
DISCEDIT: Model Editing by Identifying
Discriminative Components

Chaitanya Murti
Robert Bosch Centre for Cyberphysical Systems

Indian Institute of Science
mchaitanya@iisc.ac.in

Chiranjib Bhattacharyya
Computer Science and Automation

Robert Bosch Centre for Cyberphysical Systems
Indian Institute of Science

chiru@iisc.ac.in

Abstract

Model editing is a growing area of research that is particularly valuable in contexts
where modifying key model components, like neurons or filters, can significantly
impact the model’s performance. The key challenge lies in identifying important
components useful to the model’s predictions. We apply model editing to address
two active areas of research, Structured Pruning, and Selective Class Forgetting. In
this work, we adopt a distributional approach to the problem of identifying impor-
tant components, leveraging the recently proposed discriminative filters hypothesis,
which states that well-trained (convolutional) models possess discriminative filters
that are essential to prediction. To do so, we define discriminative ability in terms
of the Bayes error rate associated with the feature distributions, which is equivalent
to computing the Total Variation (TV) distance between the distributions. However,
computing the TV distance is intractable, motivating us to derive novel witness
function-based lower bounds on the TV distance that require no assumptions on the
underlying distributions; using this bound generalizes prior work such as Murti et al.
[39] that relied on unrealistic Gaussianity assumptions on the feature distributions.
With these bounds, we are able to discover critical subnetworks responsible for
classwise predictions, and derive DISCEDIT-SP and DISCEDIT-U , algorithms
for structured pruning requiring no access to the training data and loss function,
and selective forgetting respectively. We apply DISCEDIT-U to selective class
forgetting on models trained on CIFAR10 and CIFAR100, and we show that on
average, we can reduce accuracy on a single class by over 80% with a minimal re-
duction in test accuracy on the remaining classes. Similarly, on Structured pruning
problems, we obtain 40.8% sparsity on ResNet50 on Imagenet, with only a 2.6%
drop in accuracy with minimal fine-tuning. 1

1 Introduction

The black-box nature of neural networks makes understanding the precise mechanism by which a
neural network makes a prediction (in the classification or regression settings), or generates a sample
(in the generative settings) an active area of research [44], and relevant to several related problems,

1Our code is available at: https://github.com/chaimurti/DisCEdit

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

47261 https://doi.org/10.52202/079017-1498

Figure 1: Identifying Discriminative Components for Model Unlearning and Structured Pruning

such as robustness, sparsity, and memorization. In particular, recent work aims to address this problem
by identifying which components - such as neurons, convolutional filters, or attention heads - in the
model contribute most significantly to predictions [44]. Prior work addressing this problem includes
[2], which identified important filters by using human-defined concepts, and aligning them with filter
responses to those concepts, whereas more recent work [48], uses an exhaustive regression-based
approach. The field of structured pruning [19, 4] also provides a variety of heuristics for component
importance, including first- and second-order derivative information [38, 37, 43], feature map ranks
[35, 52], and layerwise reconstruction errors [59, 41]. Component attribution has also found attention
in the fields of machine unlearning [58], where class-wise important components can be identified
and edited to remove information about a given class or group[48, 23, 33].

In this work, we address this problem from a distributional milieu: that is, by analyzing the distribu-
tions of feature maps for models trained on datasets with distinct classes or subgroups. Specifically,
we use the discriminative filters hypothesis (DFH) stated in [39], which states that well-trained models
for classification possess a mix of discriminative filters - filters that yield feature maps with distinct
class-conditional distributions - and non-discriminative filters and that the discriminative filters are
important to model predictions. Discriminative filters can be used to identify which filters contribute
to the prediction for samples from a given class. Under restrictive assumptions of Gaussianity, the
DFH was used in [39] to derive a structured pruning algorithm that required only some form of
distributional access, and no access to the loss function and training set. However, several key
challenges remain. First, is it possible to identify discriminative filters without restrictive assumptions
on the filter outputs? Second, can discriminative filters be used in settings other than structured
pruning? Last, can the performance of algorithms leveraging the DFH be improved upon with better
identification of discriminative filters? In this work, we answer each of the questions affirmatively.

First, to identify discriminative filters without unrealistic assumptions on the feature map distributions,
we derive tractable, witness function-based lower bounds on the Total Variation (TV) distance, with
which we also reveal hitherto unknown ties between the TV distance and classical, discrimination-
based classifiers. We then use our proposed methodology to identify discriminative filters for classwise
model unlearning and structured pruning, which we call DISCEDIT: Discriminative Component
identification for model Editing. Our methodology is simple - we first identify discriminative filters
for a given class, and prune them (for class forgetting), called DISCEDIT-U, or in the case of
structured pruning, prune filters that are non-discriminative for all classes, called DISCEDIT-SP.
Note that our method for identifying discriminative filters requires only distributional access, and
neither the training data nor the loss function. We illustrate our approach in Figure 1, and formally
state our contributions below.

Discriminative ability of a filter: We quantify the discriminative ability of a filter in a neural network,
as the worst possible Bayes error rate of binary classifiers trained upon the features it generates(See
Section 3). Since, in general, computing the Bayes’ error rate is intractable, we seek to approximate
it using lower bounds on the TV distance.

Witness function based Distribution Agnostic Lower bound on TV distance: In order to identify
discriminative filters without distributional assumptions, we propose a novel witness function-based
lower bound on the TV distance between distributions to address this gap in Theorem 1. We propose a
lower bound that relies only on knowledge of finitely many moments(Theorem 2) and derive another
lower bound accounting for moment measurement errors in Theorem 3. These bounds do not require
distribution-specific assumptions and hence enable this work to generalize previous work [39], which
requires the distributions to be Gaussian(which is an unrealistic assumption). To be noted that these
bounds are of independent interest as they are broadly applicable. Moreover, using a careful choice
of witness function, our bounds reveal new connections between discriminant-based classifiers like

2

47262https://doi.org/10.52202/079017-1498

the Fisher linear discriminant and the Minimax Probability Machine, and the TV distance, which we
state in Corollary 2.

Model Editing using Lower Bounds: We apply our lower bounds to the problem of identifying
which components in a model contribute to predictions from certain classes.

1. Class Unlearning: We identify components capable of discriminating each class, which
we then prune in order to unlearn that class, requiring no access to the loss function,
called DISCEDIT-U.

2. Pruning without the training data or loss function: Next, we derive a family of algorithms
for structured pruning requiring no access to the training data or loss function by identifying
non-discriminative filters with our proposed lower bounds, called DISCEDIT-SP.

Experimental Validation: We produce a slate of experiments to illustrate the efficacy of identifying
discriminative components for structured pruning and machine unlearning/class forgetting. We
compare the efficacy of DISCEDIT-SP for pruning VGG nets and ResNets trained on CIFAR10,
and show that we achieve up to 76% sparsity with a .12% reduction in accuracy on VGG19, and
on Imagenet, we achieve 40.8% sparsity with a 2.58% drop in accuracy with minimal fine-tuning.
Similarly, for machine unlearning, we show that our method enables 83% drop in accuracy on
the class to be forgotten, with a 1.2% increase in accuracy on the remaining classes, without any
finetuning.

1.1 Related Work

In this section, we introduce a brief summary of related literature. We provide a more detailed
discussion of the literature in Appendix A.

Structured pruning Structured pruning reduces the inference time and power consumption of
neural networks by removing entire filters or neurons, as opposed to unstructured pruning that removes
individual weights [29, 18]. A variety of structured pruning methods require the loss function, and
identify import components using gradient information [38, 30], or approximations of the Hessian of
[29, 18, 51, 36].

A variety of structured pruning methods that do not rely on the loss function have been proposed,
which identify important components by norms of the weights [31, 32], bounds on the reconstruction
error incurred by pruning a filter [41, 59], the rank of the feature maps [35, 52], and coresets of
feature maps [34]. More recent approaches identify components based on the discriminative ability
of the corresponding featuremaps, using metrics like the Hellinger distance between class-conditional
feature maps [39], or Fisher discriminant-based methods [20, 21]. In this work, we formalize the
notion of discriminative ability in terms of the Bayes risk and derive novel lower bounds on the total
variation distance to approximate it effectively. Unlike previous works, we make no assumptions
about the class-conditional distributions, and our pruning algorithms require no access to the training
data or loss function. For a more comprehensive discussion on structured pruning, we refer readers to
Appendix A or the surveys [19, 4].

Machine unlearning Machine Unlearning has recently received significant attention due to con-
cerns like data privacy and security [5, 42]. A variety of works propose methods to forget data points
while maintaining model accuracy, even in adaptive settings [47, 16, 22, 14]. Selective forgetting,
where classes or groups are forgotten, connects machine unlearning to continual learning [58, 57].
Model editing for unlearning, however, remains an underexplored area of research. Recent studies
machine unlearning can be enhanced by sparsifying models [23, 46], and discrimination-aware prun-
ing has been used in federated settings [56] and for forgetting specific classes [48]. Our work differs
by directly utilizing the discriminative ability of model components to identify and remove those
responsible for a given class, enabling effective unlearning without access to the original training
data. For a more detailed discussion, we refer readers to Appendix A.

2 Background and Notation

In this section, we introduce our notation and provide basic background definitions.

3

47263 https://doi.org/10.52202/079017-1498

Notation For an integer N > 0, let [N] := {1, · · · , N}. Let 0N be a vector of zeros of dimension
N . Let sortB({a1, · · · , aM}) be the set of the B largest elements of {a1, · · · , aM}. Suppose
P, Q are two distributions supported on X , with densities given by p(x) and q(x). For a function
f : X → R, let f̄p = Ex∼P [f(x)], and let f̄ (2)

p = Ex∼P
[
f(x)2

]
. Let D be a data distribution.

Suppose the dataset has C classes, then let Dc be the class-conditional distribution of the c-th class,
and let Dc̄ be the distribution of the complement of c (that is, samples are drawn from all classes
other than c).

Suppose we have a neural network W = (W1, · · · ,WL). Each layer yields (flattened) representations

Y l(x) =
[
Y l
1 (X), · · · , Y l

Nl
(X)

]
, (1)

where Nl is the number of filters in layer l. Since Y l is dependent on X , we assume that Y l(X) ∼ Dl,
and Y l

j (X) ∼ Dl
j . Furthermore, let Dl

j,c and Dl
j,c̄ be the class-conditional distributions and class-

complement distributions of Y l
j (X) respectively.

Background In this section, we provide relevant background for this work. First, let P and Q be
distributions supported on X , with moments µp,Σp and µq,Σq . Then, recall that

Fish(P,Q;u) =

(
u⊤(µp − µq)

)2
u⊤ (Σp +Σq)u

and MPM(P,Q;u) =
|u⊤(µp − µq)|√

u⊤Σpu+
√
u⊤Σqu

. (2)

where Fish denotes the Fisher discriminant [24], and MPM denotes the Minimax probability
machine [27, 28]. If we choose the optimal u, denoted by u∗, we write maxu Fish(P,Q;u) =
Fish(P,Q;u∗) = Fish∗(P,Q) and maxu MPM(P,Q;u) = MPM(P,Q;u∗) = MPM(P,Q)∗.

