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Abstract

There are two issues in news-driven multi-stock movement prediction tasks that are
not well solved in the existing works. On the one hand, “relation discovery” is a
pivotal part when leveraging the price information of other stocks to achieve accu-
rate stock movement prediction. Given that stock relations are often unidirectional,
such as the “supplier-consumer” relationship, causal relations are more appropriate
to capture the impact between stocks. On the other hand, there is substantial
noise existing in the news data leading to extracting effective information with
difficulty. With these two issues in mind, we propose a novel framework called
CausalStock for news-driven multi-stock movement prediction, which discovers
the temporal causal relations between stocks. We design a lag-dependent tempo-
ral causal discovery mechanism to model the temporal causal graph distribution.
Then a Functional Causal Model is employed to encapsulate the discovered causal
relations and predict the stock movements. Additionally, we propose a Denoised
News Encoder by taking advantage of the excellent text evaluation ability of large
language models (LLMs) to extract useful information from massive news data.
The experiment results show that CausalStock outperforms the strong baselines
for both news-driven multi-stock movement prediction and multi-stock movement
prediction tasks on six real-world datasets collected from the US, China, Japan,
and UK markets. Moreover, getting benefit from the causal relations, CausalStock
could offer a clear prediction mechanism with good explainability.

1 Introduction

The financial services industry has maintained a leading position in embracing data science method-
ologies to inform investment determinations. Within this domain, quantitative trading has garnered
substantial attention from both academia and industry. Researchers have consistently worked on ex-
ploring different approaches to predict the stock movement (rise or fall of stock price) for many years,
such as uni-stock movement prediction [21], multi-stock movement prediction [44, 23], news-driven
stock movement prediction [42, 19] and so on, which have shown significant success. These methods
usually model the stock movement prediction task as a time series classification problem.

In this paper, we focus on the news-driven multi-stock movement prediction task. A prevalent
model paradigm for this task often takes the historical price features and the stock-related news
of multiple stocks as inputs and then leverages the well-designed neural networks to make stock
movement predictions. There are two key modeling points for tackling this task: modeling the stock
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relations to enhance the prediction accuracy, and building the text mining module to extract effective
information from news data that benefits stock movement prediction. Although previous work has
made significant progress, there are still some issues that require further attention. We will elaborate
on them in the following.

For stock relation modeling, many existing works are commonly attention-based [15, 19, 23] or
graph-based [34, 23]. These methods aim to model the correlation relation between stocks. However,
the company relations are often unidirectional, such as the “investing” and “member of,” leading to
the unidirectional relations of their stocks. Thus, causal relations are more appropriate for depicting
the impact between stocks, as they identify the direction of information flow and are more informative
than correlations. With the development of causal science, many researchers have started to use deep
end-to-end networks for causal relations discovery of panel data or temporal data [9, 14], in which the
causal relations are defined as directed acyclic graphs, i.e., causal graphs, and the Functional Causal
Models (FCMs) are often utilized to optimize the causal graph by simulating the data generation
mechanism. This provides a solid theoretical foundation for causal discovery for stocks.

In recent years, an extrinsic text mining module has emerged as a plausible avenue through the
alignment of financial news and social media posts, thereby elucidating intricate market insights
that extend well beyond mere considerations of price dynamics, trading volumes, or financial indica-
tors [41, 17, 35, 33]. Conventional text representations obtained by using GRU [42] or LSTM [15]
exhibit many limitations. Specifically, news text data are often characterized by substantial noise
because of the presence of irrelevant or ambiguous information [38, 7, 37]. The effective information
for stock movement prediction gets intertwined with this noise, presenting a considerable challenge
for these modules to discern meaningful signals accurately. In contrast, Large Language Models
(LLMs) have unique advantages in this situation due to their advanced knowledge and reasoning
abilities. Besides, LLMs can identify meaningful information within noisy environments [29, 4].

Motivated by these requirements, we propose an innovative news-driven multi-stock movement
prediction model named CausalStock. In CausalStock, we design a Denoised News Encoder, which
leverages LLMs to score every news text from multiple perspectives. Then the evaluation scores are
taken as denoised text representations. To discover the causal relations between stocks, we propose a
Lag-dependent temporal causal discovery module, from which we obtain the causal graph distribution.
Based on the input market information and learned causal graph distribution, CausalStock employs
an FCM [14] to make predictions. We summarize the contributions of our paper as follows:

• We propose a novel news-driven multi-stock movement prediction method named Causal-
Stock, which could discover the causal relations among stocks and make accurate movement
predictions simultaneously.

• Different from the past lag-independent causal discovery method [9], CausalStock involves
a lag-dependent temporal causal discovery module, which intuitively links the temporal
causal relations according to the time lag, making it more suitable for temporal stock data.

• To extract useful information from the massive noisy news text data, an LLM-based Denoised
News Encoder is proposed by taking advantage of the evaluation ability of LLM, which
outputs the denoised news representation for better information utilization.

Experiments on 6 public benchmarks show the performance of CausalStock as a news-driven multi-
stock movement prediction method. Moreover, we conduct extensive analytical experiments to show
the explainability of our key modules.

2 Related work

Stock prices prediction In traditional trading practices, there are two analysis paradigms commonly
used to make stock movement predictions: technical analysis and fundamental analysis. With
technical analysis, investors and traders tend to forecast stock prices relying on historical price
patterns. Fundamental analysis aims to assess the intrinsic value of a stock by considering other factors
besides historical prices, such as financial statements, industry trends, and economic conditions.

