for molecular discovery. A plethora of methods have been developed for
molecular generation [48, 7] using machine learning. These methods can be categorized depending
on the molecular representation used, including textual representations such as SMILES [34, 3, 39],
molecular graphs [33, 46, 54] or 3D atom coordinate representations [52], as well as the underlying
methodology, for example, variational autoencoders [33, 46], reinforcement learning [54, 37] or
diffusion models [60]. Recently, Generative Flow Networks (GFlowNets) [4, 50, 59, 64, 72, 19]
have emerged as a promising paradigm for molecular generation due to their ability to sample
large and diverse candidate small molecule space, which is crucial in the drug discovery process.
Traditionally, GFlowNets for molecular generation operated on the graph representation level, and
candidate molecules were generated as a sequence of actions in which either individual atoms or small
molecular fragments were combined to form a final molecule. While using graph representations,
as opposed to textual or 3D representations, allows the enforcement of the validity of the generated
molecules, it does not guarantee a straightforward route for chemical synthesis. Here, we expand
on the GFlowNet framework by modifying the space of actions to consist of choosing molecular
fragments and executing compatible chemical reactions/transformations, in turn guaranteeing both
physical-chemical validity and synthesizability.

Synthesizability in generative models. One approach to ensuring the synthesizability of generated
molecules is by using a scoring function, either utilizing it as one of the optimization criteria [37],
or as a post-processing step for filtering generated molecules. Multiple scoring approaches, both
heuristic [18, 23] and ML-based [42], exist in the literature. Another branch of research focuses on
using reaction models and traversing predicted synthesis graph [8, 12, 38, 55]. However, reaction and
synthesizability estimation is difficult in practice, and can fail to generalize out-of-distribution in the
case of ML models. Furthermore, theoretical synthesizability does not necessarily account for the
cost of synthesis. Because of this, a preferable approach might be to constrain the space of possible
molecules to those easily synthesized by operating in a predefined space of chemical reactions and
fragments. Several recent strategies employ this approach [22, 49, 67], including reinforcement
learning-based methods [24, 27] and a concurrent work utilizing GFlowNets [15]. We extend this line
of investigation not only by translating the concept to the GFlowNet framework but also by proposing
a curated set of robust chemical reactions and fragments that ensure efficient synthesis at low total
costs.

3 Method

3.1 Generative Flow Networks

GFlowNets are amortized variational inference algorithms that are trained to sample from an unnor-
malized target distribution over compositional objects. GFlowNets aim to sample objects from a set
of terminal states X proportionally to a reward function R : X → R+. GFlowNets are defined on a
pointed directed acyclic graph (DAG), G = (S,A), where:

• s ∈ S are the nodes, referred to as states in our setting, with the special starting state s0 being
the only state with no incoming edges, and the terminal states X have no outgoing edges,

• a = s → s′ ∈ A are the edges, referred to as actions in our setting, and correspond to applying
an action while in a state s and landing in state s′.

We can define a non-negative flow function on the edges F (s → s′) and on the states F (s) of the
DAG such that ∀x ∈ XF (x) = R(x). A perfectly trained GFlowNet should satisfy the following
flow-matching constraint:

2
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∀s ∈ S F (s) =
∑

(s′′→s)∈A

F (s′′ → s) =
∑

(s→s′)∈A

F (s → s′). (1)

A state sequence τ = (s0 → s1 → . . . → sn = x), with sn = x ∈ X and ai = (si → si+1) ∈ A
for all i, is called a complete trajectory. We denote the set of trajectories as T .

Another way to rephrase the flow-matching constraints is to learn a forward policy PF (si+1|si) such
that trajectories starting at s0 and taking actions sampled by PF terminate at x ∈ X proportional to
the reward.

Trajectory balance. Several training losses have been explored to train GFlowNets. Among these,
trajectory balance [45] has been shown to improve credit assignment. In addition to learning a
forward policy PF , we also learn a backward policy PB and a scalar Zθ, such that, for every
trajectory τ = (s0 → s1 → . . . → sn = x), they satisfy:

Zθ

n∏
t=1

PF (st|st−1) = R(x)

n∏
t=1

PB(st−1|st) (2)

3.2 Reaction-GFlowNet

Reaction-GFlowNet generates molecules by combining basic chemical fragments using a chain of
reactions. The generation process comprises the following steps (illustrated in Figure 1):

1. Select an initial building block (reactant or surrogate reactant; see Appendix C.2 for more
details about surrogate reactants).

2. Select the reaction template (a graph transformation describing the reaction).
3. Select another reactant.
4. Perform the in silico reaction and select one of the resulting molecules.
5. Repeat steps 2-4 until the stop action is selected.

In the rest of this section, we describe the design of the Reaction-GFlowNet in detail.
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Figure 1: Illustration of RGFN sampling process. At the beginning, the RGFN selects an initial
molecular building block. In the next two steps, a reaction and a proper reactant are chosen. Then
the in silico reaction is simulated with RDKit’s RunReactants functionality and one of the resulting
molecules is selected. The process is repeated until the stop action is chosen. The obtained molecule
is then evaluated using the reward function.

Preliminaries. Reaction-GFlowNet uses a predefined set of reaction patterns and molecules intro-
duced in Section 3.3. We denote these as R and M respectively. As a backbone for our forward
policy PF , we use a graph transformer model f from [77]. The graph transformer takes as an input a
molecular graph m and outputs the embedding f(m) ∈ RD, where D is the embedding dimension.

3

46910 https://doi.org/10.52202/079017-1488



In particular, f can embed an empty graph ∅. It can additionally be conditioned on the reaction r ∈ R
which we denote as f(m, r). The reaction in this context is represented as its index in the reaction set
R.

Select an initial building block. At the beginning of each trajectory, Reaction-GFlowNet selects an
initial fragment from the collection of building blocks M . The probability of choosing i-th fragment
mi is equal to:

p(mi|∅) = σ|M |(s)i, si = MLPM (f(∅))i, (3)

where MLPM : RD → R|M | is a multi-layer perceptron (MLP). The σk is a standard softmax over
the logits vector s ∈ Rk of the length k:

σk(s)i =
exp(si)∑k
j=1 exp(sj)

.