We define the TV and Hellinger distances as follows.
Definition 1. Let P and Q be two probability measures supported on X , and let p and q be the
corresponding densities. Then, we define the Total Variation Distance TV as

TV (P,Q) = sup
A⊂X

|P(A)−Q(A)| = 1

2

∫
X

|p(x)− q(x)| dx

The Bayes Optimal classifier, as given in [9, 8], associated with distributions P and Q with labels −1
and 1 respectively is given by

f(x) = argmax
c∈{−1,1}

Pr(c|x),

and has the error rate R⋆(P,Q), called the Bayes Error Rate. Next, we relate the Bayes classifier and
the Bayes error rate (as described in, say, Devroye et al. [8]) of a classifier to the TV distance with the
following identity. Consider a binary classification problem with instance x and labels c ∈ {−1, 1},
with class conditional distributions given by P and Q. The Bayes error rate satisfies the identity

2R∗(P,Q) = 1− TV(P,Q). (3)

3 Editing Models by Identifying Discriminative Components

There are three central questions addressed in this work:

1. Model Unlearning: How do we edit components in order to reduce accuracy on certain
groups or classes only?

2. Structured pruning: How do we remove components to ensure that the accuracy of all
classes is minimally affected?

3. Determining the Discrimination Ability of a Model Component: How do we assess the
Discrimination ability of filters without access to the training data or loss function, and
without making any assumptions about the class-conditional feature distributions?

Inspired by Murti et al. [39], the key idea in this work for addressing each of the questions raised above
is to identify discriminative components, that yield feature maps upon which accurate classifiers
can be trained, and thus with distinct class-conditional distributions. A heuristic to address this

4

47264https://doi.org/10.52202/079017-1498

problem would be to train a classifier upon the feature map; those features upon which accurate
classifiers can be trained are generated by discriminative filters; however, this is highly impractical.
Thus, as with [39], we address this problem by identifying filters for which the class-conditional
distributions of the feature maps are distinct, which are identified based on estimates of the total
variation distance between the class-conditional distributions of the associated feature maps. In this
work, we formalize discriminative ability of a component in terms of the best possible classifier that
can be trained on the features generated by it. In the sequel, we illustrate similar but distinct notions
of discriminative ability important for classwise unlearning, and structured pruning. We first formally
define discriminative ability and the class-c discriminative ability as follows.

Definition 2 (Discriminative Ability). Consider a CNN with L layers trained on a dataset with C
classes, and consider the jth filter in the lth layer. The class-c discriminative ability ηcl,j , and the
discriminative ability ηl,j of the filter are given by

ηcl,j = R∗ (Dl
j,c,Dl

j,c̄

)
ηl,j = max

c∈[C]
ηcl,j = max

c∈[C]
R∗ (Dl

j,c,Dl
j,c̄

)
. (4)

Classwise Unlearning For classwise unlearning, we aim to identify those components that are
responsible for predictions of a selected class or group within the dataset. Thus, we aim to identify
those components that are able to discriminate between the given class, say with label c, and others.
As with Wang et al. [58], we say Dc is the Forget Set, and Dc̄ is the Remain Set. As noted in
Shah et al. [48], Jia et al. [23], our aim is to minimize the test accuracy of the model on Dc, while
maintaining the test accuracy on Dc̄. Thus, to unlearn class c, we edit those components for which
the class-c discriminative ability, ηcl,j is low. An interesting point to note is that some components
may be discriminative only for class c, which we call class-selective components, whereas others
may be discriminative for multiple classes. Note that when the dataset has a large number of classes,
our experiments indicate that class-specific components generally can’t be found.

Structured Pruning: Identifying discriminative components (specifically filters in convolutional
networks) for structured pruning was first introduced in Murti et al. [39]. Structured pruning involves
removing components for a network while maintaining the accuracy of the classifier. Following Murti
et al. [39], we aim to retain components that are discriminative for multiple classes. Our goal is to
remove components from the model while maintaining the model’s accuracy on each class conditional
Dc. Thus, Definition 2 gives us a means by which we can identify discriminative components based
on the worst Bayes error rate for discriminating the class conditional distributions of the given feature
map. Filters for which ηl,j is small are considered discriminative, as the best possible classifier that
can be trained on those features will be highly accurate.

Assessing the Discriminative Ability: In general, the Bayes error rate cannot be computed. However,
since the TV distance and the Bayes error rate are connected by the identity (3), which states that
for two distributions P,Q, the Bayes risk is given by 1

2 (1 − TV(P,Q)), we can reformulate our
distributional pruning strategy as identifying those filters that generate features for which class-
conditional distributions are well-separated in the Total Variation sense, and prune them. In [39], this
was achieved by making the strong assumption that the distributions of the class-conditional feature
maps were spherical Gaussian. In the sequel, we propose novel lower bounds on the total variation
distance that require no restrictive Gaussianity assumptions, thereby enabling us to effectively identify
discriminative components.

4 Witness Function-Based Lower Bounds for the Total Variation Distance

In this section, we derive lower bounds on the Total Variation Distance that rely on the moments
of a witness function, a scalar-valued function whose moments can be used to derive bounds on
divergences between distributions. More formally, we write f : X → R, where X is the support of
the distribution(s) in question. We then adapt our lower bound to a variety of scenarios, depending on
the extent of the information about the distributions available to us. When access to only the first
two moments is available, we derive lower bounds on the total variation distance based on the Fisher
linear discriminant and the minimax probability machine.

Estimating the Total Variation distance is known to be #P complete [3]. Estimating lower bounds on
the TV distance is an active area of research (see Davies et al. [7] and the references within), with
a variety of applications from clustering [1, 17] to analyzing neural networks [59]. However, most

5

47265 https://doi.org/10.52202/079017-1498

bounds such as those presented in Davies et al. [7] require prior knowledge about the distributions,
and tractable estimation of lower bounds given access to collections of moments or samples, without
assumptions on the distributions themselves, remains an open problem.

4.1 Witness Function-based Lower Bounds on the TV Distance

In this section, we propose lower bounds on the TV distance that only requires access to the moments
of a witness function, as described in Gretton et al. [15], Kübler et al. [25].

Theorem 1. Let P,Q be two probability measures supported on X ⊆ Rd, and let p and q be the
corresponding densities. Let F be the set of functions with bounded first and second moments defined
on X . Then,

TV(P,Q) ≥ sup
f∈F

(
f̄p − f̄q

)2
2
(
f̄
(2)
p + f̄

(2)
q

) (5)

Proof Sketch. We provide a sketch of the proof. We express the quantity fp − fq in terms of the
densities p(X) and q(X). We then isolate the integral of |p(x)− q(x)|. After rearranging terms, we
obtain the result. For the full proof, we refer readers to Appendix B.

4.2 Moment-based Lower Bounds on the TV distance

Motivated by the need to identify discriminative filters when we only have access to the moments of
feature map distributions, we propose worst-case lower bounds on the TV distance given access to
finitely many moments of the distributions P and Q.

Let Sk(P) := {P : EX∼P[X
d1
1 · · ·Xdn

n] = Pd1···dn
,
∑

i di ≤ k} be the set of probability measures

whose moments are given by P, where EX∼P

[
Xd1

1 · · ·Xdn
n

]
= Pd1···dn ; similarly, let Sk(Q) be

the set of measures whose moments are given by Q. For any random variable X ∈ Rd supported
on X , suppose φ : Rd → Rn for which there exist functions g and G such that EX [φ(X)] = g(P)
and E

[
φ(X)φ(X)⊤

]
= G(P). Given two collections of moments of the same order, we want to

measure the worst-case TV separation between all distributions possessing the moments given in P
and Q. We define this as

DTV(Sk(P),Sk(Q)) = min
P∈Sk(P),Q∈Sk(Q)

TV(P,Q) (6)

For the sake of brevity, we write DTV(Sk(P),Sk(Q)) = DTV(P,Q; k).

Theorem 2. Suppose P and Q are sets of moments of two probability measures supported on
X . Let φ(X) be a vector of polynomials such that EP[φ(X)] = g(P), EQ[φ(X)] = g(Q),
EP[φ(X)φ(X)⊤] = G(P), and EQ[φ(X)φ(X)⊤] = G(Q), and let f = u⊤(φ(X) − g(P)+g(Q)

2),
be a witness function. Then, for any P ∈ Sk(P), Q ∈ Sk(Q), supported on a set X ⊆ Rd, we have

DTV(P,Q; k) ≥ S∗
TV(P,Q) (2 + S∗

TV(P,Q))
−1 ≥ S∗

H(P,Q)
2
(√

2 + S∗
H(P,Q)

)−2

, where:

S∗
TV(P,Q) = (∆g)⊤(G̃(P) + G̃(Q))−1(∆g) and S∗

H(P,Q) = max
u

|u⊤(g(P)− g(Q))|√
u⊤G(P)u+

√
u⊤G(Q)u)

and ∆g = g(P)− g(Q) and G̃(P) = G(P)− g(P)g(P)⊤.

Proof Sketch. We apply Theorem 1 with the given witness function, and obtain an expression in
terms of S∗

TV(P,Q). Since the bound holds for any distributions that yield the given moments of the
witness function, the statement holds. The full proof is provided in Appendix B.

Theorem 2 is a worst-case lower bound on the TV distance between distributions with given truncated
moment sequences. While we focus our results on the case where f(x) = u⊤φ(x), where φ(x) is a
vector of monomials, this bound is valid for any choice of f with bounded first and second moments.

6

47266https://doi.org/10.52202/079017-1498

4.3 Computing TV(P,Q) from the Lower Bound

In general, the bounds proposed in Theorem 1 are not tight. However, an interesting observation is
that the lower bound proposed in Theorem 1 can, in certain cases, be used to compute the Bayes
optimal classifier, and thus the true TV distance. Specifically, if the Bayes optimal classifier lies in a
given set of functions F , the bound can be used to compute the Bayes classifier. We state one such
case below in Corollary 1.

Corollary 1. Suppose P ≡ N (µp,Σ) and Q ≡ N (µq,Σ) Let f(x;u) = u⊤(x− 1
2 (µp − µq)) be a

witness function. Then,

u⋆ = argmax
u

(Ex∼P[f(x;u)]− Ex∼Q[f(x;u)])
2

Ex∼P[f(x;u)2] + Ex∼Q[f(x;u)2]
= Σ−1(µp − µq)

is the weight vector of the Bayes optimal classifier fBayes(x) = sign
(
u⋆⊤x+ b

)
, and TV(P,Q) =

2Φ
(√

(u⋆)⊤(µp − µq)/2
)
− 1.

Proof Sketch. We find the u⋆ that maximizes the the TV lower bound given in Theorem 1, and then
apply the same to the exact expression of the TV distance between Gaussian measures with the same
covariance. The full proof is provided in Appendix B.

Remark 4.1. This result illustrates the case where the Bayes’ classifier lies in the set of functions
F := {f(x) : f(x) = u⊤φ(x)} for a given function φ(x). In this case, if φ(x) = x− 1

2 (µp − µq),
and P and Q are Gaussian with the same variance, the Bayes classifier is equivalent to the Fisher
discriminant.

