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Abstract

Unsupervised skill discovery is a learning paradigm that aims to acquire diverse be-
haviors without explicit rewards. However, it faces challenges in learning complex
behaviors and often leads to learning unsafe or undesirable behaviors. For instance,
in various continuous control tasks, current unsupervised skill discovery methods
succeed in learning basic locomotions like standing but struggle with learning more
complex movements such as walking and running. Moreover, they may acquire
unsafe behaviors like tripping and rolling or navigate to undesirable locations such
as pitfalls or hazardous areas. In response, we present DoDont (Do’s and Dont’s),
an instruction-based skill discovery algorithm composed of two stages. First, in
instruction learning stage, DoDont leverages action-free instruction videos to train
an instruction network to distinguish desirable transitions from undesirable ones.
Then, in the skill learning stage, the instruction network adjusts the reward function
of the skill discovery algorithm to weight the desired behaviors. Specifically, we
integrate the instruction network into a distance-maximizing skill discovery algo-
rithm, where the instruction network serves as the distance function. Empirically,
with less than 8 instruction videos, DoDont effectively learns desirable behaviors
and avoids undesirable ones across complex continuous control tasks. Code and
videos are available at https://mynsng.github.io/dodont/

1 Introduction

Recent advancements in unsupervised pre-training methodologies have led to the creation of large-
scale foundational models across diverse domains, including computer vision [3, 41] and natural
language processing [7, 11, 22]. These methodologies exploit self-supervised learning objectives to
extract meaningful representations without using explicit, supervised learning signals. In attempts to
expand this paradigm to reinforcement learning, researchers have explored crafting self-supervised
objectives to develop foundational policies capable of learning diverse behaviors without predefined
reward signals, termed unsupervised skill discovery (USD) [1, 14, 9, 21, 43, 31, 24, 23, 27, 35, 38, 39].

Despite notable advancements in USD methodologies, acquiring foundational policies in environ-
ments with large state and action spaces (e.g., multi-jointed quadrupeds) remains a significant
challenge. Two major issues arise when training agents with USD in these complex environments.
First, the vast state and action spaces allow the agent to acquire a wide variety of behaviors. While
learning simple behaviors like standing may be feasible, acquiring complex behaviors that require
intricate joint movements, such as walking or running, can take an exceedingly long time. Second,
agents can develop undesirable and risky behaviors during training, such as tripping, rolling, or navi-
gating hazardous areas like pitfalls. These challenges raise a key question: Is the purely unsupervised
assumption of USD ideal for learning foundational policies in the real-world?
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Figure 1: (a) The offline instruction video dataset includes videos of desirable behaviors (Do’s) and
undesirable behaviors (Don’ts). (b) Unsupervised skill discovery algorithms tend to learn undesirable
behaviors. (c) In DoDont, an instruction network is first trained with the Do’s and Don’ts videos to
distinguish desirable and undesirable behaviors. Then, this instruction network adjusts the intrinsic
reward of the skill discovery algorithm, promoting desirable skills while avoiding undesirable ones.

According to social learning theory, humans learn behaviors through both internal and external
motivations [4, 5, 16]. Internally, they seek to perform diverse behaviors they haven’t tried before.
Externally, they adopt socially desirable behaviors and avoid those that are not. In the skill discovery
algorithm, this can be mimicked by combining internal motivation (USD objective) with external
motivation based on a human’s intention. A straightforward way to incorporate external motivation in
USD is to use a hand-designed reward function [26, 10]. However, hand-designing reward functions
are not scalable for learning diverse and desirable behaviors for several reasons. One of the reasons is
the complexity of designing an intricate reward signal for guiding a desired behavior, and another is
the difficulty of balancing multiple behavioral intentions into a single reward function.

To address these challenges, we propose DoDont, a skill discovery algorithm that integrates USD
objectives with intended behavioral goals. Instead of relying on a hand-designed reward, DoDont
learns a reward function from a small set of instruction videos that demonstrate desirable and
undesirable behaviors. Videos are chosen because they are inexpensive to collect and do not require
action or reward labels [13, 46].

As illustrated in Figure 1, DoDont starts by collecting instruction videos of desirable (Do’s) and
undesirable behaviors (Don’ts). We then train an instruction network which assigns higher values to
desirable behaviors and lower values to undesirable ones. This network re-weights the internal USD
objective for the skill discovery phase. We utilize a distance-maximizing skill discovery algorithm as
our main USD objective [35, 38, 39] where the instruction network serves as the distance metric.

To validate DoDont, we conduct experiments on various continuous control tasks that require complex
locomotion (e.g., Cheetah and Quadruped [45]) or precise manipulation (e.g., Kitchen [17]). Our
results show that with fewer than eight instruction videos, DoDont effectively learns complex
locomotion skills (e.g., running quadruped), which are challenging to acquire with standard USD
algorithms [39]. Moreover, our instruction network effectively captures human intentions better than
hand-designed reward functions in balancing multiple behavioral objectives. Additionally, DoDont
learns diverse skills while avoiding undesirable and unsafe behaviors (e.g., backflipping), which are
difficult to prevent even with previous skill discovery algorithms which utilize prior knowledge [26].