Select the reaction template. The next step is to select a reaction that can be applied to the molecule
m. The probability of choosing i-th reaction from R is described as:

p(ri|m) = σ|R|+1(s)i, si = MLPR(f(m))i, (4)

where MLPR : RD → R|R|+1 is an MLP that outputs logits for reactions from R and an additional
stop action with index |R|+ 1. Choosing the stop action in this phase ends the generation process.
Note that not all the reactions may be applied to the molecule m. We appropriately filter such
reactions and assume that the score si for non-feasible reactions is equal to −∞.

Select another reactant. We want to find a molecule mi ∈ M that will react with m in the reaction
r. The probability for selecting mi is defined as:

p(mi|m, r) = σ|M |(s)i, si = MLPM (f(m, r))i (5)

where MLPM is shared with the initial fragment selection phase. As in the previous phase, not all
the fragments can be used with the reaction r, so we filter these out.

Perform the reaction and select one of the resulting molecules. In this step, we apply the reaction
r to the two fragment molecules chosen in previous steps. As the reaction pattern can be matched
to multiple parts of the molecules, the result of this operation is a set of possible outcomes M ′. We
choose the molecule m′

i ∈ M ′ by sampling from the following distribution:

p(m′
i) = σ|M ′|(s)i, si = MLPM ′(f(m′

i)), (6)

where MLPM ′ : RD → R scores the embedded m′
i molecule.

Backward Policy. A backward policy in RGFN is only non-deterministic in states corresponding
to a molecule m which is a result of performing some reaction r ∈ R on molecule m′ and reactant
m′′ ∈ R. We denote the set of such tuples (r,m′,m′′) that may result in m as T . We override the
indexing and let (ri,m′

i,m
′′
i ) be the i-th tuple from T . The probability of choosing the i-th tuple is:

p((ri,m
′
i,m

′′
i )|m) = σ|T |(s)i, si = MLPB(f(m

′
i, ri)), (7)

where MLPB : RD → R and f is a backbone transformer model similar to the one used in the
forward policy. To properly define T , we need to implicitly keep track of the number of reactions
performed to obtain m (denoted as k). Only those tuples (r,m′,m′′) are contained in the T for which
we can recursively obtain m′ in k − 1 reactions.

Action Embedding. While the MLPM used to predict the probabilities of selecting a molecule
mi ∈ M works well for our predefined M , it underperforms when the size of possible chemical
building block library is increased. Such an MLPM likely struggles to reconstruct the relationship
between the molecules. Intuitively, when a molecule mi is chosen in some trajectory, the training
signal from the loss function should also influence the probability of choosing a structurally similar
mj . However, the MLPM disregards the structural similarity by construction and it intertwines the
probabilities of choosing mi and mj only with the softmax function. To incorporate the relationship
between molecules into the model, we embed the molecular building blocks with a simple machine
learning model g and reformulate the probability of choosing a particular building block mi:

p(mi|m, r) = σ|M |(s)i, si = ϕ(Wf(m, r))T g(mi), (8)

4
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where ϕ is some activation function (we use GELU) and W ∈ RD×D is a learnable linear layer. Note
that if we define g(mi) as an index embedding function that simply returns a distinct embedding
for every mi, we will obtain a formulation equivalent to Equation (5). To leverage the structure
of molecules during the training, we use g that linearly embeds a MACSS fingerprint [40] of an
input molecule mi along with the index i. Note that this approach does not add any additional
computational costs during the inference as the embeddings g(mi) can be cached. In Section 4.3, we
show that this method greatly improves the performance when scaling to larger sets of fragments.

3.3 Chemical language

We select seventeen reactions and 350 building blocks for our model. These include amide bond
formation, nucleophilic aromatic substitution, Michael addition, isocyanate-based urea synthesis,
sulfur fluoride exchange (SuFEx), sulfonyl chloride substitution, alkyne-azide and nitrile-azide
cycloadditions, esterification reactions, urea synthesis using carbonyl surrogates, Suzuki-Miyaura,
Buchwald-Hartwig, and Sonogashira cross-couplings, amide reduction, and peptide terminal thiourea
cyclization reactions to produce iminohydantoins and tetrazoles. The chosen reactions are known to
be typically quite robust [9] and are often high-yielding (75-100%), thus enforcing reliable synthesis
pathways when sampling molecules from our model. To simulate couplings in Python, reactions are
encoded as SMARTS templates. To ensure compatible building blocks yielding specific, chemically
valid products and to enable parent state computation, we introduce multiple variants corresponding
to differing reagent types for most of the proposed reactions. In some cases SMARTS templates
encode reactions where one of the reagents is not specified. We describe these transformations as
implicit reactions (Appendix E). Additionally, we introduce surrogate reactions where the SMARTS
templates and SMILES strings encode for alternate building blocks (see Appendix C.2 for more
details). Finally, once again for the sake of specificity, reactions are duplicated by swapping the order
of the building block reactants. In total, 132 different SMARTS templates are used.

During the construction of the curated building block database, only affordable reagents (i.e., building
blocks) are considered. For the purposes of this study we define affordable reagents to be those priced
at less than or equal to $200 per gram. The mean cost per gram of reagents selected for this study is
$22.52, the lowest cost $0.023 per gram, and the highest cost $190 per gram (see Appendix N for
more details on cost estimation).

A crucial consideration when choosing the set of reactions and fragments used is the state space
size (the number of possible molecules that can be generated using our framework). This is difficult
to compute precisely since a different set of reactions or building blocks is valid for every state
in a given trajectory. We estimate this based on 1,000 random trajectories instead (details can be
found in Appendix A). In addition to our 350 low-cost fragments, we also perform this analysis with
8,000 additional random Enamine building blocks. Comparison for different numbers of maximum
reactions is presented in Figure 2. We demonstrate that even with curated low-cost reactants and
limiting the number to a maximum of four reactions, state space size is an order of magnitude
greater than the number of molecules contained in Enamine REAL [17]. This size can increase
significantly with the addition of more fragments and/or an increase in the maximum number of
reactions. Additional discussions regarding scaling can be found in Section 4.3.

4 Experimental study

In the conducted experiments we compare oracle scores and synthesizability scores of RGFN with
several state-of-the-art reference methods. Secondly, we examine the capabilities of RGFN to scale
to larger fragment libraries, in particular when using the proposed action embedding mechanism.
Finally, we perform an in-depth examination of generated ligands across several biologically relevant
targets.

