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Abstract

In recent years, pretraining models have made significant advancements in the fields
of natural language processing (NLP), computer vision (CV), and life sciences.
The significant advancements in NLP and CV are predominantly driven by the
expansion of model parameters and data size, a phenomenon now recognized as
the scaling laws. However, research exploring scaling law in molecular pretraining
models remains unexplored. In this work, we present Uni-Mol2 , an innovative
molecular pretraining model that leverages a two-track transformer to effectively
integrate features at the atomic level, graph level, and geometry structure level.
Along with this, we systematically investigate the scaling law within molecular
pretraining models, characterizing the power-law correlations between validation
loss and model size, dataset size, and computational resources. Consequently,
we successfully scale Uni-Mol2 to 1.1 billion parameters through pretraining on
800 million conformations, making it the largest molecular pretraining model to
date. Extensive experiments show consistent improvement in the downstream tasks
as the model size grows. The Uni-Mol2 with 1.1B parameters also outperforms
existing methods, achieving an average 27% improvement on the QM9 and 14%
on COMPAS-1D dataset.

1 Introduction

With the exponential growth of available biological data, there arises a critical need for innovative
computational methodologies to utilize this wealth of information effectively. While traditional
molecular representations like fingerprint-based models [1, 2] lack the ability to capture fine-grained
structural features and struggle to handle large or complex molecules effectively. Molecular Repre-
sentation Learning (MRL) using molecular pretraining emerges as a promising approach, leveraging
the power of machine learning to imbue algorithms with a deep understanding of molecular structures
and functions. Various modalities of molecular representation by pretraining have been extensively
studied in the past. The typical approach for representing molecules involves two main strategies.
One strategy is to represent molecules as one-dimensional sequential strings, such as SMILES [3,
4] and InChI [5]. The representative work is SMILES-BERT[3], which learns from large-scale
unlabeled data through the masked SMILES recovery task. Another strategy is to represent molecules
as two-dimensional graphs [6, 7, 8]. MolCLR [8], a typical method, learns the representations from
unlabeled data by contrasting positive molecule graph pairs against negative ones. Additionally, a
growing trend is to leverage three-dimensional information in MRL to enable tasks like 3D geometry
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prediction or generation [9, 10, 11]. The pursuit of molecular pretraining has sparked a wave of
exploration and innovation across the field, marking a new era of discovery within the discipline.

While in the past few years, scaling up pre-trained language models [12, 13, 14, 15, 16, 17, 18] has
been achieved remarkable progress in natural language processing (NLP) and computer vision (CV).
The exponential growth in model size and the richness of training data have significantly enhanced the
capabilities and performance of LLMs across various NLP and CV tasks. Despite extensive research
on molecular pretraining, the majority of prior studies have been conducted on a relatively small
scale, utilizing limited parameters and datasets. Learning scalable molecular representation learning
is rarely explored and remains a challenging problem. The recent [19]’s work conducts a series of
data-centric experiments to demonstrate scaling behaviors in various aspects. The exploration of the
molecular pretraining model is limited to the GIN [20], SchNet [21], whose model scale and data
scale are comparatively small.

To delve deeper into the scaling of molecular pretraining foundational models, our preliminary
investigations have yielded notable insights within this domain. We summarize the contributions of
this work as follows:

• We have curated and organized a dataset comprising approximately 884 million 3D conformations,
which contains 73 million scaffolds for pretraining. To the best of our knowledge, this is the largest
dataset of molecules with 3D conformations for molecular pretraining to date, which provides the
foundation ingredient for training large-scale molecular models.

• We systematically study the scalability and flexibility of Uni-Mol2 in terms of model parameters,
which range from 84M to 1.1B parameters, and characterize the relationship between validation
loss and model size, dataset size, and computational resources. It is the first time to demonstrate the
scaling law of molecular pretraining and Uni-Mol2 is currently the largest billion-scale molecular
pretraining model to date.

• We present an in-depth analysis of scaling trends about fine-tuning on downstream tasks as the
results are shown in Table4 and 5, Uni-Mol2 demonstrates consistent improvement in downstream
task performance with increasing model parameters. The 1.1 billion parameters model also achieves
significant improvement over the existing method.

2 Related Work

Molecular representation learning Previous research has extensively investigated various modali-
ties for molecular representation. A range of methods have been proposed based on different types of
information utilized during pretraining. SMILES-BERT[3] uses the smiles sequence in pretraining to
capture the representation. Due to SMILES representation lack of explicit encoding of molecular
structural information. To address this limitation, GROVER integrates Message Passing Networks
into a Transformer-style architecture and learns from unlabeled molecular data through carefully
designed self-supervised tasks at different levels of molecular topology (node, edge, and graph).
MGSSL [22] developed a motif-based graph self-supervised learning strategy that predicts both the
topology and label of motifs as they are generated in the motif tree process. Furthermore, GEM[6]
incorporates three-dimensional (3D) spatial structure information, atoms, bonds, and bond angles
simultaneously to model the molecular representation. SphereNet[23] utilizes spherical coordinates
and introduces a spherical message-passing approach, providing an effective framework for 3D
molecular learning. The survey [24] discusses GNN shows great efficiency in processing molecular
graph structures and their strong capability to capture local relationships within a molecule. However,
the locally connected graph fails to adequately represent long-range interactions between atoms. In
contrast, transformer-based models have shown exceptional performance in various tasks within the
molecular domain, demonstrating remarkable representation capabilities.

