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Abstract

Adaptive methods are extremely popular in machine learning as they make learning
rate tuning less expensive. This paper introduces a novel optimization algorithm
named KATE, which presents a scale-invariant adaptation of the well-known Ada-
Grad algorithm. We prove the scale-invariance of KATE for the case of Generalized
Linear Models. Moreover, for general smooth non-convex problems, we establish
a convergence rate of O(log T/

√
T) for KATE, matching the best-known ones for

AdaGrad and Adam. We also compare KATE to other state-of-the-art adaptive
algorithms Adam and AdaGrad in numerical experiments with different prob-
lems, including complex machine learning tasks like image classification and text
classification on real data. The results indicate that KATE consistently outper-
forms AdaGrad and matches/surpasses the performance of Adam in all considered
scenarios.

1 Introduction

In this work, we consider the following unconstrained optimization problem:

minw∈Rdf(w), (1)

where f : Rd → R is a L-smooth and generally non-convex function. In particular, we are interested
in the situations when the objective has either expectation f(w) = Eξ∼D[fξ(w)] or finite-sum
f(w) = 1

n

∑n
i=1 fi(w) form. Such minimization problems are crucial in machine learning, where

w corresponds to the model parameters. Solving these problems with stochastic gradient-based
optimizers has gained much interest owing to their wider applicability and low computational cost.
Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951) and similar algorithms require the
knowledge of parameters like L for convergence and are very sensitive to the choice of the stepsize in
general. Therefore, SGD requires hyperparameter tuning, which can be computationally expensive.
To address these issues, it is common practice to use adaptive variants of stochastic gradient-based
methods that can converge without knowing the function’s structure.

There exist many adaptive algorithms such as AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba,
2014), AMSGrad (Reddi et al., 2019), D-Adaptation (Defazio and Mishchenko, 2023), Prodigy
(Mishchenko and Defazio, 2023), AI-SARAH (Shi et al., 2023) and their variants. These adaptive
techniques are capable of updating their step sizes on the fly. For instance, the AdaGrad method
determines its step sizes using a cumulative sum of the coordinate-wise squared (stochastic) gradient
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of all the previous iterates:

AdaGrad: wt+1 = wt −
βgt√

diag
(
∆I +

t∑
τ=1

gτg⊤τ

) , (2)

where gt represents an unbiased estimator of ∇f(wt), i.e., E [gt | wt] = ∇f(wt), diag(M) ∈ Rd

is a vector of diagonal elements of matrix M ∈ Rd×d, ∆ > 0, and the division by vector is done
component-wise. Ward et al. (2020) has shown that this method achieves a convergence rate of
O (log T/

√
T) for smooth functions, similar to SGD, without prior knowledge of the functions’ param-

eters. However, the performance of AdaGrad deteriorates when applied to data that may exhibit poor
scaling or ill-conditioning. In this work, we propose a novel algorithm, KATE, to address the issues
of poor data scaling. KATE is also a stochastic adaptive algorithm that can achieve a convergence
rate of O (log T/

√
T) for smooth non-convex functions in terms of mint∈[T ] E [∥∇f(wt)∥]2.

1.1 Related Work

A significant amount of research has been done on adaptive methods over the years, including
AdaGrad (Duchi et al., 2011; McMahan and Streeter, 2010), AMSGrad (Reddi et al., 2019),
RMSProp (Tieleman and Hinton, 2012), AI-SARAH (Shi et al., 2023), and Adam (Kingma and Ba,
2014). However, all these works assume that the optimization problem is contained in a bounded set.
To address this issue, Li and Orabona (2019) proposes a variant of the AdaGrad algorithm, which
does not use the gradient of the last iterate (this makes the step sizes of t-th iteration conditionally
independent of gt) for computing the step sizes and proves convergence for the unbounded domain.

Each of these works considers a vector of step sizes for each coefficient. Duchi et al. (2011) and
McMahan and Streeter (2010) simultaneously proposed the original AdaGrad algorithm. However,
McMahan and Streeter (2010) was the first to consider the vanilla scalar form of AdaGrad, known as

AdaGradNorm: wt+1 = wt −
βgt√

∆+
∑t

τ=0 ∥gτ∥
2
. (3)

Later, Ward et al. (2020) analyzed AdaGradNorm for minimizing smooth non-convex functions. In a
follow-up study, Xie et al. (2020) proves a linear convergence of AdaGradNorm for strongly convex
functions. Recently, Liu et al. (2022) analyzed AdaGradNorm for solving smooth convex functions
without the bounded domain assumption. Moreover, Liu et al. (2022) extends the convergence
guarantees of AdaGradNorm to quasar-convex functions 2 using the function value gap. Orabona
et al. (2015) introduce the notion of scale-invariance, which is a special case of affine invariance
(Nesterov and Nemirovskii, 1994; Nesterov, 2018; d’Aspremont et al., 2018), propose a scale-
invariant version of AdaGrad for online convex optimization for generalized linear models, and
prove O(

√
T ) regret bounds in this setup.

Recently, Defazio and Mishchenko (2023) introduced the D-Adaptation method, which has gathered
considerable attention due to its promising empirical performances. In order to choose the adaptive
step size optimally, one requires knowledge of the initial distance from the solution, i.e., D :=
∥w0 − w∗∥ where w∗ ∈ argminw∈Rdf(w). The D-Adaptation method works by maintaining an
estimate of D and the stepsize choice in this case is dt/

√∑t
τ=0 ∥gτ∥2 for the t-th iteration (here dt is

an estimate of D). Mishchenko and Defazio (2023) further modifies the algorithm in a follow-up
work and introduces Prodigy (with stepsize choice d2

t/
√∑t

τ=0 d2
τ∥gτ∥2) to improve the convergence

speed.

Another exciting line of work on adaptive methods is Polyak stepsizes. Polyak (1969) first pro-
posed Polyak stepsizes for subgradient methods, and recently, the stochastic version (also known
as SPS) was introduced by Oberman and Prazeres (2019); Loizou et al. (2021); Abdukhaki-
mov et al. (2024, 2023); Li et al. (2023) and Gower et al. (2021). For a finite sum problem
minw∈Rd f(w) := 1

n

∑n
i=1 fi(w), Loizou et al. (2021) uses fi(wt)−f∗

i

c∥∇fi(wt)∥2 as their stepsize choices

(here f∗
i := minw∈Rd fi(w)), while Oberman and Prazeres (2019) uses 2(f(wt)−f∗)

E[∥∇fi(wt)∥2] for k-th itera-
tion. However, these methods are impractical when f∗ or f∗

i is unknown. Following its introduction,
2f satisfy f∗ ≥ f(w) + 1

ζ
⟨f(w), w∗ − w⟩ for some ζ ∈ (0, 1] where w∗ ∈ argminwf(w).

2
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Table 1: Summary of convergence guarantees for closely-related adaptive algorithms to solve
smooth non-convex stochastic optimization problems. Convergence rates are given in terms of
mint∈[T ] E [∥∇f(wt)∥]2. We highlight KATE’s scale-invariance property for problems of type (4).

Algorithm Convergence rate Scale invariance

AdaGradNorm (Ward et al., 2020) O (log T/
√
T) ✗

AdaGrad (Défossez et al., 2020) O (log T/
√
T) ✗

Adam (Défossez et al., 2020) O (log T/
√
T) ✗

KATE (this work) O (log T/
√
T) ✓

several variants of the SPS algorithm emerged (Li et al., 2023; D’Orazio et al., 2021). Lately, Orvieto
et al. (2022) tackled the issues with unknown f∗

i and developed a truly adaptive variant. In practice,
the SPS method shows excellent empirical performance on overparameterized deep learning models
(which satisfy the interpolation condition i.e. f∗

i = 0, ∀i ∈ [n]) (Loizou et al., 2021).

1.2 Main Contribution

Our main contributions are summarized below.

• KATE: new scale-invariant version of AdaGrad. We propose a new method called KATE that
can be seen as a version of AdaGrad, which does not use a square root in the denominator of the
stepsize. To compensate for this change, we introduce a new sequence defining the numerator of the
stepsize. We prove that KATE is scale-invariant for generalized linear models: if the starting point
is zero, then the loss values (and training and test accuracies in the case of classification) at points
generated by KATE are independent of the data scaling (Proposition 2.1), meaning that the speed of
convergence of KATE is the same as for the best scaling of the data.