4.1 Set-up

Throughout the course of the conducted computational experimental study, we aim to evaluate the
performance of the proposed approach across several diverse biological oracles of interest. This
includes proxy models (machine learning oracles, pretrained on the existing data and used for higher
computational efficiency): first, the commonly used sEH proxy as described in [4]. Second, a graph
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neural network trained on the biological activity classification task of senolytic [74] recognition.
Third, the Dopamine Receptor D2 (DRD2) oracle [53] from Therapeutics Data Commons [28]. Proxy
model details are provided in Appendix B.1.
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Figure 2: Estimation of the state space size of
RGFN as a function of the maximum number of
allowed reactions. RGFN (350) indicates a vari-
ant using 350 hand-picked inexpensive building
blocks, while RGFN (8350) also uses 8,000 ran-
domly selected Enamine building blocks. Enamine
REAL (6.5B compounds) is shown as a reference.

Per the GFlowNet training algorithm, the reward
is calculated for a batch of dozens to hundreds
of molecules at each training step, rendering
traditional computational docking score algo-
rithms like AutoDock Vina [70] infeasible for
very large training runs. As a result, previous
applications of GFlowNets to biological design
[4, 64] employed a fast pre-trained proxy model
trained on docking scores instead. These prox-
ies, while lightweight, present potential issues
should the GFlowNet generate molecules out-
side their training data distributions and require
receptor-specific datasets. To circumvent this,
we use the GPU-accelerated Vina-GPU 2.1 [68]
implementation of the QuickVina 2 [2] docking
algorithm to calculate docking scores directly in
the training loop of RGFN. This approach allows
for drastically increased flexibility in protein tar-
get selection while eliminating proxy general-
ization failure. We selected X-ray crystal struc-
tures of human soluble epoxy hydrolase (sEH),
ATP-dependent Clp protease proteolytic subunit
(ClpP), SARS-CoV-2 main protease (Mpro), and
transducin β-like-related protein 1 as targets for
evaluating RGFN using a docking reward (detailed motivation for specific target selection is provided
in Appendix G).

4.2 Comparison with existing methods

We begin experimental evaluation with a comparison to several state-of-the-art methods for molecular
discovery. Specifically, we consider a genetic algorithm operating on molecular graphs (GraphGA)
[32] as implemented in [10], which has been demonstrated to be a very strong baseline for molecular
discovery [21], Monte Carlo tree search-based SyntheMol [67], cascade variational autoencoder
(casVAE) [49], and a fragment-based GFlowNet (FGFN) [4] as implemented in [57]. For FGFN,
we additionally considered its variant that had a SAScore as one of the reward terms (FGFN+SA).
Training details can be found in Appendix B.2. It is worth noting that besides SyntheMol, which
also operates in the space of chemical reactions and building blocks derived from the Enamine
database, and casVAE, which used the set of reaction trees obtained from the USPTO database [43],
our remaining benchmarks do not explicitly enforce synthesizability when generating molecules.
Because of this, in this section, we will examine not only the quality of generated molecules in
terms of optimized properties but also their synthesizability. We consider only two reaction-based
approaches, as other existing methods employing this paradigm [27, 24] do not share code or curated
reactions and building blocks, making reproduction difficult.

We first examine the distributions of rewards found by each method across four different oracles used
for training: sEH proxy, senolytic proxy, DRD2 proxy, and GPU-accelerated docking for ClpP. The
results are presented in Figure 3. As can be seen, while RGFN underperforms in terms of average
reward when compared to the method not enforcing synthesizability (GraphGA), it outperforms
SyntheMol’s and casVAE’s reaction-based sampling. Interestingly, when compared to standard
FGFN, RGFN either performs similarly (ClpP docking) or achieves higher average rewards. This
is most striking in the case of the challenging senolytic discovery task, in which a proxy is trained
on a severely imbalanced dataset with less than 100 actives, resulting in a sparse reward function.
We suspect that this, possibly combined with a lack of compatibility between the FGFN fragments
and known senolytics, led to the failure to discover any high-reward molecules. However, RGFN
succeeds in the task and finds a wide range of senolytic candidates. Finally, the gap in performance is
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even larger between RGFN and FGFN+SA, indicating that introducing synthesizability constraints
reduces the ability of FGFN to discover high-reward molecules.
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Figure 3: Distributions of rewards across different tasks.

Secondly, we examine the number of discovered modes for each method, with a mode defined as
a molecule with computed reward above a threshold (sEH: 7, senolytics: 50, DRD2: 0.95, ClpP
docking: 10), and Tanimoto similarity to every other mode < 0.5. We use Leader algorithm for mode
computation. The number of discovered modes across tasks as a function of normalized iterations is
presented in Figure 4. Note that in the case of GraphGA, FGFN, FGFN+SA, and RGFN this simply
translates to the number of oracle calls, but for SyntheMol and casVAE, due to large computational
overhead, we impose a maximum number of oracle calls such that training time was comparable to
RGFN (see Appendix B.2 for details). Note that in the case of casVAE, this resulted in a very small
number of molecules being visited in the allotted time. As can be seen, despite slightly worse average
rewards, FGFN still outperforms other methods in terms of the number of discovered modes (with
the exception of senolytic discovery task, where it fails to discover any high-reward molecules). This
includes FGFN+SA, despite its generally worse performance than FGFN. This suggests that RGFN
samples are less diverse, possibly due to the relatively small number of fragments and reactions used.
However, RGFN still outperforms remaining methods across all tasks, suggesting that it preserves
some of the benefits of the diversity-focused GFlowNet framework.
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Figure 4: Number of discovered modes as a function of normalized iterations. Log scale used.

