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Abstract

Unsupervised domain adaptation methods have demonstrated superior capabili-
ties in handling the domain shift issue which widely exists in various time series
tasks. However, their prominent adaptation performances heavily rely on complex
model architectures, posing an unprecedented challenge in deploying them on
resource-limited devices for real-time monitoring. Existing approaches, which inte-
grates knowledge distillation into domain adaptation frameworks to simultaneously
address domain shift and model complexity, often neglect network capacity gap
between teacher and student and just coarsely align their outputs over all source
and target samples, resulting in poor distillation efficiency. Thus, in this paper, we
propose an innovative framework named Reinforced Cross-Domain Knowledge
Distillation (RCD-KD) which can effectively adapt to student’s network capa-
bility via dynamically selecting suitable target domain samples for knowledge
transferring. Particularly, a reinforcement learning-based module with a novel
reward function is proposed to learn optimal target sample selection policy based
on student’s capacity. Meanwhile, a domain discriminator is designed to transfer
the domain invariant knowledge. Empirical experimental results and analyses
on four public time series datasets demonstrate the effectiveness of our proposed
method over other state-of-the-art benchmarks. Our source code is available
at https://github.com/xuqing88/Reinforced-Cross-Domain-Knowledge-Distillation-
on-Time-Series-Data.

1 Introduction

Recent years have witnessed great successes of deep neural networks (DNNs) in various time series
applications [1; 2; 3; 4]. Nevertheless, a significant drawback impeding their scalability is the limited
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generalization capability on unseen data. This challenge arises when there is a distribution disparity
between the data used for training and deployment. For instance, a fault diagnosis model trained on
certain machines may perform poorly on the data collected from other machines which have different
working conditions and configurations. Collecting and annotating data for each machine would be
very laborious and costly. To handle this, various unsupervised domain adaptation (UDA) methods
have been extensively explored. These methods aim to transfer the domain invariant knowledge from
an existing labeled data domain (i.e., source domain) to an unlabeled domain (i.e., target domain)
either by explicitly minimizing certain pre-defined discrepancy metrics [5; 6] or implicitly learning
domain-invariant representations with adversarial manners [7; 8]. However, these UDA methods
heavily rely on the complex network architectures and their adaptation performance will significantly
degrade with shallower networks [9; 10]. The over-parameterized DNNs will inevitably lead to
another practical issue in industries. For many real-world time series tasks, the developed models
are often required to be deployed on edge devices with very limited computational resources, such
as smartphones and robots, for real-time and long-term monitoring. The intolerable computational
and storage burdens make the deployment of those complex DNNs on edge devices become an
unprecedented challenge.

Some pioneering efforts have been made to integrate knowledge distillation (KD) techniques into
UDA frameworks to transfer the cross-domain knowledge from a cumbersome teacher to a compact
student for the reduction of model complexity. However, we empirically find that simply integrating
KD with UDA frameworks like existing works will make the compact student suffer from unsatisfying
adaptation performance. The rationale behind this lies in the facts that: on the one hand, due to its
limited network capacity, the compact student may fail to capture the same fine-grained patterns
in data as the cumbersome teacher. Coarsely aligning its feature representations or outputs with
the teacher like [11; 12] will impede its learning process and result in sub-optimal performance on
the target domain. On the other hand, in the cross-domain scenario, teacher’s knowledge on each
individual target sample may not be always reliable and instructive due to the lack of label supervision
in target domain. Blindly trusting teacher’s knowledge for all samples, especially on target domain,
will result in negative transfer. Therefore, to achieve good adaptation performance on the target
domain, we have to adaptively transfer teacher’s knowledge based on student’s network capability.

Motivated by above insights, we propose a novel end-to-end framework for cross-domain knowledge
distillation to simultaneously address domain shift and model complexity. To be specific, an adversar-
ial discriminator module is designed to align teacher’s and student’s representations between source
and target domains on latent feature space for domain-invariant knowledge transfer. Meanwhile,
to adaptively transfer teacher’s knowledge on the unlabeled target domain, we formulate the target
sample selection problem under a reinforcement learning framework. For a specific target sample, if
the student demonstrates the ability to attain the same uncertainty level as the teacher (i.e., uncertainty
consistency), or can largely mimic teacher’s outputs (i.e., sample transferability), we deem such
a sample suitable for knowledge distillation. Based on that, we design a novel reward function
according to student’s learning capability. A dueling Double Deep Q-Network (DDQN) is then
utilized to learn the optimal target sample selection policy for mitigating the negative effects of
unsuitable knowledge from teacher. Our contributions are summarized as follows:

• An end-to-end framework named Reinforced Cross-Domain Knowledge Distillation (RCD-
KD) is proposed to not only effectively transfer the domain-invariant knowledge but also
dynamically distill the adaptive target knowledge based on student’s learning capability.

• We develop an innovative reinforcement learning-based module to learn the optimal target
sample selection policy for robust knowledge distillation. A novel reward function is
designed for assessing student’s learning capability in terms of uncertainty consistency and
sample transferability to dynamically transfer teacher’s target knowledge.

• The extensive experimental results on four real-world time series tasks demonstrate the
superior effectiveness of our approach compared to other SOTA methods.

2 Related Work

In recent years, there are some pioneering works to tackle both domain shift and model complexity
simultaneously. A resource efficient domain adaptation (REDA) framework with multi-exit architec-
tures is proposed in [9], where the ‘easier’ samples are inferred via early exits and ‘harder’ ones are
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inferred via top exit. Meanwhile, some other researchers leverage the knowledge distillation [13]
to enhance the adaptation performance of the compact student. For instance, a framework named
knowledge distillation for unsupervised single target domain adaptation (KD-STDA) is proposed in
[11]. Teacher’s knowledge is gradually transferred via dynamically adjusting the contributions of
UDA and KD loss. Similarly, a multi-level distillation for Domain Adaptation (MLD-DA) strategy is
proposed in [12] to improve the distillation efficiency via a novel cross entropy loss. However, the
above two methods transfer the knowledge from both source and target domains. We empirically
show that the source domain-specific knowledge might have negative contribution to student’s gener-
alization. Besides, MobileDA [14] and adversarial adaptation with distillation (AAD) [15] employ
the teacher trained on source-only domain to guide student’s training, which have already been proved
inefficient due to the limited and biased knowledge from teacher model by [4]. Moreover, to achieve
more reliable knowledge from teacher, in [16] a maximum cluster difference metric is proposed
to estimate teacher’s confidence on certain sample. In [4], a framework named universal and joint
knowledge distillation (UNI-KD) is proposed to measure teacher’s confidence on individual sample
via the output of a data-domain discriminator. However, due to the compact network architecture
of the domain-shared feature extractor from student, the estimated uncertainty is not reliable. In
our work, we estimate teacher’s knowledge with student’s capacity and then utilize it as the reward
for the learning process of RL-based target sample selection module. The experimental results
demonstrate that our proposed method can better enhance student’s performance on target domain.
Meanwhile, our work also relates to active learning (AL) field specifically in terms of selecting the
most critical instances from unlabeled data. Note that here we only discuss the uncertainty-based
sampling strategies in active learning as other query strategies (e.g., instance correlation) are beyond
the scope of our paper. In AL, the uncertainty can be measured by three metrics: least confidence
[17; 18], sample margin [19], and sample entropy [20]. Particularly, the entropy metric measures the
uncertainty over the whole output prediction distribution [21; 22]. In our method, instead of explicitly
utilizing entropy-based uncertainty as AL methods, we leverage the consistency between teacher’
and student’s entropy-based uncertainty to learn the optimal sample selection policy with dueling
DDQN. See Supplementary for more comparison results.