4.4 Connections to Discriminant Based Classifiers

In this section, we exploit the bound stated in Theorem 1 to reveal extensive connections between
the total variation distance and discriminant-based linear classifiers, specifically the Fisher Linear
Discriminant and the Minimax Probability Machine, that are of independent interest to readers.

Specifically, we show that the TV distance is lower-bounded by monotonic functions of the Fisher
Discriminant and the Minimax Probability Machine. We state this result formally in Corollary 2.

Corollary 2. Let P,Q be two probability measures supported on X ⊆ Rd, let p and q be the corre-
sponding densities, and let µp, µq and Σp, Σq be the means and variances of P and Q respectively.
Then,

TV(P,Q) ≥ Fish∗(P,Q)

2 + Fish∗(P,Q)
≥
(

MPM∗(P,Q)√
2 + MPM∗(P,Q)

)2

.

Proof. Choose φ(x) = x. Thus, g(P) = µp, and G(P) = Σp + µpµ
⊤
p . Substitute these into

Theorem 2 to complete the proof.

This lower bound can be improved upon by selecting a witness function of the form f(x;u) = u⊤φ(x)
where φ(x) is a vector of basis functions (such as monomials, if f(x;u) is a polynomial). Moreover,
lower bounds that are robust to estimation error, based on the Fisher Discriminant and Minimax
Probability Machines, can be derived by directly applying the techniques proposed in [24] (for the
Fisher discriminant case) and [28] (for the Minimax Probability Machine case). We discuss this in
Section 6.2.

4.5 Lower bounds Robust to Estimation Errors

The lower bounds derived in Theorems 1 and 2 are functions of moments of the distributions, which
must typically be estimated from samples. In practice, we use plug-in estimators for g(P), g(Q),
G(P) and G(Q). Since these estimators are computed using samples, errors in estimation arise,
which in turn creates errors in computing the lower bound.

7

47267 https://doi.org/10.52202/079017-1498

This estimation error is a particularly challenging issue in high dimensions, where ‘high dimensions’
refers to the setting where the number of samples n is significantly less than the dimension of the data,
d. However, in typical neural networks such as VGG-nets and ResNets, the feature maps, particularly
of the layers close to the output that can be effectively pruned (see, for instance, [34, 39]), have low
dimensional feature maps. For instance, on VGG16 trained on CIFAR10, the feature maps generated
by the 5th layer are of dimension 64; thus, for a relatively small number of samples n, the dimension
is less than n.

In this section, we present robust lower bounds for the case when f(x) = u⊤x, and the moments
being estimated are µp = EP[x] and Cp = EP[xx

⊤] using plug-in estimators of the form

µ̄p =
1

N

N∑
i=1

xi and C̄p =
1

N

N∑
i=1

xix
⊤
i (7)

where xi are drawn iid from P. We assume that we can quantify the estimation error for the above
moments, and can apply lower bounds as proposed in Kim et al. [24] accordingly.
Theorem 3. Suppose P,Q be two probability measures supported on X ⊆ Rd, with densities p and
q, and let µp = EP[x], µq = EQ[x] and Cp = EP[xx

⊤], Cq = EQ[xx
⊤]. Suppose we have plug-in

estimates µ̄p, C̄p, µ̄q , C̄q as defined in (7), that satisfy

∥µp − µ̄p∥2 ≤ δp and ∥µq − µ̄q∥2 ≤ δq. ∥Cp − C̄p∥F ≤ ρp and ∥Cq − C̄q∥F ≤ ρq.

Then, with a witness function of the form f(x) = u⊤x

DTV(P,Q; 2) ≥ min
µp,µq∈M

(∆µ)⊤(Cp + Cq + ρI)−1(∆µ), (8)

where M = {(µp, µq) : ∥µp − µ̄p∥2 ≤ δp, ∥µq − µ̄q∥2 ≤ δq}, ∆µ = µp − µq , and ρ = ρp + ρq .

Proof Sketch. The proof is similar to the derivation of (15) in Kim et al. [24]. A full proof is provided
in Appendix B

This result can also be applied to the estimation error of functions of x, such as a vector of monomials
φ(x), provided the estimation error of each moment can be bounded.

5 DISCEDIT: Distributional Algorithms for Model Editing

In this section, we leverage the lower bounds proposed in Theorems 1 and 2, and Corollary 2 to
develop one-shot algorithms for model editing that require no access to the training data or loss
function, but only access to the data distributions. We propose two algorithms, DISCEDIT-SP and
DISCEDIT-U, that identify discriminative components (filters in CNNs), and prunes them to either
unlearn a class (DISCEDIT-U) or to sparsify the model with minimal loss of accuracy (DISCEDIT-
SP). A variety of variants of these algorithms based on different witness functions are provided in
Appendix D.

5.1 DISCEDIT-SP: A Distributional Approach to Structured Pruning

In this section, we propose DISCEDIT-SP, an algorithm for structured pruning that identifies filters
(in convolutional networks) that are discriminative for multiple classes, and retains them. Unlike
the approach proposed in Murti et al. [39], no restrictive assumptions on the Gaussianity of class-
conditional feature distributions is needed. Furthermore, by assuming the distributions are Gaussian
and using the closed-form Hellinger lower bound,

(
C
2

)
pairwise TV distances need to be computed

for each filter. We now state the DISCEDIT-SPalgorithm.

Let Y l(X) be the features generated by layer l of a neural network as defined in (1). We choose a
witness function f = u⊤φ(Y l

j (X)) = φl
j(X), and let f̄l,j,c(u) = EX∼Dc

[u⊤φl
j(X)], f̄l,j,c̄(u) =

EX∼Dc̄
[u⊤φl

j(X)], f̄ (2)
l,j,c(u) = EX∼Dc

[(u⊤φl
j(X))2] and f̄

(2)
l,j,c̄(u) = EX∼Dc̄

[(u⊤φl
j(X))2. Next,

define rlj to be the saliency score for the jth filter in the lth layer as

rlj = min
c∈[C]

max
u

(
f̄l,j,c(u)− f̄l,j,c̄(u)

)2 (
f̄
(2)
l,j,c(u) + f̄

(2)
l,j,c̄(u)

)−1

. (9)

8

47268https://doi.org/10.52202/079017-1498

We use the lower bound established in Theorem 1 on the TV distances between the class conditional
distributions to measure the saliency or importance of a given filter. With this, we formally state
DISCEDIT-SP in Algorithm 1.

Algorithm 1: DISCEDIT-X

Input: Class conditional distributions Dc and
class-complements Dc̄ for all c ∈ [C],
Pretrained CNN with parameters
W = (W1, · · · ,WL), layerwise sparsity
budgets Bl, witness function f

for l ∈ [L] do
Set Sl = [sl1, · · · , s

l
Nl

] = 0Nl

if X is SP then
For each j, compute rlj using (9).

if j ∈ sortBl
({rlj}

Nl
j=1) then

Set slj = 1

if X is U and Forget Class is c then
For each j, compute rlj using (10).

if j ∈ sortBl
({rlj}

Nl
j=1) then

Set slj = 0

Output: Binary masks S1, · · · , SL

return Ŵ

The DISCEDIT-SP algorithm has several advantages.
First, as compared to TVSPrune, it requires that only C TV
distances be computed at each step. Second, by varying
the choice of witness function, we obtain new algorithms
for structured pruning; we can choose different witness
functions for each class as well.

5.2 DISCEDIT-U:
A Distributional Approach to Machine Unlearning

We now state an algorithm for classwise unlearning
based on model editing, called DISCEDIT-U. Motivated
by works such as Shah et al. [48], our algorithm re-
quires identifying and editing (specifically pruning) class-
selective components for the class which is to be unlearned.
DISCEDIT-Uuses the same setup as DISCEDIT-SP. How-
ever, DISCEDIT-Uonly requires identifying discrimina-
tive filters for a single class, we have

rlj = max
u

(
f̄l,j,c(u)− f̄l,j,c̄(u)

)2 (
f̄
(2)
l,j,c(u) + f̄

(2)
l,j,c̄(u)

)−1

.

(10)

We formally state DISCEDIT-U in Algorithm 1. The DISCEDIT-U algorithm has several advantages.
As we show in our experiments in Appendix E, few samples are required to effectively compute the
witness functions.

6 Empirical Evaluations

In this section, we empirically study the effectiveness of identifying discriminative filters for model
editing tasks, specifically structured pruning and class unlearning. Additional experimental details
are given in Appendix E. Experiments showing that class-conditional feature map distributions are
non-gaussian, the effectiveness of variants of witness functions, the effectiveness of sparsity in class
forgetting, and other ablations, are provided in Appendix E. Our experiment setup is provided in
Appendix F, along with baseline accuracies of all models, shown in Table 11.

6.1 Identifying Discriminative Subnetworks and Class Unlearning with DISCEDIT-U

In this section, we investigate the utility of the lower bounds given in Theorems 1-3 in identifying
discriminative subnetworks and for class unlearning.
Experiment Setup: We investigate VGG16, Resnet56, ResNet20, and a custom ViT (details given
in Appendix F) trained on CIFAR10, and VGG16 and ResNet56 models trained on CIFAR100,

Table 1: A summary of results of class unlearning using DISCEDIT-U. We take the average over the Forget and Remain accuracies (FA and RA)
after applying DISCEDIT-Uto each class. Note that FA=accuracy drop on forget class, RA=accuracy drop on remain set. Values are averaged
over 10 trials. NoFT refers to using DISCEDIT-U without fine-tuning, and with pruning only 5.4% of weights for VGG16, 1.8% of weights for
ResNet56, 1.8% of weights for ResNet20, whereas FT refers to using DISCEDIT-U with 1 epoch of fine-tuning, and with pruning ratios of
18.4%, 22%, 16.6%, and 10.2% for VGG16, ResNet56, ResNet20, and our ViT respectively .

Our Work Baselines
Dataset Model FA (NoFT) RA (NoFT) FA (FT) RA (FT) FA (GA) [23] RA (GA) [23] RA (IU) [23] RA (IU) [23]

VGG-16 8.7% 82.5% 3.7% 91.6% 22.5% 88.8% 11.42% 89.8%
CIFAR-10 ResNet56 16.3% 85.9% 9.7% 89.4% - - - -

ResNet20 9.4% 83.9% 6.0% 86.6% 11.52% 85.46% - -
ViT 16.5% 66.3% 11.0% 71.2% - - - -
VGG16 11.3% 68.0% 10.7% 72.9% - - - -

CIFAR-100 ResNet56 31.1% 60.4% 17.9% 68.7% - - - -
ViT 13.1% 44.2% 14.6% 61.0%% - - - -

9

47269 https://doi.org/10.52202/079017-1498

and identify subnetworks responsible for predictions from each class. We use the witness function
f(x) = exp(∥x∥2) in our experiments, using 256 samples from the Forget class, and 1024 samples
for the Remain class, from the training sets of CIFAR10 and CIFAR100’s, for computing rcl,j for
each filter. For VGG-16, we only consider the last 8 layers, and for ResNet56, we only consider the
final layerblock. We then select the sparsity budgets Bl, and prune the most discriminative filters for
that layer. We also fine-tune the models for 1 epoch. We measure the accuracy on the class test set,
and the class complement test sets both before and after fine-tuning, and we compare against models
trained from scratch on the retain set (the class complement).
Results: We present a summary of our results in Table 1. In particular, we highlight that on CIFAR10
models, particularly VGG16, the performance is comparable to or outperforms baselines with minimal
fine-tuning. There are two interesting observations: first, as the number of classes exceeds the width
of the network (as was the case with ResNet56 trained on CIFAR100), the efficacy of our method
is drastically affected. Second, fine-tuning models on the remain set still raises the accuracy on the
forget set unless dramatically more filters are pruned. The reasons for this will be the focus of future
work.