• Convergence for smooth non-convex problems. We prove that for smooth non-convex prob-
lems with noise having bounded variance KATE has O(log(T )/

√
T) convergence rate (Theorem 3.4),

matching the best-known rates for AdaGrad and Adam (Défossez et al., 2020).

• Numerical experiments. We empirically illustrate the scale-invariance of KATE on the logistic
regression task and test its performance on logistic regression (see Section 4.1), image classification,
and text classification problems (see Section 4.2). In all the considered scenarios, KATE outperforms
AdaGrad and works either better or comparable to Adam.

1.3 Notation

We denote the set {1, 2, · · · , n} as [n]. For a vector a ∈ Rd, a[k] is the k-th coordinate of a and a2

represents the element-wise suqare of a, i.e., a2[k] = (a[k])2. For two vectors a and b, a
b stands for

element-wise division of a and b, i.e., k-th coordinate of a
b is a[k]

b[k] . Given a function h : Rd → R, we
use ∇h ∈ Rd to denote its gradient and ∇kh to indicate the k-th component of ∇h. Throughout the
paper ∥ · ∥ represents the ℓ2-norm and f∗ = infw∈Rd f(w). Moreover, we use ∥w∥A for a positive-
definite matrix A to define ∥w∥A :=

√
w⊤Aw. Furthermore, E [·] denotes the total expectation while

Et [·] denotes the conditional expectation conditioned on all iterates up to step t i.e. w0, w1, . . . , wt.

2 Motivation and Algorithm Design

We focus on solving the minimization problem (1) using a variant of AdaGrad. We aim to design an
algorithm that performs well, irrespective of how poorly the data is scaled.

3
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Generalized linear models. Here, we consider the parameter estimation problem in generalized
linear models (GLMs) (Nelder and Wedderburn, 1972; Agresti, 2015) using maximum likelihood
estimation. GLMs are an extension of linear models and encompass several other valuable models,
such as logistic (Hosmer Jr et al., 2013) and Poisson regression (Frome, 1983), as special cases. The
parameter estimation to fit GLM on dataset {xi, yi}ni=1 (where xi ∈ Rd are feature vectors and yi
are response variables) can be reformulated as

min
w∈Rd

f(w) :=
1

n

n∑
i=1

φi

(
x⊤
i w

)
(4)

for differentiable functions φi : R → R (Shalev-Shwartz and Ben-David, 2014; Nguyen et al., 2017b;
Takáč et al., 2013; He et al., 2018; Chezhegov et al., 2024). For example, the linear regression on data
{xi, yi}ni=1 is equivalent to solving (4) with φi(z) = (z − yi)

2. Next, the choice of φi for logistic
regression is φi(z) = log (1 + exp (−yiz)).

Scale-invariance. Now consider the instances of fitting GLMs on two datasets {xi, yi}ni=1 and
{V xi, yi}ni=1, where V ∈ Rd×d is a diagonal matrix with positive entries. Note that the second
dataset is a scaled version of the first one where the k-th component of feature vectors xi are
multiplied by a scalar Vkk. Then, the minimization problems corresponding to datasets {xi, yi}ni=1
and {V xi, yi}ni=1 are (4) and

min
w∈Rd

fV (w) :=
1

n

∑n

i=1
φi

(
x⊤
i V w

)
, (5)

respectively, for functions φi. In this work, we want to design an algorithm with equivalent perfor-
mance for the problems (4) and (5). If we can do that, the new algorithm’s performance will not
deteriorate for poorly scaled data, i.e., the method will be scale-invariant (Orabona et al., 2015),
which is a special case of affine-invariance, see (Nesterov and Nemirovskii, 1994; Nesterov, 2018;
d’Aspremont et al., 2018). To develop such an algorithm, we replace the denominator of AdaGrad
step size with its square (remove the square root from the denominator), i.e., ∀k ∈ [d]

wt+1[k] = wt[k]−
βmt[k]∑t
τ=0 g

2
τ [k]

gt[k] (6)

for some mt ∈ Rd.3 The following proposition shows that this method (6) satisfies a scale-invariance
property with respect to functional value.

Proposition 2.1 (Scale invariance). Suppose we solve problems (4) and (5) using algorithm (6).
Then, the iterates ŵt and ŵV

t corresponding to (4) and (5) follow: ∀k ∈ [d]

ŵt+1[k] = ŵt[k]−
βmt[k]∑t
τ=0g

2
τ [k]

gt[k], (7)

ŵV
t+1[k] = ŵV

t [k]− βmt[k]∑t
τ=0

(
gVτ [k]

)2 gVt [k] (8)

with gτ = φ′
iτ
(x⊤

iτ
ŵτ )xiτ and gVτ = φ′

iτ
(x⊤

iτ
V ŵτ )V xiτ for iτ chosen uniformly from [n], τ =

0, 1, . . . , t, t ≥ 0. Moreover, updates (7) and (8) satisfy

ŵt = V ŵV
t , V gt = gVt , f (ŵt) = fV

(
ŵV

t

)
(9)

for all t ≥ 0 when ŵ0 = ŵV
0 = 0 ∈ Rd. Furthermore we have∥∥gVt ∥∥2

V −2 = ∥gt∥2 . (10)

The Proposition 2.1 highlights that the update rule of the form (6) satisfies a scale-invariance property
for GLMs. In contrast, AdaGrad does not satisfy (9) and (10). In Appendix C, we illustrate
numerically the scale-invariance of KATE and the lack of the scale-invariance of AdaGrad. We also
emphasize that AdaGrad with ∆ = 0 is known to be a scale-free method4.

3Sequence {mt}t≥0 can depend on the problem but is assumed to be scale-invariant.
4The algorithm is called scale-free if for any c > 0, it generates the same sequence of points for functions

f and cf given the same initialization and hyperparameters. To the best of our knowledge, this definition is

4
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Algorithm 1 KATE

Require: Initial point w0 ∈ Rd, step size β > 0, η ∈ Rd
+ and b−1,m−1 = 0.

1: for t = 0, 1, ..., T do
2: Compute gt ∈ Rd such that E [gt] = ∇f(wt).
3: b2t = b2t−1 + g2t

4: m2
t = m2

t−1 + ηg2t +
g2
t

b2t

5: wt+1 = wt − βmt

b2t
gt

Design of KATE. In order to construct an algorithm following the update rule (6), one may choose
mt[k] = 1 ∀k ∈ [d]. However, the step size from (6) in this case may decrease very fast, and the
resulting method does not necessarily converge. Therefore, we need a more aggressive choice of
mt, which grows with t. It motivates the construction of our algorithm KATE (Algorithm 1),5 where

we choose mt[k] =
√

η[k]b2t [k] +
∑t

τ=0
g2
τ [k]

b2τ [k]
. Note that the term

∑t
τ=0

g2
τ [k]

b2τ [k]
is scale-invariant

for GLMs (follows from Proposition 2.1). To make mt scale-invariant, we choose η ∈ Rd in the
following way:

• η → 0: When η is very small, mt is also approximately scale-invariant for GLMs.

• η = 1/(∇f(w0))
2: In this case ηb2t = b2t/(∇f(w0))

2 is scale-invariant for GLMs (follows from
Proposition 2.1) as well as mt.

KATE can be rewritten in the following coordinate form

wt+1[k] = wt[k]− νt[k]gt[k], ∀k ∈ [d], (11)

where gt is an unbiased estimator of ∇f(wt) and the per-coefficient step size νt[k] is defined as

νt[k] :=
β
√
η[k]b2t [k] +

∑t
τ=0

g2
τ [k]

b2τ [k]

b2t [k]
. (12)

Note that the numerator of the steps νt[k] is increasing with iterations t. However, one of the crucial
properties of this step size choice is that the steps always decrease with t, which we rely on in our
convergence analysis.