3 Methodology

3.1 Preliminaries

Following standard UDA setup, we consider data from two domains: a labeled source domain
DL

src = {(xis, yis)}
ns
i=1 and an unlabeled target domain DU

tgt = {xit}
nt
i=1 which shares the same

label space as source domain but has different data distributions. Here, ns and nt are the number
of training samples in source and target domains, respectively. A powerful teacher model T with
superior adaptation performance is first pre-trained on DL

src

⋃
DU

tgt with SOTA UDA methods.
Our objective is to train a compact student model S which is not only shallower than the teacher
model but also can achieve competitive performance on unlabeled target domain. To transfer
the learned knowledge from teacher to student, one can just follow standard KD [13] and force
the student to mimic teacher’s soften logits via Eq. (1). Here, Xb represents a batch of training
samples and KL refers to the Kullback–Leibler divergence. qS and pT are the softmax outputs
soften by a temperature factor τ from student S and teacher T , respectively. They are calculated
by qSc = exp(zc/τ)/

∑C
j=1 exp(zj/τ), where C is the number of classes and qSc represents the

student’s prediction probability of a certain sample belonging to the c-th class.

LKD =
∑
x∈Xb

KL(pT ||qS) =
∑
x∈Xb

∑
c

pTc log(p
T
c /q

S
c ). (1)

However, since the teacher is trained on unlabeled target data, its prediction performance on specific
target sample cannot be guaranteed. The compact architecture of student also limits its ability to fully
accept teacher’s knowledge. In other words, directly minimizing the distribution discrepancy between
teacher’s and student’s predictions over all target samples might introduce inappropriate knowledge
which will mislead the student’s learning process. Thus, we propose to alleviate the above issue with
a novel RL-based target sample selection module which can dynamically select suitable samples to
assist the knowledge transferring. Fig. 1 illustrates the details of our proposed method.
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Figure 1: Illustration of proposed RCD-KD. A Monte Carlo Dropout (MCD) based reward module is utilized to
generate the reward for learning the optimal target sample selection policy. Specifically, the reward function
consists of three parts. The first one is the action ak which is the output of dueling DDQN. The second part is the
uncertainty consistency, estimated by entropy from student’s logits qS and the averaged logits pT of N teachers
generated from MCD module. The third part is the sample transferability based on the KL divergence between
qS and pT . The output of reward module rk then will be utilized for the optimization of dueling DDQN for
learning optimal sample selection policy. Meanwhile, a domain discriminator Φ is employed to transfer the
domain-invariant knowledge.

3.2 RL-based Target Sample Selection

Following [23; 24], we consider target sample selection task as a Markov Decision Process which can
addressed by reinforcement learning. A RL-based target sample selection module is first designed
to enhance the distilling efficiency of teacher’s knowledge on target domain. Particularly, a dueling
DDQN [25] is employed to learn the optimal target sample selection policy. The dueling architecture
can effectively mitigate the risk of overestimation by separately estimating the state value and
advantage function, which improves the accuracy of action-value predictions. Meanwhile, to tackle
the instability issue often encountered in training deep reinforcement learning models, we leverage
strategies such as target network and experience replay. Specifically, the target network provides
more stable targets for updating the Q-values by maintaining a separate, slowly updated network for
generating target values, while experience replay enables the model to learn from a diverse set of past
experiences, further enhancing stability and convergence during training. In each training batch, we
utilize the learned sample selection policy to adaptively transfer teacher’s target knowledge according
to student’s learning capability. In the following, the detailed definition of state, action, reward and
the optimization of dueling DDQN will be introduced.

State. Given a batch of target domain samples {xtgti }
nb
i=1 and student’s feature extractor FS , the

state sk at episode k ∈ [1,K] is defined as the feature representations from student’s feature extractor
sk = [FS

k (xtgt1 ), ..., FS
k (xtgtnb

)]. Here, nb is the batch size and K represents the maximum episode
length. The state sk is forwarded to the dueling DDQN, generating a set of actions that decide whether
to retain or discard the corresponding target samples. The student is subsequently optimized with
the selected samples, and the next state sk+1 can be obtained with the updated student. A terminate
state will be triggered if the target sample is not selected at time step k or the episode reaches the
maximum episode length K.

Action. For a specific target sample xtgti in a batch, it only has two actions ai ∈ {0, 1} which is
binary. Specifically, ai = 1 means to retain the sample and ai = 0 means to discard it. Since the
output of dueling DDQN parameterized with Θq is a two-dimensional Q-value vector, the optimal
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action a∗i for sample xtgti at current episode k thus can be calculated by Eq. (2). Subsequently, the
binary weights for all target samples are formulated as w = [a∗1, ..., a

∗
nb
], which then are utilized to

calculate the distillation loss LRKD.

a∗i = argmax
a

Q(FS
k (xtgti ), a; Θq). (2)

Reward. The reward function is pivotal in shaping the learning process for target sample selection
policy, as it offers essential feedback to DDQN regarding the value associated with selecting a specific
action in the current state. To achieve reliable knowledge transferred from selected target samples,
we propose to utilize model uncertainty and sample transferability to design the reward function.