2 Related work

2.1 Learning diverse behaviors without pre-defined task

Numerous unsupervised skill discovery (USD) methods have been developed to create founda-
tional policies capable of learning a diverse behaviors without pre-defined task. The most com-
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mon approach involves maximizing mutual information (MI) between states and skills (I(S;Z) =
DKL(p(s, z)||p(s)p(z))) [14, 43, 31, 9, 27]. This is typically done by using an auxiliary neural net-
work qθ(z|s) to estimate a lower bound of I(S;Z) (I(S;Z) ≥ Ez, s[log qθ(z|s)]). This network acts
as a skill discriminator, predicting the skill z from the state s, which encourages the policy to create
distinct trajectories for different skills and promotes learning a wide range of skills. However, these
methods often struggle to learn complex, dynamic skills, as the MI objective can be met with simple,
static skills, leaving agents unmotivated to explore more intricate behaviors [44, 23, 30, 31, 24].

To overcome this problem, distance-maximizing skill discovery (DSD) methods have been intro-
duced [35, 38, 39]. Instead of maximizing MI between states and skills, DSD explicitly maximizes a
predefined distance function of states d : S×S → R+

0 . For instance, LSD [35] uses Euclidean distance
between states to encourage agents to move further distances (dLSD = ||s′− s||). CSD [38] employs a
density model based distance, promoting agents to visit less frequented states (dCSD = − log qθ(s

′|s),
where qθ is the density model). METRA [39] defines the distance temporally, pushing agents to learn
skills that are temporally far apart (dMETRA = minimum number of environment steps to reach s′ from
s). DoDont is built upon the DSD framework, which will be elaborated in Sections 3 and 4.

2.2 Learning diverse behaviors with pre-defined task

In contrast to USD, there is a line of research focused on learning policies that exhibit diverse
behaviors by integrating intrinsic motivation (e.g., MI-based rewards) with human intention, as
the form of task-specific reward functions [10, 26, 55, 54] or using demonstration datasets [40].
While traditional RL methods typically aim to find a single optimal policy, these approaches aim to
learn multiple policies πθ(a|s, zi=1:N ). This allows for multiple ways to solve given tasks, resulting
in increased robustness to environmental changes and the development of policies with distinct
characteristics.

SMERL [26] and DGPO [10] combine intrinsic and task rewards, maximizing their sum when task
rewards exceed a given threshold. RSPO [55] iteratively finds novel policies by switching between
task rewards and intrinsic diversity rewards, ensuring each new policy is distinct from previous
ones. DOMiNO [54] addresses a constrained optimization problem by maximizing intrinsic diversity
rewards while ensuring that all policies achieve sufficiently high performance (task rewards as
constraints). ASE [40] utilizes a action-free demonstration dataset instead of a task reward function,
minimizing a behavioral cloning loss while simultaneously maximizing a diversity intrinsic reward.
DoDont also employs action-free demonstration datasets to extract human prior knowledge through
an instruction network, pioneering the incorporation of both positive and negative behavior examples
to guide learning towards desired behaviors and away from undesirable ones.

3 Preliminaries and problem setting

Markov decision process and skill-conditioned policy. Unsupervised skill discovery (USD)
focuses on identifying a range of skills without pre-defined reward function. In this approach, we
use a reward-free Markov Decision Process defined as M = (S,A, µ, p). Here, S represents the
state space, A is the action space, µ denotes the initial state distribution, and p is transition dynamics
function. We utilize a latent vector z ∈ Z and their associated policy π(a|s, z), which we refer
to as skills. To generate a skill trajectory (i.e., behavior), we first sample a skill z from the prior
distribution, denoted as p(z), and then execute a trajectory using the skill policy π(a|s, z). For the
skill prior, we utilize a standard normal distribution to represent continuous skills by following
previous works [35, 38, 39].

Distance-maximizing skill discovery. As discussed in Section 2.1, numerous distance-maximizing
skill discovery methods have been proposed [35, 38, 39]. Specifically, DSD introduces the Wasserstein
dependency measure (WDM) as a learning objective for unsupervised skill discovery (USD) [34].

IW(S;Z) = W(p(s, z), p(s)p(z)) (1)

Here, W is the 1-Wasserstein distance on the metric space (S × Z, d), where d is a distance metric.
Unlike MI-based skill discovery methods (maximizing I(S;Z) = DKL(p(s, z)||p(s)p(z))) which
does not explicitly motivate the agent to learn more complex behaviors (as discussed in Section 2.1),
DSD maximizes the distance-aware IW(S;Z). By doing so, DSD not only discovers a set of
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distinguishable skills but also maximizes the distance d between different states. By defining the
distance function to encourage desired behaviors, DSD effectively induces the agent to learn these
behaviors.

In practice, by leveraging the Kantorovich-Rubenstein duality [48, 34] under some simplifying
assumptions, the following concise objective can be derived:

IW(ST ;Z) ≈ sup
∥ϕ∥L≤1

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
, (2)

where ϕ : S → RD is a function that maps states into D-dimensional space, ∥ϕ∥L denotes the
Lipschitz constant for the function ϕ under the given distance metric d. Now, we can rewrite
Equation 2 with an arbitrary distance function d : S × S → R+

0 as:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(x)− ϕ(y)∥2 ≤ d(x, y), ∀(x, y) ∈ S. (3)

For a detailed derivation, we advise readers to refer to Section 4 of METRA [39]. It’s important
to note that a generic distance function, d, does not necessarily need to meet the criteria of a valid
distance metric, such as symmetry or the triangle inequality. As shown in previous work [38], the
original constraint in Equation 3 can be implicitly converted into one with a valid pseudometric,
allowing us to use any non-negative function as a distance metric.