Finally, we evaluate the synthesizability of the generated compounds as a key output. We present
average values of several synthesizability-related metrics, computed over top-k modes generated for
each method, in Table 1. We include measures indicating average molecular weight and drug-likeness
(QED) to gauge the size of generated compounds. Furthermore, for completeness, we also include
SAScores [18], but note that they are only a rough approximation of ease of synthesis. For a better
estimate of synthesizability we perform retrosynthesis using AiZynthFinder [23] and count the
average number of molecules for which a valid retrosynthesis pathway was found. However, it is
important to note that both SAScores and AiZynthFinder scores are inherently noisy metrics. While
we evaluate all methods using them for the sake of rigorousness, ultimately molecules generated by
RGFN (as well as SyntheMol and casVAE) are guaranteed to be highly likely synthesizable. Note
that to reduce variance, we compute molecular weight, QED, and SAScores over the top-500 modes,
but due to high computational cost, AiZynthFinder scores are computed only over top-100 modes.
As can be seen, while there is some variance across tasks, RGFN performs similarly to SyntheMol
and casVAE in terms of both synthesizability scores, and significantly outperforms GraphGA and
FGFN. Crucially, including SAScore as a reward does improve the performance of FGFN in terms
of that metric, but does not drastically change the AiZynthFinder scores, demonstrating that it is
insufficient to guarantee synthesizability. All RGFN modes were additionally inspected manually
by an expert chemist and confirmed as synthesizable, which indicates that AiZynth scores are likely
underestimated.
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Table 1: Average values of synthesizability-related metrics for top-k modes.
Task Method Mol. weight ↓ QED ↑ SAScore ↓ AiZynth ↑
sEH GraphGA 528.6 ± 42.3 0.21 ± 0.06 3.87 ± 0.24 0.04

SyntheMol 411.1 ± 66.7 0.57 ± 0.18 2.85 ± 0.55 0.80
casVAE 421.6 ± 103.4 0.52 ± 0.23 2.41 ± 0.47 0.82
FGFN 473.4 ± 58.9 0.39 ± 0.13 3.43 ± 0.48 0.14
FGFN+SA 473.7 ± 62.2 0.36 ± 0.12 3.01 ± 0.50 0.27
RGFN 495.2 ± 49.6 0.29 ± 0.10 3.09 ± 0.39 0.56

Seno. GraphGA 485.7 ± 75.6 0.09 ± 0.05 2.92 ± 0.26 0.05
SyntheMol 441.4 ± 83.5 0.48 ± 0.19 2.77 ± 0.40 0.53
casVAE 431.5 ± 100.9 0.50 ± 0.19 2.82 ± 0.46 0.65
FGFN 468.9 ± 47.7 0.42 ± 0.13 3.55 ± 0.52 0.02
FGFN+SA 451.8 ± 54.5 0.32 ± 0.12 2.83 ± 0.44 0.13
RGFN 558.7 ± 62.8 0.21 ± 0.09 3.24 ± 0.32 0.58

ClpP GraphGA 521.0 ± 31.8 0.32 ± 0.07 4.14 ± 0.51 0.00
SyntheMol 458.2 ± 60.7 0.45 ± 0.16 2.86 ± 0.56 0.56
casVAE 423.0 ± 61.7 0.47 ± 0.17 2.44 ± 0.41 0.84
FGFN 548.6 ± 42.9 0.22 ± 0.03 2.94 ± 0.54 0.25
FGFN+SA 509.2 ± 52.4 0.24 ± 0.04 2.61 ± 0.49 0.33
RGFN 526.2 ± 37.6 0.23 ± 0.04 2.83 ± 0.22 0.65

DRD2 GraphGA 475.4 ± 53.2 0.42 ± 0.12 2.50 ± 0.23 0.41
SyntheMol 365.6 ± 54.3 0.72 ± 0.14 2.78 ± 0.43 0.66
casVAE 404.8 ± 83.5 0.59 ± 0.20 2.42 ± 0.38 0.87
FGFN 386.5 ± 45.0 0.63 ± 0.11 2.58 ± 0.54 0.76
FGFN+SA 381.1 ± 35.1 0.64 ± 0.10 2.37 ± 0.37 0.78
RGFN 447.1 ± 45.7 0.44 ± 0.10 2.79 ± 0.34 0.87

4.3 Scaling to larger sets of fragments

Next we investigate the influence of a fragment embedding scheme proposed in Section 3.2. In the
standard implementation of the GFlowNet policy, actions are represented as independent embeddings
in the MLP. These encode actions as indices, effectively disregarding their respective structures and
all information contained therein. The model must thus select from a library of reagents without any
knowledge as to their chemical makeup or properties. While finding similarities between actions may
be a relatively easy task for small action spaces, it becomes more difficult when the size of the action
space increases. To scale RGFN to a larger size of the building block library, we proposed to encode
building block selection actions using molecular fingerprints, allowing the model to leverage their
internal structures without any additional computational overhead during inference. In Figure 5, we
observe that our fingerprint embedding scheme allows for drastically faster convergence compared to
the standard independent action embedding, especially for large library sizes. The details on how the
larger fragment libraries were created can be found in Appendix F.

4.4 Examination of the produced ligands

In the final stage of experiments we examine the capabilities of RGFN to produce high quality ligands
across multiple diverse docking targets (see Appendix G for more details). The aim is to evaluate
whether 1) the chemical language used is expressive enough to produce structurally diverse molecules
for different targets, and 2) whether the generated ligands form realistic poses in the binding pockets.
We first demonstrate the diversity of ligands across targets on a UMAP plot of extended-connectivity
fingerprints (Figure 6). Ligands assigned to specific targets form very distinct clusters, showcasing
their diversity. Interestingly, we also observe structural differences between sEH proxy and sEH
docking, possibly indicating poor approximation of docking scores by the proxy model. Secondly,
we examine the docking poses of the highest scoring generated ligands (Figure 7). As can be seen,
the generated molecules produce realistic docking poses, closely resembling the poses of known
ligands (Appendix K), despite being diverse in terms of structural similarity (Appendix M). We
further conduct a cost analysis and synthesis planning for top modes in Appendices N and O. Overall,
this demonstrates the usefulness of the proposed RGFN approach in the docking-based screens.
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Figure 5: The number of discovered Murcko scaffolds with sEH proxy value above 7 (a) and 8 (b)
as a function of fragment library size. We compare standard independent embeddings of fragment
selection actions (blue) with our fingerprint-based embeddings (orange) that account for the fragments’
chemical structure. The number of scaffolds is reported after 2k training iterations for 3 random
seeds (the solid line is the median, while the shaded area spans from minimum to maximum values).
We observe that our approach greatly outperforms independent embedding when scaling to a larger
action space.