Since stock movement prediction involves sequential data, RNN-based networks are applied in many
works. ALSTM [28] integrated a dual-stage attention mechanism with LSTM. Adv-ALSTM [8]
further employed adversarial training by adding perturbations to simulate the stochastic and unstable
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nature of the price variable. In recent years, researchers also exploited attention-based mechanisms to
model complex interactions. DTML [44] is proposed to predict by using a transformer and LSTM
to capture the asymmetric and dynamic correlations between stocks. With the development and
prosperity of NLP technology, text from social media and online news has become a new popular
source of fundamental analysis. HAN [15] designed two attention networks to recognize both the
influential time periods of a sequence and the important news at a given time. Stocknet [42] proposed
a deep generative model with recurrent, continuous latent variables. MSHAN [13] exploited a
multi-stage TCN-LSTM hybrid model. PEN [21] proposed a Shared Representation Learning
module to capture interactions between price data and text data. Additionally, many works modeled
the correlation between stocks to enhance stock price prediction. MAN-SF [32] constructed a
graph attention network with price features, social media, and inter-stock relationships based on
the interrelationship between price and tweets. CMIN [23] was proposed to model the asymmetric
correlations between stocks by computing transfer entropy. In addition, Co-CPC [40] modeled
the dependence between a certain stock industry and relevant macroeconomic variables. All the
aforementioned methods aim to discover the correlation relations among stocks, as elaborated before,
the causal relations are more appropriate to depict the information flow of stocks. In this work, we
aim to model the causal relations for better stock movement prediction performance.

Causal discovery The conventional approach to discovering causal relations typically involves
conducting randomized experiments [27, 12]. However, conducting randomized experiments can
often be excessively expensive, overly time-consuming, or impossible to execute. Consequently,
causal discovery, which aims to infer causal relationships from purely observational data, has attracted
considerable attention within the machine learning community over the last decade [5, 12]. Causal
discovery can be classified into three groups: constraint-based [10, 30, 31], score-based [2, 26, 46],
and functional causal models (FCMs) [12, 26]. FCMs define the causal relations by directed acyclic
graphs (DAGs) and identify causal links through nonlinear functions, such as neural networks [14, 9,
47, 18]. Specifically, DECI [9] is a deep end-to-end framework to discover causal relations based on
additive noise FCM. After that, Rhino [14] was proposed to tackle the temporal causal discovery
problem, which incorporates non-linear relations, instantaneous effects, and flexible history-dependent
noise. In this work, we focus on utilizing the FCM to discover stock relations.

3 Preliminary & problem formulation

3.1 Preliminary

In CausalStock, we integrate the model inputs with causal relations into FCM for prediction. In this
section, we introduce the fundamental concepts of FCM and the temporal causal graph.

Temporal causal graph Consider a multivariate time series {Xi
t}Di=1 with D variables, the

temporal causal graph G [46] is commonly defined as a series of directed acyclic graph G =
[G1, G2, . . . , GL] = {Gl}Ll=1 ∈ RL×D×D with maximum time lag L. Each Gl ∈ RD×D specifies
the lagged causal relationships between Xt−l and Xt, the element Gl,ji = 1 if there exists a causal
link Xj

t−l −→ Xi
t and Gl,ji = 0 otherwise.

Functional causal model (FCM) FCM represents a set of generative functions that incorporate the
input features based on causal knowledge (structured as a causal graph) to produce a final prediction.
Optimizing the prediction accuracy concurrently refines the underlying causal graph. The theoretical
demonstration presented in [14, 9] indicates that if the prediction is accurate, the causal graph can
be considered a reliable approximation of real causal relations. Given the temporal causal graph G
defined as before, a temporal FCM is defined as follows:

Xi
t = Fi

(
Pai

G (< t) , zit

)
, (1)

where PaiG (< t) indicates the time-lagged parent nodes of variableXi
t following the temporal causal

graph G and zit represents mutually and serially independent exogenous noise. Here Fi is a function
which implies how variable Xi

t depends on its parents and the noise zit. Given the distribution of
noises for different variables {zit}Di=1 and causal graph, this FCM induces a joint distribution of the
multivariate time series process {Xi

t}Di=1.
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3.2 Problem formulation

Figure 1: Illustration of the process
of stock movement yT forecasting.
The forecasting process is denoted
by solid lines with parameters θ and
the causal discovery process is de-
noted by dashed lines with varia-
tional approximation parameters ϕ,
qϕ is the posterior distribution of
the causal graph.

In this paper, we focus on tackling the news-driven multi-stock
movement prediction task. For the target trading day T , we
denote the model inputs as the past L time lag information
of D stocks as X<T = {Xi

t}i=1:D
t=T−L:T−1 = [C<T ,P<T ] =

{[Ci
t , P

i
t ]}i=1:D

t=T−L:T−1, where Ci
t and P i

t represent the news
corpora representation and the historical price features rep-
resentation of i-th stock at time step t respectively. The ob-
jective is to predict the movement of adjusted close prices
yT = {yiT }Di=1 ∈ RD×1 on T -th trading day of all stocks si-
multaneously, where yiT ∈ {0, 1} representing the i-th stock
price will fall or rise at trading day T , i.e., stock movement.
In a theoretical way, this task could be trained by maximiz-
ing the log-likelihood of conditional probability distribution
p (yT | X<T ), so that the most likely yT are generated.

4 CausalStock

4.1 Model overview

The conditional probability distribution could be further factorized as follows:

p (yT | X<T ) =

∫
G

p (yT ,G | X<T ) dG =

∫
G

p (yT | X<T ,G) p (G | X<T ) dG. (2)

The overall process is taken as two joint training parts: temporal causal graph discovery p (G | X<T )
and the prediction process given the causal relations p (yT | X<T ,G). The probabilistic graphic
representation of this modeling process is shown in Figure 1. In CausalStock, we develop a lag-
dependent causal discovery module, according to which we could take another step by modeling
p (G | X<T ) as a lag-dependent format:

p (G | X<T ) = p (G1 | XT−1)

L∏
l=2

p (Gl | Gl−1, XT−l) . (3)

For the prediction part p (yT | X<T ,G), we design an FCM as shown in Equation 9 to predict the
future movement based on the past information X<T and the discovered temporal causal graph G.

In a nutshell, CausalStock comprises three primary components as shown in Figure 2:

1. Market Information Encoder (MIE) encodes the news text and price features. In this part, an
LLM-based Denoised News Encoder is proposed;

2. Lag-dependent Temporal Causal Discovery (Lag-dependent TCD) module leverages varia-
tional inference to mine the causal relationship based on the given market information of
stocks, i.e., modeling p (G | X<T );

3. Functional Causal Model (FCM) generates the prediction of future price movements accord-
ing to the discovered causal graph, i.e., modeling p (yT | X<T ,G).