4 Do’s and don’ts (DoDont)

Our goal is to integrate human intention into USD, where diverse policies are learned without
predefined reward signals. The core concept of this work involves training an instruction network
using video data to distinguish desired and undesired behvaiors (Section 4.1). Then, we set the trained
instruction network as the distance metric in the distance-maximizing skill discovery framework
(Section 4.2). Consequently, this will result in an agent that not only learns diverse behaviors but also
incorporate human intention since the instruction network is set as the distance metric.

4.1 Instruction network

We aim to train an instruction network that assigns high values for desirable behaviors (Do’s) and low
values for undesirable behaviors (Don’ts). The distance metric in the WDM objective (in Equation 3)
takes two states as input and should predict a non-negative value.

To meet this requirement, we first prepare videos depicting desirable behaviors (i.e., Do’s) and videos
illustrating behaviors to avoid (i.e., Don’ts) according to our intentions. We then label our video
dataset by assigning y = 1 to adjacent state pairs (st, st+1) in Do’s videos and y = 0 to those in
Don’ts videos. This results in our Do’s and Don’t video dataset DV which is comprised of triplets
(st, st+1, y). After preparing our video dataset DV , we use it to train our instruction network p̂ψ,
which is designed to classify whether a given pair of adjacent states is from a Do’s video or a Don’ts
video. The training objective for the instruction network is a simple binary classification loss:

LInstruction = −E(st,st+1,y)∼DV [y log p̂ψ(st, st+1) + (1− y) log(1− p̂ψ(st, st+1))] . (4)

4.2 DoDont

Here, we integrate the learned instruction network into the online distance-maximizing skill discovery
algorithm. As p̂ψ is a non-negative function, we can directly use this instruction network as the
distance metric of the WDM objective in the Equation 3 as:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)−ϕ(s′)∥2 ≤ p̂ψ(s, s

′), ∀(s, s′) ∈ Sadj , (5)

where Sadj represents the set of adjacent state pairs. By assigning higher values to behaviors deemed
desirable by humans (i.e., large distances) and lower values to behaviors that should be avoided, it
guides the agent to learn skills that correspond to human intentions.
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Then, following previous work [38, 39, 49], we can optimize Equation 5 with dual gradient descent,
incorporating a Lagrange multiplier λ and a small slack variable ϵ > 0:

rDoDont := (ϕ(s′)− ϕ(s))⊤z,

J DoDont,ϕ := E[(ϕ(s′)− ϕ(s))⊤z] + λ ·min(ϵ, p̂ψ(s, s
′)− ∥ϕ(s)− ϕ(s′)∥),

J DoDont,λ := −λ · E[min(ϵ, p̂ψ(s, s
′)− ∥ϕ(s)− ϕ(s′)∥)],

(6)

where rDoDont is the intrinsic reward for the latent conditioned policy, and J DoDont,ϕ and J DoDont,λ

are the objectives for ϕ and λ. We note that since the instruction network p̂ψ is already trained on
DV , we keep p̂ψ frozen for training stability.

However, one drawback of Equation 5 is that rDoDont can reflect instruction signals from p̂ψ only after
ϕ(s) has been sufficiently trained through J DoDont,ϕ. This indicates that in the early stages of training
where ϕ(s) has not yet been sufficiently optimized, the agent may not properly receive instruction
signals. Such delay in receiving instruction signals could potentially slow down the training process.
Therefore, to ensure the agent receives instruction signals regardless of the training state of ϕ(s), we
note that the following equation can be easily derived from Equation 5 :

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

p̂ψ(s, s
′) (ϕ(st+1)− ϕ(st))

⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj ,

(7)

For a detailed derivation, please refer to the Appendix B. Through this rephrasing, we now separate
p̂ψ from the training of ϕ(s). This allows the agent to receive a direct instruction signal, as p̂ψ
explicitly multiplies with the original intrinsic reward, independent of the training of ϕ(s). In our
experiment, we found that this direct signal significantly enhances the agent’s ability to learn diverse
and desirable behaviors (Section 5.3). In addition, another advantage of Equation 7 is that it can be
interpreted as simply multiplying instruction network p̂ψ to the original learning objective function
of METRA. This allows us to implement our algorithm by simply adding a single line of code on top
of the METRA framework. We provide the pseudocode of DoDont Algorithm 1. Furthermore, our
instruction network can be applied to zero-shot offline RL to learn diverse behaviors while prioritizing
desirable behaviors within the offline unlabeled dataset. Detailed explanations and experiments are
presented in Appendix A.

5 Experiments

5.1 Experimental setup

QuadrupedCheetah Kitchen

Figure 2: Benchmark environments.