The first component constructing our reward function is a Boolean functionR1 = (ai == 1), which
indicates whether the sample xi is retained or not. The second component of our reward function is
called uncertainty consistency reward. The motivate is straightforward: due to the lacks of label in
target domain, we expect that the student should have the same uncertainty level as the teacher for
a specific sample xi. For the teacher model, we employ the Monte Carlo Dropout (MCD) [26] to
estimate its uncertainty, which utilizes a dropout distribution to approximate the posterior distribution
(See Supplementary for more details). Practically, it means to enable the dropout of teacher model
and forward N times for each sample xi and the averaged prediction pT

i = 1
N

∑
n p(y = c|xi,θn)

can be utilized to calculate the entropyHT
i = −

∑
c p

T
i,clog(p

T
i,c) for measuring its uncertainty. Here,

p(y = c|xi,θn) represents the probability of sample belonging to class c and it is the softmax outputs
of teacher model on the n-th forward pass. For the student, the uncertainty is calculated withHS

i =
−
∑

c q
S
i,clog(q

S
i,c). Intuitively, a higher value of the predictive entropyH will be obtained when all

classes are predicted to have equal probabilities, which means the model is less confident about the
specific data. To ensure the student has consistent uncertainty level as the teacher, we formulate the
uncertainty consistency reward R2 = (HS

i >
1
nb

∑nb

j=1HS
j )⊙ (HT

i > 1
nb

∑nb

j=1HT
j ), where ⊙ is

the exclusive-nor operation. The third component of our reward function is the transferability reward
formulated asR3 = (Di <

1
nb

∑nb

j=1Dj). Here, Di = KL(pT
i ||qS

i ) is the KL divergence between
student’s prediction and the averaged MCD teacher prediction. Apparently, the samples whose KL
divergence are lower than the averaged divergence are easier ones for the compact student to learn.
With the above three Boolean functions, our reward function is defined as Eq. (3) shows:

rk = α1 ∗ (R1 ⊕R2 − 0.5) + α2 ∗ (R1 ⊕R3 − 0.5), (3)

where ⊕ is the exclusive-or operation. For the first part of Eq. (3), a positive reward value will
be assigned if a sample is retained and student shows consistent uncertainty as the teacher, or it
is discarded and student and teacher show inconsistent uncertainty about it. Otherwise, a negative
reward will be assigned. Similarly, for the second part of Eq. (3), a positive reward will be assigned
if its transferability is higher than others and being selected, or its transferability is lower than others
and not selected. We utilize α1 and α2 to adjust the contribution of each part. We constrain the
reward within the range of -1 to 1 to offer explicit guidance to the DDQN so that it can efficiently
learn to distinguish between good and bad actions.

Dueling DDQN Optimization. The dueling deep Q-network consists of two streams as shown in
Fig. 1: state-value estimation stream V (s; ΘE ,ΘV ) parameterized with ΘE and ΘV and advantages
estimation stream A(s, a; ΘE ,ΘA) for each action which is parameterized with ΘE and ΘA. Here,
ΘE is a shared encoder. Furthermore, to balance the exploitation and exploration, we adopt the
NoisyNet [27] for the fully-connected layers in ΘE , ΘV and ΘA. Besides, a replay bufferM is
designed to store the historical experience (sk, ak, rk, sk+1, d), where d ∈ {0, 1} indicates whether
the next step k + 1 is the terminal step (d = 0) or not (d = 1). A batch of entries inM will be
randomly sampled out for DDQN optimization.

To train the dueling DDQN (i.e., the online network Q), another target Q-network Q′ is desired,
which has identical network architecture as Q but is optimized in a different way. Specifically, the
online network Q is to estimate the Q-values Qest by aggregating two steams via Eq. (4):

Qest = V (s; ΘE ,ΘV ) +A(s, a; ΘE ,ΘA)−
1

2

∑
ai

A(s, ai; ΘE ,ΘA). (4)

5
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The target Q-network Q′ is to generate the target Q-values as Eq. (5) shows. Here, Θ =
{ΘE ,ΘV ,ΘA}, Θ′ = {Θ′

E ,Θ
′
V ,Θ

′
A} are the parameters of Q and Q′, respectively. γ ∈ [0, 1]

is the discount factor to balance the immediate and future rewards.

Qtar = rk + d ∗ γ ∗Q(sk+1, argmax
ak+1

Q(sk+1, ak+1; Θ);Θ
′
). (5)

The online network Q is optimized by minimizing the Huber loss between Qest and Qtar. The target
network Q′ is updated with a moving average method as shown in Eq. (6), where δ is a smoothing
parameter determining how much historical information of the online network to be transferred to the
target network.

Θ′ ← δ ∗Θ′ + (1− δ) ∗Θ. (6)

3.3 Student Optimization

With the proposed RL module, we can efficiently transfer adaptive knowledge from the teacher model
to the student model by dynamically eliminating target samples which are unsuitable for student
learning. Particularly, we reformulated Eq. (1) to Eq. (7), where w = [a∗1, ..., a

∗
nb
] is the output of

online Q-networkQ. By minimizing LRKD, student’s generalization capability on target domain can
be effectively enhanced.

LRKD =
∑
x∈Xb

wj ∗
∑
i

pTi log(p
T
i /q

S
i ). (7) LDC = −E[log(Φ(ψ(FS(xtgt))))]. (8)

Meanwhile, to transfer the domain-invariant knowledge between two domains from teacher to student,
we design an adversarial leaning-based module as depicted in Fig. 1, followed [28]. Particularly, a
domain discriminator Φ is employed to distinguish the source of input feature maps (i.e., whether
the feature maps are generated from the teacher with source data as inputs or the student with target
data as inputs). Since the dimensions of student’s and teacher’s feature maps are different, an adaptor
layer ψ is employed to match their dimensions. The domain confusion loss is then formulated as
Eq. (8). It is worth noting that in our experiments, we utilize the DANN [7] to pre-train the teacher.
Although other DA methods can also be adopted in our framework, the DANN can essentially
provide a pre-trained accurate domain discriminator after teacher’s training. During transferring
domain-invariant knowledge, we can re-utilize it and only optimize the student and the adaptor layer
ψ, which will significantly improve the training efficiency. Meanwhile, it is also possible that one
may utilize some other UDA methods to pre-train the teacher. In this case, the domain discriminator
Φ has to be adversarially trained against the student by minimizing loss Ladv as Eq. (9). More
experimental results in terms of utilizing other UDA methods to train the teacher can be found in
Experiments section.

Ladv = −E[logΦ(FT (xsrc))]− E[log(1− Φ(ψ(FS(xtgt))))]. (9)

The overall loss for student optimization is calculated via Eq. (10). λ is a hyperparameter to balance
the contribution of each part. Algorithm 1 shows details of proposed RCD-KD.

L = LDC + λ ∗ τ2 ∗ LRKD. (10)

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate our method, extensive experiments are conducted on four public datasets
across three different tasks, namely human activity recognition, rolling bearing fault diagnosis and
sleep stage classification. To be specific, the first dataset is called human activity recognition (HAR)
[29] for identifying subject’s activities (i.e,, walk, walk upstairs, walk downstairs, stand and sit).
Sensory measurements from the accelerometer and gyroscope embedded in a smartphone were
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Algorithm 1 Proposed RCD-KD
Input: Teacher T , Student S, adaptation model ψ, domain discriminator Φ, online and target Q-
networkQ andQ′, source dataDL

src, target dataDU
tgt and Replay bufferM

1: for every epoch do
2: for every batch Xtgt ∈ DU

tgt and Xsrc ∈ DL
src do

3: for episode k ∈ [1,K] do
4: Get state sk, sample action ak ∼ Q(sk) and update next state sk+1

5: Update S and ψ by minimizing L as Eq. (10)
6: Calculate rk via Eq. (3); Set d = 0 if episode end, otherwise d = 1
7: Store (sk, ak, rk, sk+1, d) toM
8: if Φ is not pre-trained then
9: Fix the parameters in S and ψ and update Φ via minimizing Ladv in Eq. (9)

10: Sample a random batch (sk, ak, rk, sk+1, d) fromM
11: Calculate Qest via Eq. (4) and Qtar via Eq. (5), update Q via Huber loss and Q′ via Eq. (6)

Table 1: Performance comparison with other UDA methods.