This set of experiments highlights the fact that for classifier models, it is possible to identify sub-
networks responsible for predictions for each class. Identifying these subnetworks then facilitates
classwise unlearning.

6.2 Structured Pruning with DISCEDIT-SP with Fine-Tuning

Table 2: DISCEDIT-SP performance on CIFAR10 and ImageNet models
with fine-tuning. TVSPrune refers to [39], and CHIP refers to [52].
‘Sparsity’ refers to parametric sparsity.

CIFAR-10

Model Sparsity our work TVSPrune CHIP L1

VGG16 61.2% -0.37% -0.98% -0.73% 1.26%
75.05% -1.32% -1.54% -1.62 -2.31

VGG19 72.4% -0.12% -0.16% N/A -2.41%
76.1% -0.96% -1.13% N/A -3.30%

ResNet56 60.7% -1.21% -1.92% -1.77% -6.21%

ImageNet

Model Sparsity our work TVSPrune CHIP L1

ResNet50 20.2% +0.12% -0.4% +0.10% -1.08%
40.8% -2.58% -2.74% -2.76% -4.45%

In this section, we investigate the ability for
DISCEDIT-SP to sparsify models effectively
both with and without fine-tuning.
Experiment Setup: We prune VGG16, VGG19,
and ResNet56 models trained on CIFAR10 with
two sets of fixed sparsity budgets, and then fine-
tune them for 50 epochs. We repeat the ex-
periment for a ResNet50 trained on Imagenet,
and fine-tune the pruned models for 100 epochs.
We choose f(x) = u⊤φ(x), where φ(x) =
[1⊤x, (1⊤x)2]⊤ as our witness function in each
of the experiments. For details about the pre-
trained models used, refer to Appendix F.
Results: We show that models pruned with
DISCEDIT-SP without fine-tuning retain high
accuracies, particularly on the CIFAR10 dataset.
Moreover, after fine-tuning, DISCEDIT-SPis
able to almost fully recover the accuracy of the original models. Our results are summarized in
Table 2, which shows the drop in accuracy achieved by the different pruning algorithms compared
after fine-tuning.

7 Conclusions
In this work, we address the problem of model editing by analyzing discriminative properties of the
feature maps. We leverage the notion of discriminative components to derive algorithms for two rele-
vant tasks: structured pruning and class unlearning. Additionally, in order to identify discriminative
components, we derive new lower bounds on the TV distance. These lower bounds also elucidate
previously unknown connections between the Total Variation distance and discriminative classifiers,
specifically the Fisher discriminant and the Minimax Probability Machine. Our experiments show that
the model editing algorithms derived by our methods are highly effective, and match or outperform
current state of the art in structured pruning, and can reduce accuracy almost completely on a given
class, while maintaining accuracy on the remaining classes. This work, however, currently analyzes
discriminative components (and thus, subnetworks responsible for classwise predictions) in classifier
models. Current avenues of research include extending these results to unlearning and pruning of
generative models as well. Lastly, the techniques proposed in this work can be extended to other
editing tasks as well, such as debiasing.

10

47270https://doi.org/10.52202/079017-1498

Acknowledgments

The authors gratefully thank Shell India Markets Pvt Ltd, for their generous support and contribu-
tions to this work.

References
[1] A. Bakshi and P. Kothari. Outlier-robust clustering of non-spherical mixtures. arXiv preprint

arXiv:2005.02970, 2020.
[2] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying

interpretability of deep visual representations. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6541–6549, 2017.

[3] A. Bhattacharyya, S. Gayen, K. S. Meel, D. Myrisiotis, A. Pavan, and N. Vinodchandran. On
approximating total variation distance. arXiv preprint arXiv:2206.07209, 2022.

[4] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network
pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

[5] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie,
and N. Papernot. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 141–159. IEEE, 2021.

[6] H. Cheng, M. Zhang, and J. Q. Shi. A survey on deep neural network pruning-taxonomy,
comparison, analysis, and recommendations. arXiv preprint arXiv:2308.06767, 2023.

[7] S. Davies, A. Mazumdar, S. Pal, and C. Rashtchian. Lower bounds on the total variation
distance between mixtures of two gaussians. In International Conference on Algorithmic
Learning Theory, pages 319–341. PMLR, 2022.

[8] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

[9] R. O. Duda, P. E. Hart, et al. Pattern classification. John Wiley & Sons, 2006.
[10] R. Eldan and M. Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv

preprint arXiv:2310.02238, 2023.
[11] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural

networks. In International Conference on Learning Representations, 2018.
[12] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural

networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

[13] R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau. Erasing concepts from diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2426–2436, 2023.

[14] A. Golatkar, A. Achille, and S. Soatto. Eternal sunshine of the spotless net: Selective forgetting
in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9304–9312, 2020.

[15] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

[16] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites. Adaptive machine
unlearning. Advances in Neural Information Processing Systems, 34:16319–16330, 2021.

[17] M. Hardt and E. Price. Tight bounds for learning a mixture of two gaussians. In Proceedings of
the forty-seventh annual ACM symposium on Theory of computing, pages 753–760, 2015.

[18] B. Hassibi and D. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

[19] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, 22(241):1–124, 2021.

[20] Z. Hou and S.-Y. Kung. A feature-map discriminant perspective for pruning deep neural
networks. arXiv preprint arXiv:2005.13796, 2020.

11

47271 https://doi.org/10.52202/079017-1498

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

[21] Z. Hou and S.-Y. Kung. A discriminant information approach to deep neural network pruning.
In 2020 25th International Conference on Pattern Recognition (ICPR), pages 9553–9560. IEEE,
2021.

[22] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou. Approximate data deletion from machine
learning models. In International Conference on Artificial Intelligence and Statistics, pages
2008–2016. PMLR, 2021.

[23] J. Jia, J. Liu, P. Ram, Y. Yao, G. Liu, Y. Liu, P. Sharma, and S. Liu. Model sparsity can simplify
machine unlearning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=0jZH883i34.

[24] S.-J. Kim, A. Magnani, and S. Boyd. Robust fisher discriminant analysis. Advances in neural
information processing systems, 18, 2005.

[25] J. M. Kübler, W. Jitkrittum, B. Schölkopf, and K. Muandet. A witness two-sample test. In
International Conference on Artificial Intelligence and Statistics, pages 1403–1419. PMLR,
2022.

[26] M. Kurmanji, P. Triantafillou, J. Hayes, and E. Triantafillou. Towards unbounded machine
unlearning. Advances in Neural Information Processing Systems, 36, 2024.

[27] G. Lanckriet, L. Ghaoui, C. Bhattacharyya, and M. Jordan. Minimax probability machine.
Advances in neural information processing systems, 14, 2001.

[28] G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax approach
to classification. Journal of Machine Learning Research, 3(Dec):555–582, 2002.

[29] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

[30] B. Li, B. Wu, J. Su, and G. Wang. Eagleeye: Fast sub-net evaluation for efficient neural network
pruning. In European conference on computer vision, pages 639–654. Springer, 2020.

[31] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

[32] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rJqFGTslg.

[33] J. Li, R. Wang, Y. Lai, C. Shui, S. Sahoo, C. X. Ling, S. Yang, B. Wang, C. Gagné, and
F. Zhou. Hessian aware low-rank weight perturbation for continual learning. arXiv preprint
arXiv:2311.15161, 2023.

[34] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient
neural networks. In International Conference on Learning Representations, 2019.

[35] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using
high-rank feature map. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1529–1538, 2020.

[36] L. Liu, S. Zhang, Z. Kuang, A. Zhou, J.-H. Xue, X. Wang, Y. Chen, W. Yang, Q. Liao, and
W. Zhang. Group fisher pruning for practical network compression. In International Conference
on Machine Learning, pages 7021–7032. PMLR, 2021.

[37] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance estimation for neural
network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11264–11272, 2019.

[38] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. In 5th International Conference on Learning Representations,
ICLR 2017-Conference Track Proceedings, 2019.

[39] C. Murti, T. Narshana, and C. Bhattacharyya. Tvsprune-pruning non-discriminative filters via
total variation separability of intermediate representations without fine tuning. In The Eleventh
International Conference on Learning Representations, 2022.

[40] B. Mussay, D. Feldman, S. Zhou, V. Braverman, and M. Osadchy. Data-independent structured
pruning of neural networks via coresets. IEEE Transactions on Neural Networks and Learning
Systems, 2021.

12

47272https://doi.org/10.52202/079017-1498

https://openreview.net/forum?id=0jZH883i34
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg

[41] T. Narshana, C. Murti, and C. Bhattacharyya. Dfpc: Data flow driven pruning of coupled
channels without data. In The Eleventh International Conference on Learning Representations,
2022.

[42] T. T. Nguyen, T. T. Huynh, P. L. Nguyen, A. W.-C. Liew, H. Yin, and Q. V. H. Nguyen. A
survey of machine unlearning. arXiv preprint arXiv:2209.02299, 2022.

[43] P. Prakash, C. Murti, S. Nath, and C. Bhattacharyya. Optimizing dnn architectures for high
speed autonomous navigation in gps denied environments on edge devices. In Pacific Rim
International Conference on Artificial Intelligence, pages 468–481. Springer, 2019.

[44] T. Räuker, A. Ho, S. Casper, and D. Hadfield-Menell. Toward transparent ai: A survey on
interpreting the inner structures of deep neural networks. In 2023 IEEE Conference on Secure
and Trustworthy Machine Learning (SaTML), pages 464–483. IEEE, 2023.

[45] B. D. Ripley. Pattern recognition and neural networks. Cambridge university press, 2007.
[46] S. Sahoo, M. Elaraby, J. Ngnawe, Y. Pequignot, F. Precioso, and C. Gagné. Layerwise early

stopping for test time adaptation. arXiv preprint arXiv:2404.03784, 2024.
[47] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want to forget:

Algorithms for machine unlearning. Advances in Neural Information Processing Systems, 34:
18075–18086, 2021.

[48] H. Shah, A. Ilyas, and A. Madry. Decomposing and editing predictions by modeling model
computation. arXiv preprint arXiv:2404.11534, 2024.

[49] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3/4):591–611, 1965.

[50] M. Shen, H. Yin, P. Molchanov, L. Mao, J. Liu, and J. M. Alvarez. Structural pruning via latency-
saliency knapsack. Advances in Neural Information Processing Systems, 35:12894–12908,
2022.

[51] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play and prune: Adaptive filter pruning for
deep model compression. arXiv preprint arXiv:1905.04446, 2019.

[52] Y. Sui, M. Yin, Y. Xie, H. Phan, S. Aliari Zonouz, and B. Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

[53] M. Tukan, L. Mualem, and A. Maalouf. Pruning neural networks via coresets and convex
geometry: Towards no assumptions. Advances in Neural Information Processing Systems, 35:
38003–38019, 2022.