Lemma 2.2 (Decreasing step size). For νt[k] defined in (11) we have

νt+1[k] ≤ νt[k], ∀k ∈ [d]. (13)

Comparison with the scale-invariant version of AdaGrad by Orabona et al. (2015). In the
special case of GLMs, Orabona et al. (2015) propose a different version of AdaGrad. The method is
proposed for the case of online convex optimization, and in the case of standard optimization with
GLMs (4), it has the following form

w0 := 0, wt+1 := −β

∑t
τ=0 ∇fiτ (wτ )

a2t
√
d
√
γ2 +

∑t
τ=0 (

∇fiτ (wτ )/aτ)
2
, at := max

τ=0,...,t
|xiτ |, (14)

where {iτ}tτ=0 are arbitrary indices from [n] (e.g., selected uniformly at random), functions fi :
Rd → R are defined as fi(w) := φi(x

⊤
i w) for i ∈ [n], and γ is such that fi(w) is γ-Lipschitz for

i ∈ [n]. In this setup, the update rule of KATE with w0 = 0 can be written as follows:

wt+1 := −β

t∑
τ=0

mτ

b2τ
∇fiτ (wτ ), mt :=

√√√√η

t∑
τ=0

(∇fiτ (wτ ))2 +

t∑
τ=0

(∇fiτ (wτ ))
2
/b2τ ,

introduced by Cesa-Bianchi et al. (2005, 2007) in the context of learning with expert advice and extended
to the context of generic online convex optimization by Orabona and Pál (2015, 2018). We emphasize that
scale-freeness and scale-invariance are completely different concepts.

5Note that, for mt = bt∀t we get the AdaGrad algorithm.

5
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where bt :=
√∑t

τ=0(∇fiτ (wτ ))2, {iτ}tτ=0 are sampled from [n] uniformly at random. Although

both methods can be seen as variations of AdaGrad due to the terms
∑t

τ=0 (
∇fiτ (wτ/aτ)

2 and∑t
τ=0 (∇fiτ (wτ ))

2 respectively, the scale-invariance is achieved quite differently in these methods.
The method from (14) uses the feature vectors explicitly in the update rule to ensure scale-invariance:
indeed, the square root in the definition of wt+1 is independent of scaling, and a2t in the denominator
ensures that ŵt+1 = V ŵV

t+1 if we define them similarly to KATE (see equations (7)-(8)). In contrast,
KATE achieves the scale-invariance by removing the square root from the denominator (as explained
earlier). Moreover, unlike the method from (14), KATE does not use the feature vectors explicitly in
its update rule (only in the gradients of fiτ ) and, thus, can be used for general stochastic optimization
(not necessarily for the case of GLMs).

3 Convergence Analysis

In this section, we present and discuss the convergence guarantees of KATE. In the first subsection,
we list the assumptions made about the problem.

3.1 Assumptions

In all our theoretical results, we assume that f is smooth as defined below.

Assumption 3.1 (L-smooth). Function f is L-smooth, i.e. for all w,w′ ∈ Rd

f(w′) ≤ f(w) + ⟨∇f(w), w′ − w⟩+ L

2
∥w − w′∥2 . (15)

This assumption is standard in the literature of adaptive methods (Li and Orabona, 2019; Ward et al.,
2020; Liu et al., 2022; Nguyen et al., 2018, 2021, 2017a; Beznosikov and Takáč, 2021). Moreover,
we assume that at any iteration t of KATE, we can access gt — a noisy and unbiased estimate of
∇f(wt). We also make the following assumption on the noise of the gradient estimate gt.

Assumption 3.2 (Bounded Variance). For fixed constant σ > 0, the variance of the stochastic
gradient gt (unbiased estimate of ∇f(wt)) at any time t satisfies

Et

[
∥gt −∇f(wt)∥2

]
≤ σ2. (BV)

Bounded variance is a common assumption to study the convergence of stochastic gradient-based
methods. Several assumptions on stochastic gradients are used in the literature to explore the adaptive
methods. Ward et al. (2020) used the BV, while Liu et al. (2022) assumed the sub-Weibull noise, i.e.
E
[
exp (∥gt−∇f(wt)∥/σ)

1/θ
]
≤ exp (1) for some θ > 0, to prove the convergence of AdaGradNorm.

Li and Orabona (2019) assumes sub-Gaussian (θ = 1/2 in sub-Weibull condition) noise to study
a variant of AdaGrad. However, sub-Gaussian noise is strictly stronger than BV. Recently, Faw
et al. (2022) analyzed AdaGradNorm under a more relaxed condition known as affine variance(

i.e. Et

[
∥gt −∇f(wt)∥2

]
≤ σ2

0 + σ2
1 ∥∇f(wt)∥2

)
.

3.2 Main Results

In this section, we cover the main convergence guarantees of KATE for both deterministic and
stochastic setups.

Deterministic setting. We first present our results for the deterministic setting. In this setting, we
consider the gradient estimate to have no noise (i.e. σ2 = 0) and gt = ∇f(wt). The main result in
this setting is summarized below.

6
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Theorem 3.3. Suppose f satisfy Assumption 3.1 and gt = ∇f(wt). Moreover, β > 0 and
η[k] > 0 are chosen such that ν0[k] ≤ 1

L for all k ∈ [d]. Then the iterates of KATE satisfies

min
t≤T

∥∇f(wt)∥2 ≤

(
2(f(w0)−f∗)√

η0β
+
∑d

k=1 b0[k]
)2

T + 1
,

where η0 := mink∈[d] η[k].

Discussion on Theorem 3.3. Theorem 3.3 establishes an O (1/T) convergence rate for KATE,
which is optimal for finding a first-order stationary point of a non-convex problem (Carmon et al.,
2020). However, this result is not parameter-free. To prove the convergence, we assume that ν0[k] ≤
1
L , ∀k ∈ [d] in Theorem 3.3, which is equivalent to β

√
1 + η0 (∇kf(w0))

2 ≤ (∇kf(w0))
2
/L, ∀k ∈

[d]. Note that the later condition holds for sufficiently small (dependent on L) values of β, η0 > 0.

However, it is possible to derive a parameter-free version of Theorem 3.3. Indeed, Lemma 2.2 implies
that the step sizes are decreasing. Therefore, we can break down the analysis of KATE into two
phases: Phase I when ν0[k] > 1/L and Phase II when ν0[k] ≤ 1/L, when the current analysis works,
and then follow the proof techniques of Ward et al. (2020) and Xie et al. (2020). We leave this
extension as a possible future direction of our work.

Stochastic setting. Next, we present the convergence guarantees for KATE in the stochastic case,
when we can access an unbiased gradient estimate gt with non-zero noise.

Theorem 3.4. Suppose f satisfy Assumption 3.1 and gt is an unbiased estimator of ∇f(wt) such
that BV holds. Moreover, we assume ∥∇f(wt)∥2 ≤ γ2 for all t. Then the iterates of KATE satisfy

min
t≤T

E [∥∇f(wt)∥] ≤
(
∥g0∥
T

+
2(γ + σ)√

T

)1/2
√

2Cf
β
√
η0

,

where η0 := mink∈[d] η[k] and

Cf := f(w0)− f∗ + 2βσ
∑d

k=1

√
η[k] log

(
e(σ2+γ2)T

g2
0 [k]

)
+
∑d

k=1

(
β2η[k]L

2 + β2L
2g2

0 [k]

)
log

(
e(σ2+γ2)T

g2
0 [k]

)
.

Comparison with prior work. Theorem 3.4 shows an O(log
1/2 T/T 1/4) convergence rate for KATE

with respect to the metric mint≤T E [∥∇f(wt)∥] for the stochastic setting. Note that, in the stochastic
setting, KATE achieves a slower rate than Theorem 3.3 due to noise accumulation. Up to the
logarithmic factor, this rate is optimal (Arjevani et al., 2023). Similar rates for the same metric follow
from the results6 of (Défossez et al., 2020) for AdaGrad and Adam.