(a) sEH (b) ClpP (c) Mpro

Figure 7: Top docked RGFN ligands after filtering steps (blue) overlaid with the PDB-derived ligand
(purple) for each of sEH, ClpP, and Mpro.
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Figure 6: UMAP plot of chemical structures of
top-500 modes generated for each target. RGFN
generates sufficient chemical diversity to produce
distinct clusters of compounds. See Appendix G
for description of each target protein.

The current proof-of-principle implementation
of RGFN uses only 17 reaction types and 350
building blocks. Although these limited inputs
already generate a vast chemical space, this rep-
resents only a small fraction of possible drug-
like space, which in turn limits the quality and
potency of the generated molecular structures.
The scaling experiment demonstrates that the
number of building blocks can readily be in-
creased, and increasing the number and diver-
sity of building blocks is a straightforward way
to enhance and survey the accessible chemical
space.

The current set of building blocks and reac-
tions tends to generate linear and flat-shaped
molecules. Adding a small set of cycliza-
tion reactions (such as peptide macrocycliza-
tion and ring-closing metathesis), along with
more complex-shaped scaffold building blocks,
as well as reactions that introduce sp3 hybridized
atoms and stereochemical complexity will there-
fore allow for greater shape diversity and the
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generation of more potent molecules [51, 20]. It is also important to recognize that RGFN does not
explicitly generate synthetic routes to the molecules, at least not in a strict chemical sense, which in
addition to a sequence of reactions transforming sets of reactants into products (which RGFN does
provide), would also include choice of reaction conditions, external reagents, catalysts, protection
group strategies, etc.

Another significant limitation in the quality of the generated molecular structures is the reliance on
molecular docking as a scoring oracle. Although molecular docking has been successfully used in
large-scale virtual screening efforts [44, 61, 35], it has well-known shortcomings in its predictive
power. First, docking scores correlate strongly with molecular weight (MW) [13] and do not account
for drug-likeness requirements like optimal MW or ClogP. In this work, molecule size was constrained
only by the number of reaction steps, encouraging RGFN to generate large molecules within the
building block limit. This can be somewhat rectified by augmenting reward with a drug-likeness or
ligand efficiency term. Second, its binding affinity predictions and rankings often correlate weakly
with experimental values and are highly dependent on the nature of the target protein’s binding site
[73, 71]. This is further illustrated by the fact that known ligands are not necessarily characterized by
highest possible docking scores (Appendix L). This limitation impacts the learning of the chemical
structure-activity relationship space, leading to the generation of sub-optimal molecules. One solution
to this limitation is to incorporate more accurate but computationally expensive methods (such as
ensemble docking, MM-PBSA, and FEP) within a multi-fidelity framework [26]. However, since we
focus on robust, affordable, and facile synthesis methods, we ultimately aim to extend our approach
beyond computational scoring methods by directly conducting experimental evaluation of synthesized
compound batches within an active learning loop.

6 Conclusions

In this paper, we present RGFN, an extension of the GFlowNet framework that operates in the action
space of chemical reactions. We propose a curated set of high-yield chemical reactions and low-cost
molecular building blocks that can be used with the method. We demonstrate that even with a small
set of reactions and building blocks, the proposed approach produces a state space with a size orders
of magnitude larger than typical experimental screening libraries while ensuring high synthesizability
of the generated compounds. We also show that the size of the search space can be further increased
by including additional building blocks and that the proposed action embedding mechanism improves
scalability to very large building block spaces.

In the course of our experiments, we show that RGFN achieves roughly comparable average rewards
to state-of-the-art methods, and it outperforms another approach operating directly in the space
of chemical reactions and, crucially, standard fragment-based GFlowNets. At the same time, it
significantly improves the synthesizability of generated compounds when compared to a fragment-
based GFlowNet. Analysis of ligands produced across the set of diverse tasks demonstrates sufficient
diversity of proposed chemical space to generalize to various targets. While not yet demonstrated
experimentally, ease of synthesis (due to the small stock of cheap fragments and high-yield chemical
reactions used) combined with reasonably high optimization quality of bespoke ligands offer a
promising alternative to standard high-throughput screening applications. In particular, it can be
beneficial for active learning-based pipelines with significant wet lab component, reducing the reliance
on inaccurate docking oracles. Facilitating the drug discovery process through the generation of
novel small molecules can eventually lead to the discovery of novel medications leading to significant
societal benefits.
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A State space size estimation

We estimate the state space size by first sampling 1,000 random trajectories, masking out the end-of-
sequence action unless the maximum trajectory length max is reached. Then, for every i-th reaction
or fragment in the trajectory, we count the average number of valid fragments fragi and reactions
reacti from a given state in the trajectory, as well as the average number of unique trajectories traji
into which a state can be decomposed using the backward policy. We estimate the state space size as

(
∏max

i=0 fragi)(
∏max

i=1 reacti)

trajmax
. (9)

Experimentally derived average values of these parameters can be found in Table 2. Note that in
the second setting we randomly picked 8,000 fragments from the Enamine stock (with the same
balancing procedure as in Section 4.3), which after merging with our own fragments, canonization
and duplicate removal yielded a total of 8,317 fragments.

Table 2: Experimentally derived average values of valid fragments, valid reactions, and possible
trajectories.

350 fragments 8350 fragments

# reactions fragi reacti traji fragi reacti traji

0 350.0 - 1.0 8317.0 - 1.0
1 37.5 11.8 3.5 835.8 12.0 4.2
2 39.9 16.5 16.8 822.1 15.9 17.0
3 40.7 15.4 76.7 832.6 17.0 75.2
4 40.0 15.8 349.3 814.0 18.0 480.8
5 42.1 16.8 1825.8 857.6 18.9 3058.1

B Training details

B.1 Proxy models

The sEH proxy is described in [4]. It is an MPNN trained on a normalized docking score data. We
utilize the exact same model checkpoint as provided in [57].

The senolytic classification model is a graph neural network trained on the biological activity
classification task of senolytic recognition [74]. Specifically, it was trained on two combined, publicly
available senolytic datasets [74, 65]. Reward is given by the predicted probability of a compound
being a senolytic. It is worth noting that due to the low amount of data and high imbalance (< 100
active compounds, a high proportion of which contained macrocycles and were infeasible to construct
with fragment-based generative models), this is expected to be a difficult task with sparse reward.