[54] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[55] H. Wang, C. Qin, Y. Zhang, and Y. Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020.

[56] J. Wang, S. Guo, X. Xie, and H. Qi. Federated unlearning via class-discriminative pruning. In
Proceedings of the ACM Web Conference 2022, pages 622–632, 2022.

[57] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[58] Z. Wang, E. Yang, L. Shen, and H. Huang. A comprehensive survey of forgetting in deep
learning beyond continual learning. arXiv preprint arXiv:2307.09218, 2023.

[59] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. S. Davis.
Nisp: Pruning networks using neuron importance score propagation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 9194–9203, 2018.

[60] S. Yu, Z. Yao, A. Gholami, Z. Dong, S. Kim, M. W. Mahoney, and K. Keutzer. Hessian-aware
pruning and optimal neural implant. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3880–3891, 2022.

13

47273 https://doi.org/10.52202/079017-1498

Appendix
In this appendix, we provide the following material.

• In Appendix A, we provide a brief survey of the literature that addresses both structured
pruning.

• In Appendix B, we provide proofs for the theoretical results proposed in this work.

• In Appendix C, we provide additional analysis of the practical performance of our algorithm.

• In Appendix D, we provide details for variants of the DISCEDIT-SP algorithm, such as the
DISCEDIT-SP-F, DISCEDIT-SP-M, DISCEDIT-SP-R, and DISCEDIT-SP-E variants. We
also discuss the use of the BatchNorm random variables as opposed to the entire feature map,
in order to reduce memory storage, as well as deriving TVSPrune [39] using our results.

• In Appendix E, we provide additional experiments, including more detailed results from
experiments conducted in Section 6.

• In Appendix F, we provide additional details, such as hyperparameters and dataset splits,
used in this work.

A Related Work

A.1 Structured Pruning

In this section, we detail related work in the space of structured pruning Pruning is a long-standing
strategy for reducing the inference time and power consumption of neural networks [29, 18]. Pruning
algorithms can be divided into structured - wherein entire filters or neurons are removed - or
unstructured - wherein individual weights are removed - techniques [19, 4]. We refer readers to
[19, 4, 11, 12], and the references therein, for a detailed discussion on unstructured pruning methods.

A.1.1 Structured Pruning that Requires the Loss Function

Structured pruning methods are of interest as they enable the reduction of inference times without
requiring specialized hardware or software [19, 38, 41]. Pruning algorithms require saliency measures
that quantify the importance of filters or neurons, and prune the unimportant ones [19]. Pruning
algorithms where access to the loss function is not only assumed, but is necessary, generate saliencies
using gradient information [38, 37, 43, 50], and the loss function Hessians, or approximations thereof
[29, 18, 36, 60, 55, 54]. For more similar works, we refer readers to the surveys [19, 4, 6].

A.1.2 Structured Pruning without the Loss Function

In this section, we discuss structured pruning methods that do not require derivatives of the loss
function, aside from fine-tuning. There are a variety of approaches to solve the problem of identifying
which filters to prune without using the loss function. Works such as [31, 32] use the norms of the
weights to identify filters to prune. Other works, such as [41, 59], identify which filters to prune by
bounding the reconstruction error incurred by pruning a given filter. Works such as [35, 52] analyze
the rank of feature maps to measure filter importance. Another body of work uses coresets of feature
maps to identify subsets of important filters, as described in works such as [34, 53, 40]. Recently,
some works propose identifying important filters by their discriminative ability. Recently, in [20, 21],
discrimination-aware metrics were used to identify filters important to classification accuracy. In [39],
the class conditional distributions were assumed to be Gaussian, and the Hellinger distance between
the class conditional feature maps was used to identify important filters. In this work, we formalize
the notion of discriminative ability in terms of the Bayes risk, and derive novel lower bounds on
the TV distance to effectively approximate it. Furthermore, we emphasize that this work is clearly
differentiated from prior art in this area in these critical respects: first, no assumptions are required of
the class conditional distributions; second, the discriminative ability of a filter is formalized in terms
of the Bayes error of a classifier trained on the feature maps it yields; third, the pruning algorithms
we derive using our method require no access to the training data or loss function.

14

47274https://doi.org/10.52202/079017-1498

A.2 Machine Unlearning

In this section, we provide a detailed literature survey on machine unlearning, both with and without
model editing.

A.2.1 Machine Unlearning without Model Editing

Machine unlearning has gained importance in recent years owing to data privacy and security concerns
[5, 42]. A wide variety of works exist to address this problem. Several works aim to forget data points,
even in the adaptive setting, while maintaining the accuracy of the model, such as [47, 16, 22, 14].
The work in [47] also provides bounds on the number of samples that a model can be allowed to
forget before accuracy degradation. Machine unlearning is also a significant area of research in the
space of large language models, as noted in [26, 10], and generative models [13].

Another aspect of machine unlearning is selective forgetting, wherein classes, groups, or sets of
samples are forgotten from the network, as described in [58] and the references therein. This connects
machine unlearning to the continual learning setting as well, as described in [57] and the references
cited there.

A.2.2 Machine Unlearning with Model Editing

While there has been significant research into selective forgetting and model unlearning, facilitating
selective forgetting and machine unlearning by editing models remains an underexplored field. Recent
works such as [23, 46] explore the effect of sparsity on machine unlearning and continual learning; in
particular, [23] shows that sparsifying models prior to unlearning can increase the effectiveness of it.
However, recent work such as [56] investigates using pruning for model unlearning in the federated
setting. More recently, [48] uses pruning to selectively forget a single class from a ResNet50 imagenet
model with minimal loss in accuracy. Our work differs from prior work in this space since we directly
use the discriminative ability of model components to identify which components to remove to forget
a given class.

B Proofs of Main Results

In this section, we provide the proofs for the main theoretical results proposed in the paper. Specifi-
cally, we provide proofs for Theorems 1-3 and Corollary 1.

B.1 Proof of Theorem 1

In this section, we provide the proofs for Theorem 1.

Theorem. Let P,Q be two probability measures supported on X ⊆ Rd, and let p and q be the
corresponding densities. Let F be the set of functions with bounded first and second moments defined
on X . Then,

TV(P,Q) ≥ sup
f∈F

(
f̄p − f̄q

)2
2
(
f̄
(2)
p + f̄

(2)
q

) (11)

15

47275 https://doi.org/10.52202/079017-1498

Proof. Choose an arbitrary f ∈ F . Then, we have(
f̄p − f̄q

)2
=

(∫
X
(p(x)− q(x)) f(x)dx

)2

=

(∫
X

(√
|p(x)− q(x)|

√
|p(x)− q(x)|

)
f(x)dx

)2

≤

(√∫
X
|p(x)− q(x)|dx

)2(√∫
X
|p(x)− q(x)|f(x)2dx

)2

(by Cauchy-Schwarz)

= 2TV(P,Q)

(∫
X
|p(x)− q(x)|f(x)2dx

)
(by Definition 1)

≤ 2TV(P,Q)

(∫
X
(p(x) + q(x)) f(x)2dx

)
= 2TV(P,Q)

(
f̄ (2)
p + f̄ (2)

q

)
.

Thus, for any arbitrary f ∈ F , we have

2TV(P,Q) ≥
(
f̄p − f̄q

)2(
f̄
(2)
p + f̄

(2)
q

) ,
from which it follows that

2TV(P,Q) ≥ sup
f∈F

(
f̄p − f̄q

)2(
f̄
(2)
p + f̄

(2)
q

) . (12)

The proof of Theorem 1 follows from the fact that we can choose f(x) = u⊤φ(x), and apply the
formula for the expectation. Then, maximizing over F is equivalent to maximizing over u. Thus, the
proof is completed.

B.2 Proof of Theorem 2

First, we restate the Theorem for clarity.
Theorem. Suppose P and Q are sets of moments of two probability measures supported on
X . Let φ(X) be a vector of polynomials such that EP[φ(X)] = g(P), EQ[φ(X)] = g(Q),
EP[φ(X)φ(X)⊤] = G(P), and EQ[φ(X)φ(X)⊤] = G(Q), and let f = u⊤(φ(X) − g(P)−g(Q)

2),
be a witness function. Then, for any P ∈ Sk(P), Q ∈ Sk(Q), supported on a set X ⊆ Rd, we have

DTV(P,Q; k) ≥
S∗
TV(P,Q)

2 + S∗
TV(P,Q)

(13)

where
S∗
TV(P,Q) = (∆g)⊤(G̃(P) + G̃(Q))−1(∆g) (14)

and ∆g = g(P)− g(Q) and G̃(P) = G(P)− g(P)g(P)⊤.

Proof. First, recall that Theorem 1 provides lower bounds for all distributions for which the moments
of the witness function are given by f̄p, f̄ (2)

p , f̄q , f̄ (2)
q . Begin by choosing

f = u⊤
(
φ(x)− g(P) + g(Q)

2

)
,

where u ∈ Rd is constant. Then,

f̄p =
1

2
u⊤(g(P)− g(Q)) and f̄q =

1

2
u⊤(g(Q)− g(P)),

16

47276https://doi.org/10.52202/079017-1498

and

f̄ (2)
p = u⊤

(
EP

[(
φ(x)− g(P) + g(Q)

2

)(
φ(x)− g(P) + g(Q)

2

)⊤
])

u

= u⊤
(
EP

[
(φ(x)−∆) (φ(x)−∆)

⊤
])

u (setting ∆ =
g(P) + g(Q)

2
)

= u⊤
(
EP

[
(φ(x)− g(P) + g(P)−∆) (φ(x)− g(P) + g(P)−∆)

⊤
])

u

= u⊤
(
G(P)− g(P)g(P)⊤ +

1

4
(g(P)− g(Q))(g(P)− g(Q))⊤

)
u.

Similarly, we have

f̄ (2)
q = u⊤

(
G(Q)− g(Q)g(Q)⊤ +

1

4
(g(P)− g(Q))(g(P)− g(Q))⊤

)
u.

Substituting this into (11), we get

TV(P,Q) ≥ sup
u∈Rd

1

2

(
u⊤(g(P)− g(Q))

)2
u⊤(G(P)− g(P)g(P)⊤ +G(Q)− g(Q)g(Q)⊤)u+ 1

2 (u
⊤(g(P)− g(Q)))

2

= sup
u∈Rd

1

2

2
(
u⊤(g(P)− g(Q))

)2
2u⊤(G(P)− g(P)g(P)⊤ +G(Q)− g(Q)g(Q)⊤)u+ (u⊤(g(P)− g(Q)))

2

= sup
u∈Rd

(u⊤(g(P)−g(Q)))
2

u⊤(G̃(P)+G̃(Q))u

2 + (u⊤(g(P)−g(Q)))2

u⊤(G̃(P)+G̃(Q))u

= sup
u∈Rd

(u⊤(g(P)−g(Q)))
2

u⊤(G̃(P)+G̃(Q))u

2 + (u⊤(g(P)−g(Q)))2

u⊤(G̃(P)+G̃(Q))u

Let

STV(P,Q;u) =

(
u⊤(g(P)− g(Q))

)2
u⊤(G̃(P) + G̃(Q))u

.