4.2 Market information encoder (MIE)

Market Information Encoder (MIE) takes news corpora and numerical stock price features as
inputs, and outputs the historical market information representations X<T = [C<T ,P<T ] =
{[Ci

t , P
i
t ]}i=1:D

t=T−L:T−1 = {Xi
t}i=1:D

t=T−L:T−1 for D stocks with time lag L. For i-th stock, each time
step representation Xi

t is the combination of the text representation Ci
t generated by the news encoder

and the historical price features representation P i
t generated by the price encoder.

Price encoder For i-th stock, we denote the raw adjusted closing, highest, lowest, open, closing
prices and trading volume on trading day t as P̂ i

t =
[
P̂ i,a
t , P̂ i,h

t , P̂ i,l
t , P̂ i,o

t , P̂ i,c
t , Vt

]
. By feeding P̂ i

t

into the embedding layer, the historical prices could be represented as P i
t ∈ Rdp×1, where dp is the

price embedding size.
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Figure 2: The structure of CausalStock. For illustration, we use market information during 07/02 -
07/05 of three stocks (AAPL, GOOG, META) to predict the movements of 07/05.

LLM-based denoised news encoder (DNE) News Encoder aims to embed stock-related news
text, which evolves from the small sequential module, e.g., GRU [23], to pre-trained models, e.g.,
Bert and Roberta [6, 22], offering greater performance and scalability. However, news text data
often contains massive noise due to the following factors. Firstly, news comes from a wide range
of sources with varying degrees of reliability and editorial standards. This variability contributes to
inconsistencies and inaccuracies in the information presented. Secondly, the sheer volume of news
content generated daily can lead to information overload, where significant information is buried
under less relevant or redundant information. Thirdly, the use of complex or ambiguous language
can also add noise, making it difficult to extract precise information relevant to specific needs, such
as stock movement prediction. Addressing these challenges requires sophisticated text mining and
natural language processing techniques to filter out noise and extract useful, accurate information
from news text data. With the development of large language models, current large language models
can accurately capture the meaning of text and have a strong capability to evaluate text. Therefore,
here we propose an LLM-based Denoised News Encoder to tackle these standing challenges.

LLM-based Denoised News Encoder is an innovative textual representation approach that not only
proficiently captures salient information from extensive news texts but also assimilates external
knowledge derived from LLMs to enrich the representations. Specifically, we employ an LLM
and devise a series of prompts (see Appendix A for the whole designed prompts) to analyze the
relationship between a news text and a specific stock from five dimensions: correlation between
the news and the stock, sentiment polarity of the news, significance of the news event, potential
impact of the news on stock prices, and duration of the news impact. Each dimension is scored, with
Correlation, Importance, Impact, and Duration ranging from 0 to 10, while Sentiment varies from
−1 to 1. Thus the i-th text at day t is represented as a five-dimensional representation Ĉi

t ∈ Rl×5.
After the embedding layer, we obtain the final denoised news embedding Ci

t ∈ Rl×dm . This novel
encoding method amalgamates information derived from the primary text, the external knowledge
embedded and the evaluation ability within the LLM. Besides, this method effectively reduces the
significant noise present in the original text data.

4.3 Lag-dependent temporal causal discovery (Lag-dependent TCD)

In this section, we propose Lag-dependent Temporal Causal Discovery module. Inspired by [14], our
model takes a Bayesian view for modeling the distribution of temporal causal graph, which aims to
learn the posterior distribution p (G | X<T ). Unfortunately, the exact graph posterior is intractable
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because of the large combination space of G. Here we adopt the variational inference [3] to get the
approximator qϕ (G), where ϕ indicates the parameter set of variational inference.

Graph prior The prior p (G) consists of two parts: the graph sparseness prior and the domain-
specific knowledge prior. The unnormalised graph prior is as follows,

p(G) ∝ exp
(
−λs ∥G1:L∥2F − λd ∥G1:L −Gp

1:L∥
2
F

)
, (4)

where λs and λd are scalar weights of graph sparseness and domain-specific knowledge constraint;
Gp is an optional domain-specific knowledge graph, which allows users to incorporate pre-defined
knowledge for guiding CausalStock, turning it into a knowledge and data-driven framework. Suppose
a sudden event affects the causal relationships between stocks, such as a company ending a partnership.
By incorporating this new pre-defined knowledge into Gp, the causal graph is dynamically updated to
reflect the latest market structure and relationship changes. ∥·∥F denotes Frobenius norm. It should
be noted that there is no need to give a DAG constraint for the temporal causal graph defined in our
paper, it is DAG naturally for the irreversibility of time.

Variational approximating graph posterior According to Equation 3, we factorize the approx-
imator qϕ (G) in the same way. For each underlying causal link Gl,ji in G, we let the posterior
qϕ (Gl,ji | Gl−1,ji) subject to a Bernoulli distribution B. So that the probability distribution of
qϕ (G) could be a product of Bernoulli distributions as follows,

qϕ (G) = qϕ (G1)

L∏
l=2

qϕ (Gl | Gl−1) =

D∏
i=1

D∏
j=1

qϕ (G1,ji)

L∏
l=2

D∏
i=1

D∏
j=1

qϕ (Gl,ji | Gl−1,ji) . (5)

The existence and non-existence likelihood tensors of causal links are parameterized as U =

{Ul}Ll=1 = {ul,ji}j,i=1:D
l=1:L ∈ RL×D×D and V = {Vl}Ll=1 = {vl,ji}j,i=1:D

l=1:L ∈ RL×D×D separately,
where ul,ji indicates the likelihood for edge existence from Xj

T−l to yiT and vl,ji is the likelihood for
no-edge, which are all learnable parameters. To model the dependency between Gl,ij with Gl−1,ij ,
we propose the following transformation:

u′
l,ji = hu (ul,ji, ul−1,ji) , v

′
l,ji = hv (vl,ji, vl−1,ji) , (6)

where hu and hv are trainable 3-layer MLPs. After normalization, the link existence probability
tensor is denoted as Σ = {Σl}Ll=1 = {σl,ji}j,i=1:D

l=1:L ,

σl,ji = exp
(
u′
l,ji

)
/
(
exp

(
u′
l,ji

)
+ exp

(
v′l,ji

))
, (7)

where σl,ji represents the link probability from Xj
T−l to yi

T . Thus, we could derive the variational
posterior:

qϕ (G1,ji) ∼ B (1, σ1,ji) , qϕ (Gl,ji|Gl−1,ji) ∼ B (1, σl,ji) , qϕ (G) ∼
L∏

l=1

D∏
i=1

D∏
i=1

B (1, σl,ji) . (8)

In the training stage, we employ the Gumbel-softmax reparameterization [24, 16] to stochastically
estimate the gradients with respect to ϕ. Besides, we design another parameterized learnable causal
weight graph Ĝ = {Ĝl}Ll=1 ∈ RL×D×D to measure the causal degree. The separate design of the
causal existence graph and the causal weight graph allows for more comprehensive modeling of
causality. Once our model is fitted, the time series causal graph G can be sampled by G ∼ qϕ (G) to
represent the relation network and information flow of the stock market.