Finally, Li and Orabona (2019) considers a variant of AdaGrad closely related to KATE:

wt+1 = wt −
βgt(

diag
(
∆I +

∑t−1
τ=1gτg

⊤
τ

)) 1
2+ε

, (16)

for some ε ∈ [0, 1/2) and ∆ > 0. It differs from AdaGrad in two key aspects: the denominator of
the stepsize does not contain the last stochastic gradient, and also, instead of the square root of the
sum of squared gradients, this sum is taken in the power of 1/2 + ε. However, the results from Li and
Orabona (2019) do not imply convergence for the case of ε = 1/2, which is expected since, in this
case, the stepsize converges to zero too quickly in general. To compensate for such a rapid decrease,
in KATE, we introduce an increasing sequence mt in the numerator of the stepsize.

6Défossez et al. (2020) derive O(log T/
√
T) convergence rates for AdaGrad and Adam in terms of

mint≤T E
[
∥∇f(wt)∥2

]
which is not smaller than mint≤T (E [∥∇f(wt)∥])2.

7
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Proof technique. Compared to the AdaGrad, KATE uses more aggressive steps (the larger nu-
merator of KATE due to the extra term

∑t
τ=0

g2
τ [k]/b2τ [k]). Therefore, we expect KATE to have better

empirical performance. However, introducing
∑t

τ=0
g2
τ [k]/b2τ [k] in the numerator raises additional

technical difficulties in the proof technique. Fortunately, as we rigorously show, the KATE steps νt[k]
retain some of the critical properties of AdaGrad steps. For instance, they (i) are lower bounded by
AdaGrad steps up to a constant, (ii) decrease with iteration t (Lemma 2.2), and (iii) have closed-form
upper bounds for

∑T
t=0 ν

2
t [k]g

2
t [k]. These are indeed the primary building blocks of our proof

technique.

4 Numerical Experiments
In this section, we implement KATE in several machine learning tasks to evaluate its performance.
To ensure transparency and facilitate reproducibility, we provide an access to the source code for all
of our experiments at https://github.com/nazya/KATE.

4.1 Logistic Regression

In this section, we consider the logistic regression model

min
w∈Rd

f(w) =
1

n

n∑
i=1

log
(
1 + exp

(
−yix

⊤
i w

))
, (17)

to elaborate on the scale-invariance and robustness of KATE for various initializations. For the
experiments of this Section 4.1, we used Mac mini (M1, 2020), RAM 8 GB and storage 256 GB.
Each of these plots took about 20 minutes to run.

4.1.1 Robustness of KATE

To conduct this experiment, we set the total number of samples to 1000 (i.e. n = 1000). Here, we
simulate the independent vectors xi ∈ R20 such that each entry is from N (0, 1). Moreover, we
generate a diagonal matrix V ∈ R20×20 such that log Vkk

iid∼ Unif(−10, 10), ∀k ∈ [20]. Similarly,
we generate w∗ ∈ R20 with each component from N (0, 1) and set the labels

yi =

{
1, x⊤

i V w∗ ≥ 0,
−1, x⊤

i V w∗ < 0,
∀i ∈ [n].

We compare KATE’s performance with four other algorithms: AdaGrad, AdaGradNorm, SGD-
decay and SGD-constant, similar to the section 5.1 of Ward et al. (2020). For each algo-
rithm, we initialize with w0 = 0 ∈ R20 and independently draw a sample of mini-batch
size 10 to update the weight vector wt. We compare the algorithms • AdaGrad with stepsize

β√
∆+

∑t
τ=0 g2

τ

, • AdaGradNorm with step size β√
∆+

∑t
τ=0∥gτ∥

2
, • SGD-decay with stepsize

β/∆
√
t+1, and • SGD-constant with step size β/∆. Similarly, for KATE we use stepsize βmt

b2t

where m2
t = ηb2t +

∑t
τ=0

g2
τ/b2τ and b2t = ∆+

∑t
τ=0 g

2
τ . Here, we choose β = f(w0)− f(w∗) and

vary ∆ in {10−8, 10−6, 10−4, 10−2, 1, 102, 104, 106, 108}.

In Figures 1a, 1b, and 1c, we plot the functional value f(wt) (on the y-axis) after 104, 5 × 104,
and 105 iterations, respectively. In theory, the convergence of SGD requires the knowledge of
smoothness constant L. Therefore, when the ∆ is small (hence the stepsize is large), SGD-decay and
SGD-constant diverge. However, the adaptive algorithms KATE, AdaGrad, and AdaGradNorm
can auto-tune themselves and converge for a wide range of ∆s (even when the ∆ is too small). As we
observe in Figure 1, when the ∆ is small, KATE outperforms all other algorithms. For instance, when
∆ = 10−8, KATE achieves a functional value of 10−3 after only 104 iterations (see Figure 1a), while
other algorithms fail to achieve this even after 105 iterations (see Figure 1c). Furthermore, KATE
performs as well as AdaGrad and better than other algorithms when the ∆ is large. In particular,
this experiment highlights that KATE is robust to initialization ∆.

4.1.2 Peformance of KATE on Real Data

In this section, we examine KATE’s performance on real data. We test KATE on three datasets: heart,
australian, and splice from the LIBSVM library (Chang and Lin, 2011). The response variables yi of
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(a) Plot of f(wt)
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(b) Plot of Accuracy
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(c) Plot of Gradient Norm

Figure 1: Comparison of KATE with AdaGrad, AdaGradNorm, SGD-decay and SGD-constant
for different values of ∆ (on x-axis for logistic regression model. Figure 1a, 1b and 1c plots the
functional value f(wt) (on y-axis) after 104, 5× 104, and 105 iterations respectively.
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(a) Dataset: heart
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(b) Dataset: australian
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(c) Dataset: splice
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(d) Dataset: heart
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(e) Dataset: australian

0 1000 2000 3000 4000
iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

KATE
AdaGrad
AdaGradNorm
SGD-constant
SGD-decay

(f) Dataset: splice

Figure 2: Comparison of KATE with AdaGrad, AdaGradNorm, SGD-decay and SGD-constant
on datasets heart, australian, and splice from LIBSVM. Figures 2a, 2b and 2c plot the functional
value f(wt), while 2d, 2e and 2f plot the accuracy on y-axis for 5, 000 iterations.

each of these datasets contain two classes, and we use them for binary classification tasks using a
logistic regression model (17). We take η = 1/(∇f(w0))

2 for KATE and tune β in all the experiments.
For tuning β, we do a grid search on the list {10−10, 10−8, 10−6, 10−4, 10−2, 1}. Similarly, we tune
stepsizes for other algorithms. We take 5 trials for each of these algorithms and plot the mean of their
trajectories.

We plot the functional value f(wt) (i.e. loss function) in Figures 2a, 2b and 2c, whereas Figures 2d,
2e and 2f plot the corresponding accuracy of the weight vector wt on the y-axis for 5, 000 iterations.
We observe that KATE performs superior to all other algorithms, even on real datasets.

4.2 Training of Neural Networks

In this section, we compare the performance of KATE, AdaGrad and Adam on two tasks, i.e. training
ResNet18 (He et al., 2016) on the CIFAR10 dataset (Krizhevsky and Hinton, 2009) and BERT (Devlin
et al., 2018) fine-tuning on the emotions dataset (Saravia et al., 2018) from the Hugging Face Hub.
We use internal cluster with the following hardware: AMD EPYC 7552 48-Core Processor, 512GiB
RAM, NVIDIA A100 40GB GPU, 200gb user storage space.
General comparison. We choose standard parameters for Adam (β1 = 0.9 and β2 = 0.999) that
are default values in PyTorch and select the learning rate of 10−5 for all considered methods. We run
KATE with different values of η ∈ {0, 10−1, 10−2}. For the image classification task, we normalize
the images (similar to Horváth and Richtárik (2020)) and use a mini-batch size of 500. For the BERT
fine-tuning, we use a mini-batch size 160 for all methods.