Datasets Student-Only Metric-based Adversarial-based OursHoMM [6] MDDA [5] SASA [36] DANN [7] CoDATS [30] AdvSKM [32]
HAR 55.94±8.99 83.62±1.82 84.89±6.29 83.37±3.23 82.42±3.82 75.72±8.62 70.72±4.06 94.68±1.62

HHAR 58.74±10.79 68.02±6.59 73.26±8.35 77.13±4.09 76.03±1.97 74.64±4.18 63.24±5.99 82.37±1.84
FD 66.78±4.38 74.52±6.00 81.80±5.43 86.75±2.39 77.95±8.52 77.54±9.45 77.83±5.71 92.63±0.62

SSC 50.39±7.67 59.79±5.51 57.45±3.68 59.36±3.69 57.39±5.51 57.21±5.61 57.28±4.77 67.49±1.83

collected from 30 subjects. Considering the variability among subjects, each subject is considered
as a single domain and the adaptation is performed between two subjects. Here, we follow existing
works [30; 4] and select five transfer scenarios. The second evaluation dataset is Heterogeneity human
activity recognition (HHAR) [31]. Compared to HAR, the sensory measurements are collected
with various models of smartphones from different manufacturers which are positioned with various
orientations on subjects. Thus, the domain gaps between different subjects are generally considered
to be larger than HAR. Five transfer scenarios are selected for evaluation same as previous work
[32]. The third dataset is rolling bearing fault diagnosis (FD) [33] which aims to classify the health
status of rolling bearing from healthy, artificial damages, damages from accelerated lifetime tests.
The rolling bearing are tested under various operation conditions. Same as [4; 34], five transfer
scenarios between different operational configurations are selected for fair comparison. The last
evaluation dataset is sleep stage classification (SSC) dataset [35], which intends to recognize subject’s
sleep stages (i.e., wake, non-rapid eye movement N1, N2, N3 and rapid eye movement stage) with
electroencephalography waveform. Five scenarios are evaluated following previous study [34].

Implementations. For the proposed RL-based sample selection module, we set γ = 0.9 and
δ = 0.999 following [25] in Eq. (5) and (6), respectively. We set N = 10 to calculate teacher’s
entropy for the reward function and K = 5 for the episodes to generate historical experience. Note
that to guarantee fair comparison, we ensure the total training steps of ours and benchmark methods
are same. Furthermore, we adopted the 1D-CNN as the backbone of the teacher and student models
following [4; 34], where student is a shallow version of teacher with less filters (See Supplementary
for detailed network architectures of T , S, Φ and dueling DDQN). For α1, α2 in Eq. (3) and λ, τ
in Eq. (10), we use the grid search and set α1 = 0.2, α2 = 1.8, λ = 1.0, τ = 2 for all experiments.
More sensitivity analysis regarding N , K, λ, α1, α2 and τ can be found in Supplementary. The
averaged macro F1-score with three independent running is reported.

4.2 Benchmark with UDA methods

To demonstrate the effectiveness of our proposed RCD-KD, we first compare it with other advanced
UDA methods as shown in Table 1. Note that all of the benchmark UDA methods are directly
applied to the compact student. From Table 1, some observations can be found. In most transfer
scenarios, directly applying UDA methods (either the metric-based or adversarial-based) can improve
the performance of compact student model on target domain. However, these methods perform
inconsistently across different tasks. For instance, HoMM performs best on SSC, but worst on
FD compared to other UDA methods. Meanwhile, the improvement of these UDA methods is
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Table 2: Marco F1-scores on HAR and HHAR across three independent runs.

Methods HAR Transfer Scenarios HHAR Transfer Scenarios
2→ 11 6→23 7→13 9→18 12→16 Avg 0→6 1→6 2→7 3→8 4→5 Avg

Teacher 100.0 100.0 99.92 93.69 81.65 95.05 64.47 94.23 57.22 98.88 97.69 82.50
Student-Only 68.51 59.57 78.88 21.02 51.71 55.94 50.46 65.95 43.22 58.84 75.22 58.74

KD-STDA [11] 98.31 89.55 89.28 67.41 63.13 81.54 46.15 92.19 41.69 96.51 89.79 73.27
KA-MCD [16] 89.46 59.26 63.62 58.93 45.67 63.39 65.25 90.59 42.57 85.71 85.48 73.92
MLD-DA [12] 100.0 99.11 92.96 82.78 64.08 87.79 61.53 94.32 47.91 91.07 92.74 77.51

REDA [9] 99.44 93.81 92.43 74.55 55.77 83.20 32.05 93.85 36.10 90.24 95.41 69.53
AAD [15] 83.74 90.89 83.05 75.96 61.67 79.06 53.25 81.22 48.35 87.00 86.36 71.24

MobileDA [14] 92.71 90.19 91.39 77.95 64.34 83.32 46.60 93.31 49.13 98.30 96.84 76.84
UNI-KD [4] 100.0 96.33 93.20 79.77 64.91 86.84 46.66 94.89 59.20 98.45 97.42 79.32

Ours 100.0 100.0 99.64 92.87 80.87 94.68 64.47 94.24 57.59 98.45 97.11 82.37

Table 3: Marco F1-scores on FD and SSC across three independent runs.

Methods FD Transfer Scenarios SSC Transfer Scenarios
0→1 0→3 2→1 1→2 2→3 Avg 0→11 12→5 16→1 7→18 9→14 Avg

Teacher 88.36 86.46 88.82 99.84 99.92 92.68 51.43 68.71 73.48 72.48 76.59 68.54
Student-Only 34.94 42.14 75.27 90.41 91.13 66.78 35.62 35.87 60.15 61.24 59.05 50.39

KD-STDA [11] 53.17 50.95 76.76 89.24 98.66 73.76 43.75 53.45 49.04 67.23 65.56 55.81
KA-MCD [16] 57.96 65.26 61.66 81.75 91.79 71.68 50.85 56.73 51.01 64.18 65.95 57.74
MLD-DA [12] 78.16 75.49 83.34 99.86 96.83 86.74 45.36 66.17 58.37 63.87 70.71 60.90

REDA [9] 86.70 81.08 88.98 92.35 88.77 87.58 44.07 52.01 60.14 60.46 64.67 56.27
AAD [15] 52.50 60.00 80.86 89.84 95.99 75.84 32.71 62.92 63.34 64.46 72.15 59.12

MobileDA [14] 76.19 58.77 83.74 97.56 97.84 82.82 41.83 57.14 59.41 64.38 61.55 56.86
UNI-KD [4] 78.85 82.68 92.14 97.29 99.34 90.06 44.48 60.13 62.99 71.03 72.21 62.17

Ours 89.88 85.63 88.57 99.92 99.13 92.63 49.73 70.74 72.14 71.73 76.95 68.26

very marginal and large variance can be observed, indicating the challenge of performing domain
adaptation with shallow networks. On the contrary, the compact student trained with our proposed
RCD-KD consistently performs better than other methods.