4.4 Functional causal model (FCM)

In this section, we design an FCM to model pθ (yT | X<T ,G), where θ denotes the parameter set of
FCM. We focus on additive noise FCM [18] to generate yT = {yi

T }Di=1 ∈ RD×1:

yi
T = Fi

(
Pai

G (< T ) , ziT

)
= fi

(
Pai

G (< T )
)
+ ziT , (9)

where zit represents mutually and serially independent dynamical noise, and fi : RD×L −→ R1 are
general differentiable non-linear function that satisfies the relations specified by the temporal causal
graph G strictly, namely, if Xj

t /∈ PaiG(< T ), then ∂fi/∂X
j
t = 0.

6
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We design a novel FCM to aggregate market information including news and prices based on the
discovered causal graph G and causal weight graph Ĝ:

fi
(
Pai

G (< T )
)
= Sigmoid

(
ζi

(
L∑

l=1

D∑
j=1

Gl,jiĜl,ji

[
ℓ
(
P j
T−l

)
, ψ
(
Cj

T−l

)]))
, (10)

where ζi, ℓ and ψ are all neural networks. ℓ and ψ are shared weights across nodes and lags for
efficient computation. [·, ·] denotes the concatenate operation. We apply the logistic Sigmoid function
to output the movement probability of yT and use it directly as the output of CausalStock.

For the exogenous noise zi
T modeling, we adopt Gaussian distribution, i.e., ziT ∼ N

(
0,
(
σi
)2)

,

where per-variable variances
(
σi
)2
, i ∈ [1, D] are trainable parameters to represent the uncertainty

part. According to Change of variables formula [18], the conditional distribution pθ
(
yiT | PaiG (< t)

)
could be represented as:

pθ
(
yiT | Pai

G (< t)
)
= pzi

(
ziT

) ∣∣∣∣ ∂Fi

∂ziT

∣∣∣∣−1

= pzi

(
ziT

)
, (11)

where pzi is the aforementioned Gaussian distribution for stock i.
∣∣∣ ∂Fi

∂zi
T

∣∣∣ indicates the absolute value

of the Jacobian-determinant for Fi,
∣∣∣ ∂Fi

∂zi
T

∣∣∣−1

= 1 is derived according to Equation 9. Now the log
likelihood log pθ (yT | X<T ,G) could be further represented as:

log pθ (yT | X<T ,G) =

D∑
i=1

log pθ
(
yiT | Pai

G(< T )
)
=

D∑
i=1

log pzi

(
ziT

)
. (12)

4.5 Training objective

We train our model by maximizing the conditional log-likelihood log pθ (yT | X<T ). The variational
evidence lower bound (ELBO) of the model objective is derived as follows:

log pθ (yT | X<T ) = log

∫
G

qϕ (G)

qϕ (G)
pθ (yT | X<T ,G) p (G) dG

≥
∫
G

qϕ (G) log pθ (yT | X<T ,G) p (G) dG+H (qϕ (G))

≥ Eqϕ(G)[log pθ (yT | X<T ,G) + log p (G)] +H (qϕ (G))

≥ Eqϕ(G)

[
D∑
i=1

log pzi

(
ziT

)
+ log p (G)

]
+H (qϕ (G)) .

(13)

Here, p (G) represents the prior of causal graph, and H (qϕ (G)) is the entropy of the posterior
approximator. log pθ (yT | X<T ,G) = log pz (zT ) is the log-likelihood of the target distribution, in
which zT is calculated by Equation 9 at training stage.

Besides, we further adopt the binary cross entropy loss as another objective BCE (gT ,yT ) to improve
the learning performance, where gT is the ground truth movement at target trading day T . Overall,
the final training loss L is as follows,

BCE (gT ,yT ) = −
D∑
i=1

(
giT log

(
yiT

)
+
(
1−giT

)
log
(
1−yiT

))
L =

1

D
(−ELBO + λBCE(gT ,yT ))

(14)

where λ is the scalar weight to balance loss terms. We note that the required assumptions and the
theoretical guarantees are summarized in Appendix B.

5 Experiments

5.1 Experimental setup

Except for the news-driven multi-stock movement prediction task, our model could also handle the
multi-stock movement prediction task without news by removing the Denoised News Encoder. Thus,
we do the experiments for both two tasks.

7
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Table 1: Main results of CausalStock and baselines for two stock movement prediction tasks on
multiple datasets. Following the setting of baselines, the standard deviations are calculated across 10
runs for the news-driven task and 5 runs for the task without news.