Figures 3-8 report the evolution of top-1 accuracy and cross-entropy loss (on the y-axis) calculated
on the test data. For the image classification task, we observe that KATE with different choices of
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Figure 3: CIFAR10: η = 0
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Figure 4: CIFAR10: η =
0.001
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Figure 5: CIFAR10: η =
0.1
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Figure 6: Emotion: η = 0
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Figure 7: Emotion: η =
0.001
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Figure 8: Emotion: η = 0.1

η outperforms Adam and AdaGrad. Finally, we also observe that KATE performs comparably to
Adam on the BERT fine-tuning task and is better than AdaGrad. These preliminary results highlight
the potential of KATE to be applied for training neural networks for different tasks. For BERT each
run takes about 35 minutes, and 25 minutes for ResNet.
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Figure 9: Cifar10: η = 0.001
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Figure 10: Emotion: η = 0.001

Hyper-parameters tuning. Next, we compare baselines presented
in Saravia et al. (2018) for emotions classification and Zhang et al.
(2019) for image classification. These papers provide efficient setups
for learning rates and learning rate schedulers that are reasonable to
compare with. Saravia et al. (2018) performs a search of efficient
learning rate and uses a linear learning rate scheduler with warmup
for Adam optimizer. A different learning rate (1e-5), ∆=1e-5 and
the same scheduler applied for KATE lead to the same performance,
see Figure 9. We would like to point out that it is challenging to
find a reference for hyper-parameters for a certain setup. Thus,
to fairly compare with Saravia et al. (2018) we use distilroberta-
base model. Zhang et al. (2019) did a grid search for an efficient
learning rate and used a multi-step scheduler for Adam optimizer,
decaying the learning rate by a factor of 5 at the 60th, 120th, and
160th epochs. Zhang et al. (2019) refers to DeVries and Taylor
(2017) for the code implementing special techniques, namely data
augmentation and cutout to achieve higher accuracy. A different
learning rate (1e-3), the same scheduler and ∆=1e-3 applied for
KATE demonstrates comparable performance, see Figure 10. For
BERT each run takes about 20 minutes, while 100 minutes for ResNet.
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Nguyen, L., Liu, J., Scheinberg, K., and Takáč, M. (2017a). Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In In 34th International Conference on Machine Learning,
ICML 2017.
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Nguyen, L. M., Scheinberg, K., and Takáč, M. (2021). Inexact sarah algorithm for stochastic optimization.
Optimization Methods and Software, 36(1):237–258.

Oberman, A. M. and Prazeres, M. (2019). Stochastic gradient descent with polyak’s learning rate. arXiv preprint
arXiv:1903.08688.

Orabona, F., Crammer, K., and Cesa-Bianchi, N. (2015). A generalized online mirror descent with applications
to classification and regression. Machine Learning, 99:411–435.

Orabona, F. and Pál, D. (2015). Scale-free algorithms for online linear optimization. In International Conference
on Algorithmic Learning Theory, pages 287–301. Springer.

Orabona, F. and Pál, D. (2018). Scale-free online learning. Theoretical Computer Science, 716:50–69.

Orvieto, A., Lacoste-Julien, S., and Loizou, N. (2022). Dynamics of sgd with stochastic polyak stepsizes: Truly
adaptive variants and convergence to exact solution. Advances in Neural Information Processing Systems,
35:26943–26954.

Polyak, B. T. (1969). Minimization of unsmooth functionals. USSR Computational Mathematics and Mathemat-
ical Physics, 9(3):14–29.

12

47411https://doi.org/10.52202/079017-1503



Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics,
pages 400–407.

Saravia, E., Liu, H.-C. T., Huang, Y.-H., Wu, J., and Chen, Y.-S. (2018). CARER: Contextualized affect
representations for emotion recognition. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3687–3697, Brussels, Belgium. Association for Computational
Linguistics.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms.
Cambridge university press.

Shi, Z., Sadiev, A., Loizou, N., Richtárik, P., and Takáč, M. (2023). AI-SARAH: Adaptive and implicit stochastic
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A Technical Lemmas

Lemma A.1 (AM-GM). For λ > 0 we have

ab ≤ λ

2
a2 +

1

2λ
b2. (18)

Lemma A.2 (Cauchy-Schwarz Inequality). For a1, · · · , an, b1, · · · , bn ∈ R we have(
n∑

i=1

a2
i

)(
n∑

i=1

b2i

)
≥

(
n∑

i=1

aibi

)2

. (19)

Lemma A.3 (Holder’s Inequality). Suppose X,Y are two random variables and p, q > 1 satisfy 1
p
+ 1

q
= 1.

Then
E (|XY |) ≤ (E (|X|p))

1
p (E (|Y |q))

1
q . (20)

Lemma A.4 (Jensen’s Inequality). For a convex function g : Rd → R and a random variable X such that
E(Ψ(X)) and Ψ(E(X)) are finite, we have

Ψ(E(X)) ≤ E(Ψ(X)). (21)

Lemma A.5. For a1, a2, · · · , an ≥ 0 and b1, b2, · · · , bn > 0 we have
n∑

i=1

ai√
bi

≥
∑n

i=1 ai√∑n
i=1 bi

. (22)

Proof. Expanding the LHS of (22) we get(
n∑

i=1

ai√
bi

)2

=

n∑
i=1

a2
i

bi
+ 2

∑
i̸=j

aiaj√
bibj

≥
n∑

i=1

a2
i

bi
. (23)

The last inequality follows from ai√
bi

≥ 0 for all i ∈ [n]. Now, using Cauchy-Schwarz Inequality (19), we have(
n∑

i=1

a2
i

bi

)(
n∑

i=1

bi

)
≥

(
n∑

i=1

ai

)2

. (24)

Then combining (23) and (24), we get(
n∑

i=1

ai√
bi

)2( n∑
i=1

bi

)
≥

(
n∑

i=1

ai

)2

.

Finally dividing both sides by
∑n

i=1 bi and taking square root we get the desired result.
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Lemma A.6. For k ∈ [d] and t ≥ 1 we have

Et

 β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

− νt[k]

∇kf(wt)gt[k]

 ≤
β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇f(wt))
2 + σ2

+2β
√

η[k]σEt

[
g2t [k]

b2t [k]

]
(25)

Proof. Note that, using νt[k] ≥
β
√

η[k]

bt[k]
we have

β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

− νt[k]

≤ β
√

η[k]

 1√
b2t−1[k] + (∇kf(wt))

2 + σ2

− 1

bt[k]



= β
√

η[k]

 b2t [k]− b2t−1[k]− (∇kf(wt))
2 − σ2

bt[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

(
bt[k] +

√
b2t−1[k] + (∇kf(wt))

2 + σ2

)


= β
√

η[k]

 g2t [k]− (∇kf(wt))
2 − σ2

bt[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

(
bt[k] +

√
b2t−1[k] + (∇kf(wt))

2 + σ2

)


= β
√

η[k]

 (gt[k] +∇kf(wt)) (gt[k]−∇kf(wt))− σ2

bt[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

(
bt[k] +

√
b2t−1[k] + (∇kf(wt))

2 + σ2

)


≤
β
√

η[k] |(gt[k] +∇kf(wt)) (gt[k]−∇kf(wt))|

bt[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

(
bt[k] +

√
b2t−1[k] + (∇kf(wt))

2 + σ2

)
+

β
√

η[k]σ2

bt[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

(
bt[k] +

√
b2t−1[k] + (∇kf(wt))

2 + σ2

)
≤

β
√

η[k] |gt[k]−∇kf(wt)|

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2
+

β
√

η[k]σ

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2
. (26)

Note that the second last inequality follows from the use of triangle inequality in the following way

(gt[k] +∇kf(wt)) (gt[k]−∇kf(wt))− σ2 ≤
∣∣(gt[k] +∇kf(wt)) (gt[k]−∇kf(wt))− σ2

∣∣
≤ |(gt[k] +∇kf(wt)) (gt[k]−∇kf(wt))|+ σ2,

while the last inequality follows from

bt[k] +
√

b2t−1[k] + (∇kf(wt))
2 + σ2 ≥ |gt[k]|+ |∇kf(wt)| ≥ |gt[k] +∇kf(wt)| ,

bt[k] +
√

b2t−1[k] + (∇kf(wt))
2 + σ2 ≥ σ.
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Then from (26) we have

Et

 β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

− νt[k]

∇kf(wt)gt[k]


≤ β

√
η[k]Et

 |gt[k]−∇kf(wt)| |∇kf(wt)| |gt[k]|

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2


︸ ︷︷ ︸

term I

+β
√

η[k]Et

 σ |∇kf(wt)| |gt[k]|

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2


︸ ︷︷ ︸

term II

. (27)