Our experiments aim to evaluate the effectiveness of the
DoDont method in learning desirable behaviors while
avoiding undesirable ones across various environments
and instruction scenarios. We test DoDont in two contexts:
complex locomotion tasks (Cheetah and Quadruped envi-
ronments from the DeepMind Control (DMC) Suite [45])
and precise manipulation tasks (Kitchen environment [17,
33]) (Figure 2). For pixel-based inputs in the DMC envi-
ronments, we colored the floors to help the agent be aware
of its location from the pixel data, consistent with previous studies [36, 20, 39].

For quantitative comparisons in locomotion tasks, we use two main metrics: (i) state coverage and (ii)
zero-shot task reward. State coverage is measured by counting the x-axis coverage for Cheetah and
x, y-axis coverage for Quadruped achieved by the learned skills at each evaluation epoch, following
prior literature [39]. Zero-shot task reward evaluates the learned skills without task-specific training
rewards to assess whether the agent efficiently learns or avoids specific behaviors. Our quantitative
analysis uses four random seeds and provides 95% confidence intervals, represented by error bars or
shaded areas. For each instruction scenario, we use eight videos (four "do" videos and four "don’t"
videos), unless otherwise specified. Additional details are elaborated in Appendix D.
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To comprehensively evaluate DoDont’s performance, we compare it against three types of baselines.
First, to determine if an instruction network facilitates acquiring intended behavior, we compare
DoDont with METRA [39], a state-of-the-art online unsupervised skill discovery algorithm. Second,
to assess the effectiveness of our video-based intention network against a hand-designed reward
function, we introduce METRA†, a modified version of METRA that uses hand-designed reward
functions as the distance metric. Finally, to verify if using an instruction network as a distance function
effectively integrates our intention with skill discovery algorithms, we compare it to SMERL [26]
and DGPO [10], which integrate task rewards in specialized ways. In this comparison, we use our
intention network as the task reward function for both SMERL and DGPO. Details are in Appendix D.

5.2 Main experiment

In this section, our experiments are designed to answer the following research questions:

• How efficiently does DoDont learn complex behaviors in locomotion tasks? (Section 5.2.1)

• Does DoDont learn diverse behaviors while avoiding hazardous areas? (Section 5.2.2)

• Can DoDont learn diverse behaviors without learning unsafe behaviors? (Section 5.2.3)

• Can DoDont be applied to a manipulation environment? (Section 5.2.4)

5.2.1 How efficiently does DoDont learn complex behaviors in locomotion tasks?

Quadruped

State Coverage Zero-shot Run Reward

Cheetah

State Coverage Zero-shot Run Reward Instruction video Learned skills

Quadruped

Figure 3: Left: State coverage and zero-shot task reward for Cheetah and Quadruped. Right: Visual-
ization of Do videos in our instruction video dataset and learned skills by DoDont. We are able to
observe that DoDont does not simply mimic instruction videos but extracts desirable behaviors (e.g.,
run) from the videos and learn diverse skills.

In this experiment, we aim to evaluate whether DoDont can effectively learn diverse complex
behaviors by simply providing videos of desirable but complex behaviors. To accomplish this, we set
videos of agents successfully running as Do’s and random action videos as Don’ts for the Cheetah
and Quadruped environment. As shown in Figure 3, DoDont achieves higher running rewards than
METRA in both environments. Specifically, in the Quadruped environment, METRA primarily
learns rolling movements for locomotion, while DoDont learns to run upright. Please refer to the
project page videos for further details (link). Additionally, DoDont exhibits higher state coverage
than METRA, since DoDont effectively learn running behaviors which allows the agent to cover
longer distances whereas METRA only learn mediocre rolling behaviors.

We also observe that both SMERL and DGPO fail to learn diverse behaviors and only learns simple
behaviors such as standing upright at the starting point with minimal movement. This limitation
is likely due to their use of the MI objective, which appears insufficient for promoting diverse
behavior learning in complex continuous control environments. METRA†, a variant of METRA
where we set the run task reward as the distance metric, is effective for simple environments with low-
dimensional action spaces (Cheetah), but struggle in learning effective behaviors for environments
with high-dimensional action spaces (Quadruped). We speculate that as the environment complexity
increases, designing a single reward function which captures a variety of desirable behaviors becomes
increasingly challenging.

An important point which we would like to emphasize is that DoDont only requires a total of eight
videos to learn running behaviors. Despite the direction of each running video is limited (instruction
videos in Figure 3), DoDont learns skill which run in all directions. This indicates that DoDont is not
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merely imitating the behaviors in the Do’s videos but discover a variety of behaviors which resemble
those seen in the Do’s videos. In addition, to further evaluate the meaningfulness of the learned
behaviors, we conduct downstream task evaluation for each method in the Appendix A.

5.2.2 Does DoDont learn diverse behaviors while avoiding hazardous areas?

DoDontMETRA Safe state coverageSafe state coverageDoDontMETRA

QuadrupedCheetah

METRA† METRA†

Figure 4: Visualization and comparison of learned skills. In both environments, the left side is
hazardous and the right side is safe. Safe state coverage assesses the agent’s ability to cover safe areas
and avoid hazards.