The senolytic proxy model is GNEprop [62], which consisted of 5 GIN layers [75] with hidden
dimensionality of 500, utilized Jumping Knowledge shortcuts [76], and had a single output MLP
layer. Pretraining was done in an unsupervised fashion on the ZINC15 dataset [66]. The training was
done for 30 epochs using the Adam optimizer with a learning rate of 5× 10−5 and batch size of 50.

The DRD2 proxy is described in [53, 28]. It is a support vector machine classifier with a Gaussian
kernel using ECFP6 fingerprints as a feature representation.

B.2 Generative models

Both RGFN and FGFN were trained with trajectory balance loss [45] using Adam optimizer with a
learning rate of 1× 10−3, logZ learning rate of 1× 10−1, and batch size of 100. The training lasted
4,000 steps. A random action probability of 0.05 was used, and RGFN used a replay buffer of 20
samples per batch. Both methods use a graph transformer policy with 5 layers, 4 heads, and 64 hidden
dimensions. Exponentiated reward R(x) = exp(β ∗ score(x)) was used, with β dependent on the
task: 8 for sEH proxy, 0.5 for senolytic proxy, 48 for DRD2 proxy, and 4 for all docking runs. Note
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that due to different ranges of score values, this resulted in a roughly comparable range of reward
values.

For FGFN+SA, we used a modified reward function R(x) = exp(β ∗(0.5∗proxy(x)/max_proxy+
(10− SA_score)/10), with β adjusted per proxy to match the original reward range.

All sampling algorithms were outfitted with the Vina GPU-2.1 docking, senolytic proxy, sEH proxy,
and DRD2 proxy scoring functions. While model architecture hyperparameters and batch sizes were
kept consistent between FGFN and RGFN, we allowed FGFN a maximum fragment count of 6 as
opposed to RGFN’s 5 due to RGFN’s larger average building block sizes.

GuacaMol’s Graph GA model was trained with a population size of 100, offspring size of 200, and a
mutation rate of 0.01 for 2000 generations for a total of 400,000 visited molecules.

For SyntheMol experiments, we used the default building block library of 132,479 compatible
molecules and pre-computed docking, senolytic, and sEH proxy scores for all prior to executing
rollouts to follow the established methodology. Due to CPU constraints, sampling 500,000 molecules
with SyntheMol was impractical. Instead, we executed 100,000 rollouts over approximately 72 hours
to match the RGFN training time with docking, yielding 111,964 unique molecules. Additionally,
we performed 50,000 rollouts each (approximately 24 hours) for sEH, senolytic, and DRD2 proxies,
resulting in 73,941, 69,652, and 62,320 unique molecules, respectively.

casVAE was trained with Bayesian optimization (BO) using default parameters consisting of a hidden
size of 200, latent size of 50, and message passing depth of 2. Again, due to time constraints imposed
by BO latent space updates, we instead opted to approximately match RGFN training times, training
for 72, 24, 24, and 24 hours on the docking, sEH, senolytic, and DRD2 tasks respectively for a total of
135, 41, 38, and 40 rollouts and 7708, 2097, 1521, and 2165 total generated molecules, respectively.

C GPU-accelerated docking

Our docking oracle first accepts canonized SMILES strings as input. These are then converted to
RDKit Molecules, protonated, and a low-energy conformer is generated and minimized with the
ETKDG [58] conformer generation method and UFF force field [56], respectively. For computational
efficiency, we generate one initial conformer per ligand. Each conformer is converted to a pdbqt file
and docked against a target with Vina-GPU 2.1 using model defaults: exhaustiveness (denoted by
"thread" in the implementation) of 8000 and a heuristically determined search depth d given by

d = max (1, ⌊0.36×Natom + 0.44×Nrot − 5.11⌋) , (10)

where Natom and Nrot are the number of atoms and the number of rotatable bonds, respectively, in
the generated molecule. Box sizes were determined individually to encompass each target binding
site and centroids were calculated to be the average position of ligand atoms in the receptor template
PDB structure file. A negative score is calculated and returned as a reward.

C.1 Target preprocessing

Each target was prepared by removing its complexed inhibitor and atoms of other solvent or so-
lute molecules. We selectively prepared the ClpP 7UVU protein structure by retaining only two
monomeric units to ensure the presence of a single active site available for ligand binding and
similarly prepared the Mpro 6W63 protein structure by retaining only one monomeric unit.

C.2 Boron substitution for docking

Due to the lack of force field parameters for boron atoms, QuickVina2 is unable to process ligands
with boronic acid or ester groups. Therefore, we chose to substitute the boronic acid group and its
derivatives in the building blocks/reactants with a carboxylic acid, where the carbonyl carbon is a
C13 isotope. This was done for two reasons: firstly, carboxylic acids are considered to be bioisosteric
to boronic acids[69], and secondly, the C13 tag would allow us to distinguish actual carboxylic
acids from boronic acid surrogates for SMARTS encoding purposes. This allowed us to dock all
possible final products while maintaining structural similarity to the original group and specificity to
compatible reaction SMARTS.
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D Computational resources used

Evaluating fragment scaling took approximately 800 GPU hours on GeForce RTX 4090 in total.
Remaining experiments took roughly 24 GPU hours per run on Quadro RTX 8000 for sEH, DRD2
and senolytic proxies, and roughly 72 GPU hours per run on an A100 for docking-based proxies.

E Implicit reactions

In this work, we define implicit reactions as SMARTS-encoded reactions, products of which contain
atoms that are not included in the reactants and come from "implicit reagents". One example is urea
synthesis using carbonyl surrogates: the SMARTS template uses two amines, but the product has
more atoms than specified in the reactants. These come from the "implicit reagent", in our case —
any phosgene surrogate (e.g., CDI) (Figure 8).

Figure 8: An example of an implicit reaction: urea synthesis reaction encoded in SMARTS.

In addition to urea formation, other implicit reactions encoded in SMARTS include azide-alkyne
cycloaddition, azide-nitrile cycloadditions, and tetrazole synthesis using peptide terminal thiourea
cyclizations.