For term I in (27), we use Lemma A.1 with

λ =
2σ2√

b2t−1[k] + (∇kf(wt))
2 + σ2

,

a =
|gt[k]|
bt[k]

,

b =
|gt[k]−∇kf(wt)| |∇kf(wt)|√
b2t−1[k] + (∇kf(wt))2 + σ2

,

to get

β
√

η[k]Et

 |gt[k]−∇kf(wt)| |∇kf(wt)| |gt[k]|

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2


≤

β
√

η[k]
√

b2t−1[k] + (∇kf(wt))
2 + σ2

4σ2

(∇kf(wt))
2 Et [gt[k]−∇kf(wt)]

2

b2t−1[k] + (∇kf(wt))
2 + σ2

+
β
√

η[k]σ2√
b2t−1[k] + (∇kf(wt))

2 + σ2

Et

[
g2t [k]

b2t [k]

]

≤
β
√

η[k] (∇kf(wt))
2

4
√

b2t−1[k] + (∇kf(wt))
2 + σ2

+ β
√

η[k]σEt

[
g2t [k]

b2t [k]

]
. (28)

The last inequality follows from BV. Similarly, we again use Lemma A.1 with

λ =
2√

b2t−1[k] + (∇kf(wt))
2 + σ2

,

a =
σ |gt[k]|
bt[k]

,

b =
|∇kf(wt)|√

b2t [k] + (∇kf(wt))
2 + σ2

and
√

b2t [k] + (∇kf(wt))
2 + σ2 ≥ σ to get

β
√

η[k]Et

 σ |∇kf(wt)| |gt[k]|

bt[k]
√

b2t−1[k] + (∇kf(wt))2 + σ2

 ≤ β
√

η[k]σEt

[
g2t [k]

b2t [k]

]

+
β
√

η[k] (∇kf(wt))
2

4
√

b2t−1[k] + (∇f(wt))
2 + σ2

. (29)
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Therefore using (28) and (29) in (28) we get

Et

 β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

− νt[k]

∇kf(wt)gt[k]

 ≤ 2β
√

η[k]σEt

[
g2t [k]

b2t [k]

]

+
β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇f(wt))
2 + σ2

.

This completes the proof of this Lemma.

Lemma A.7.
T∑

t=0

g2t [k]

b2t [k]
≤ log

(
b2T [k]

b20[k]

)
+ 1 (30)

Proof. Using b2t [k] =
∑t

τ=0 g
2
τ [k] we have

T∑
t=0

g2t [k]

b2t [k]
= 1 +

T∑
t=1

g2t [k]

b2t [k]

= 1 +

T∑
t=1

b2t [k]− b2t−1[k]

b2t [k]

= 1 +

T∑
t=1

1

b2t [k]

∫ b2t [k]

b2t−1[k]

dz

≤ 1 +

T∑
t=1

∫ b2t [k]

b2t−1[k]

dz

z

= 1 +

∫ b2T [k]

b20[k]

dz

z

= 1 + log

(
b2T [k]

b20[k]

)
.

The inequality follows from the fact 1
b2t [k]

≤ 1
z

when b2t−1[k] ≤ z ≤ b2t [k]. This completes the proof of the
Lemma.
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B Proof of Main Results

B.1 Proof of Proposition 2.1
Proposition B.1 (Scale invariance). Suppose we solve problems (4) and (5) using algorithm (6). Then, the
iterates ŵt and ŵV

t corresponding to (4) and (5) follow: ∀k ∈ [d]

ŵt+1[k] = ŵt[k]− βmt[k]∑t
τ=0g

2
τ [k]

gt[k], (31)

ŵV
t+1[k] = ŵV

t [k]− βmt[k]∑t
τ=0

(
gVτ [k]

)2 gVt [k] (32)

with gτ = φ′
iτ (x

⊤
iτ ŵτ )xiτ and gVτ = φ′

iτ (x
⊤
iτV ŵτ )V xiτ for iτ chosen uniformly from [n], τ = 0, 1, . . . , t,

t ≥ 0. Moreover, updates (31) and (32) satisfy

ŵt = V ŵV
t , V gt = gVt , f (ŵt) = fV

(
ŵV

t

)
for all t ≥ 0 when ŵ0 = ŵV

0 = 0 ∈ Rd. Furthermore we have∥∥gVt ∥∥2V −2 = ∥gt∥2 . (33)

Proof. First, we will show ŵt = V ŵV
t and V gt = gVt using induction. Note that for τ = 1 and k ∈ [d], we get

ŵ1[k] =
−βm0[k]φ

′
i0

(0)xi0
[k](

φ′
i0

(0)xi0
[k]

)2 = −βm0[k]
φ′
i0

(0)xi0
[k]

,

ŵV
1 [k] =

−βm0[k]φ
′
i0

(0)Vkkxi0
[k](

φ′
i0

(0)Vkkxi0
[k]

)2 = −βm0[k]
φ′
i0

(0)Vkkxi0
[k]

.

as ŵ0 = ŵV
0 = 0. Therefore, we have ∀k ∈ [d], ŵ1[k] = Vkkŵ

V
1 [k]. This can be equivalently written as

ŵ1 = V ŵV
1 , as V is a diagonal matrix. Then it is easy to check

V g1 = φ′
i1

(
x⊤
i1 ŵ1

)
V xi1 = φ′

i1

(
x⊤
i1V ŵV

1

)
V xi1 = gV1 , (34)

where the second equality follows from ŵ1 = V ŵV
1 . Now, we assume the proposition holds for τ = 1, · · · , t.

Then, we need to prove this proposition for τ = t+ 1. Note that, from (7) we have

ŵt+1[k] = ŵt[k]− βmt[k]∑t
τ=0 g2τ [k]

gt[k] = Vkkŵ
V
t [k]− βmt[k]V

2
kk∑t

τ=0(gVτ [k])2
gVt [k]

Vkk
= Vkkŵ

V
t+1[k].

Here, the second last equality follows from ŵτ = V ŵV
τ and V gτ = gVτ ∀τ ∈ [t], while the last equality

holds due to (32). Therefore, we have ŵt+1 = V ŵV
t+1. Then similar to (34) we get V gt+1 = gVt+1 using

ŵt+1 = V ŵV
t+1. Again, using ŵt = V ŵV

t , we can rewrite f(ŵt) as follow

f(ŵt) =
1
n

∑n
i=1 φi

(
x⊤
i ŵt

)
= 1

n

∑n
i=1 φi

(
x⊤
i V ŵV

t

)
= fV

(
ŵV

t

)
.

The last equality follows from (5). This proves f(ŵt) = fV
(
ŵV

t

)
. Finally using V gt = gVt we get∥∥gVt ∥∥2V −2 =

(
gVt
)⊤

V −2gVt = g⊤t V V −2V gt = ∥gt∥2 .

This completes the proof of Proposition 2.1.
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B.2 Proof of Lemma 2.2

Lemma B.2 (Decreasing step size). For νt[k] defined in (11) we have

νt+1[k] ≤ νt[k] ∀k ∈ [d].