News-driven Multi-stock movement prediction task

Models
ACL18 (US) CMIN-US (US) CMIN-CN (CN)

ACC MCC ACC MCC ACC MCC
HAN 57.64 ± 0.0040 0.0518 ± 0.0050 53.72 ± 0.0020 0.0103 ± 0.0015 53.59 ± 0.0037 0.0159 ± 0.0026

StockNet 58.23 ± 0.0030 0.0808 ± 0.0071 52.46 ± 0.0041 0.0220 ± 0.0025 54.53 ± 0.0062 0.0450 ± 0.0043
PEN 59.89 ± 0.0090 0.1556 ± 0.0018 53.20 ± 0.0051 0.0267 ± 0.0023 54.83 ± 0.0086 0.0857 ± 0.0065

CMIN 62.69 ± 0.0029 0.2090 ± 0.0016 53.43 ± 0.0085 0.0460 ± 0.0055 55.28 ± 0.0094 0.1110 ± 0.0990
CausalStock 63.42 ± 0.0039 0.2172 ± 0.0017 54.64 ± 0.0083 0.0481 ± 0.0057 56.19 ± 0.0084 0.1417 ± 0.0813

Multi-stock movement prediction task

Models
KDD17 (US) NI225 (JP) FTSE100 (UK)

ACC MCC ACC MCC ACC MCC
LSTM 51.18 ± 0.0066 0.0187 ± 0.0110 50.79 ± 0.0079 0.0148 ± 0.0162 50.96 ± 0.0065 0.0187 ± 0.0129

ALSTM 51.66 ± 0.0041 0.0316 ± 0.0119 50.60 ± 0.0066 0.0125 ± 0.0139 51.06 ± 0.0038 0.0231 ± 0.0077
StockNet 51.93 ± 0.0001 0.0335 ± 0.0050 50.15 ± 0.0054 0.0050 ± 0.0118 50.36 ± 0.0095 0.0134 ± 0.0135

Adv-ALSTM 51.69 ± 0.0058 0.0333 ± 0.0137 51.60 ± 0.0103 0.0340 ± 0.0201 50.66 ± 0.0067 0.0155 ± 0.0140
DTML 53.53 ± 0.0075 0.0733 ± 0.0195 52.76 ± 0.0103 0.0626 ± 0.0230 52.08 ± 0.0121 0.0502 ± 0.0214

CausalStock 56.09 ± 0.0069 0.1235 ± 0.0189 53.01 ± 0.0150 0.0640 ± 0.0310 52.88 ± 0.0009 0.0534 ± 0.0210

Dataset (Appendix C.1): We train and evaluate our model and baselines on six datasets: ACL18 [42],
CMIN-US [23], CMIN-CN [23], KDD17 [45], NI225 [44], and FTSE100 [44]. The first three of
them including both historical prices and text data are used for news-driven multi-stock movement
prediction task evaluation, while the last three are for multi-stock movement prediction task evaluation
without news data. Evaluation metrics (Appendix C.2): We evaluate the prediction performance of
models by Accuracy (ACC) and Matthews Correlation Coefficients (MCC). Baselines (Appendix
C.3): HAN [15], Stocknet [42], PEN [21], CMIN [23] for news-driven multi-stock movement
prediction task. LSTM [25], ALSTM [28], Adv-ALSTM [8], DTML [44] for multi-stock movement
prediction task. Parameter setup (Appendix C.4): Our model is implemented with Pytorch on 4
NVIDIA Tesla V100 and optimized by Adam [20]. The parameter sensitivity study can be found in
Appendix C.4.

5.2 Results of prediction accuracy

As shown in the top half of Table 1, CausalStock outperforms all baselines on ACC as well as MCC
across three datasets demonstrating robustness performance for news-driven multi-stock movement
prediction task. For the multi-stock movement prediction task, the results are reported in the bottom
half of Table 1. As can be seen, CausalStock exceeds all baselines across three datasets with stable
performance. Overall, the results demonstrate that the proposed CausalStock can indeed improve the
performance for two stock movement prediction tasks, showing the strong capabilities in handling
financial texts and discovering causal relations among stocks.

5.3 Ablation study

For the ablation study, we conduct several model variants on ACL18, CMIN-CN and CMIN-US to
explore the contributions of different settings in CausalStock. For the main framework, we have
the following five variants. CausalStock w/o TCD: removing the causal discovery module from
CausalStock; CausalStock w/o News: removing the news encoder from CausalStock and just taking
prices data as input; CausalStock w/o link non-existence modeling: only model the causal link exis-
tence likelihood and leverage Sigmoid function to obtain the link existence probability; CausalStock
w/o Lag-dependent TCD: replacing the Lag-dependent Temporal Causal Discovery module with
the Lag-independent Temporal Causal Discovery module; CausalStock with Variable-dependent
TCD: we add a variable-dependent causal mechanism that explicitly captures the dependencies
among different stock edges. Specifically, each edge’s probability is conditioned on the states of all
other edges at the same time step, and the conditional function is the same as the function in the
lag-dependent mechanism (Equation 6). Furthermore, we explore the performance of six different
Traditional News Encoders by replacing the denoised news encoder, which outputs the news embed-
dings as representations. CausalStock with Glove + Bi-GRU: leveraging the Glove word embedding
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Table 2: Ablation study results on different datasets.

Ablation Type Ablation Variants
ACL18 CMIN-US CMIN-CN

ACC MCC ACC MCC ACC MCC

Main Framework

CausalStock w/o TCD 51.08 0.0102 51.48 0.0106 51.37 0.0102
CausalStock w/o news 58.10 0.1421 53.16 0.0375 54.16 0.1264

CausalStock w/o link non-existence 58.21 0.1652 52.32 0.0241 53.96 0.0670
CausalStock w/o Lag-dependent TCD 59.19 0.1757 52.93 0.0312 54.97 0.1298

CausalStock with Variable-dependent TCD 63.50 0.2175 54.60 0.0479 56.25 0.1419

Traditional News Encoder

CausalStock with Glove+Bi-GRU 60.78 0.1952 53.87 0.0467 55.13 0.1326
CausalStock with Bert 61.74 0.2067 53.92 0.0472 55.43 0.1352

CausalStock with Roberta 61.81 0.2071 54.06 0.0477 55.58 0.1364
CausalStock with FinBert 61.72 0.2062 54.01 0.0471 55.61 0.1362
CausalStock with FinGPT 61.69 0.2060 54.00 0.0470 55.60 0.1360
CausalStock with Llama 62.20 0.2130 54.40 0.0480 55.85 0.1390

Denoised News Encoder
CausalStock with FinGPT 61.92 0.2105 54.30 0.0475 55.67 0.1386
CausalStock with Llama 62.82 0.2164 54.52 0.0483 55.97 0.1406

CausalStock (with GPT-3.5) 63.42 0.2172 54.64 0.0481 56.19 0.1417

and the Bi-GRU as news encoder [23]; CausalStock with Bert: leveraging the pre-trained Bert
(Bert-base-multilingual-cased [6]) as news encoder; CausalStock with Roberta: leveraging the
pre-trained Roberta (Roberta-base [22]) as news encoder; CausalStock with FinBert: leveraging
the pre-trained FinBert [1] as news encoder; CausalStock with FinGPT: leveraging the pre-trained
FinGPT (FinGPT-v3.3 [43]) as news encoder; CausalStock with Llama: leveraging the pre-trained
Llama ( Llama-7b-chat-hf [39]) as news encoder to output news embeddings. Moreover, we explore
the performance of three different LLMs for the denoised news encoder. CausalStock with FinGPT:
leveraging a financial LLM FinGPT (FinGPT-v3.3 [43]) as denoised news encoder; CausalStock
with Llama: leveraging Llama (Llama-7b-chat-hf [39]) as denoised news encoder. The ablation
study results are summarized in Table 2.