In practical scenarios, it is crucial for agents to avoid hazardous areas. For instance, in navigation
tasks, robots must avoid dangerous areas such as pitfalls or private property. However, traditional
skill discovery methods, which aim to cover the entire state space, face difficulties in controlling
the regions an agent explores. We now aim to evaluate whether the Don’t videos in DoDont can
reliably prevent agents from learning unwanted area navigation. To replicate real-world conditions,
we perform experiments where we designate the left side of the environment as hazardous areas and
the right side as safe areas. Thus, we use videos that move to the right as Do’s and videos that move
to the left as Don’ts, aiming to direct the agent away from hazardous zones and towards safer regions.

To evaluate the agent’s ability to cover safe areas while avoiding hazardous ones, we introduced the
concept of safe state coverage. This metric assigns a score of +1 for states in the safe area and -1 for
states in the hazardous area. As illustrated in Figure 4, METRA without prior knowledge attempts
to cover the entire state space, including hazardous areas, whereas DoDont effectively incorporates
human intentions, avoiding dangerous areas while adequately covering the safe regions. We also
observe that SMERL and DGPO fail to learn diverse skills, resulting in static behavior within the
safe region, possibly due to the difficulty of learning diverse behaviors in pixel-based environments
using the mutual information objective. Furthermore, METRA† demonstrates superior performance
in this experiment, likely because designing a reward function that incorporates human intentions is
straightforward (assigning +1 for the safe region and 0 for the hazardous region).

5.2.3 Can DoDont learn diverse behaviors without learning unsafe behaviors?

QuadrupedCheetah

Figure 5: Learning safe and diverse behaviors. Zero-
shot rewards assess how effectively each method learns
desired behaviors while avoiding hazardous ones.

In real-world scenarios, agents should also
avoid learning risky behaviors. For in-
stance, actions such as rolling on the
ground or flipping upside down can po-
tentially damage the robot. Therefore, in
this experiment, we aim to investigate
whether DoDont can learn a variety of de-
sirable behaviors while avoiding certain
unwanted behaviors. We trained our agent
using running videos as desirable behav-
iors (Do’s) and rolling or flipping videos
as undesirable behaviors (Don’ts) for both
Quadruped and Cheetah environments.

As shown in Figure 5, compared to METRA without any prior knowledge, DoDont effectively
learns running behaviors while avoiding hazardous actions such as rolling or flipping using our
instruction videos. Again, SMERL and DGPO fail to learn diverse behaviors, merely learning the
simple behavior of standing upright at the starting point. For METRA†, we designed the reward
function as rrun − rflip or roll to encourage running while avoiding flipping or rolling. We observe that
METRA† cannot fully encapsulate human intention in Cheetah environment. We believe this issue
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arises from the entanglement of the task signals in the reward function which makes the agent difficult
from discerning which type of behaviors are beneficial and which are not. To receive the run reward,
the agent must move forward, but as the body moves, it sometimes triggers the flip reward, which
penalizes the agent, hindering the agent from properly learning the run behavior. This illustrates that
balancing multiple behavioral intentions is challenging, making the creation of hand-crafted reward
functions difficult and unscalable.

5.2.4 Manipulation task

Figure 6: Policy task coverage. The
number of tasks successfully completed
by sampled skills.

In this experiment, we aim to demonstrate that our inten-
tion network can be applied to a manipulation environment
to learn multiple tasks. We use six target tasks following
previous works [39, 33]. To effectively learn these six
tasks, we use the D4RL dataset as Do’s and random ac-
tion videos as Don’ts. As shown in Figure 6, through our
instruction network, DoDont successfully performs more
tasks compared to METRA. SMERL and DGPO only learn
two to three tasks, which we believe is due to the failure
of the MI-based objective to capture diverse behaviors in
pixel-based environments. For METRA†, we use a hand-
designed reward function by summing the rewards for
all six tasks. Nevertheless, METRA† does not effectively
learn the tasks, likely due to the entanglement of multiple
behavioral signals within a single reward function.

5.3 Ablation Studies

5.3.1 Model components

We conduct an ablation analysis to demonstrate the importance of each component of our algorithm
in achieving high performance. Specifically, we experimented with three variants: (i) using only one
Do’s video, (ii) optimizing Equation 5, referred to as delayed reward, and (iii) focusing solely on
encouraging Do’s behaviors. We tested these variants in a Quadruped environment, using run videos
as Do’s and random action videos as Don’ts.

Figure 7: Ablation study on model components.

Impact of data quantity. While we are al-
ready training with a relateively small amount
of videos as our default setting (four Do’s,
four Don’ts), we also conduct an ablation study
where we use only two videos (one Do, one
Don’t) to see how well our method performs un-
der extremely limited data conditions. Accord-
ing to Figure 7, even with only one Do’s video,
the agent can mimic the running behavior, as
evidenced by the zero-shot run reward. Remark-
ably, despite being exposed to just one video
showing movement in a single direction, the agent is still able to learn movements in multiple
directions; please refer to the project page videos (link).

Direct reward signal. To evaluate the effectiveness of Equation 7, we trained an agent using
Equation 5. As shown in Figure 7, the direct instruction signal effectively captures the desired
behavior from the early stages of training. In contrast, the delayed instruction signal initially fails
to capture the desired behavior, as evidenced by drop in the zero-shot reward at the beginning.
Consequently, the agent takes a long time to overcome before it can stand up again.