Proof. We want to show that νt+1[k] ≤ νt[k]. Taking square and rearranging the terms (13) is equivalent to
proving

b4t [k]m
2
t+1[k] ≤ b4t+1[k]m

2
t [k]. (35)

Using the expansion of m2
t+1[k], b

2
t+1[k], LHS of (35) can be expanded as follow

b4t [k]m
2
t+1[k] = b4t [k]

(
m2

t [k] + η[k]g2t+1[k] +
g2t+1[k]

b2t [k] + g2t+1[k]

)
. (36)

Similarly, the RHS of (35) can be expanded to

b4t+1[k]m
2
t [k] = m2

t [k]
(
b2t [k] + g2t+1[k]

)2
= m2

t [k]b
4
t [k] +m2

t [k]g
4
t+1[k] + 2m2

t [k]g
2
t+1[k]b

2
t [k]. (37)

Therefore using (36) and (37), inequality (35) is equivalent to

b4t [k]

(
m2

t [k] + η[k]g2t+1[k] +
g2t+1[k]

b2t [k] + g2t+1[k]

)
≤ m2

t [k]b
4
t [k] +m2

t [k]g
4
t+1[k]

+2m2
t [k]g

2
t+1[k]b

2
t [k]. (38)

Now subtracting m2
t [k]b

4
t [k] from both sides of (38) and then multiplying both sides by b2t [k] + g2t+1[k], (38) is

equivalent to

η[k]g2t+1[k]b
6
t [k] + η[k]g4t+1[k]b

4
t [k] + g2t+1[k]b

4
t [k] ≤ m2

t [k]g
4
t+1[k]b

2
t [k] + 2m2

t [k]g
2
t+1[k]b

4
t [k]

+m2
t [k]g

6
t+1[k] + 2m2

t [k]g
4
t+1[k]b

2
t [k]. (39)

Therefore, proving (13) is equivalent to proving (39). Note that, from the expansion m2
t [k] = η[k]b2t [k] +∑t

τ=0

g2t [k]

b2t [k]
, we have m2

t [k] ≥
g20 [k]

b20[k]
= 1 and m2

t [k] ≥ η[k]b2t [k]. Then using m2
t [k] ≥ 1 we get

g4t+1[k]b
2
t [k] ≤ m2

t [k]g
4
t+1[k]b

2
t [k]. (40)

Again, using m2
t [k] ≥ η[k]b2t [k], we have

η[k]g2t+1[k]b
6
t [k] + η[k]g4t+1[k]b

4
t [k] ≤ m2

t [k]g
2
t+1[k]b

4
t [k] +m2

t [k]g
4
t+1[k]b

2
t [k]. (41)

Then adding (40) and (41) we get

η[k]g2t+1[k]b
6
t [k] + η[k]g4t+1[k]b

4
t [k] + g2t+1[k]b

4
t [k] ≤ m2

t [k]g
4
t+1[k]b

2
t [k] + 2m2

t [k]g
2
t+1[k]b

4
t [k].(42)

Therefore, (39) is true due to (42) and m2
t [k]g

6
t+1[k] + 2m2

t [k]g
4
t+1[k]b

2
t [k] ≥ 0. This completes the proof of

the Lemma.
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B.3 Proof of Theorem 3.3

Theorem B.3. Suppose f is L-smooth, gt = ∇f(wt) and η, β are chosen such that ν0[k] ≤ 1
L

for all k ∈ [d].
Then for (11) we have

min
t≤T

∥∇f(wt)∥2 ≤ 1

T + 1

(
d∑

k=1

b0[k] +
2(f(w0)− f∗)√

ηβ

)2

.

Proof. Suppose gt = ∇f(wt). Then using the smoothness of f we get

f(wT+1) ≤ f(wT ) + ⟨gT , wT+1 − wT ⟩+
L

2
∥wT+1 − wT ∥2

= f(wT ) +

d∑
k=1

gT [k] (wT+1[k]− wT [k]) +
L

2

d∑
k=1

(wT+1[k]− wT [k])
2

= f(wT )−
d∑

k=1

νT [k]g
2
T [k] +

L

2

d∑
k=1

ν2
T [k]g

2
T [k]

= f(wT )−
d∑

k=1

νT [k]

(
1− νT [k]

L

2

)
g2T [k].

Then using this bound recursively we get

f(wT+1) ≤ f(w0)−
T∑

t=0

d∑
k=1

νt[k]

(
1− νt[k]

L

2

)
g2t [k].

Note that, we initialized KATE such that ν0[k] ≤ 1
L
∀k ∈ [d]. Therefore using Lemma 2.2 we have νt[k] ≤ 1

L
,

which is equivalent to 1− νt[k]
L
2
≥ 1

2
for all k ∈ [d]. Hence from (43) we have

f(wT+1) ≤ f(w0)−
T∑

t=0

d∑
k=1

νt[k]

2
g2t [k].

Then rearranging the terms and using f(wT+1) ≥ f∗ we get
T∑

t=0

d∑
k=1

νt[k]

2
g2t [k] ≤ f(w0)− f∗. (43)

Then from (43) and mt[k] ≥
√
η0bt[k] we get

T∑
t=0

d∑
k=1

g2t [k]

bt[k]
≤ 2(f(w0)− f∗)√

η0β
. (44)

Now from the definition of b2t [k], we have b2t [k] = b2t−1[k] + g2t [k]. This can be rearranged to get

bT [k] = bT−1[k] +
g2T [k]

bT [k] + bT−1[k]

≤ bT−1[k] +
g2T [k]

bT [k]
(45)

≤ b0[k] +

T∑
t=0

g2t [k]

bt[k]
. (46)

Here the last inequality (46) follows from recursive use of (45). Then, taking squares on both sides and summing
over k ∈ [d] we get

d∑
k=1

b2T [k] ≤
d∑

k=1

(
b0[k] +

T∑
t=0

g2t [k]

bt[k]

)2

≤

(
d∑

k=1

b0[k] +

T∑
t=0

d∑
k=1

g2t [k]

bt[k]

)2

≤

(
d∑

k=1

b0[k] +
2(f(w0)− f∗)√

η0β

)2

. (47)
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The second inequality follows from b0[k] +
∑T

t=0

g2t [k]

bt[k]
≥ 0 for all k ∈ [d] and the last inequality from (44).

Now note that
∑T

t=0 ∥gt∥
2 =

∑T
t=0

∑d
k=1 g

2
t [k] =

∑d
k=1 b

2
t [k]. Therefore dividing both sides of (47) by

T + 1, we get

min
t≤T

∥∇f(wt)∥2 ≤ 1

T + 1

(
d∑

k=1

b0[k] +
2(f(w0)− f∗)√

η0β

)2

.

This completes the proof of the theorem.
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B.4 Proof of Theorem 3.4

Theorem B.4. Suppose f is a L-smooth function and gt is an unbiased estimator of ∇f(wt) such that BV
holds. Moreover, we assume ∥∇f(wt)∥2 ≤ γ2 for all t. Then KATE satisfies

min
t≤T

E∥∇f(wt)∥ ≤
(
∥g0∥
T

+
2(γ + σ)√

T

)1/2
√

2Cf

β
√
η0

where

Cf = f(w0)− f∗ +

d∑
k=1

(
2β
√

η[k]σ +
β2η[k]L

2
+

β2L

2g20 [k]

)(
log

(
(σ2 + γ2)T

g20 [k]

)
+ 1

)
.

Proof. Using smoothness, we have

f(wt+1) ≤ f(wt) + ⟨∇f(wt), wt+1 − wt⟩+
L

2
∥wt+1 − wt∥2

= f(wt) +

d∑
k=1

∇kf(wt) (wt+1[k]− wt[k]) +
L

2

d∑
k=1

(wt+1[k]− wt[k])
2

= f(wt)−
d∑

k=1

νt[k]∇kf(wt)gt[k] +
L

2

d∑
k=1

ν2
t [k]g

2
t [k].

Then, taking the expectation conditioned on wt, we have

Et [f(wt+1)] ≤ f(wt)−
d∑

k=1

Et [νt[k]∇kf(wt)gt[k]] +
L

2

d∑
k=1

Et

[
ν2
t [k]g

2
t [k]

]
= f(wt)−

d∑
k=1

Et [νt[k]∇kf(wt)gt[k]] +
L

2

d∑
k=1

Et

[
ν2
t [k]g

2
t [k]

]
−

d∑
k=1

β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

Et [∇kf(wt) (∇kf(wt)− gt[k])]

= f(wt) +

d∑
k=1

Et

 β
√

η[k]√
b2t−1[k] + (∇kf(wt))

2 + σ2

− νt[k]

∇kf(wt)gt[k]


+
L

2

d∑
k=1

Et

[
ν2
t [k]g

2
t [k]

]
−

d∑
k=1

β
√

η[k] (∇kf(wt))
2√

b2t−1[k] + (∇kf(wt))
2 + σ2

.

The second last equality follows from Et [∇kf(wt) (∇kf(wt)− gt[k])] =
∇kf(wt) (∇kf(wt)− Et [gt[k]]) = 0. Now we use (25) to get

Et [f(wt+1)] ≤ f(wt) +

d∑
k=1

2β
√

η[k]σEt

[
g2t [k]

b2t [k]

]
+

L

2

d∑
k=1

Et

[
ν2
t [k]g

2
t [k]

]
−

d∑
k=1

β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

.