We have the following observations: (1) CausalStock with news encoders all perform better than
CausalStock without news, suggesting news data is particularly helpful for stock movement prediction.
(2) Compared to CausalStock w/o Lag-independent TCD, CausalStock with Lag-dependent TCD has
a better performance, demonstrating the value of the lag-dependent mechanism. (3) By comparing
the CausalStock and CausalStock with Variable-dependent TCD, the results show that incorporating
a variable-dependent causal mechanism has the potential to enhance model performance. However,
the improvements are not uniform and vary depending on the dataset, which emphasizes that further
validation is needed. While the above results show a promising performance of the variable-dependent
causal mechanism, it significantly increases the computational complexity (from O(L × D2) to
O(L × D4)), making it challenging to apply the model to markets with large numbers of stocks.
(3) By using FinGPT and Llama as the news encoder and denoised news encoder respectively, we
can observe that denoised news encoders have a relatively higher ACC and MCC than their as the
traditional news encoders, suggesting the value of denoised news encoders. Overall, the ablation
studies show that every component contributes to CausalStock.

5.4 Results of explainability

Here, we present many cases detailing the interpretability of CausalStock from two perspectives:
the news representation from the Denoised News Encoder, and the causal graph discovered by the
Lag-dependent TCD module.

Firstly, regarding the Denoised News Encoder module, three cases are selected as shown in Figure
3(c). A piece of news about APPL suggests a potential delay in its 5G iPhone launch, with Denoised
News Encoder giving it a negative sentiment score of −0.7 and an impact score of 9. Similarly, a
news about TSLA hints at surpassing a significant delivery milestone, receiving a positive sentiment
score of 0.7. In contrast, a news piece showing no discernible connection to GOOG is scored with
negligible impact. These cases indicate the Denoised News Encoder’s efficacy in discerning and
quantifying the potential influence of news on respective stock prices.

Secondly, concerning the causal graph discovered by Lag-dependent TCD, we denote the causal
strength graph as the dot product of the causal graph G and the causal weight graph Ĝ. Every item
of causal strength graph indicates not only the causality of two stocks but also the degree of causality.
The visualized causal strength matrix for ACL18 is shown in Figure 3(b) with a heatmap. From
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Stock: AAPL, Text: "Apple Likely
to Delay 5G iPhone Launch Until 

December Says Analyst”, 
Correlation:8, Sentiment:-0.7,

Importance:7, Impact:9, Duration:6

Stock: TSLA, Text: "Tesla Could 
Surpass the  1 Million Delivery 

Mark by 2022 Says Analyst”,
Correlation:8, Sentiment:0.7,

Importance:7, Impact:9, Duration:6

Stock: GOOL, Text: " 3 Tech Stocks
for Growth Investors to Buy”,
Correlation:0, Sentiment:0,

Importance:0, Impact:0, Duration:0

(a) (b) (c)

Figure 3: (a) Correlation visualization between market value and causal strength for the top 20
companies of UK and Chinese markets. (b) Partial causal strength matrix visualization for ACL18,
encompassing the companies with the highest and lowest market values across various industries.
Each matrix entry indicates causal strength between stocks, with darker shades signifying stronger
causality. (c) Examples of denoised news encoder module output.

various industries, we select companies with the highest and lowest market value. The top half of
Figure 3(b) represents stocks corresponding to the nine companies with the largest market value,
while the bottom half illustrates stocks from companies with the smallest. The causal strength of
stocks is determined based on the average overall lags. In this heatmap, we could observe that distinct
patterns emerge according to different market values. Stocks of low-market-value companies appear
to have less pronounced causal relationships. We could also observe causal connections between
certain high and low-market-value stocks. This is attributable to the dominant roles of large-value
companies with their significant impact on those small-value firms and the stock prices.

Based on these observations, we compute the Spearman’s rank correlation coefficient [36] between
the aforementioned company’s market value and their stock’s causal strength on ACL18, CMIN-CN,
NI225, and FSTE100 datasets, representing the US, Chinese, Japanese, and UK stock markets
respectively. The correlation results are shown in Appendix D and we also visualize some results in
Figure 3(a). These results show a strong positive correlation between the market value and causal
influence. This aligns with the intuition that not only do large-value companies hold pivotal economic
positions, but also play crucial roles in influencing other companies. Our findings demonstrate that
CausalStock does well in uncovering the causal relations within the stock market.

5.5 Investment simulation

Figure 4: Investment simulation results.

Model
ACL18 KDD17 NI225

SR APV SR APV SR APV
Market Index 0.107 1.07 0.056 1.10 0.080 1.18

PEN 0.293 1.12 0.132 1.39 0.171 1.43
DTML 0.304 1.11 0.157 1.39 0.184 1.42
CMIN 0.357 1.24 0.169 1.46 0.201 1.51

CausalStock 0.369 1.32 0.192 1.49 0.259 1.52

Following prior works [44, 23], we evaluate Causal-
Stock’s applicability to the real world trading sce-
nario. We conduct a portfolio strategy by choosing
the top three stocks (based on predicted probabilities)
with equal weight on each day of the test set and cal-
culate the Accumulated Portfolio Value (APV) and
Sharpe Ratio (SR) for evaluation. See Appendix C.2
for a metrics details. The results on three datasets are
shown in Table 4, which indicates that CausalStock
achieves higher profits, and the excellent capabilities
of CausalStock to balance risk with returns.