4.3 Benchmark with KD-based DA methods

We compare our proposed method with other KD-based DA methods as shown in Table 2 and Table
3. We applied above methods on our teacher-student settings. We also report the performance of pre-
trained teacher (generally considered as the upper limit) and the student trained on source domain but
tested on target domain (namely, Student-Only) as the lower limit. We highlight the best performance
with bold for each scenario and the averaged performance. Note that this comparison does not include
the teacher as it benefits from more complex network architecture. See Supplementary for more
experimental results of additional transfer scenarios.

Some observations can be found from above two tables. Firstly, compared to Student-Only, all
the benchmark methods can obviously improve compact student’s generalization on target domain.
However, some of them (e.g., KD-STDA in HAR, FD and SSC, KA-MCD in HAR and FD) even
perform worse than directly applying UDA on compact student (e.g., MDDA and SASA in Table 1).
The reason is that those methods blindly trust teacher’s predictions on target domain as mentioned
and learning with such unreliable knowledge will result in inferior performance. Secondly, the
methods using source-only teachers (i.e., AAD and MobileDA) failed to achieve better performance
than others (e.g., UNI-KD and MLD-DA) which employ teachers trained on both source and target
domains. This observation indicates that for cross-domain KD, it is critical for the teacher to possess
the knowledge of both domains. Thirdly, introducing the source domain specific knowledge to the
student like KD-STDA and MLD-DA apparently cannot guarantee better generalization on target
data. Intuitively, the student still needs to pay more attention on target domain or focus on domain-
shared knowledge as UNI-KD suggested. Lastly, our proposed method consistently outperforms
other benchmarks over all the datasets and achieves the highest score in most of transfer scenarios.
Meanwhile, our RCD-KD can even achieve comparable performance as the teacher model in some
datasets (e.g., HAR, HHAR and FD) with more compact model architectures. It indicates the
effectiveness of transferring the adaptive knowledge via proposed RL-based sample selection module
and domain-invariant knowledge via domain discriminator.
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Figure 2: TCN →1D-CNN.
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Figure 3: Resnet-34 → Resnet-18.

Table 4: Teacher with different UDA methods.

T-Types HAR HHAR FD SSC
MDDA 89.16 81.65 90.45 61.62
SASA 88.16 80.39 90.83 63.25

CoDATS 93.39 82.98 91.08 66.89
DANN (ours) 94.68 82.37 92.63 68.26

Table 5: Framework ablation for proposed method.

LKD LDC LRKD HAR HHAR FD SSC
✓ 79.46 75.69 72.35 52.63

✓ 85.51 79.03 77.95 62.39
✓ ✓ 89.32 78.99 89.13 60.65

✓ ✓ 94.68 82.37 92.63 68.26

4.4 Ablation Study

Different Teacher-Student (T− S) pairs. Besides transferring the knowledge from a cumbersome
1D-CNN teacher to a compact 1D-CNN student following [4], we also evaluate our proposed method
with other T− S pairs. Specifically, we adopted a temporal convolutional network (TCN) [37] as
the teacher and 1D-CNN as the student, a Resnet-34 [38] as the teacher and Resnet-18 as the student
as depicted in Fig. 2 and Fig. 3. We can see that our proposed method consistently outperforms other
benchmark methods, further indicating its effectiveness under different T− S configurations.

Different Teacher Generation. As stated in the Methodology section, our proposed method re-
utilizes the domain discriminator after teacher’s training with DANN. To further demonstrate that
our framework can be generalized to other UDA methods, we evaluate our framework with teachers
generated by various DA methods as shown in Table 4. Specifically, we utilize two discrepancy-based
DA methods, i.e., MDDA [5] and SASA [36] and one additional adversarial-based DA method named
CoDATS [8]. Note that for teachers generated from MDDA and SASA, we need to train the domain
discriminator as shown in Algorithm 1. On the contrary, for teachers generated from CoDATS and
DANN (ours), the parameters of discriminator are frozen during student’s training. From Table 4,
we can see that employing teachers from MDDA and SASA slightly underperforms CoDATS and
DANN. The possible reason is that adding additional training steps for domain discriminator will
inevitably increase training difficulty in terms of model convergence. But they still perform better
than other benchmarks in Tables 2 and 3, indicating that our approach is not limited by the teacher
training strategies as long as the teacher possesses the source and target domain knowledge. A well
pre-trained domain discriminator is preferred as it can improve the training efficiency.

Framework Ablation. There are two key components in our proposed framework: the domain-
invariant knowledge transferring via LDC and the RL-based domain adaptive knowledge transferring
via LRKD. We conduct the ablation study to evaluate their contributions. We also include the
standard knowledge distillation in which the student is optimized with LKD as Eq. (1) shows. From
Table 5, we can see that coarsely aligning teacher’s and student’s predictions over all target samples
(LKD + LDC) might lead to negative transferring in some datasets (e.g., HHAR and SSC), whose
performance is inferior to the one only applying LDC . Our proposed method (LDC + LRKD) can
significantly mitigate this issue via the proposed RL-based target sample selection module.

Reinforced Sample Selection Ablation. To investigate the contribution of proposed reward and
RL-based model selection module, we conduct the ablation study as shown in Table 6. Some
observation can be found from above table. Firstly, including all the target samples to train the
compact student will inevitable introduce negative transfer, resulting in unsatisfying generalization
performance on target domain. Either utilizing the model uncertainty or transferability to explicitly

9
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Table 6: Reinforced sample selection ablation. “Full samples" denotes utilizing whole target samples for KD;
‘R2’, ‘R3’ denote directly utilizing proposed uncertainty and transferability for sample selection; ‘R†

2’, ‘R†
3’

denote utilizing RL with R2 and R3 as reward for sample selection; (R2 +R3)
† is our proposed method.

Datasets Full
Samples

Partial Samples
R2 R†

2 R3 R†
3 R2 +R3 (R2 +R3)

†

HAR 89.32 91.65 93.91 92.31 93.96 93.53 94.68
HHAR 78.99 78.30 81.73 80.33 82.29 81.04 82.37

FD 89.13 90.17 91.93 89.51 91.08 91.85 92.63
SSC 60.65 63.16 62.98 65.81 67.49 65.20 68.26

Table 7: Comparison of Computational Complexity.