Foundation models Recently, there has been considerable interest in developing foundational
models to consolidate and expand representations. The significant advancements in scaling up
pre-trained language models[12, 13, 14] have fundamentally reshaped the field of natural language
processing. [25, 15, 18, 26] also prove that the foundation model demonstrates strong performance
on many NLP datasets, sometimes reaching or exceeding the human performance. Some works in
CV[27, 28] demonstrate the potential for “LLM-like” scaling in vision and underscore significant
improvement via model and data scaling. And Sora[29, 30], a multi-modal foundation model exhibits
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Table 1: The different scale of Uni-Mol dataset and Uni-Mol2 dataset

Datasets SMILES Scaffold Data Source

Uni-Mol Dataset 19M 4,224,621 ZINC15, ChemBL, Commercial Database[11]
Uni-Mol2 Dataset ∼ 884M 73,725,454 Uni-Mol Dataset, ZINC 20[31]

the capacity to offer sophisticated understanding regarding the intricate interplay of physical and
contextual dynamics within depicted scenes.

3 Pretraining

The pretraining stage of molecular involves learning from vast amounts of molecular data to acquire
a comprehensive understanding of molecular representations. By pretraining on a large and diverse
unlabeled dataset, the model can develop a rich understanding of molecular structures and properties,
which can subsequently be fine-tuned or applied to specific downstream tasks, such as drug discovery,
materials design, or chemical synthesis. The section provides details of the data curation process for
pretraining, the detailed pretraining architecture, the well-designed self-supervision tasks, and the
specific training procedures employed for scaling up the model.

3.1 Data

To augment the richness and diversity of the dataset, we integrated the two parts we have collected.
One part consists of approximately 19 million molecules sourced from Uni-Mol [11], while the other
is derived from ZINC20 [31] which includes 1.4 billion compounds. We downloaded the subset
with standard reactivity, which contains 884 million compounds from website 2. Table 1 shows the
enrichment compared with Uni-Mol dataset. The overall Uni-Mol2 dataset has increased by over
40 times compared to the Uni-Mol dataset, with the number of scaffold increasing by 17 times,
greatly expanding the diversity of the data. Figure 1(Top) shows the numeric distributions of the
top 40 skeletons in Uni-Mol dataset and the number corresponding in Uni-Mol2 dataset. To prevent
data leakage in evaluating pretraining performance, we randomly sampled 520k molecules from
the Uni-Mol2 dataset as the validation set to evaluate the effectiveness and investigate the scaling
relationship.

As illustrated in the visualization depicting the frequency distribution of the top 40 Murcko scaffolds
in Uni-Mol2 dataset (refer to Figure 1 (Bottom)), it is observed that the molecular scaffold conforms
to a distribution characterized by a long-tail pattern. To create a more balanced training dataset,
we categorize the SMILES of Uni-Mol2 training set by Murcko scaffold, resulting in 73,725,454
scaffolds along with frequency distribution. Then, we utilize the temperature-based sampling method
[32][33], as described in equation 1 to select molecules from Uni-Mol2 training set.

Pi =
Nsi∑
Nsi

,

Pscaffoldi = softmax(
Pi

τ
)

(1)

Where Nsi represents the number of molecules with i-th scaffold in Uni-Mol2 training set. The
temperature τ modulates the smoothness of the molecular distribution across scaffolds. We use an
empirical value τ = 0.005 as the temperature to effectively balance the proportion of molecules with
high-frequency and low-frequency scaffolds.

3.2 Architecture

As depicted in Figure 2, Uni-Mol2 essentially adheres to the model design of Uni-Mol+[34], acting as
a two-track transformer that concurrently processes atom features and pair features. Consistent with

2https://zinc20.docking.org/tranches/home/
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Figure 1: Top: Comparison of scaffold frequency between Uni-Mol and Uni-Mol2 dataset. Bottom:
Scaffolds distribution on Uni-Mol2 dataset
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Figure 2: Left: The overall pretraining architecture. Middle: Atom and Pair representation. Right:
The details of backbone block

Uni-Mol[11], Uni-Mol2 employs two self-supervised tasks: masked token prediction and molecule
coordinate denoising. The detailed framework is presented as follows:

Feature Representation and Position Encoding Given molecular M = (x, e, r), where x ∈ Rn×da

denotes atom features, e ∈ Rn×n×de denotes bond features and r ∈ Rn×3 denotes coordinate
features. Following Uni-Mol+, we employ RDKit to obtain atom token xitoken, atom degree xidegree,
and atomic features xiatomic for each atom. The atom embedding xiatom is then initialized as:

xiatom = Embedding(xitoken) + Embedding(xidegree) + Embedding(xiatomic) (2)

For pair features, we utilize RDKit to obtain bond features xi,jbond by Embedding(xi,jbond). We adopt the
method from [35, 34] to encode the shortest path distance xi,jSPD of atom pair (i, j) in the molecular
graph by Embedding(xi,jSPD). Additionally, we employ the Gaussian kernel approach with pair type,
as described in [36, 11], to encode the Euclidean distance of the atom pair (i, j) by ψi,j . The pair
embedding xi,jpair is then initialized as:
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xi,jpair = Embedding(xi,jbond) + Embedding(xi,jSPD) + ψi,j (3)