6 Conclusion

In this paper, we propose a novel news-driven multi-stock movement prediction framework called
CausalStock. We design a lag-dependent temporal causal discovery mechanism to uncover the
causal relations among the stocks. Then the functional causal model is employed to encapsulate
causal relations and predict future movements. The effectiveness of CausalStock is demonstrated by
experiments on multiple real-world datasets. Moreover, CausalStock could offer a clear prediction
process with explainability.
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A Prompt design

This structured prompt encompasses three fundamental components:

System: This section defines the role of the AI. It acts as a preliminary introduction to set the tone and
context for the AI. It informs the AI that its primary role is to analyze stock-related news in various
dimensions such as correlation, sentiment, importance, impact on prices, and duration of impact.

Default Prompt: This segment provides detailed instructions to the AI on how to carry out its analysis.
It outlines the specific criteria and the scales on which the news should be evaluated. It also provides
guidance on how to handle ambiguous or non-analyzable content and finally, it prescribes the desired
output format.

Input: The final section is where the user provides the specific details about the stock, the news
content, and the time of publication. It acts as the data point based on which the AI will perform its
analysis as instructed in the Default Prompt.

[System]

{As a stock trading news analyst, you are a helpful and precise assistant. Your task is to analyze the
correlation between news and the given stock, sentiment polarity of the news, importance of the news,
the impact of the news on stock prices, and the duration of the news impact.}

[Default Prompt]

I need you to analyze the provided stock-related news from five dimensions:

1. Correlation between the news and the given stock: Rate the correlation on a scale of 0 to 10, where
a higher score indicates a stronger correlation between the news and the given stock.

2. Sentiment polarity of the news: Rate the sentiment polarity on a scale of -1 to 1, where a value
closer to -1 indicates stronger negative sentiment and a value closer to 1 indicates stronger positive
sentiment.

3. Importance of the news event: Rate the importance on a scale of 0 to 10, where a higher score
indicates higher importance of the news event.

4. Impact of the news on stock prices: Rate the impact on a scale of 0 to 10, where a higher score
indicates a greater impact of the news on stock prices.

5. Duration of the news impact: Rate the duration on a scale of 0 to 10, where a higher score indicates
a longer potential duration of the news impact.

(When you encounter a situation where analysis is not possible, please try to avoid assigning all-zero
scores and instead make an effort to analyze the text content and derive scores accordingly. Only
when analysis is truly impossible should you assign a score of 0 to all factors.)

(Please refrain from providing analysis and simply provide the answer according to the following
format.)

Output format:

Correlation: <Correlation score between the news and the stock>

Sentiment: <Sentiment polarity score of the news>

Importance: <Importance score of the news event>

Impact: <Impact score of the news on stock prices>

Duration: <Duration score of the news impact>

[Input]

[Stock Name]: {stock name}

[News Content]:{news content}

[Publish Time]:{publish time}
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B Assumptions and theoretical guarantees

There are some common assumptions in causal discovery. In this paper, we assume our model
satisfies the Causal Markov Property, Minimality and Structural Identifiability, Correct Specification,
Causal Sufficiency and Regularity of log likelihood. A detailed explanation can be found in [9], which
explains how our model satisfies these assumptions. These assumptions guarantee the validity of
the causal relations discovered by CausalStock. Considering the instability of news data, we only
leverage price data P<T to discover causal graph G to meet the Causal Stationary assumption. Then
we use the discovered causal graph G for aggregating both news information and price information.
Technically, this could be realized by detaching the gradient from C<T to G.

C Datasets & metrics & baselines & parameter setting

C.1 Dataset

Six datasets from various countries’ stock markets are employed for conducting the experiments. The
first three are used for models of fundamental analysis, which include both historical prices and text
data. ACL18 [42] is a collection of data from 88 stocks in 9 industries in the US market over two
years. Specifically, the price vectors after preprocessing are made up of 7 entries: date, movement
percent, open price, high price, low price, close price, and volume, and the text data from Twitter
are treated with tokenization and cleaning. Two CMIN datasets [23] are published subsequently
following a similar format as ACL18. CMIN-US is collected from the US market, whereas CMIN-CN
comes from 300 CSI300 stocks in the Chinese market.

The other three datasets contain historical prices only and are applied to methods of technical analysis.
KDD17 [45] collects prices of 50 US stocks. [8] proposed to transfer the raw price vectors of KDD17
into 11 temporal features for normalizing prices and capturing the interaction between different
raw price entries. With this transfer calculation, NI225, and FTSE100 [44] record 11-feature stock
prices from the US, China, Japan, and UK market respectively over the different time periods. For
all datasets, the train-test set split is chronological. More detailed statistics about the datasets are
presented in Table 3 below.

Table 3: Dataset Description

Dataset Country Stock
Data Range Data Resource

Price DimTrain Valid Test Price Text

ACL18 1 US 88 2014/01/02-2015/08/02 2015/08/03-2015/09/30 2015/10/01-2016/01/01 Yahoo Finance Twitter 7
CMIN-US 2 US 110 2018/01/01-2021/04/30 2021/05/01-2021/08/31 2021/09/01-2021/12/31 Yahoo Finance Yahoo 7
CMIN-CN 2 CN 300 2018/01/01-2021/04/30 2021/05/01-2021/08/31 2021/09/01-2021/12/31 Yahoo Finance Wind 7

KDD17 3 US 50 2007/01/03-2015/01/01 2015/01/02-2016/01/03 2016/01/04-2017/01/01 Yahoo Finance - 11
NI225 4 JP 51 2016/07/01-2018/03/01 2018/03/02-2019/01/06 2019/01/07-2019/12/31 Yahoo Finance - 11

FTSE100 4 UK 24 2014/01/06-2017/01/03 2017/01/04-2017/07/03 2017/07/04-2018/06/30 - - 11

C.2 Metrics

Given the confusion matrix (
tp fn
fp tn

), where tp, fp, tn, fn represent the true positives, false

positives, true negatives and false negatives, we calculate ACC and MCC as follows:

ACC =
tp+ tn

tp+ tn+ fp+ gn
, (15)

MCC =
tp× tn− fp× fn√

(tp+ fp)(fn+ tp)(fn+ tn)(fp+ tn)
. (16)

1https://github.com/yumoxu/stocknet-dataset
2https://github.com/BigRoddy/CMIN-Dataset
3https://github.com/fulifeng/Adv-ALSTM
4https://datalab.snu.ac.kr/dtml
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Accumulated investment portfolio value (APV) shows the accumulation of wealth over time in an
intuitive form and the Sharpe Ratio (SR) is probably the most widely used metric to measure a trading
strategy’s return compared to its risk. The Sharpe ratio is calculated as follows,

APVt =

t∏
i=1

(1 + ri), (17)

SR =
E
[
APVt −Rf

]
S
[
APVt −Rf

] , (18)

where ri is the daily return ratio on i-th trading day and Rf is the risk-free return.