Then,

S∗
TV = max

u
STV(P,Q;u) =

(
u⊤(g(P)− g(Q))

)2
u⊤(G̃(P) + G̃(Q))u

= (∆g)⊤(G̃(P) + G̃(Q))−1(∆g)

Thus, we have

TV(P,Q) ≥ S∗(P,Q)

2 + S∗(P,Q)
(15)

To show the second inequality, we first state the following Lemma.

Lemma 1. Suppose P and Q are sets of moments of two probability measures supported on
X . Let φ(X) be a vector of polynomials such that EP[φ(X)] = g(P), EQ[φ(X)] = g(Q),
EP[φ(X)φ(X)⊤] = G(P), and EQ[φ(X)φ(X)⊤] = G(Q), and let

SH(P,Q;u) =
|u⊤(g(P)− g(Q))|√

u⊤G(P)u+
√

u⊤G(Q)u)
and STV(P,Q;u) =

(
u⊤(g(P)− g(Q))

)2
u⊤ (G(P)u+G(Q))u

,

and let

S⋆
H(P,Q) = argmax

u
SH(P,Q;u) and S⋆

TV(P,Q) = argmax
u

STV(P,Q;u).

Then, (
S∗
H(P,Q)

√
2 + S∗

H(P,Q)

)2

≤
S∗
TV(P,Q)

2 + S∗
TV(P,Q)

. (16)

17

47277 https://doi.org/10.52202/079017-1498

Proof. To prove this statement, we first show that S∗
H(P,Q)2 ≤ S∗

TV(P,Q). Fix

û = argmax
u

S⋆
H(P,Q;u).

From this, we see that

S∗
H(P,Q)2 =

(û⊤(g(P)− g(Q)))2(√
û⊤G(P)û+

√
û⊤G(Q)û)

)2 =
(û⊤(g(P)− g(Q)))2

û⊤G(P)û+ û⊤G(Q)û+ 2
√

û⊤G(P)û
√
û⊤G(Q)û

≤
(
û⊤(g(P)− g(Q))

)2
û⊤ (G(P)u+G(Q)) û

≤ S∗
TV(P,Q).

Next, let

d1 =
S∗
TV(P,Q)

2 + S∗
TV(P,Q)

and 2d2 =

(
S∗
H(P,Q)

√
2 + S∗

H(P,Q)

)2

.

We have

d2 =
S∗
H(P,Q)

2

2 + S∗
H(P,Q)

2
+ 2

√
2S∗

H(P,Q)
≤

S∗
H(P,Q)

2

2 + S∗
H(P,Q)

2

Since x
x+2 is monotonically increasing for positive x, we prove the statement by the fact that

S∗
TV ≥ S∗

H
2.

With these results, the Theorem is proved.

B.3 Proof of Corollary 1: Computing the Bayes Classifier and TV(P,Q) from the Lower
Bound

In this section, we prove Corollary 1. Recall that the lower bound proposed in Theorem 1 is not tight,
as the Cauchy-Schwarz inequality used in the derivation of the bound is only not strict when the
witness function f is a constant. However, there are cases where the bound can be used to compute
the true TV distance. We show this case in Corollary 1, which we restate and prove in the sequel.
Corollary. Suppose P ≡ N (µp,Σ) and Q ≡ N (µq,Σ) Let f(x;u) = u⊤(x − 1

2 (µp − µq)) be a
witness function. Then,

TV(P,Q) = 2Φ

(√
(u∗)⊤(µp − µq)/2

)
− 1,

where

u∗ = argmax
u

(Ex∼P[f(x;u)]− Ex∼Q[f(x;u)])
2

Ex∼P[f(x;u)2] + Ex∼Q[f(x;u)2]

Proof. First, following the proof of Corollary 2, we have u∗ = Σ−1(µp − µq). Note that this
is identical to the weights of the Gaussian discriminant classifier discussed in, say, [9]. Substi-
tuting u∗ into the expression TV(P,Q) = 2Φ

(√
(u∗)⊤(µp − µq)/2

)
− 1, we get TV(P,Q) =

2Φ
(√

(µp − µq)⊤Σ−1(µp − µq)/2
)
− 1. The risk of the Bayes classifier, as given in [45], is

R∗(P,Q) = Φ(−
√
(µp − µq)⊤Σ−1(µp − µq)/2), where Φ(x) is the Gaussian cdf. Using the

fact that Φ(x) = 1 − Φ(−x), and the identity 2R∗(P,Q) = 1 − TV(P,Q), we get TV(P,Q) =

2Φ
(√

(µp − µq)⊤Σ−1(µp − µq)/2
)
− 1. Note that with this choice of u∗, the square root term

remains well-defined. This matches the well-known result for the TV distance between Gaussian
measures with the same variance. Thus, we prove the statement.

Remark: This result also illustrates the case where the Bayes’ classifier lies in the set of functions
F := {f(x) : f(x) = u⊤φ(x)} for a given function φ(x). In this case, if φ(x) = x− 1

2 (µp − µq),
and P and Q are Gaussian with the same variant, the Bayes classifier is equivalent to the Fisher
discriminant.

18

47278https://doi.org/10.52202/079017-1498

B.4 Proof of Theorem 3

In this section, we prove Theorem 3. We restate the result for convenience, and prove the Theorem
thereafter.
Theorem. Suppose P,Q be two probability measures supported on X ⊆ Rd, with densities p and
q, and let µp = EP[x], µq = EQ[x] and Cp = EP[xx

⊤], Cq = EQ[xx
⊤]. Suppose we have plug-in

estimates µ̄p, C̄p, µ̄q , C̄q as defined in (7), that satisfy

∥µp − µ̄p∥2 ≤ δp and ∥µq − µ̄q∥2 ≤ δq

∥Cp − C̄p∥F ≤ ρp and ∥Cq − C̄q∥F ≤ ρq.

Then, with a witness function of the form f(x) = u⊤x

DTV(P,Q) ≥ min
µp,µq∈M

(∆µ)⊤(Cp + Cq + ρI)−1(∆µ), (17)

where M = {(µp, µq) : ∥µp − µ̄p∥2 ≤ δp, ∥µq − µ̄q∥2 ≤ δq}, ∆µ = µp − µq , and ρ = ρp + ρq .

Proof. First, note that f(x) = u⊤x. Thus,

f̄p = u⊤µp and f̄q = u⊤µq

f̄ (2)
p = u⊤Cpu and f̄(q) = u⊤Cqu.

Thus, for exact values, we have

TV(P,Q) ≥ DTV(P,Q; 2) =
(u⊤(µp − µq))

2

u⊤(Cp + Cq)u
= (µp − µq)

⊤(Cp + Cq)
−1(µp − µq).

However, there are errors that arise from using plug-in estimators (defined in (7). To handle the
estimation error for Cp and Cq , we rely on (23) in Lanckriet et al. [28]. That is,

max
Cp:∥C̄p−Cp∥F≤ρ

u⊤Cpu = u⊤(C̄p + ρI)u.

We substitute these values back into the lower bound, and impose the constraints on the µp and µq.
Thus, we prove the theorem.

Remark B.1. The proof follows a similar logic to that of the derivation of (15) in Kim et al. [24].

C Additional Results: Computational Complexity of rl,j scores with Different
Witness functions

In this section, we detail the computational cost of computing the rl,j scores needed for DISCEDIT-
SP and DISCEDIT-U. We tabulate our results in Table 3.

Explanation for Storage Complexity For a fixed witness function, for each filter, we only need
to store 4 real numbers per class (that is, for a distribution P , we store f̄c, f̄ (2)

c , f̄c̄, and f̄
(2)
c̄ . For

Fisher and MPM type witness functions, we need to store the class-conditional and class-complement
means and covariances of φ(X) for each class, in total requiring the storage of O(n2) values. For
DISCEDIT-U, since we only need to compute scores for a single class, the dependence on C vanishes.

Explanation for Computation Complexity The computational complexity of one-shot pruning
of a given layer using DISCEDIT-SPdepends on the number of filters L, the number of classes
in the dataset C, and the witness function itself. If the Witness function is fixed a priori, the cost
of computing each TV distance is O(1). Thus, in this case, the complexity is O(LC) to compute
all the pairwise TV distance lower bounds, and O(LC) to find the minimum for each filter. For
Fisher discriminant-type scores (such as are used in DISCEDIT-SP-F, or the witness function used in
Section 7.3), given that φ(X) is a vector of length n, this requires the inversion of a matrix, which
requires O(n2) iterations. Thus, in this case, the cost is O(LCn2) iterations (this subsumes the cost
of finding the minimum). For MPM based witness functions (such as those used in DISCEDIT-SP-Q),
this requires solving an SOCP (Õ(n3) complexity, Õ(·) suppresses ϵ accuracy terms). Thus, the
cost is Õ(LCn3). For DISCEDIT-U, since we only need to compute scores for a single class, the
dependence on C vanishes.

19

47279 https://doi.org/10.52202/079017-1498

Table 3: Comparison of complexities of computing different witness functions. (P) refers to pruning (used in DISCEDIT-SP) and (U) refers to
unlearning (used in DISCEDIT-U).

Witness Function Cost (P) Storage (P) Cost (U) Storage (U)

Fixed (a priori) O(LC) O(LC) O(L) O(L)
Fisher-type Witness Function O(LCn2) O(LCn2) O(Ln2) O(Ln2)
MPM-type Witness Function O(LCn3) O(LCn2) O(Ln3) O(Ln2)

D Variants of the DISCEDIT-SP Algorithm

In this section, we propose a variety of variants of DISCEDIT-SPalgorithm. In particular, we highlight
how changing the witness function used to lower bound the total variation distance can lead to new
algorithms. Moreover, we show how TVSPrune [39] can be recovered from DISCEDIT-SP; indeed,
it is a special case of it.

D.1 Fisher-based Lower Bounds and TVSPrune

We choose f(X) = u⊤φ(X). Let

µl
j,c = EX∼Dc

[φ(X)]

and let
Σl

j,c = EX∼Dc

[
(φ(X)− µl

j,c)(φ(X)− µl
j,c)

⊤] .
Then, we get

Algorithm 2: DISCEDIT-SP-F
Input: Class conditional distributions Dc, c ∈ [C], pretrained CNN with parameters

W = (W1, · · · ,WL), layerwise sparsity budgets Bl, witness function f
for l ∈ [L] do

Set Sl = [sl1, · · · , slNl
] = 0Nl

Compute µl
j,c µ

l
j,c̄, Σl

j,c, Σl
j,c̄ for all j, c

Compute rlj = minc Fish⋆(Dl
j,c,Dl

j,c̄) for all j.
if j ∈ sortBl({r

l
j}

Nl
j=1) then

Set slj = 1

Output: Sparse Masks S1, · · · , SL

return Ŵ

If φ(X) is a vector of quadratic functions of X , we call the algorithm DISCEDIT-SP-FQ.

D.2 Minimax Probability Machine based Algorithms

We define µl
j,c µ

l
j,c̄, Σl

j,c, Σl
j,c̄ as previously. We then state the algorithm as follows.