Methods KD-STDA KA-MCD MLD-DA REDA AAD MobileDA UNI-KD Ours
Time (sec) 1.68 4.55 1.91 1.78 0.91 1.28 3.26 16.42

select target sample (as shown in columnR2 andR3) would improve student’s performance in most
of datasets. Secondly, dynamically selecting target samples using our RL-base module with either
of proposed rewards (as shown in columnR†

2 andR†
3) will further improve student’s performance,

indicating the effectiveness of RL-based module in mitigating negative transfer. Lastly, combining
model uncertainty and transferability as the reward to dynamically select suitable target samples
based on student’s capacity yields best performance.

Computational Complexity. We performed the time complexity analysis for our method and the
results are shown in Table 7. Specifically, we measure the training time for our proposed method and
other benchmarks with a NVIDIA 2080Ti GPU. The reported results are measured with one epoch on
single transfer scenario on FD dataset, which has the largest training samples (about 1,800 samples per
transfer scenario) among evaluated datasets. We can see that our method does require more training
time compared to other benchmarks, reflecting its greater complexity. The primary computational
costs arise from two factors. The first part is the generation of K historical experiences at each step.
This could be significantly reduced by using a smaller K. The second factor is the MCD module which
conducts multiple inference processes for uncertainty estimation. This computational burden could
be further decreased by adopting alternative uncertainty estimation methods. Nevertheless, although
our training time is longer than other benchmarks, we argue that it is still within an acceptable range,
especially considering the performance improvement it could bring. Meanwhile, we also evaluate the
scalability of our approach to larger dataset. See Supplementary for more scalability analysis.

5 Conclusion and Limitations

In this paper, we propose a framework for cross-domain knowledge distillation on time series.
Specifically, we utilize an adversarial domain discriminator to assist the compact student learn the
domain-invariant knowledge from the cumbersome teacher. Meanwhile, we design a reinforcement
learning-based target sample selection module to effectively transfer teacher’s knowledge which
is suitable for compact student. The experimental results demonstrate the effectiveness of our
proposed method in enhancing the generalization of compact student on target domain. There are
also some limitations for our proposed framework. On the one hand, we still need to pre-train a
cumbersome teacher with advanced UDA methods, which involves more training time than others.
On the other hand, we only utilize the distance between teacher’s and student’s logits to assess
sample’s transferability, which might overlook some intrinsic information from feature space. In the
future, we will extend our work to (1) jointly train teacher and student for cross-domain knowledge
distillation, and (2) consider feature representations into sample transferability assessment.
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A Supplementary

A.1 Uncertainty Estimation with Monte Carlo Dropout Method

Given an input data set X = {x1, ..., xn} and the respective outputs Y = {y1, ..., yn}, the conven-
tional machine learning methods intend to find an optimal model Φ(x;θ), which is parameterized
with θ, to map the input X to the Y . After training, the optimal model Φ(x;θ) will give a single
point prediction for certain test sample with static θ. On the contrary, the Bayesian methods (e.g.,
Bayesian neural networks) can generate predictive distributions instead of a single point prediction
for estimating model uncertainty. With defining Φ(x;θ) with a prior P (θ) over parameter space θ,
the training objective is then turned to find an optimal posterior distribution over θ:

P (θ|X,Y ) =
P (Y |X,θ)P (θ)

P (Y |X)
. (11)

The prediction value of y with input x is the weighted average of model predictions over all possible
sets of parameters θ with various posterior probabilities as Eq. (12) shows.

P (y|x,X, Y ) =

∫
P (y|x,θ)P (θ|X,Y )dθ

= Eθ∼P (θ|X,Y )[Φ(x;θ)]

(12)

However, the posterior distribution P (θ|X,Y ) is intractable as shown in previous works. Alter-
natively, Gal and Ghahramani proved that a DNN with arbitrary non-linear depth and dropout is
mathematically equivalent to a Bayesian approximation of the probabilistic deep Gaussian process.
They proposed a method named Monte Carlo Dropout which utilizes a dropout distribution P̂ (θ)
to approximate P (θ|X,Y ). To be specific, for the l-th layer (l = 1, ..., L) in a model with total L
layers, the parameter distribution θl is defined as:

θl = Ml ∗ diag([Zl,i]
Dl
i=1), (13)

where Ml ∈ RDl×Dl−1 is a matrix with variational parameters and diag(·) is an operator to map
a vector to a diagonal matrix. Zl,i ∼ Bernoulli(qi) is independently sampled from Bernoulli
distribution, where i = 1, ..., Dl−1. qi is the probability of dropout. Subsequently, the Eq. (12) is
reformulated as:

Eθ∼P̂ (θ)[Φ(x;θ)] ≈
1

N

N∑
n=1

Φ(x;θn). (14)

Practically, Eq. (14) means to enable the dropout of model during test phase and forward N times for
each sample xi. Furthermore, for classification tasks we employ the entropy to measure teacher’s
uncertainty on target data as Eq. (15) shows:

Hi = −
∑
c

(
1

N

∑
n

p(y = c|xi,θn)log(
1

N

∑
n

p(y = c|xi,θn))), (15)

where p(y = c|xi,θn) represents the probability of sample belong to class c and it is the softmax
outputs of teacher model Φ(x;θn) on the n-th forward pass. Intuitively, a higher value of the
predictive entropy Hi will be obtained when all classes are predicted to have equal probabilities,
which means the teacher is less confident about the specific data.

A.2 Model Architecture

A.2.1 Teacher and Student model

As illustrated in Fig. 4(a) and (b), the teacher and student model are constructed with three stacked
CNN blocks as the backbone and one fully connected layer as the classifier. Each CNN block consists
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Figure 4: Network Architectures for (a) 1D-CNN Teacher, (b) 1D-CNN Student and (c) Domain Discriminator.

of a 1D convolutional layer, followed by a BatchNorm layer, an activation layer (ReLU), a 1D
MaxPooling layer and a Dropout layer. Here, ‘Conv1D’ represents the 1D convolutional layer and
the first variable in the bracket represents the number of input channels and the second one represents
the number of output channels. ‘BN’ is a BatchNorm layer. ‘FC’ represents a fully connected layer.
‘C’ represents the number of classes.

Meanwhile, to demonstrate the deployment on edge device we compared our 1D-CNN teacher and
student from four perspectives as shown in Table 8. Here, we employ Raspberry Pi 3B+ as the edge
device for deployment. We can see that the student reduces 15.46 times parameters, 16.98 times
FLOPs and 13.54 times memory usage compared to its teacher. Besides, the inference of student is
21.67 times faster than teacher on the edge device. Meanwhile, in our manuscript we have already
shown that the student trained with our method is able to achieve comparable performance as the
teacher. This enables our compact student to potentially meet the real-time response and on-site
deployment requirements for certain time series applications.

Table 8: Comparison of model complexity.