Only encouraging Do’s behaviors. To further analyze the importance of penalizing Don’ts be-
haviors, we trained an agent only to encourage Do’s behaviors. As illustrated in Figure 7, solely
encouraging Do’s behaviors fails to capture desirable behaviors. We speculate that without penalizing
unwanted behaviors, the agent cannot avoid these undesirable actions, leading to a drop in the zero-
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shot Run return at the beginning. Consequently, it takes a significant amount of time for the agent to
learn the desired behaviors. Further details of this experiment in Appendix C.

5.3.2 The importance of utilizing instruction network as the distance metric

MultiplicativeAdditive
(coefficient 0.5)

Additive
(coefficient 1.0)

Cheetah

METRA Additive
(coefficient 2.0)

Figure 8: Left: Visualization of acquired skills, with the hazardous zone on the left and the safe zone
on the right. Right: Quantitative comparison of each method.

In this study, we use the instruction network as the distance metric for the distance-maximizing skill
discovery algorithm [39]. This setup is convenient because it only requires multiplying the instruction
network with the intrinsic USD reward to train the policy. However, an alternative approach is to
add the output of the instruction network with the intrinsic USD reward, similar to SMERL [26]
and DGPO [10]. To compare these two approaches (multiplication and addition), we conducted
experiments in the Cheetah environment following the setup from Section 5.2.2.

Our qualitative results, shown in Figure 8, indicate that none of the additive variants (rtotal = rMETRA+
αp̂ψ(s, s

′)) match the performance of the multiplicative approach (rtotal = rMETRA · αp̂ψ(s, s′)). We
attribute this to the fact that multiplying p̂ψ(s, s

′) with the intrinsic reward function controls the
scale of the total reward effectively since it directly impacts the influence of rMETRA while adding
p̂ψ(s, s

′) indirectly impacts the influence of rMETRA. Although additive variants might achieve similar
performance, they would likely require careful tuning of coefficients to balance the multiple reward
components.

6 Conclusions, limitations, and future work

In this paper, we introduce DoDont, an instruction-based skill discovery algorithm designed to
combine human intention with unsupervised skill discovery. We empirically demonstrate that our
instruction network enables the agent to effectively learn desirable behaviors and avoid undesirable
ones across a range of realistic instruction scenarios.

However, our study faces certain limitations. Specifically, in this research, we trained the instruction
network using in-domain video data, which is not a readily available resource in real-world applica-
tions. We propose that training the instruction model with general, in-the-wild video data represents a
scalable and compelling direction for future investigation.

Despite these constraints, DoDont exhibits promising results even with a limited video dataset.
Moreover, we believe that videos are a cost-effective form of data for representing behaviors as they
do not require action and reward labels. Thus, preparing data is both practical and feasible. On the
other hand, as video generation models advance, several recent works have utilized these models as
simulators [50, 51, 12, 6]. There is potential to generate Do’s and Don’ts videos with these models,
which could allow for the use of generated data without the need for additional data collection.

As final remarks, in unsupervised skill discovery, there are many excellent prior works that have
succeeded in learning diverse behaviors without any supervision, data, or prior knowledge. However,
these methods often struggle to acquire complex behaviors and may learn hazardous behaviors,
making them unsuitable for direct real-world application. Therefore, we believe that the next step
in unsupervised reinforcement learning focuses on leveraging minimal supervision or data (i.e.,
resources that are easily obtainable in the real world) to become scalable and applicable in complex
control tasks and practical for the real world.
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A Additional Experiments

A.1 Improving zero-shot offline RL with instruction videos

Recently, HILP [37] has introduced a novel framework for pre-training generalist policies that
learn diverse behaviors from task-agnostic unlabeled datasets [52]. HILP can be considered as an
offline variant of METRA, as both methodologies focus on learning temporal distance-preserving
representations to facilitate the acquisition of diverse behaviors. Similar to our previous application
in METRA, we can easily integrate our instruction network into HILP’s intrinsic reward function.
The pseudocode for the offline version of DoDont is provided in Algorithm 2. Intuitively, by utilizing
our instruction network, the policy is trained to learn diverse behaviors while prioritizing desirable
behaviors and avoiding hazardous ones within the offline dataset.

ExORL Overall Performance

DoDont

HILP

FB

FDM

Figure 9: Aggregated performance.
The overall results are aggregated over 4
environments, 4 tasks, 2 datasets, and 4
seeds (i.e., 128 values in total).

In this experiment, we further investigate the effectiveness
of our method when applied to an offline zero-shot rein-
forcement learning (RL) approach that learns diverse be-
haviors from task-agnostic, unlabeled datasets. Zero-shot
RL is divided into two phases: reward-free pretraining
with an offline dataset and maximizing an arbitrary reward
function provided at test time without additional train-
ing. We primarily compared our results with HILP [37],
FB [47], and FDM [37, 47], the leading methods in offline
zero-shot RL. We conducted experiments in four environ-
ments (Walker, Cheetah, Quadruped, and Jaco) using two
ExORL datasets [52] collected by APS [31] and RND [8].
We followed the experimental protocol outlined in the
HILP paper [37], where detailed information is available
in Appendix D.