Algorithm 3: DISCEDIT-SP-M
Input: Class conditional distributions Dc, c ∈ [C], Pretrained CNN with parameters

W = (W1, · · · ,WL), layerwise sparsity budgets Bl, witness function f
for l ∈ [L] do

Set Sl = [sl1, · · · , slNl
] = 0Nl

Compute µl
j,c µ

l
j,c̄, Σl

j,c, Σl
j,c̄ for all j, c

Compute rlj = minc MPM⋆(Dl
j,c,Dl

j,c̄) for all j.
for all j.
if j ∈ sortBl({r

l
j}

Nl
j=1) then

Set slj = 1

Output: Sparse Masks S1, · · · , SL

return Ŵ

If φ(X) is a vector of quadratic functions of X , we call the algorithm DISCEDIT-SP-MQ.

20

47280https://doi.org/10.52202/079017-1498

D.3 EnsemblePrune - Taking the best of FisherPrune and MPMPrune

We choose the same witness functions as we did for DISCEDIT-SP-M and
DISCEDIT-SP-F, and define the moments in the same fashion. We then

Algorithm 4: DISCEDIT-SP-E
Input: Class conditional distributions Dc, c ∈ [C], Pretrained CNN with parameters

W = (W1, · · · ,WL), layerwise sparsity budgets Bl, witness function f
for l ∈ [L] do

Set Sl = [sl1, · · · , slNl
] = 0Nl

Compute µl
j,c µ

l
j,c̄, Σl

j,c, Σl
j,c̄ for all j, c

Compute

rlj = max

max
u

|u⊤(µl
j,c − µl

j,c̄)|√
u⊤Σl

j,cu+
√

u⊤Σl
j,c̄u

, max
u

(u⊤(µl
j,c − µl

j,c̄)
2)

2u⊤(Σl
j,c +Σl

j,c̄)
2)u


for all j.

if j ∈ sortBl({r
l
j}

Nl
j=1) then

Set slj = 1

Output: Sparse Masks S1, · · · , SL

return Ŵ

D.4 RobustPrune - Accounting for Errors in Moment Measurements

We choose the same witness functions as we did for DISCEDIT-SP-M and DISCEDIT-SP-F, and
define the moments in the same fashion. We then derive the following algorithm.

Algorithm 5: DISCEDIT-SP-R
Input: Class conditional distributions Dc, c ∈ [C], pretrained CNN with parameters

W = (W1, · · · ,WL), layerwise sparsity budgets Bl, witness function f = u⊤φ(x), error
tolerance γ

for l ∈ [L] do
Set Sl = [sl1, · · · , slNl

] = 0Nl

Compute plug-in estimates of µl
j,c µ

l
j,c̄, Σl

j,c, Σl
j,c̄ for all j, c

Compute

rlj = min
c

min
µl
j,c,µ

l
j,c̄

(µl
j,c − µl

j,c̄)
⊤(Σl

j,c +Σl
j,c̄ + (ρlj,c̄ + ρlj,c)I)

−1(µl
j,c − µl

j,c̄)

s.t. ∥µl
j,c̄ − µ̄l

j,c̄∥ ≤ δlj,c̄

∥µl
j,c − µ̄l

j,c∥ ≤ δlj,c

for all j.
if j ∈ sortBl({r

l
j}

Nl
j=1) then

Set slj = 1

Output: Sparse Masks S1, · · · , SL

return Ŵ

D.5 Recovering TVSPrune

In TVSPrune, at any layer l, the jth filter is pruned if

1− e−∆l,j

where ∆l,j is the minimum Fisher discriminant between pairs of classes. Suppose that we identify
important and discriminative filters by measuring the TV distance in a pairwise sense. Recall that
Corollary 2 gives us a bound that is also monotonic in ∆l,j . If we apply the strategy that we prune all
filters with a score less than a threshold, we would prune filter j if

∆

2 +∆
≤ γ

21

47281 https://doi.org/10.52202/079017-1498

for some γ ∈ (0, 1). We can now find a relation between γ and η. First, note that if 1− e
−∆
4 ≤ η,

then ∆ ≤ 4(1− η). Similarly, if we prune ∆
2+∆ ≤ γ, then ∆ ≤ 2γ

1−γ . Equating the two gives us the
expression

η =
3γ − 2

2γ − 2
.

Thus, both TVSPrune and a variant of DISCEDIT-SP-F where the TV distance is measured pairwise,
and which prunes at a threshold are equivalent, as they require pruning the jth filter if

∆ ≤ 4− 4η =
3γ − 2

2γ − 2
.

D.6 Using the BatchNorm Random Variables

The BatchNorm random variables for this layer are given by

BNl(X) =
[
1⊤Y l

1 (X), · · · ,1⊤Y l
Nl
(X)

]
=
[
BNl

1(X), · · · ,BNl
Nl
(X)

]
. (18)

As stated earlier, our goal is to minimize the TV distance between the distributions of the pruned and
unpruned features; we use the BatchNorm random variables as a proxy for the features Y l(X). Next,
the moments of BNl(X) are given by

EX∼D

[
BNl

i(X)
]
= BNl

i =
[
µl
i

]
and Var(BNl

i(X)) = (σl
i)

2. (19)

Suppose BNl(X) is drawn from the distribution DBN,l
j , DBN,l

j,c be the cth class conditional distribu-

tion, and let DBN,l
j,c̄ be the distribution of features sampled from the complement of class c.

E Additional Experiments

In this section, we detail additional experiments conducted in the course of this investigation. In
particular, we provide experimental results highlighting the utility of our lower bound on synthetic
datasets, and provide expanded results for the Gaussianity tests provided in Section 6.1.

E.1 Measuring the TV Distance between Linearly Inseparable Data

In this section, we use the bounds proposed in Corollary 2 to bound the TV distance between poorly
separated datasets. We choose the ‘Two Spirals’ Dataset, and a dataset consisting of two zero-mean
Gaussians with different variances. We choose f(x) = u⊤(φ(X) − (φ̄1 − φ̄0)/2), where ϕ(X),
when chosen to be of degree d ≥ 1, is given by φ(X) = 1+(1⊤X)+ · · ·+(1⊤X)d. We present our
results in Figure 2. We observe that using the lower bound for Fisher outperforms the MPM lower
bound on both toy datasets. However, the choice of polynomial witness functions clearly outperforms
lower degree choices, particularly in the ‘Two Gaussians’ case.

E.2 Effective Pruning of Hard-to-Prune Layers

In this section, we utilize the lower bounds provided in this paper to prune hard-to-prune layers in
neural networks. As noted in Murti et al. [39], Liebenwein et al. [34], some layers, in particular the
initial layers in the case of VGG-nets, are difficult to effectively sparsify. In this set of experiments,
we aim to show that using the lower bounds proposed in this work, we are able to better identify
discriminative filters in hard-to-prune layers, and therefore prune those layers more effectively.
Experiment Setup: We select a VGG16 model trained on CIFAR10. We fix pruning budgets of
40%, 50%, 60%, 70%, 80%. For each model, we then prune three hard-to-prune layers in isolation,
and measure the impact on accuracy. We compare the following methods:
TVSPrune: We modify TVSPrune to prune a fixed budget, and using the BatchNorm random
variables as described in Appendix D.
DISCEDIT-SP-EQ: We apply Algorithm 5 as presented in Appendix D using the features φ(1⊤X) =
[1⊤X, (1⊤X)2]. Thus, for each c, f(c)(X) = u⊤ (φ(X)− (φ̄c + φ̄c̄)/2)).

22

47282https://doi.org/10.52202/079017-1498

(a) Two Spirals. H lower bound: .172 (b) Two Spirals. H lower bound: .172

(c) Two Spirals. H lower bound: .172 (d) Two Spirals. H lower bound: .172

Figure 2: Comparison of the performance of DISCEDIT-SP F with DISCEDIT-SP M with polynomial features on the TwoSpirals and
Zero-Means Gaussians datasets.

(a) Layers 0-2 (b) Layers 1-3 (c) Layers 2-4

Figure 3: Comparison of the performance of DISCEDIT-SP F with TVSPrune and L1 pruning on hard-to-prune layers in VGG16 trained on
CIFAR10

L1-based Pruning: We use the L1 norms of the filter weights, as proposed in [32].
Results and Discussion We present our results in Figure 3 The experiments show that DISCEDIT-
SP variants using quadratic features (using algorithms outperform both TVSPrune and the L1-norm-
based pruning strategy. In particular, we see that at 70% sparsity in Layers 1-3, the models obtained
by DISCEDIT-SP-EQ are 6.6% more accurate than those obtained using TVSPrune.

E.3 Verifying class-conditional Feature Maps are not Gaussian

In this section, we attempt to validate the assumptions made in Murti et al. [39] about the normality of
the class-conditional feature distributions. To do so, we apply the Shapiro-Wilks test [49], a standard
test for Normality.
Experiment Setup: We consider a VGG16 model trained on CIFAR10. Let BNl

j(X) = 1⊤Y l
j (X).

For each l, j, we collect 100 samples from each class c ∈ [10]. We then apply the Shapiro-Wilk
normality test [49], and we compute plj,c values, which are the minimum p-values from the Shapiro-
Wilks test computed for the features of the jth filter in layer l conditioned on class c. We consider that a

23

47283 https://doi.org/10.52202/079017-1498

filter’s features are unlikely to be Gaussian if plj,c < 0.1. We plot the heatmaps of plj = minc∈[C] p
l
j,c

values for 15 randomly selected filters in Figure 4, to indicate the normality of the least Gaussian
class-conditional features.
Results: We observe that for most layers, particularly those close to the output, the class-conditional
feature distributions are highly unlikely to have been drawn from a Gaussian, with plj,c values for
layers 10-12 in VGG16 typically being below 1e − 5. For layers with filters that yield likely-
Gaussian features, we observe that for the majority of filters, at least one feature output is likely to be
non-Gaussian. We present this data in Figure 4.

(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8 (i) Layer 9

(j) Layer 10 (k) Layer 11 (l) Layer 12

Figure 4: Shapley-Wilks test p-value heatmaps applied to class-conditional features generated by filters in each layer. x-axis is the class index,
and y-axis is the filter index. Filters shown in the heatmap are selected randomly.

E.4 Ablation Experiments for DISCEDIT-SP

In this section, we conduct a slate of experiments aimed at demonstrating that the effectiveness
of DISCEDIT-SP is not dependent on particular instantiations of models. Specifically, we apply
DISCEDIT-SP to multiple instances of models trained on CIFAR10, CIFAR100, and Imagenet. We
present specific results in the subsequent subsections.

24

47284https://doi.org/10.52202/079017-1498

E.4.1 CIFAR10 Experiments

In this section, we run DISCEDIT-SP on 10 different instantiations of different models trained on
CIFAR10. We observe that DISCEDIT-SP performs well on all instances of the models, irrespective
of architecture. Our results are tabulated in Table 4.

Table 4: Ablations for models trained on CIFAR10. We consider 10 different models, and average the accuracy after pruning/fine-tuning over
them.