# Para. (M) # FLOPs (M) Memory Usage (Mb) Inference Time (Sec)
T 0.201 0.917 83.73 4.16
S 0.013 0.054 6.33 0.192

Rate 15.46× 16.98× 13.54× 21.67×

A.2.2 Domain discriminator

Fig. 4(c) is the network architecture of domain discriminator. It consists of three linear layer followed
by ReLU activation layers. The output of domain discriminator is a 2-classes probability distribution
to indicate whether the feature maps come from the teacher with source domain data as input or from
the student with target domain data as input.

A.2.3 Dueling DDQN

Table 9 presents the details of our dueling DDQN. The left column is the state-value estimation
stream and the right column is the advantage estimation column. The ‘NoisyFC’ represents a linear
layer whose weights and biases are perturbed by a parametric function of the noise. The conventional
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Table 9: Network Architecture for Dueling DDQN.

Layers Dueling DDQN
#1 FC(Input, 1024)+ReLU
#2 NoisyFC(1024,1024)+ReLU NoisyFC(1024,1024)+ReLU
#3 NoisyFC(1024,1) +ReLU NoisyFC(1024, 2)+ReLU
#4 Aggregation

linear layer can be expressed as y = wx + b, where w ∈ Rq×p, b ∈ Rq are trainable weights and
biases, x ∈ Rp and y ∈ Rq are the inputs and outputs, respectively. In the NoisyNets, the weights and
biases are reformulated as Eq. (16) and (17), respectively. Here, µw ∈ Rq×p, σw ∈ Rq×p, µb ∈ Rq,
σb ∈ Rq are the trainable weights and biases. ⊙ is the element-wise multiplication. ϵw and ϵb are the
factorised Gaussian noise, where each entry ϵwi,j = f(ϵi)f(ϵj), ϵbj = f(ϵj) and f(x) = sgn(x)

√
|x|.

Adding such parametric noise to the deep reinforcement learning agent will enhance the efficiency of
exploration.

w = µw + σw ⊙ ϵw (16)

b = µb + σb ⊙ ϵb (17)

A.3 Additional Transfer Scenarios

We evaluate our proposed method on another five additional transfer scenarios on four datasets as
shown in Table 10 and Table 11. From above two Tables, we can sse that our proposed method
consistently achieves better performance than other SOTA methods, further indicating its effectiveness
in transferring the knowledge under the cross-domain scenarios.

Table 10: Marco F1-scores on HAR and HHAR across three independent runs.

Methods HAR Transfer Scenarios HHAR Transfer Scenarios
18→ 27 20→5 24→8 28→27 30→20 Avg 0→2 5→0 6→1 7→4 8→3 Avg

Teacher 98.23 90.57 97.08 100 92.21 95.62 66.56 33.25 94.47 94.99 96.68 77.19
Student-Only 98.37 48.78 77.38 61.17 76.41 72.42 61.94 27.43 69.10 77.72 80.51 63.34

KD-STDA 100 75.77 90.77 97.77 86.36 90.13 61.93 28.04 92.65 91.33 96.30 74.05
KA-MCD 85.22 78.03 86.14 91.19 74.28 82.97 43.90 33.35 92.32 94.27 97.02 72.17
MLD-DA 98.82 80.57 91.90 100 91.69 92.60 65.44 31.10 92.97 94.97 95.87 76.07

REDA 98.20 95.05 91.26 98.53 72.04 91.02 54.18 32.56 88.50 88.84 96.18 72.05
AAD 90.27 66.88 86.09 94.73 84.82 84.56 58.23 37.24 91.47 81.99 83.61 70.51

MobileDA 92.86 84.96 90.45 79.12 77.56 84.99 50.27 30.83 76.12 89.70 79.25 65.23
UNI-KD 100 94.42 100 92.26 87.10 94.76 62.33 39.01 92.89 96.90 96.52 77.53
Proposed 100 85.26 97.92 100 92.21 95.08 67.27 38.25 94.59 95.83 97.40 78.67

Table 11: Marco F1-scores on FD and SSC across three independent runs.

Methods FD Transfer Scenarios SSC Transfer Scenarios
1→0 1→3 3→0 3→1 3→2 Avg 3→19 5→15 6→2 13→17 18→12 Avg

Teacher 66.40 100 62.30 100 81.65 82.07 71.85 73.69 72.21 50.74 52.96 64.29
Student-Only 45.13 91.14 44.84 93.03 70.55 68.94 43.65 41.04 48.21 38.78 47.28 43.79

KD-STDA 47.55 93.02 51.26 99.81 76.28 73.58 61.24 66.97 67.05 43.05 49.92 57.65
KA-MCD 51.77 98.69 48.50 93.65 83.05 75.13 61.13 63.23 70.96 39.56 46.86 56.35
MLD-DA 51.98 99.67 52.14 96.01 75.62 75.08 66.23 70.30 69.33 44.22 44.13 57.65

REDA 53.65 96.21 52.48 96.60 80.85 75.96 56.09 61.96 53.59 40.50 36.26 49.68
AAD 46.42 94.65 52.09 98.65 87.11 75.78 62.75 64.81 71.78 44.52 49.18 58.61

MobileDA 51.71 94.92 51.17 99.86 78.51 75.23 64.16 67.67 56.74 47.50 56.56 58.53
UNI-KD 60.91 99.97 61.00 100 87.08 81.79 66.84 70.76 65.70 50.19 49.77 60.65
Proposed 61.99 99.67 62.42 100 87.76 82.37 69.49 72.73 67.01 49.31 52.52 62.21

A.4 Sensitivity Analysis

A.4.1 Hyper parameter N

In our proposed method, one of the key hyper parameters is N , which is the number of teachers
utilized for calculating the uncertainty on a specific sample. It relates to our reward function, thus
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Figure 5: Sensitivity of N .
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Figure 6: Sensitivity of K.
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Figure 7: Sensitivity of λ.

Table 12: Sensitivity Analysis on α1 and α2.

Dataset α1=0.2
α2=1.8

α1=0.4
α2=1.6

α1=0.6
α2=1.4

α1=0.8
α2=1.2

α1=1.0
α2=1.0

α1=1.2
α2=0.8

α1=1.4
α2=0.6

α1=1.6
α2=0.4

α1=1.8
α2=0.2

HAR 94.68 94.23 94.49 93.58 93.25 92.65 92.68 92.72 92.05
HHAR 82.37 82.35 94.49 82.10 81.59 82.11 81.04 81.25 81.34

FD 92.63 92.34 92.87 92.10 91.89 91.74 92.01 91.34 92.05
SSC 68.26 68.47 68.15 67.65 67.80 66.65 66.95 66.35 66.01

affecting the learning process of target sample selection policy. Intuitively, the larger N will lead to
more accurate estimation of teacher’s uncertainty and provide more accurate reward. As illustrated in
Fig. 5, student’s performance is gradually increased with N but will keep at some certain level when
N ≥ 10. The larger value of N also increases the total cost in terms of training time. Empirically,
N = 5 or N = 10 are appropriate, and we choose N = 10 in our experiments for all the datasets.