Two-track Transformer Layer The backbone of Uni-Mol2 has N blocks, each block handles atom
representation and pair representation concurrently. Formally, for the l-th block, Uni-Mol2 update
atom representation xl by

xl = SelfAttentionPairBias(LN(xl−1), pl−1),

xl = xl−1 + FFN(LN(xl))
(4)

For the pair representation pl,

pl = pl−1 + OuterProduct(LN(pl−1)),

pl = pl + TriangularUpdate(LN(pl)),

pl = pl + FFN(LN(pl))

(5)

The details of SelfAttentionPairBias, OuterProduct, and TriangularUpdate are aligned with those
of Uni-Mol+. Additionally, Uni-Mol2 adopts pre-norm layer normalization at atom and pair rep-
resentation, which differs from Uni-Mol+, to improve stability in the model’s training dynamics.
Specifically, we set atom embedding xatom as atom representation x0 and pair embedding xpair as pair
representation p0 for the first block.

Pretraining Tasks To effectively model the structure of molecular conformations, we set pretraining
tasks basically following Uni-Mol. In detail, for each molecule, we randomly mask 15% of the atom
tokens with the placeholder token [MASK]. We then add the atom token prediction head to optimize
masked atom token loss Latom by

Latom = H(xatom[mask], xpatom[mask]) (6)

where H denotes the cross entropy function, xatom[mask] denotes the masked atom tokens and
xpatom[mask] denotes the corresponding predicted atom tokens for the masked positions.

In the coordinate denoising task, to increase the challenge of the pertaining task, we introduce
Gaussian noise with a standard deviation of 0.2 for all the atom coordinates. Additionally, to enhance
broader applicability across downstream applications, we mask atomic features xatomic, bond features
xbond, and shortest path distance features xSPD with a probability of 50%. Furthermore, we align the
conformation of the noised molecule, denoted as rnoised_coor, with that of the raw molecule, denoted
as rcoor, using the Kabsch algorithm.

In contrast to Uni-Mol, Uni-Mol2 employs the position prediction head to predict the atom coordinates
rpcoor of molecules.

∆pos = Dis(rnoised_coor)

Qpos = FFN(LN(xN )),Kpos = FFN(LN(xN ))

Vpos = FFN(LN(xN )), Bpos = FFN(LN(pN ))

attnpos = softmax(QposK
T
pos +Bpos) ◦∆pos

∆vpos = attnposVpos,∆ppos = FFN(∆vpos)

rpcoor = rnoised_coor +∆ppos

(7)

where Dis denotes element-wise subtraction of positions between different noised atoms rnoised_coor.
Specifically, the difference in position between atoms i and j is given by ∆pos(i, j) = rnoised_coor,i −
rnoised_coor,j . And ◦ denotes Hadamard product. LN denotes layer normalization. FFN denotes a
feed-forward network. In practice, we use multi-head attention; for simplicity in writing, we omitted
the notation related to heads here. Once the predicted coordinates rpcoor are obtained, the predicted
pair-distance rpdistance can be derived by calculating the Euclidean distances between each pair of
rpcoor. We integrated coordinate prediction and pair-distance prediction with ℓ1 loss into Uni-Mol2’s
optimization process for the coordinate denoising task:
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Table 2: Architecture of Uni-Mol2 at different scale

Params Layers Embedding
dim

Attention
heads

Pair embedding
dim

Pair hidden
dim

FFN embedding
dim

Learning
rate

Batch
size

42M 6 768 48 512 64 768 1e-4 1024
84M 12 768 48 512 64 768 1e-4 1024

164M 24 768 48 512 64 768 1e-4 1024
310M 32 1024 64 512 64 1024 1e-4 1024
570M 32 1536 96 512 64 1536 1e-4 1024
1.1B 64 1536 96 512 64 1536 1e-4 1024

Lcoor = ∥rpcoor − rcoor∥1,
Ldistance = ∥rpdistance − rdistance∥1

(8)

We eliminated two stabilizing regularization terms from the Uni-Mol model, yielding the final loss of
Uni-Mol2:

Ltotal = Latom + Lcoor + Ldistance (9)

3.3 Hyperparameter and Training Details

We study the scalability of Uni-Mol with the scale from 42M to 1.1B, and all the parameters for
Uni-Mol2 at different scales are listed in Table 2. And Uni-Mol2 is trained with AdamW optimzer[37,
38], with the following hyper-parameters: β1 = 0.9 and β2 = 0.99 and weight decay 1e− 4. The
gradient clip norm is set to 1.0 for training stability. The learning rate scheduler employed is a
polynomial decay scheduler during pretraining. Specifically, all models reach its maximum learning
rate value 1e− 4 after 100,000 warm-up steps and decay the learning rate of each parameter group
using a polynomial function with power 1.0. All the models are trained with mix-precision[39] for
training efficiency.