During the pre-training phase, we employed four downstream task videos as Do’s and four ran-
dom action videos as Don’ts for each environment. This strategy aims to prioritize the learning of
task-relevant behaviors. We use the interquartile mean (IQM) [2] for overall aggregation to assess
performance. As illustrated in Figure 9, DoDont is superior over other methods by a large margin in
effectively capturing downstream task behaviors from a large, task-agnostic, unlabeled dataset. We
would like to note that although DoDont benefits from downstream task relevant data, it significantly
outperforms baselines while utilizing only a small set of instruction videos. Detailed results are in
Appendix E.

A.2 Downstream task performance

QuadrupedCheetah

Figure 10: Downstream task performance.

In this section, we employed a hierarchical con-
troller that selects (frozen) learned skills to max-
imize the downstream task reward to evaluate
the meaningfulness of the learned behaviors. As
depicted in Figure 10, behaviors learned through
DoDont showed higher performance than ME-
TRA, indicating that DoDont effectively learned
useful behaviors that can be applied to down-
stream tasks.
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B Derivation of equation 7

We first start with Eq. 5:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)−ϕ(s′)∥2 ≤ p̂ψ(s, s

′), ∀(s, s′) ∈ Sadj , (8)

Let scaled state function ϕ̃(s) := ϕ(s)
p̂ψ(s,s′)

. Then, we can transform the constraint term in Eq. 8 as
follows (p̂ψ(s, s′) ≥ 0 since it is the output value of binary classification network),

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ̃(s)− ϕ̃(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj , (9)

By replacing ϕ(s) with ϕ̃(s) · p̂ψ(s, s′) in Eq. 9, we derive

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

p̂ψ(st, st+1)
(
ϕ̃(st+1)− ϕ̃(st)

)⊤
z

]
s.t. ∥ϕ̃(s)−ϕ̃(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj .

(10)

C Implementation Details of DoDont

Here, we provide further details regarding the implementation of DoDont. Our experiments are based
on two different codebases: METRA1 [39] for online learning and HILP2 [37] for offline learning.
Our experiments run on NVIDIA RTX 3090 GPUs, with each run taking no more than 28 hours.

C.1 Data curation

We now explain how the action-free Do’s and Don’t video dataset we used as our human intention
dataset were collected. For DMC tasks, we first trained expert Soft Actor-Critic (SAC) [18] policies
based on proprioceptive states with the ground truth task reward for over 2 million environment steps
and generate Do videos by deploying the expert policy in the environment and saving the visual
observations rendered by the simulator. In addition, we set the ExORL dataset [52] as our Don’t
videos for DMC tasks since the ExORL dataset is mainly composed of transitions generated via
undesirable random behavior. On the other hand for the Kitchen environment, we set the the D4RL
dataset [15] as our Do’s video dataset and additionally gather videos of random action rollouts and set
them as our Don’t videos. The number of videos used for each environment can be found in Table 1.

Table 1: The number of videos used for each environment.

Environment # of Do’s videos # of Don’ts videos
Online DMC 4 4
Kitchen # of videos in D4RL dataset 10
Offline Zero-shot DMC 12 videos per task # of videos in ExORL dataset

C.2 Instruction network

For the instruction network, we use four convolutional layers for the backbone and three fully
connected layers for the prediction head. To improve stability, we bound the output using the Tanh
function, following previous work [29]. Additionally, we employ simple random shift augmentation,
a widely used data augmentation technique. The Adam optimizer [25] is employed with a learning
rate of 1× 10−4 and a batch size of 1024.

1https://github.com/seohongpark/METRA
2https://github.com/seohongpark/HILP
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C.3 Skill learning

We implemented DoDont based on two algorithms: METRA [39] and HILP [37]. We used the
hyperparameters from these algorithms without modification. Additionally, DoDont introduces only
one extra hyperparameter, which is the coefficient for the instruction network. The complete list of
hyperparameters can be found in Table 2, 3.

C.4 Pseudocode of DoDont

We present the pseudocode for the online version of DoDont in Algorithm 1 and the offline version
of DoDont in Algorithm 2.

Algorithm 1: Do’s and Don’ts (Online)
1 Initialize instruction network p̂ψ(s, s

′), video dataset DV
2 for number of epochs do
3 Sample batch (σ0, σ1, y) from video dataset DV
4 Update p̂ψ(s, s

′) to minimize LInstruction in ( 4)
5 Initialize policy π(a|s, z), representation function ϕ(s), Lagrange multiplier λ, replay buffer D
6 for number of policy epochs do
7 for number of episodes per epochs do
8 Sample skill z ∼ p(z)
9 Sample trajectory τ with π(a|s, z) and add to replay buffer D

10 Update ϕ(s) to maximize E(s,z,s′)∼D[(ϕ(s
′)− ϕ(s))⊤z + λ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥)]

11 Update λ to minimize E(s,z,s′)∼D[λ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥)]
12 Update π(a|s, z) using SAC with reward r(s, z, s′) = p̂ψ(s, s

′)(ϕ(s′)− ϕ(s))⊤z

Algorithm 2: Do’s and Don’ts (Offline)
1 Initialize representation ϕ(s)
2 Initialize policy π(a|s, z)
3 while not converged do
4 Sample (s, s′, g) ∼ D
5 Train ϕ(s)

6 Train instruction network p̂ψ(s, s
′)

7 while not converged do
8 Sample (s, a, s′) ∼ D and z ∼ SD−1

9 Compute intrinsic reward r(s, z, s′)
10 Train π(a|s, z) with weighted reward p̂ψ(s, s

′)r(s, z, s′)

D Experimental details

D.1 Environments

Benchmark environments. In this work, we perform experiments with the Cheetah and Quadruped
environment from DMC [45] and a pixel-based version of the Kitchen environment [17, 33]. Follow-
ing previous studies [39, 36, 20], for the pixel-based DMC environments we use gradient-colored
floors which allows the agent to infer its location from pixels. For the Kitchen environment, we utilize
the same camera settings as LEXA [33].