A.5 Hyper parameter K

Another hyper parameter in our proposed approach is the episodes length K for generating historical
experience and we perform the analysis as illustrated in Fig. 6. From Fig. 6, we can see that our
proposed method is not very sensitive to K. But a large value of K will result in longer training time.
K = 5 is sufficient to generate informative historical experience for training the dueling DDQN.

A.5.1 Hyper parameter λ

Regarding hyper parameter λ which is to balance the contribution of domain confusion loss LDC and
the distillation loss LRKD, we can see from Fig. 7 that a small value of λ (e.g. λ = 0.1) will make
the student more focus on learning domain-invariant knowledge from LDC . It will result in worse
performance in datasets like HHAR and SSC. A higher value of λ will obviously enhance student’s
generalization capability on target domain. λ ∈ [1, 5] is a suitable range based on our experiment
results.

A.5.2 Hyper parameter α1 and α2

To limit our reward within the range of -1 to 1, α1 and α2 should satisfy below constrains: α1 ∈ (0, 2),
α2 ∈ (0, 2) and α1 + α2 = 2. We perform grid search on four datasets as shown in Table 12. We
can see that the student trained with low α1 value and high α2 value can achieve better performance
than other configurations, indicating transferability contributes more to the final performance than
uncertainty. In all of our experiments, we set α1 = 0.2 and α2 = 1.8 for all datasets for simplicity.

A.5.3 Hyper parameter τ

For hyper parameter τ which is the temperature to soften teacher’s logits, we perform the analysis
ranged from 1 to 16 as shown in Table 13. We can see that higher value of temperature (e.g., τ = 16)
would over-smooth teacher’s logits, resulting in poor distillation performance. Generally, τ = 2 or
τ = 4 is a good choice for our method.
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Table 13: Sensitivity Analysis for temperature τ

Dataset τ = 1 τ = 2 τ = 4 τ = 8 τ = 16
HAR 92.14 94.68 94.23 91.35 89.45

HHAR 80.14 82.37 81.45 79.41 76.49
FD 90.79 92.63 92.74 88.51 85.41

SSC 65.10 67.49 66.98 63.21 59.01

Table 14: Comparison with different sample selection strategies in AL.

Methods HAR HHAR FD SSC
Baseline 89.32 78.99 89.13 60.65
LC 79.21 76.22 74.14 52.9
LC Consist. 82.01 75.43 74.45 56.11
LC Consist. + RL 84.9 76.24 81.45 60.01
M 80.55 75.9 82.05 58.03
M Consist. 83.55 78.91 81.9 59.45
M Consist. + RL 90.11 80.01 80.79 61.97
H 88.31 79.09 88.18 59.23
H Consist. 91.65 78.3 90.17 63.16
H Consist. + RL 93.91 81.73 91.93 62.98

A.6 Comparison with sample selection strategies in Active Learning

We conduct the ablation study on three uncertainty-based active learning (AL) strategies, including
least confidence (LC), sample margin (M) and sample entropy (H). The results are presented in Table
14. We take student trained with our framework using whole target samples as the baseline (i.e.,
without RL). ‘LC’ refers to leveraging student’s confidence to directly select samples. ‘LC Consist.’
refers to using the consistency of teacher’s and student’s confidence for explicitly sample selection.
‘LC Consist. + RL’ refers to leveraging ‘LC Consist.’ as reward to learn optimal sample selection
policy. We can see that: firstly, almost all uncertainty-based AL strategies exhibit performance
degradation compared to the baseline. This could be attributed to the unreliable uncertainty estimation
from student’s outputs, especially at early training stage. Additionally, among these strategies, entropy
performs the best, likely because it considers the overall probability distribution which might partially
address student’s unreliable predictions issue. Secondly, utilizing uncertainty consistency instead of
uncertainty alone could enhance performance in most settings, as incorporating teacher’s knowledge
through consistency provides a more reliable measure. Lastly, our RL module could further enhance
student’s performance via employing any of uncertainty consistency as the reward, indicating its
effectiveness.

A.7 Scalability to Larger Datasets

To verify the efficiency and scalability of our method on larger time series (TS) dataset, we conduct
experiments on another Human Activity Recognition dataset named PAMAP2. Table 15 compares
the dataset complexity of PAMAP2 with the datasets we employed in our manuscript. Note that it is
meaningless to compare the total size of datasets in our settings as our experiment evaluate transfer
scenario between single subject. We summarize the averaged number of samples, channels, data
length and classes across all transfer scenarios for these datasets. We also report the time complexity
of our method across these datasets (i.e., training time per epoch for single transfer scenario). From
Table 15, we can see PAMAP2 is larger in terms of number of samples and more complex in terms
of number of channels and classes. Compared with FD, the epoch training time for PAMAP2 only
increases 2 times as the number of training samples increases about 4 times, indicating that our
method scales well in terms of computational efficiency on larger TS dataset.

Meanwhile, we also conduct the performance comparison between our method and benchmarks on
PAMAP2 with randomly selected 5 transfer scenarios. The experimental results are summarized as
Table 16. We can see that our proposed method consistently outperform other benchmarks in terms
of average Macro F1-score, even though it cannot achieve the best performance on some transfer
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Table 15: Summary of Datasets.

Datasets No. of Samples No. of Channels Data Length No. of Classes Training Time (Sec)
HAR 216 9 128 6 1.61

HHAR 1150 3 128 6 9.07
FD 1828 1 5120 3 16.43

SSC 1428 1 3000 5 7.09
PAMAP2 8180 36 256 11 31.64

Table 16: Performance Comparison on PAMAP2.

Methods 102→104 106→103 107→105 105→106 107→102 Avg.
KD-STDA 66.19 53.12 46.34 67.87 59.75 58.65
KA-MCD 34.35 49.16 49.92 33.95 35.97 40.67
MLD-DA 68.14 50.85 61.23 75.03 63.32 63.71

REDA 71.49 53.31 59.11 74.75 64.86 64.70
AAD 60.28 51.61 48.01 73.64 45.55 55.82

MobileDA 67.14 54.09 64.21 74.67 63.35 64.69
UNI-KD 64.82 70.82 43.92 69.65 56.20 59.28
Proposed 68.33 68.86 59.56 75.44 62.50 66.96

scenarios. This observation indicates that the effectiveness of our proposed method can also be
generalized to larger time series dataset.
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Justification: The abstract and introduction include our main claims in the paper.
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• The answer NA means that the abstract and introduction do not include the claims
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much the results can be expected to generalize to other settings.
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2. Limitations
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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supplementary for result reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.
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Answer: [Yes]
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they were calculated and reference the corresponding figures or tables in the text.
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have clearly cite the original papers for the datasets used.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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