Using the temperature-based sampling method outlined in Equation 1, we sample 838 million
conformations as training samples from the dataset. All models were subsequently trained on these
838 million samples. All these conformations were generated using the ETKGD method [40] and
optimized with the Merck Molecular Force Field (MMFF) [41] in RDKit. For models containing
parameters ranging from 42M to 310M, we employed 32 NVIDIA A100 GPU cards, while for models
with 570M and 1.1B parameters, we utilized 64 NVIDIA A100 GPU cards. Details on pretrain time
complexity across varying sizes are provided in Appendix 12.

4 Scaling Laws

Several studies[15, 42, 43] on large language models (LLMs) investigate the power-law connections
between model performance, commonly assessed by validation or test loss, and factors such as the
number of model parameters, dataset size, and compute budget. Here, we aim to define the power-law
of validation loss L during the model’s convergence period. In Figure 3, we present the validation loss
of Uni-Mol2 models with parameter counts varying from 42 million to 1.1 billion during the training
process. We mainly examine the impact factors of three aspects: data scale N , model scale M , and
compute budget scale C. Given that a constant batch size B of 1024 is maintained for Uni-Mol2
across various scales, the number of training steps S is considered as a suitable proxy for D, as D
can be approximated by the product BS.

We initially designed a power term for M and S separately. Additionally, we approximate the
computed budget C as MS. Notably, we have neglected the intricate relationship between actual
computing costs C and MS, instead subsuming it into the parameter estimation. Adhering to the
design principles of [42], the loss function L(M,D) should exhibit scale invariance, limit consistency,
and analyticity to ensure stability and consistency across varying parameters. As a result, we derived
the following empirical power-law relationship:

L(M,S,C) = αmM
βm + αsS

βs + αcC
βc (10)
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Figure 3: Validation loss curves. Training curves for Uni-Mol2 model from 42M to 1.1B parameters.
Models are trained on 0.8B samples. At the convergence stage, the 84M parameters model has a loss
of 0.105, and the 1.1B parameters model reaches a loss of 0.087.
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1.1B (right) models

We established the relationship based on the validation loss trajectory of Uni-Mol2 across different
scales, as detailed in Table 2. Specifically, we utilized the validation data from Uni-Mol2 42M, 84M,
164M, and 310M, recording the validation loss every 10,000 training steps. Furthermore, to prevent
the performance during the transient period from affecting the parameter estimation, we excluded the
loss of information from the first 200,000 training steps. Consequently, we have:

L(M,S,C) = 2.660M−1.137 + 1.848S−0.225 + 0.588C−1.479 (11)

As shown in Fig 4, equation 11 fits the actual validation loss well for Uni-Mol2 570M and Uni-Mol2
1.1B parameters model, particularly when the model’s performance reaches convergence. To assess
the scaling law’s effectiveness, we calculated Relative Mean Absolute Error (RMAE), Mean Square
Error (MSE), R-squared, and Pearson Correlation Coefficient by comparing predicted validation loss
with actual validation loss over the last 100,000 steps for Uni-Mol2 570M and Uni-Mol2 1.1B on
Table 3. The high Pearson Correlation Coefficient and R-squared we computed indicate a strong
linear relationship between our predicted values and the actual data. The RMAE values for Uni-Mol2
570M and Uni-Mol2 1.1B are 0.0169 and 0.0095, respectively, indicating that Equation 11 accurately
models the loss curve. Specifically, for the Uni-Mol2 570M at 810,000 steps, the actual validation
loss was recorded at 0.09, compared to a predicted loss of 0.088, yielding a predicted validation error
of 2.22%. Meanwhile, for Uni-Mol2 1.1B at the same step, the actual validation loss stood at 0.087,
slightly below the forecast of 0.0871, with a prediction error of 0.23%.

5 Downstream Experiment

Upon pretraining with extensive unlabeled datasets using the predefined task, one should acquire
a highly accurate molecular representation for fine-tuning downstream tasks. In this section, we
conduct experiments on the ability of scaled models on downstream tasks.

7

46962 https://doi.org/10.52202/079017-1489



Table 3: Metrics about Scaling Law for Uni-Mol2

Model RMAE MSE R-Squared Pearson Correlation
Coefficient

Uni-Mol2 570M 0.0169 2.450e-6 0.92 0.85
Uni-Mol2 1.1B 0.0095 8.458e-5 0.87 0.75

Table 4: Mean absolute error(MAE, ↓) results on QM9 Dataset

Model HOMO / LUMO / GAP alpha Cv mu R2 ZPVE

GROV ERbase 0.0079 (3e-04) 2.365 (0.302) 1.103 (0.339) 0.618 (0.002) 113.01 (4.206) 0.0035(3e-04)
GROV ERlarge 0.0083 (6e-04) 2.240 (0.385) 0.853 (0.186) 0.623 (0.006) 85.85 (6.816) 0.00381(5e-04)

GEM 0.0067(4e-05) 0.589(0.0042) 0.237(0.0137) 0.444(0.0015) 25.67(0.743) 0.0011(2e-05)
Uni-Mol 0.0043(2e-05) 0.363(0.009) 0.183(0.002) 0.155(0.0015) 4.805(0.055) 0.0011(3e-05)