F Sampling large fragment set from Enamine building blocks

In order to evaluate our approach at scale, our building block set had to be balanced to prevent
introducing learning biases via building block selection. This was achieved by grouping reagents
into twelve fragment classes, for which a specific weight was assigned based on the frequency of
appearance of these structures in different reactions. For example, a carboxylic acid appearing in two
distinct reactions was assigned a weight coefficient of two, which would later be used to calculate
the normalized amount of building blocks per group for a specific database size using the following
formula:

Amount of BBs =
Weight coef.

Sum of weights
∗ database size (11)

The only exception is Michael acceptors, or group 3, which has a weight of 0.25 due to the low
availability of these reagents in most public molecular databases and possible overlap with structures
that might fit the corresponding SMARTS code (for example, 2-cyano or 2-carbonyl aromatic
compounds).

The final set of fragments was constructed by randomly sampling fragments from publicly available
Enamine building blocks in a way that roughly preserved the above grouping. This was done in a
greedy round-robin fashion, randomly selecting one fragment at a time from the remaining fragments
belonging to a given group, and iterating through all groups until the specified number of fragments
was selected.

G Target selection

Our targets (sEH, Mpro, ClpP, and TBLR1) were chosen with diverse functions and binding sites in
mind as test cases for RGFN. ClpP is a highly conserved compartmentalized protease that degrades
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substrates in a signal-dependent fashion and is a promising target in cancer and infectious disease
[6]. A number of structurally unrelated small molecules that allosterically activate ClpP, thereby
deregulating its protease activity, inhibit the growth of cancer cells and bacterial pathogens [31, 25,
30].

The main protease of SARS-CoV-2, Mpro (also called 3CLpro), is required for processing of the
virally-encoded polyprotein and thus for viral replication, and is a well-validated and intensively
studied anti-SARS-CoV-2 target [14]. The Mpro catalytic pocket contains 4 distinct sub-pockets
that recognize amino acid motifs in substrate sites and is a challenging target due to its structural
plasticity [36].

Soluble epoxide hydrolase (sEH) catalyzes a key step in the biosynthesis of eicosanoid inflammation
mediators and is being pursued as potential target in cardiovascular and other diseases [16]. sEH has
been used as a benchmark substrate for machine learning-based drug discovery and is particularly
amenable to computational methods because of its deep hydrophobic pocket [47].

Finally, TBL1 and its paralog TBLR1 are components of the NCoR transcriptional repressor complex
and contain WD40 domains that participate in protein interactions [78]. TBL1/TBLR1 mediates
the transcriptional repression function of the MeCP2 methylCpG-binding protein, which is mutated
in the neurodevelopmental disorder Rett syndrome. Loss of function mutations in Rett syndrome
frequently disrupt the interaction of a disordered region in MeCP2 that binds to the WD40 domain of
TBL1/TBLR1; conversely, MeCP2 gain-of-function by copy number mediated overexpression leads
to X-linked intellectual disability [63].

Well-validated experimental assays are available for each of these 4 different targets [31, 14, 47, 1].

H Ligand post-processing

To ensure the diversity, specificity, and conformer validity of top-generated molecules for each target,
we initially categorized our molecules into distinct modes, each representing any SMILES string
with a Tanimoto similarity of 0.5 or lower with all other modes. Subsequently, we selected the top
100 modes based on their Vina-GPU 2.1 scores and filtered their docked poses using PoseBusters
[11] in "mol" mode, where any pose failing any PoseBusters check was excluded from consideration.
As a final precaution, we selected only modes with Tanimoto coefficients to known aggregators of
0.4 or lower using UCSF’s Aggregation Advisor [29] dataset. This process resulted in 35, 68, 31,
and 15 top modes for sEH, ClpP, Mpro, and TBLR1 binders, respectively Appendix J. Comparative
analyses of docked top RGFN modes and confirmed sEH, ClpP, and Mpro ligand poses can be found
in Appendices K to M.

I Posebusters, Aggregation Advisor analysis of top 100 modes

Table 3: Proportion of top-100 generated sEH, ClpP, Mpro, and TBLR1 modes satisfying each of
PoseBuster’s Mol-mode checks, as well as the Aggregation Advisor Tanimoto similarity threshold of
0.4. Molecules were assessed in PoseBuster according to their ability to be loaded and sanitized in
RDKit, reasonableness of bond lengths and angles, lack of steric clashes in the pose, aromatic ring
and double bond flatness, and internal energy.

Condition

Target Load Sanitize Connected Bond Lengths Bond Angles Steric Clashes Aromatic Ring Flatness Double Bond Flatness Internal Energy Agg. Sim. < 0.4

sEH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.38
ClpP 1.0 1.0 1.0 1.0 1.0 0.98 1.0 1.0 0.94 0.72
Mpro 1.0 1.0 1.0 1.0 1.0 0.89 1.0 1.0 0.62 0.65
TBLR1 1.0 1.0 1.0 1.0 1.0 0.96 1.0 1.0 0.34 0.53
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J Top filtered molecules for all targets

Senolytics

Figure 9: Top 25 senolytic compound modes generated by RGFN.

sEH

Figure 10: Top 25 filtered binders to sEH drawn from top 100 RGFN modes.
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ClpP

Figure 11: Top 25 filtered binders to ClpP drawn from top 100 RGFN modes.