C.3 Baselines

For multi-stock movement prediction

• LSTM [25] is an LSTM-based network that is trained with a rolling window of the last 10
months. 175 technical indicators on the characteristic of stocks and 5 features on normalized
historical prices jointly form the input layer and are fed into the model.

• ALSTM [28] uses attentive LSTM in both encoder and decoder. The input attention
mechanism in the encoder could extract the relevant features of stock price, whereas the
temporal attention mechanism in the decoder could help learn the long-term dependencies.

• Adv-LSTM [8] tries to improve ALSTM through adversarial training to capture the stochas-
tic nature of stock price and ameliorate the over-fitting. During the training process, adver-
sarial examples are generated from latent representation and integrated with clean samples
to serve as input.

• DTML [44] exploits the correlations between stocks in three parts: compressing the mul-
tivariate historical prices of a stock into a context vector with attentive LSTM, generating
multi-level context vectors by aggregating local and global context, and capturing the
correlations between stocks via transformer encoder and self-attention.

For news-driven multi-stock movement prediction

• HAN [15]: uses attention mechanism to select useful news for stock movement prediction
from chaotic online resources. The framework first applies news-level attention to find out
more significant news in a date and encodes the output corpus vectors with Bi-GRU. Then,
another temporal attention is applied to focus on more impactful time periods.

• Stocknet [42]: predicts stock trend based on text and price with recurrent, continuous latent
variables. The model has 3 modules, which are Market Information Encoder (MIE), Varia-
tional Movement Decoder (VMD), and Attentive Temporal Auxiliary (ATA) in sequence.

• PEN [21]: a model that fuses the Bi-GRU text embedding and price inputs into Shared
Representation Learning (SRL) to study their interaction. SRL also yields a Vector of Salient
(VOS) that could display the importance of a piece of news and display the explainability of
the model.

• CMIN [23]: integrates causality-enhanced stock correlations and text for stock movement
prediction. The approach aims to cover not only the asymmetric correlations between stocks
via a newly proposed causal attention mechanism but also the multi-directional interactions
between text and stock correlations. In addition, two memory networks are used for selecting
the relevant information in text and stock correlation.

C.4 Parameter setting

Our model is implemented with Pytorch on 4 NVIDIA Tesla V100 and optimized by Adam [20]. All
parameters of our model are initialized with Xavier Initialization [11].To better explore the model’s
performance, we use grid search to decide on many key hyper-parameters. The learning rate is set
as 1e − 5 selected from [1e − 3, 1e − 4, 1e − 5, 1e − 6]. The time lag L is set as 5 selected from
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[3, 5, 7, 9]. We select the price encoder hidden size from [4, 8, 16] and get the best performance with
size 4. The batch size is set as 32. The scalar weight λ is set to 0.01. For the traditional news
encoder, the maximum word number in one piece of news and news number in one day are set to
w = 20, l = 10, respectively. The embedding size of word and news are set to dw = 50, dm = 64,
respectively. For the Lag-dependent temporal causal discovery module, λs = 1, hv and hu are all
1-layer MLPs. For the FCM part, the neural modules ζi, ℓ and ψ are all 3-layer MLPs with hidden
size 332.

Hyper-parameter sensitivity study We take a further step to analyze the main parameter sensitivity
of CausalStock. We tune the key hyper-parameters learning rate lr, maximum time lag L and loss
weight λ by grid search from this combination lr = 1e− 5, L = 5, λ = 0.01 while controlling other
parameters. Table 4 presents the results of metric ACC with different parameter settings on two tasks.

Table 4: Hyper-parameter sensitivity study results.

Parameters
Learning rate lr Time lag L Loss weight λ

1e-3 1e-4 1e-5 1e-6 3 5 7 9 0 0.1 0.01 0.001

ACL18 (with news) 62.56 62.34 63.42 61.58 61.04 63.42 63.29 63.15 58.26 62.35 63.42 63.45
KDD17 (w/o news) 55.45 55.69 56.09 55.13 54.94 56.09 55.95 55.94 53.19 55.57 56.09 55.45

D The correlation results

Table 5: The correlation of the causal strength and the market value of companies on four datasets.

Statistics ACL 18 NI225 CMIN-CN FTSE100
Spearman Corr. 0.7939 0.7212 0.6491 0.8909

P-Value 0.006 0.0185 0.0036 0.0005

E Limitations and future works

This paper explores a method that discovers causal relations based on theoretical considerations. In
the future, we could try to adopt meta-learning or incremental learning training methods to update the
causal graph iteratively, i.e. explore the time-varied causal graph. While the Bernoulli distribution is
suitable for determining whether a causal link exists, if we want to further explore the multi-level
nature of causal relationships, more complex distributions might be needed. In the future, we could
improve the model in this way.

F Broader impacts and safety issues

In this paper, we designed an LLM-based Denoised News Encoder to evaluate the news from multiple
perspectives by LLMs. There exists a risk that the evaluation results of LLMs may violate human
values. This safety issue needs careful consideration.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a novel stock movement prediction framework based on the
causal discovery method and LLMs, which are all introduced in detail in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a separate "Limitations" section, see Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the full proof and the assumptions in Section B and Section 4.5.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all the details of the implementing process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release code and data in GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard error in the result tables 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conformed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: See Section F.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make the best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have correctly cited all the data, scripts, and models we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have a READEME Document for our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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