Uni-Mol2 84M 0.0038(5e-05) 0.376(0.027) 0.178(0.012) 0.105(0.0009) 4.968(0.235) 0.0010(1e-04)
Uni-Mol2 164M 0.0036(1e-05) 0.325(0.004) 0.157(0.017) 0.093(0.0006) 4.935(0.189) 0.0005(1e-05)
Uni-Mol2 310M 0.0036(1e-05) 0.315(0.003) 0.143(0.002) 0.092(0.0013) 4.672(0.245) 0.0005(1e-05)
Uni-Mol2 570M 0.0036(2e-05) 0.315(0.004) 0.147(0.0007) 0.089(0.0015) 4.523(0.080) 0.0005(3e-05)
Uni-Mol2 1.1B 0.0035(1e-05) 0.305(0.003) 0.144(0.002) 0.089(0.0004) 4.265(0.067) 0.0005(8e-05)

5.1 QM9 Dataset

We employ QM9 [44, 45] datasets to evaluate the performance of the molecular pretraining model at
different scales and compare Uni-Mol2 with representative existing methods. QM9 dataset provides
the geometric, energetic, electronic, and thermodynamic properties of the molecule, comprising 134
thousand stable organic molecules with up to nine heavy atoms. Due to QM9 containing several
quantum mechanical properties with different quantitative ranges, each property is treated as a
separate task. However, the HOMO, LUMO, and HOMO-LUMO GAP, which share similar ranges,
are trained together as a single task for simplicity [6].

Baselines We evaluate Uni-Mol2 against several baseline models, with a primary emphasis on
pretraining baselines. Given that Uni-Mol demonstrates superior performance compared to these
baselines in previous work [11], our analysis concentrates on the comparison between Uni-Mol and
Uni-Mol2, specifically examining the scalability of Uni-Mol2 at various scales. It is noted that we
have shifted the dataset partitioning method from scaffold-based partitioning to scaffold similarity-
based partitioning, thereby increasing the task difficulty to evaluate the model’s performance more
comprehensively. The dataset is then divided into training, validation, and test sets in proportions of
80%, 10%, and 10%, respectively. Following previous work [6, 11], we report the mean and standard
deviation by the results of 3 random seeds.

Results The results are presented comprehensively in Table 4, where the best results are marked in
bold. Uni-Mol still outperforms baselines on almost all downstream datasets. Uni-Mol2 outperforms
Uni-Mol in four out of the six tasks examined. But as the model parameters increase, Uni-Mol2
demonstrates significantly improved performance, surpassing Uni-Mol across all tasks at the 1.1
billion parameter level, achieving an average 27% improvement on the QM9 task for all properties.
We systematically investigate the scaling of Uni-Mol2 across parameter sizes ranging from 84 million
to 1.1 billion. Except for the Cv property prediction task, the results for other properties progressively
improve as the model size increases, consistent with the patterns observed in the model’s validation
performance. This indicates that enlarging the model consistently enhances downstream performance.
However, for properties such as HOMO, LUMO, HOMO-LUMO GAP, and ZPVE, the results
converge as the model size increases. This convergence suggests that further increases no longer
influence the performance ceiling for these tasks in model size.

5.2 COMPAS-1D Dataset

Due to the QM9 dataset only providing the conformation, some molecules failed to generate the
atom and bond feature correctly. Therefore, fine-tuning Uni-Mol2 on the existing QM9 dataset to
evaluate its effectiveness with bond and edge features presents a non-trivial challenge. To further
validate the performance and generalization capabilities of the Uni-Mol2 pretraining model, we

8
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Table 5: Mean absolute error(MAE, ↓) results on COMPAS-1D Dataset.

Model aEA aIP dispersion Dipmom Debye

Uni-Mol 0.0099(2e-05) 0.0083(9e-05) 0.0092(6e-04) 0.0198(2e-04)
Uni-Mol2 84M 0.0104(2e-05) 0.0081(3e-05) 0.0092(5e-04) 0.0196(1e-04)
Uni-Mol2 1.1B 0.0103(4e-04) 0.008(1e-05) 0.0081(1e-04) 0.0186(3e-04)

Uni-Mol2 84M ⋆ 0.0104(4e-04) 0.0077(5e-05) 0.0085(1e-04) 0.0173(6e-04)
Uni-Mol2 1.1B ⋆ 0.0093(4e-05) 0.0074(9e-05) 0.0067(2e-04) 0.0170(2e-04)

Table 6: Mean absolute error(MAE, ↓) about HOMO-LUMO GAP on QM9 Dataset

Model train50 train100 train200

Uni-Mol2 84M 0.0062(8.1e-05) 0.0053(1.0e-06) 0.0046(1.0e-06)
Uni-Mol2 164M 0.0058(3.7e-05) 0.0050(1.4e-05) 0.0044(6.9e-05)
Uni-Mol2 310M 0.0056(4.7e-05) 0.0049(0.4e-06) 0.0044(4.0e-05)
Uni-Mol2 570M 0.0057(4.2e-05) 0.0048(1.8e-05) 0.0044(8.1e-06)
Uni-Mol2 1.1B 0.0056(1.8e-05) 0.0048(3.5e-05) 0.0043(4.7e-05)

utilized COMPAS-1D from COMPAS project [46]. COMPAS-1D offers essential computational
properties crucial for comprehending the behaviour of polycyclic aromatic hydrocarbons and other
organic molecules across various chemical and physical processes. Modeling the relationships of
these properties has significant implications for the field of organic photoelectric materials.