Mpro

Figure 12: Top 25 filtered binders to Mpro drawn from top 100 RGFN modes.
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TBLR1

Figure 13: All 15 filtered binders to TBLR1 drawn from top 100 RGFN modes.
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K Docked poses of top generated molecules

Ours (sEH, 4JNC)

Vina-GPU 2.1 Score: -14.97 Vina-GPU 2.1 Score: -14.94 Vina-GPU 2.1 Score: -14.94

Reference (sEH, 4JNC)

Vina-GPU 2.1 Score: -11.13 Vina-GPU 2.1 Score: -14.97

Figure 14: Top left to right: Top 3 generated ligand scaffolds for sEH (blue). Bottom left: Reference
ligand pose (purple, PDB ID: 1LF). Bottom right: Reference ligand (purple) overlaid with top-scoring
ligand (blue).
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Ours (ClpP, 7UVU)

Vina-GPU 2.1 Score: -13.35 Vina-GPU 2.1 Score: -13.32 Vina-GPU 2.1 Score: -13.19

Reference (ClpP, 7UVU)

Vina-GPU 2.1 Score: -10.31 Vina-GPU 2.1 Score: -13.35

Figure 15: Top left to right: Top 3 generated ligand scaffolds for ClpP (blue). Bottom left: Reference
ligand pose (purple, PDB ID: OY9). Bottom right: Reference ligand (purple) overlaid with top-scoring
ligand (blue).
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Ours (Mpro, 6W63)

Vina-GPU 2.1 Score: -11.22 Vina-GPU 2.1 Score: -11.18 Vina-GPU 2.1 Score: -11.14

Reference (Mpro, 6W63)

Vina-GPU 2.1 Score: -8.53 Vina-GPU 2.1 Score: -11.22

Figure 16: Top left to right: Top 3 generated ligand scaffolds for Mpro (blue). Bottom left: Reference
ligand pose (purple, PDB ID: X77). Bottom right: Reference ligand (purple) overlaid with top-scoring
ligand (blue).
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Ours (TBLR1, 5NAF)

Vina-GPU 2.1 Score: -13.40 Vina-GPU 2.1 Score: -13.27 Vina-GPU 2.1 Score: -13.26

Figure 17: Left to right: Top 3 generated ligand scaffolds for the TBLR1 WD40 domain. TBLR1 has
no known small molecule ligands.

L Docking analysis of known ligands

Table 4: Vina-GPU 2.1 docking scores of 10 PDB-available ligands per target.
sEH ClpP Mpro

Ligand PDB ID Score PDB ID Score PDB ID Score

1 5IV -11.79 OX0 -11.10 J7O -10.13
2 XDZ -11.64 PJF -10.67 KAE -9.45
3 WJ5 -11.30 P4I -10.40 7YY -9.33
4 E3N -11.14 P3O -10.39 7XB -8.6
5 1LF -11.13 OY9 -10.31 XYV -8.6
6 8S9 -11.07 ZLL -10.18 X77 -8.54
7 TK9 -9.64 7SR -10.17 XF1 -8.40
8 G3W -9.60 OSR -9.49 0EN -8.19
9 G3Q -9.14 ONC -9.47 J7R -8.00

10 J0U -8.75 9DF -9.39 4N0 -7.33

We calculate and report the Vina-GPU 2.1 docking scores of 10 true ligands per target assessed in the
paper. Each PDB was prepared as described in Appendix C.1.
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M Tanimoto similarity to known ligands

Figure 18: Average Maximum Tanimoto Similarity to known ligands. For each target, we plot the
highest Tanimoto similarity score across all generated molecules to the ten corresponding PDB-
derived ligands.
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N Ligands cost analysis

To demonstrate the synthesizability and cost-effectiveness of the ligands produced by RGFN, we
conducted a comprehensive cost analysis and proposed a synthesis plan for the top 10 scored ClpP
hits generated by RGFN and SyntheMol (see Appendix O). We compared these two methods due
to their similarity in chemical approach. For the cost calculation, we only considered the price of
building blocks, which were directly sourced from EnamineStore for the case of Synthemol ligands.
All prices are represented in US dollars per 0.1 mmol of product (Figures 19 and 20). Notably, for
very common reagents only available in bulk, costs per gram were estimated by taking the cheapest
or smallest available alternative and dividing its cost by its mass. All prices for individual building
blocks were sourced from their respective vendors, which included Millipore Sigma, Oakwood
Chemicals, Combi-Blocks, TCI, and AngeneSci.

Figure 19: Synthesis cost for top-10 scoring ClpP ligands produced by RGFN.

Figure 20: Synthesis cost for top-10 scoring ClpP ligands produced by Synthemol.
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As expected, ligands generated by RGFN are significantly cheaper to produce compared to SyntheMol,
despite having more synthesis steps and lower overall theoretical yields, with an average of 55-70%
after 4 steps in the case of RGFN compared to 90-95% average yield after 1 step for SyntheMol.
Noticeably, SyntheMol ligand 5 wasn’t found to be synthesizable by using reactions proposed in
their work. After conducting further analysis, it was found that such a compound could have been
produced by Reaction 8 via nucleophilic substitution of the fluorine atom in the trifluoromethyl group;
however, this particular reaction is not likely to be performed with sufficient yields, and therefore
such a product cannot be considered synthesizable.

O Examples of plausible synthetic routes to molecules

Figure 21: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 1.
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Figure 22: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 2.
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Figure 23: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 3.
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Figure 24: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 4.
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Figure 25: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 5.
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Figure 26: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 6.
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Figure 27: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 7.
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Figure 28: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 8.
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Figure 29: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 9.
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Figure 30: Plausible synthesis plan and estimated precursor cost for RGFN-produced ClpP ligand 10.
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Figure 31: Plausible retrosynthesis plan and estimated precursor cost for SyntheMol-produced ClpP
ligands 1-5.
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Figure 32: Plausible retrosynthesis plan and estimated precursor cost for SyntheMol-produced ClpP
ligands 6-10.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide extensively results in various tasks and compare against other state
-of-the-art methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the practicality of the generation process being limited by types
of reactions used, oracles employed, and auxillary pharmacological constraints that are not
considered.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For each task, we provide detailed information on experimental setup. Ap-
pendix provides further details which allow for full reproducibility of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All baselines are either derived from openly available repositories or described
in sufficient detail to allow reproduction. Code related to the current manuscript is publicly
accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide training details including hyperparameters and optimizers, and
other details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Multiple seeds were run for ablation experiment, and we use the variance in
these experiments to estimate and report error bars. For molecular docking, because of the
high compute cost, we only run one experiment per algorithm. Errors bars are also included
when applicable for metric computation across generated samples.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in the appendix for compute resources required.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres strictly to the NeurIPS Code of Ethics. There are no
human subjects or participants involved, and we carefully considered the safety and security
aspects of this research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the societal impact of the work in conclusions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not foresee this paper to pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All previous baselines and tasks are properly referenced and licenses are used
within the appropriate terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] ,
Justification: Code of this manuscript is open sourced and contains documentation describing
how to set up and run the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48

46955https://doi.org/10.52202/079017-1488