Model Sparsity Best Acc. drop Worst Acc. Drop Mean Acc. Drop

VGG16 40.8% +0.32 −0.06 +0.09 ± 0.06
VGG16 61.2% 0.19 0.51 0.35 ± 0.03
VGG16 75.6% 1.27 1.38 1.34 ± 0.01
ResNet56 41.2% +0.03 0.05 0.01 ± 0.01.
ResNet56 60.7% 1.21 1.30 1.24 ± 0.02

E.4.2 CIFAR100 Experiments

In this section, we run our experiments on 5 different instances of VGG16, VGG19, and ResNet56
models trained on CIFAR10. We present our results in Table 5. Our results show that the effectiveness
of DISCEDIT-SP is unrelated to the particular instantiation of the model.

Table 5: Ablations for models trained on CIFAR100. We consider 10 different models, and average the accuracy of our pruning algorithm over
them.

Model Sparsity Best Acc. drop Worst Acc. Drop Mean Acc. Drop

VGG16 40.8% +0.03 0.06 0.03 ± 0.06
VGG19 60.6% 0.12 0.19 0.16 ± 0.03
Resnet56 40.2 +0.13 0.16 ±0.01

E.4.3 Imagenet Experiments

In this section, we provide ablation experiments for Imagenet. However, owing to the computational
cost of training Imagenet models, we only train 2 additional instantiations of the model. Moreover,
we were only able to fine-tune for 30 epochs. However, DISCEDIT-SP broadly works well on all of
the instantiations, as seen in Table 6.

Table 6: Ablations for models trained on Imagenet. We consider 3 different models, and average the accuracy drop.

Best Accuracy Worst Accuracy Drop Mean accuracy drop

3.1% 8.3% 6.6%

E.4.4 Pruning without Fine-tuning

In this section, we highlight our pruning experiments without fine-tuning models.We use fixed
layerwise sparsity budgets. We use models trained on CIFAR10 and Imagenet datasets. Our
experiments, tabulated in Table 7, shows that our method consistently matches or outperforms
common baselines.

E.5 Pruning in the High Sparsity Regime

In this section, we prune models trained on CIFAR10 extensively, with over 80% of parameters
pruned in total. Fine-tuning is done in a one-shot fashion. We see that DISCEDIT-SP consistently
matches our outperforms baselines such as Murti et al. [39] or Sui et al. [52]. Our results are tabulated
in Table 8

25

47285 https://doi.org/10.52202/079017-1498

Table 7: Pruning results with DISCEDIT-SPwithout fine-tuning.
Model Dataset Sparsity Acc. Drop (ours) Acc. Drop [39] Acc. Drop [52] Acc. Drop (L1)
VGG16 CIFAR10 32% 1.91 2.20 2.13 10.52
VGG16 CIFAR10 41% 4.56 5.21 6.53 16.59
VGG16 CIFAR10 63% 10.16 12.79 12.65 32.8
VGG19 CIFAR10 30% 0.98 - 1.22 6.55
VGG19 CIFAR10 44% 2.56 - 4.53 13.8
VGG19 CIFAR10 60% 6.16 - 8.44 23.67
ResNet50 ImageNet 11% 18.37 22.61 21.49 35.52
ResNet50 ImageNet 21% 30.7 36.0 32.69 -

Table 8: Pruning results with DISCEDIT-SP on CIFAR10 models in the high-sparsity regime

Model Sparsity Algorithm Acc. drop (no FT) Acc. drop (FT)

VGG16
84.7% CHIP 83.1% 0.20%
84.7% TVSPrune 83.4% 0.21%
84.7% DISCEDIT-SP 82.9% 0.15%
- CHIP - -

VGG19
88.7% TVSPrune 84.8% 0.17%
88.7% DISCEDIT-SP 84.7% 0.16%
74.3% CHIP 84.0% 0.28%

ResNet56 74.3% TVSPrune 83.9% 0.25%
74.3% DISCEDIT-SP 84.2% 0.28%

E.6 Discriminative Component Discovery for CIFAR10 models

In this section, we provide plots of ηcl,j values for different layers in models trained on CIFAR10. We
show plots for 3 different layers for 4 classes, to highlight how discriminative components look.

E.6.1 ResNet56 trained on CIFAR10

In this section, we produce plots showing discriminative and nondiscriminative components for a
ResNet56 trained on CIFAR10. Our results are plotted in Figure 5. Note that in layer 0, both class
0 and class 8 have filter 8 as discriminative. Moreover, in subsequent layers, all three classes have
filters which are somewhat discriminative as well.

E.6.2 VGG16 trained on CIFAR10

Similar to the previous subsection, we plot ηcl,j values for a VGG16 trained on CIFAR10 We plot a
selection of our results in Figure 6. As before, we see that we can clearly identify discriminative and
nondiscriminative filters. Note again that class 0 and class 8 share discriminative filters in both layer
0 as well as in layer 4.

F Additional Experimental Details

In this section, we detail additional experiments not mentioned in the main paper, as well as a
comprehensive description of our experimental setup.

F.1 Pruning Setup

In this section, we discuss our experimental setup.

F.1.1 Platform Details

The hardware used for the experiments in this work are detailed below:

1. Server computer with 2 NVIDIA RTX3090Ti GPUs with Intel i9-12700 processors, running
Ubuntu 20.04, with Python 3.11 and CUDA Tools 10.2 with PyTorch 2.0.1.

2. Desktop computer with 1 NVIDIA RTX3070Ti GPUs with Intel i7-10700 processor, running
Ubuntu 22.04, with Python 3.11 and CUDA Tools 11.7 with PyTorch 2.0.1.

26

47286https://doi.org/10.52202/079017-1498

(a) Layer 0, Class 0 (b) Layer 0, Class 3 (c) Layer 0, Class 8

(d) Layer 12, Class 0 (e) Layer 12, Class 3 (f) Layer 12, Class 8

(g) Layer 30, Class 0 (h) Layer 30, Class 3 (i) Layer 30, Class 8

(j) Layer 34, Class 0 (k) Layer 34, Class 3 (l) Layer 34, Class 8

Figure 5: rcl,j plots for different layers, and classes 0, 3, and 8 for a ResNet56 trained on CIFAR10. x axis is the filter index, y-axis is rcl,j .

F.1.2 Models under consideration

We consider the following models.

• VGG16/19 trained on CIFAR10 and CIFAR100: We use the pre-trained VGG11/16/19
models trained on CIFAR10 and CIFAR100. The models achieve accuracies greater than
90% on both datasets.

• ResNet56 trained on CIFAR10: We consider a ResNet56 model trained on CIFAR10. We
do not prune layers that are part of complex interconnections (such as the final layer in each
BasicBlock).

• ResNet50 trained in Imagenet: We consider a ResNet50 model trained on Imagenet. We
do not prune layers that are part of complex interconnections, as was the case in ResNet56.

• ViT trained on CIFAR10 We trained a custom ViT on CIFAR10. The details of the model
are given below in Table 9: The accuracies of this models are given in Table 10

The accuracies of all models are given in Table 11 below:

27

47287 https://doi.org/10.52202/079017-1498

(a) Layer 0, Class 0 (b) Layer 0, Class 3 (c) Layer 0, Class 8

(d) Layer 4, Class 0 (e) Layer 4, Class 3 (f) Layer 4, Class 8

(g) Layer 8, Class 0 (h) Layer 8, Class 3 (i) Layer 8, Class 8

(j) Layer 12, Class 0 (k) Layer 12, Class 3 (l) Layer 12, Class 8

Figure 6: rcl,j plots for different layers, and classes 0, 3, and 8 for a VGG16 trained on CIFAR10. x axis is the filter index, y-axis is rcl,j .

Parameter Value
Context Length 65
Embedding dim. 384
Transformer Encoders 7
MLP layers to be pruned 14
Total params. 6.27m

Table 9: Summary of model parameters.

Dataset Test Acc.
CIFAR10 88.2%
CIFAR100 69.5%

Table 10: Test accuracy for CIFAR datasets.

28

47288https://doi.org/10.52202/079017-1498

Dataset Model Test Accuracy

CIFAR10

VGG16 94.16
ResNet56 94.37
ResNet20 92.2
ViT 88.2

CIFAR100
VGG16 74.0
ResNet56 72.6
ViT 69.5

ImageNet ResNet50 76.15
Table 11: Test accuracy for different datasets and models.

Model Provenance We list the sources of the models below.

• All CIFAR10 and CIFAR100 models were obtained from:
https://github.com/chenyaofo/pytorch-cifar-models.

• ResNet50 trained on Imagenet was obtained from:
https://drive.google.com/drive/folders/1b–dZlvKUUu0rXqMYAtIr0ynHQHuEWDI,
which in turn comes from:
https://github.com/Eclipsess/CHIP_NeurIPS2021?tab=readme-ov-file

• The ViT models use code from https://github.com/omihub777/ViT-CIFAR.

F.1.3 Dataset Selection

For Pruning Since we assume that the training dataset is unavailable to us, we utilize the validation
set as a proxy for the data-distribution. We detail our dataset splits in Table 12. Note: the subset

Table 12: Breakdown of dataset splits used in our experiments.
Dataset Training Set TV Distance Set Test Set

CIFAR10 Not used 4000 images from test set 6000 images from Test set
CIFAR10 Not used 4000 images from test set 6000 images from Test set
Imagenet Not used 30000 images from Validation set 20000 images from Val. set

used to compute the TV distances are not reused while measuring the test accuracy.

Class Unlearning We use the training set to identify discriminative filters, and the test set to
measure accuracy. Typically, we get

F.1.4 Hyperparameter Details

In this section, we detail the hyperparameters used when fine-tuning pruned models. We present the
hyperparameters for CIFAR10 and Imagenet models only, as we did not fine-tune models that used
CIFAR100.

CIFAR10 Fine-tuning We detail the hyperparameters used in our CIFAR10 experiments below.

1. Batch Size: 128

2. Epochs: 50

3. Learning Rate: .001

4. Weight Decay: .0005

5. Momentum paramters: .9

6. Optimizer: SGD

29

47289 https://doi.org/10.52202/079017-1498

ImageNet Fine-tuning We detail the hyperparameters used when fine-tuning Imagenet models.

1. Batch Size: 128, using gradient accumulation
2. Epochs: 100
3. Learning Rate: 0.08 (initial)
4. Momentum: 0.99
5. Weight Decay:0.0001
6. Optimizer: SGD

30

47290https://doi.org/10.52202/079017-1498

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All contributions tally with the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section 4 for limitations of lower bound, including non-tightness and
estimation uncertainty.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

31

47291 https://doi.org/10.52202/079017-1498

Justification: Please see proofs in the appendix. Assumptions are also stated clearly.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiments are simple and clearly laid out, experimental details are available
in the Appendix, anonymous code submitted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

47292https://doi.org/10.52202/079017-1498

Answer: [Yes]
Justification: Code submitted, please see link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details provided in Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See ablation studies in Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

33

47293 https://doi.org/10.52202/079017-1498

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: refer to Appendix F for details on compute used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code of ethics followed, no interventions with living beings requiring special
processing. Only standard datasets were used. No conflicts of interest.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See impact statement

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

34

47294https://doi.org/10.52202/079017-1498

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: standard datasets/models used

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Source of models listed in Appendix F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

35

47295 https://doi.org/10.52202/079017-1498

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

47296https://doi.org/10.52202/079017-1498