We still follow the QM9 scaffold similarity-based partition and split it by a ratio of 8:1:1 into the
train, validation, and test sets. Table 5 presents the predictive capabilities of Uni-Mol2 regarding
photoelectric quantum properties. The model with ⋆ suffix indicates that they incorporate atom
and bond features. The results indicate that Uni-Mol2 excels in all tasks except for aEA property
prediction task. Additionally, consistent with findings from the QM9 dataset, Uni-Mol2 demonstrates
superior performance across all tasks as the model scales up. The results also show that under the
same parameter scale, models incorporating atom and bond features outperform those without these
features. Uni-Mol2 1B achieves 4% improvement over Uni-Mol, while Uni-Mol2 1B with atom and
bond feature achieves 14% improvement over Uni-Mol. This suggests that, in certain scenarios, these
features consistently provide a significant advantage.

5.3 The Performance on Limited QM9 Dataset

In numerous fields like bio-medicine, acquiring extensive well-annotated molecular data is often
expensive and time-consuming. Typically, these datasets include only a limited quantity of data[47,
48]. To evaluate the performance of Uni-Mol2 with restricted data availability, we conducted sampling
on the QM9 dataset. We sampled the training set by stratifying it according to the quantile binning
of the HOMO-LUMO GAP label from the QM9 test set and then created subsets named train50,
train100, and train200 by sampling at 50%, 100%, and 200% of the test set size, respectively.

We enhanced Uni-Mol2 from 84M to 1.1B parameters using train50, train100, and train200 datasets
to predict HOMO, LUMO, and GAP properties on the QM9 test dataset. As illustrated in Table 6,
two conclusions emerge from the MAE for predicting HOMO, LUMO, and HOMO-LUMO GAP
on the QM9 test set. First, the model’s performance, indicated by a decreasing MAE, progressively
improves as the training dataset expands. This is evident from comparing the MAE values between
the train50 and train200 rows across different scales of the Uni-Mol2 models. For example, the
Uni-Mol2 84M model shows a reduction in MAE from 0.0062 to 0.0046, marking a 25.8% decrease
as the dataset grows from 50 to 200 instances. Secondly, in situations where training data is scarce,
the larger Uni-Mol2 models demonstrate enhanced predictive capabilities. This is evidenced by the
fact that the Uni-Mol2 1.1B parameters model, which has the largest parameters, consistently records
the lowest MAE scores for all sizes of training sets. This is especially apparent in the train50 scenario,
where it achieves an MAE of 0.0056, marking the best performance among the models discussed.
These results highlight the advantages of enlarging both the training dataset and the model scale to
improve predictive accuracy in downstream finetuning tasks with Uni-Mol2.
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6 Conclusion

In this paper, to fully investigate the scaling law in the molecular pretraining field, we construct a
diverse dataset of molecular structures spanning 884 million instances and present a novel molecular
pretraining model Uni-Mol2. We successfully scale the model size to 1.1 billion parameters from 84
million parameters and characterize the power-law relationship between validation loss and model
size, dataset size, and computational resources. By empowering the power-law relationship of Uni-
Mol2, it can shed light on the performance of the larger model. Our largest 1.1B parameters model
also outperforms the existing methods.

The scaling law paves the way for exploring larger models to achieve higher performance. We hope
that our work can open avenues for further exploration of the foundational molecular pretraining
model. While larger models yield substantial benefits, there are still several potential future directions.
Firstly, beyond property prediction tasks, it is also worthwhile to explore whether the representation
can be effectively utilized to enhance generative tasks. Secondly, even though the Uni-Mol2 has
shown excellent results in several domains by increasing model capacity, it remains to be explored
whether the advantages of scaling are beneficial for a broader range of tasks. Thirdly, the current
mainstream large language models (LLMs) are predominantly based on a decode-only architecture.
It is worth investigating whether there are more elegant decode-only architectures for molecular
pre-training models.
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A Implementation Details

A.1 Dataset Description

QM9 Dataset The QM9 dataset [44] is a significant resource in the field of quantum chemistry,
offering a single equilibrium conformation and 12 labels that include geometric, energetic, electronic,
and thermodynamic properties. For the purpose of performance evaluation, we select the following
properties: HOMO, LUMO, gap, alpha, Cv , mu, R2, and ZPVE. The details of the properties are as
follows:

• HOMO The HOMO (Highest Occupied Molecular Orbital) is the highest energy molecular orbital
that is occupied by electrons in a molecule.

• LUMO The LUMO (Lowest Unoccupied Molecular Orbital) is the lowest energy molecular orbital
that is not occupied by electrons.

• gap The gap, often referred to as the HOMO-LUMO gap, is the energy difference between the
HOMO and LUMO. It is a measure of the energy required to excite an electron from the HOMO to
the LUMO.

• ZPVE ZPVE (Zero-Point Vibrational Energy) is the energy associated with the vibrational motion
of atoms in a molecule at absolute zero temperature.

• α The α value represents the static polarizability of a molecule.

• Cv TheCv (Heat Capacity at Constant Volume) is the amount of heat needed to raise the temperature
of a given amount of substance by one degree Celsius at constant volume.