Then rearranging the terms we have

d∑
k=1

β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

≤ f(wt)− Et [f(wt+1)] +

d∑
k=1

2β
√

η[k]σEt

[
g2t [k]

b2t [k]

]

+
L

2

d∑
k=1

Et

[
ν2
t [k]g

2
t [k]

]
.
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Now we take the total expectations to derive

d∑
k=1

E

 β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

 ≤ E [f(wt)]− E [f(wt+1)] +

d∑
k=1

2β
√

η[k]σE
[
g2t [k]

b2t [k]

]

+
L

2

d∑
k=1

E
[
ν2
t [k]g

2
t [k]

]
.

The above inequality holds for any t. Therefore summing up from t = 0 to t = T and using f(wT+1) ≥ f∗ we
get

T∑
t=0

d∑
k=1

E

 β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

 ≤ f(w0)− f∗ +

T∑
t=0

d∑
k=1

2β
√

η[k]σE
[
g2t [k]

b2t [k]

]

+
L

2

T∑
t=0

d∑
k=1

E
[
ν2
t [k]g

2
t [k]

]
. (48)

Note that, using the expansion of ν2
t [k] we have

ν2
t [k] =

β2η[k]b2t [k] + β2∑t
j=0

g2j [k]

b2j [k]

b4t [k]

=
β2η[k]

b2t [k]
+

β2

b4t [k]

t∑
j=0

g2j [k]

b2j [k]

≤ β2η[k]

b2t [k]
+

β2

b4t [k]b
2
0[k]

t∑
j=0

g2j [k] (49)

=
β2η[k]

b2t [k]
+

β2

b2t [k]g
2
0 [k]

. (50)

Here (49) follows from b2j [k] ≥ b20[k] and (50) from b2t [k] =
∑t

j=0 g
2
j [k]. Then using (50) in (48) we derive

T∑
t=0

d∑
k=1

E

 β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

 ≤ f(w0)− f∗ +

T∑
t=0

d∑
k=1

(
2β
√

η[k]σ +
β2η[k]L

2
+

β2L

2g20 [k]

)
E
[
g2t [k]

b2t [k]

]
≤ f(w0)− f∗

+

d∑
k=1

(
2β
√

η[k]σ +
β2η[k]L

2
+

β2L

2g20 [k]

)
E
[
log

(
b2T [k]

b20[k]

)
+ 1

]
.

Here the last inequality follows from (30). Now using Jensen’s Inequality (21) with Ψ(z) = log(z) we have

T∑
t=0

d∑
k=1

E

 β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

 ≤ f(w0)− f∗

+

d∑
k=1

(
2β
√

η[k]σ +
β2η[k]L

2
+

β2L

2g20 [k]

)(
log

(
E
[
b2T [k]

]
b20[k]

)
+ 1

)
.

Now note that E
[
b2T [k]

]
=
∑T

t=0 E
[
g2t [k]

]
=
∑T

t=0 E [gt[k]−∇kf(wt)]
2 + (∇kf(wt))

2 ≤ (σ2 + γ2)T .
Therefore, we have the bound

T∑
t=0

d∑
k=1

E

 β
√

η[k] (∇kf(wt))
2

2
√

b2t−1[k] + (∇kf(wt))
2 + σ2

 ≤ f(w0)− f∗ + 2βσ

d∑
k=1

√
η[k] log

(
e(σ2 + γ2)T

b20[k]

)

+

d∑
k=1

(
β2η[k]L

2
+

β2L

2g20 [k]

)
log

(
e(σ2 + γ2)T

b20[k]

)
.

(51)
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Here the RHS is exactly Cf . Using (22) we have

d∑
k=1

(∇kf(wt))
2√

b2t−1[k] + (∇kf(wt))
2 + σ2

≥
∑d

k=1 (∇kf(wt))
2√∑d

k=1 b
2
t−1[k] + (∇kf(wt))

2 + σ2

=
∥∇f(wt)∥2√

∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

. (52)

Therefore using (52) in (51) we arrive at

T∑
t=0

E

 ∥∇f(wt)∥2√
∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

 ≤ 2Cf

β
√
η0

. (53)

Now we use Holder’s Inequality (20) E(XY )

(E|Y |3)
1
3
≤
(
E|X|

3
2

) 2
3 with

X =

 ∥∇f(wt)∥2√
∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

 2
3

and Y =

(√
∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

) 2
3

to get a lower bound on LHS of (53):

E

 ∥∇f(wt)∥2√
∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

 ≥
E
[
∥∇f(wt)∥

4
3

] 3
2√

E
(
∥bt−1∥2 + ∥∇f(wt)∥2 + dσ2

)
≥

E
[
∥∇f(wt)∥

4
3

] 3
2√

∥b0∥2 + 2t(γ2 + dσ2)
. (54)

Therefore from (53) and (54) we get

T√
∥b0∥2 + 2T (γ2 + dσ2)

min
t≤T

E
[
∥∇f(wt)∥

4
3

] 3
2 ≤ 2Cf

β
√
η0

.

Then multiplying both sides by ∥b0∥+
√
2T (γ+

√
dσ)

T
we have

min
t≤T

E
[
∥∇f(wt)∥

4
3

] 3
2 ≤

(
∥b0∥
T

+
2(γ + σ)√

T

)
2Cf

β
√
η0

.

Here we use E [∥∇f(wt)∥]
4
3 ≤ E

[
∥∇f(wt)∥

4
3

]
(follows from Jensen’s Inequality (21) with Ψ(z) = z

4/3) in
the above equation to get

min
t≤T

E [∥∇f(wt)∥]2 ≤
(
∥b0∥
T

+
2(γ + σ)√

T

)
2Cf

β
√
η0

.

This completes the proof of the Theorem.
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C Additional Experiments: Scale-Invariance Verification

In this experiment, we implement KATE on problems (4) (for unscaled data) and (5) (for scaled data) with

φi(z) = log (1 + exp (−yiz)) .

We generate the data similar to Section 4.1.1. We run KATE for 10, 000 iterations with mini-batch size 10,
η = 1/(∇f(w0))

2 and plot functional value f(wt) and accuracy in Figures 11a and 11b. We use the proportion of
correctly classified samples to compute accuracy, i.e. 1

n

∑n
i=1 1{yix⊤

i wt≥0}.

In plots 11a and 11b, the functional value and accuracy of KATE coincide, which aligns with our theoretical
findings (Proposition 2.1). Figure 11c plots ∥∇f(wt)∥2 and ∥∇f(wt)∥2V −2 for unscaled and scaled data
respectively. Here, (10) explains the identical values taken by the corresponding gradient norms of KATE iterates
for the scaled and unscaled data. Similarly, in Figure 12, we compare the performance of AdaGrad on scaled
and un-scaled data. This figure illustrates the lack of the scale-invariance for AdaGrad.
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(a) Plot of f(wt)

0 2000 4000 6000 8000 10000
iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Dataset: (xi, yi)
Dataset: (Vxi, yi)

(b) Plot of Accuracy
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(c) Plot of Gradient Norm

Figure 11: Comparison of KATE on scaled and un-scaled data. Figures 11a, and 11b plot the
functional value f(wt) and accuracy on scaled and unscaled data, respectively. Figure 11c plots
∥∇f(wt)∥2 and ∥∇f(wt)∥2V −2 for unscaled and scaled data respectively.

(a) Plot of f(wt) (b) Plot of Accuracy (c) Plot of Gradient Norm

Figure 12: Comparison of AdaGrad on scaled and un-scaled data. Figures 12a, and 12b plot the
functional value f(wt) and accuracy on scaled and unscaled data, respectively. Figure 12c plots
∥∇f(wt)∥2 and ∥∇f(wt)∥2V −2 for unscaled and scaled data respectively.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: the new method and its scale invariance property are introduced in Section 2, main
convergence results are provided in Section 3, and the numerical results are provided in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Section 3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: see Section 3 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: the results are consistent for different runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We have added all the details in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the paper follows NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: the paper is mostly theoretical and does not have a direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: we do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: not applicable.

Guidelines:
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paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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