• µ The µ (Dipole Moment) is the measure of the molecule’s permanent electric dipole moment.

• R2 The R2 (Electronic Spatial Extent) is defined as the expectation value of the square of the
electronic distance from the nucleus.

COMPAS-1D Dataset The COMPAS-1D dataset is a part of the COMPAS Project, which is an
acronym for the computational Database of Polycyclic Aromatic Systems. The dataset is specifically
focused on data-condensed poly-benzenoid hydrocarbons, which are a type of polycyclic aromatic
hydrocarbons (PAHs) with a unique structure where the benzene rings are connected edge-to-edge.
The COMPAS-1D [46] contains 8,678 molecules and offers essential computational properties crucial
for comprehending the behavior of polycyclic aromatic hydrocarbons and other organic molecules
across various chemical and physical processes. The details of the properties used in the downstream
tasks are as follows:

• aEA aEA (Adiabatic Electron Affinity) measures the tendency of a molecule to gain an electron.

• aIp aIP (Adiabatic Ionization Potential) measures the energy required for a molecule to lose an
electron.

• Dispersion Dispersion describes weak inter-molecular forces important for understanding molecu-
lar interactions.

• Dipmom Debye Dipmom in Debye indicates the polarity of a molecule, affecting its interactions
and solubility.

A.2 Atom and Bond Feature for Molecules

The molecular feature used in Uni-Mol2 contains two parts: 1) Atom and bond features, we use
RDkit to generate these atom and bond features as input of Uni-Mol2. The detailed features are listed
in Table 7 and Table 8. 2) Shortest path SPDi,j . We employ the Floyd-Warshall algorithm[49] to
calculate the shortest distances between each pair of connected atoms.

A.3 Hyperparameter Settings

In line with previous methods, we employ grid search to find the optimal hyper-parameters for tasks
within the QM9 and COMPAS-1D datasets. The specific hyper-parameters are detailed in Table 9. In
all experiments, we select the checkpoint with the lowest validation loss and report the corresponding
test set results based on that checkpoint. For the COMPAS-1D dataset, experiments were conducted
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Table 7: Atom features

features size description

atom type 119 type of atoms including C, N, O, etc, by atomic number
chirality 6 type of chirality like Tetrahedral chirality
degree 11 the degree of an atom in molecule

formal charge 11 integer electronic charge assigned to atom
number of H 9 number of bonded hydrogen atoms

number of radical electrons 5 number of radical electrons
hybridization 5 SP, SP2, SP3, SP3D, SP3D2
aromaticity 1 whether an atom is part of an aromatic system

in ring 1 whether an atom is within a ring structure

Table 8: Bond features

features size description

bond type 4 SINGLE, DOUBLE, TRIPLE, AROMATIC
stereo 6 NONE, Z, E, CIS, TRANS, ANY,

conjugated 1 whether the bond is conjugated

using a single A100 GPU, whereas for the QM9 dataset, the experiments were run on eight A100
GPUs.

Table 9: Hyper-paramters for fine-tuning on QM9 and COMPAS-1D Dataset

Hyperparameter Value or description

Learning rate [4e-5, 6e-5, 1e-4, 2e-4, 3e-4, 4e-4]
Batch size [32, 64, 128]
Epochs [40, 60, 80, 100, 200, 300]
Pooler dropout [0.0, 0.1]
Warmup ratio [0.0, 0.06, 0.1]

A.4 Evaluation Metrics

Diverse evaluation metrics can better help us understand and evaluate the effectiveness of our model.
In this section, we introduce the evaluation metrics used in this study. Given n samples, where yi is
the actual value and ŷi is the predicted value.

Mean Absolute Error (MAE) calculates the average of the absolute differences between predicted
and actual values in regression tasks, treating errors of different scales equally.

MAE =
1

n

n∑
i=1

|ŷi − yi| (12)

Relative Mean Absolute Error (RMAE) measures the average absolute prediction error relative to
the actual values, providing a dimensionless indication of model accuracy. By normalizing with the
actual values, it removes the effect of the data scale, making it possible to compare data with different
scales.

RMAE =
1

n

n∑
i=1

|ŷi − yi|
|yi|

(13)

Mean Square Error (MSE) calculates the average of the squared differences between predicted and
actual values, heavily penalizing larger errors.

MSE =

∑n
i=1(ŷi − yi)

2

n
(14)
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R-squared measures the proportion of variance in the dependent variable that can be predicted by the
independent variables, highlighting the goodness of fit for a regression model. A higher R-squared
indicates that the independent variables explain a significant portion of the variance in the dependent
variable, while a lower R-squared indicates that the model explains less.

R-squared = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(15)

The Pearson Correlation Coefficient (r) measures the linear correlation between two variables, ranging
from -1 to 1. Larger absolute values signify a stronger linear relationship between the two variables,
while values near 0 indicate a weak or non-existent linear relationship.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(16)

B Extra QM9 Property and ADME Experiment

B.1 Additional QM9 Property Experiment Results

We have undertaken additional experiments utilizing the QM9 dataset to assess molecular properties
10. Our findings indicate that the model’s performance consistently improves with an increase in
model size. This scalability suggests that employing larger models will further enhance the accuracy
and reliability of molecular property predictions, thereby increasing the utility of our approach for
practical applications in the field.

Table 10: Mean absolute error(MAE, ↓) results on QM9 Dataset

Model HOMO / LUMO / GAP alpha Cv mu R2 ZPVE U0 U G H

Uni-Mol2 310M 0.0036(1e-05) 0.315(0.003) 0.143(0.002) 0.092(0.0013) 4.672(0.245) 0.0005(1e-05) 6.149(0.161) 6.009(0.217) 5.564(0.124) 6.3547(0.1048)
Uni-Mol2 570M 0.0036(2e-05) 0.315(0.004) 0.147(0.0007) 0.089(0.0015) 4.523(0.080) 0.0005(3e-05) 5.421(0.432) 5.396(0.384) 5.178(0.1842) 5.9046(0.23469)
Uni-Mol2 1.1B 0.0035(1e-05) 0.305(0.003) 0.144(0.002) 0.089(0.0004) 4.265(0.067) 0.0005(8e-05) 4.512(0.188) 5.774(0.165) 3.921(0.076) 5.880(0.293)

Improvment 2.78% 3.17% -0.6% 3.26% 8.71% 0% 26.6% 3.9% 29.5% 7.5%

B.2 Biogen ADME Dataset

The Biogen ADME dataset focuses on the evaluation of drug metabolism and pharmacokinet-
ics (DMPK) properties, specifically assessing absorption, distribution, metabolism, and excretion
(ADME) characteristics of potential drug candidates. Table 11 illustrates the predictive performance
of the Uni-Mol2 model regarding these ADME properties.

Table 11: Mean absolute error(MAE, ↓) results on Biogen ADME Dataset

Model HCLint-1 PERM-1 SOLU-1

Uni-Mol 0.3085(0.003) 0.2886(0.008) 0.3167(0.010)
Uni-Mol2 84M 0.3117(0.007) 0.2853(0.006) 0.325(0.006)
Uni-Mol2 1.1B 0.3045(0.003) 0.2795(0.00291)) 0.3062(0.005)

C Infrastructures

We utilize an efficient distributed PyTorch framework called Uni-Core [50], specifically designed for
swiftly developing high-performance PyTorch models [51], particularly those based on Transformer
architectures[52]. Given the variability in molecule lengths, padding inputs to match the maximum
molecular length is necessary during training. Consequently, the batch size for model training is
influenced by the longest molecule in each batch. However, since molecule lengths follow a long-
tail distribution (with the majority falling within a specific range), we employ dynamic batching
techniques to enhance GPU utilization. By adjusting batch sizes according to the maximum lengths
of different batches, we can significantly boost GPU utilization with minimal effort.
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The time consumption of reading data from distributed storage is often overlooked. We employ a
singular, dedicated process on each computational node to asynchronously replicate the training
dataset of each epoch onto the host machine. This strategy effectively mitigates time overheads,
thereby obscuring the duration spent on data reading from distributed storage. To resume the
corruption due to the infra and other factors effectively, we save model weight and optimizer state for
every 1k step asynchronously. This means we will lose 1k step training resources in the worst case of
hardware instability or loss spike during training. Meanwhile, any checkpoints exceeding the most
recent ten files will be deleted to avoid consuming too much storage space.

D Pretrain Time Complexity and GPU Resources

We utilized a computational cluster comprising 64 NVIDIA A100 GPUs, each equipped with 80GB
of HBM2 memory. The GPUs were interconnected via a high-speed Nvidia Infiniband fabric, offering
400 Gbps bandwidth for inter-GPU communication. The details of each model size are listed in table
12.

Table 12: Training Time of Uni-Mol2 at different scale

Params Compute Resouce
(GPUs)

Training Time
(GPU hours)

84M 32 2585.6
164M 32 5120
310M 32 7680
570M 64 13824
1.1B 64 30720

E Limitations

The major limitation of our study pertains to the absence of an exploration of the optimal batch size
and learning rate. Our investigation primarily focuses on analyzing and delineating the power-law
relationships among validation loss, model size, dataset size, and computational resources. The
predictive accuracy of performance aligns well with the scaling curve, indicating that the current
optimal learning rate and batch size approximate the near-optimal values. However, existing research
suggests a progressive increase in the optimal batch size with augmented computing resources, while
the optimal learning rate tends to decrease gradually. It is necessary to note that as we further increase
the model’s parameters, the final optimal values for learning rate and batch size may fall outside the
currently identified range. Consequently, investigating the scaling law for optimal batch size and
learning rate is also paramount.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The main claims articulated in the abstract and introduction accurately mirror the
paper’s contributions and scope.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper outlines the limitations of the research and discusses the future direction
to explore the limitations.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details necessary for reproducing the main
experimental results.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code, model, and data are made publicly available upon acceptance.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
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Justification: The paper meticulously details all aspects of the training and testing process. It
specifies the data splits used for training, validation, and testing, along with a thorough description
of the hyperparameters and their selection criteria.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: he paper appropriately reports error bars. All the results reported with the mean and
standard deviation by the results of 3 random seeds.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: The paper provided the detailed information of compute resources.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed in this paper.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

22

46977https://doi.org/10.52202/079017-1489

paperswithcode.com/datasets


Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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