For Sections 5.2.1, 5.2.3, and 5.3, we use state information as input for both the policy and the
critic. For Sections 5.2.2 and 5.2.4, we use pixel data as input for the policy and the critic. The
reason for this experimental setup is that in pixel-based environments with gradient-colored floors, the
discriminator might exploit the background color as a shortcut to distinguish between different states
rather than observing the agent’s embodiment. This makes it challenging to incorporate behavioral
intentions. However, without colored floors, METRA cannot learn diverse behaviors. Therefore,
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Table 2: Hyperparameters used in Online DoDont. We adopt default hyperparameters from
METRA [39], introducing only one additional hyperparameter.

Hyperparameter Value
Learning rate 0.0001
Optimizer Adam [25]
# episodes per epoch 8
Encoder CNN [28]
# hidden layers 2
# hidden units per layer 1024
Minibatch size 256
Target network smoothing coefficient 0.995

# gradient steps per epoch 50 (state-based DMC), 200 (pixel-based DMC),
100 (Kitchen)

Replay buffer size 106 (state-based DMC), 3× 105 (pixel-based DMC),
105 (Kitchen)

Entropy coefficient auto-adjust [19] (DMC), 0.01 (Kitchen)
ϵ 0.001
initial λ 30
Latent dimension 4 (continuous) (DMC), 24 (discrete) (Kitchen)
Instruction network coefficient 2

Table 3: Hyperparameters used in Offline DoDont. We adopt default hyperparameters from
HILP [37], introducing only one additional hyperparameter.

Hyperparameter Value
# gradient steps 106

Learning rate 0.0005 (ϕ), 0.0001(others)
Optimizer Adam [25]
Minibatch size 1024
MLP dimensions (512, 512) (ϕ), (1024, 1024, 1024) (others)
TD3 target smoothing coefficient 0.99
Latent dimension 50
# state samples for latent vector inference 10000
Successor feature loss Q loss on {Quadruped, Jaco}, vector loss (others)
Hilbert discount factor 0.96 (Walker), 0.98 (others)
Hilbert expectile 0.5
Hilbert target smoothing coefficient 0.995
Instruction network coefficient 3 (Walker), 2 (others)

for Sections 5.2.1, 5.2.3, and 5.3, where behavioral intentions are included, we use state-based
environments and use non-colored default pixel as a human intentions. Notably, all experiments use
videos (i.e., pixel data) as a human intentions.

For offline zero-shot RL, we use four environments (Walker, Cheetah, Quadruped, and Jaco) and
two different ExORL datasets [52] (APS [31], RND [8]). Although experiments in the HILP [37]
paper is based on four ExORL datasets (APS [31], RND [8], Proto [53], APT [32]), due to limited
computational resources, we performed experiments only with the APS and RND ExoRL dataset
since these two dataset are where HILP achieved the best performance.

Metrics. For the state coverage in DMC, we count the number of 1 × 1 x − y bins occupied
by any of the target trajectories for Quadruped and 1-sized x bins for the Cheetah. In the Kitchen
environment, we count the number of predefined tasks achieved by any of the target trajectories.
We use the same six predefined tasks as LEXA [33] and METRA [39]: Kettle (K), Microwave (M),
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Light Switch (LS), Hinge Cabinet (HC), Slide Cabinet (SC), and Bottom Burner (BB). Policy state
coverage is computed using 48 deterministic trajectories with 48 randomly sampled skills at the
current epoch.

For offline zero-shot RL performance, we follow the method outlined in HILP [37]. We sample a
small number of (s, a, s′) tuples from the dataset, compute the optimal latent z∗ with respect to the
test-time reward function, execute the corresponding policy π(a|s, z∗), and compute the return value.
We use all the hyperparameters from HILP without modification.

Downstream tasks. We utilize two downstream tasks: QuadrupedGoal and CheetahGoal, primarily
following METRA [39]. For each task, the objective is to reach a target spot randomly sampled from
[−7.5, 7.5]2 for QuadrupedGoal and [−10.0, 10.0]2 for CheetahGoal. The agent receives a reward of
10 upon reaching within a radius of 3 units from the target spot. We train a hierarchical high-level
controller on top of the frozen skill policy. The high-level controller selects a skill z for every K = 50
environment steps, and the pre-trained skill policy π(a|s, z) executes the same skill z for those
K steps. We use PPO [42] for discrete skills and SAC [18] for continuous skills, maintaining all
hyperparameters as in METRA [39].

D.2 Implementation details of baseline algorithms

In this work, we use four baselines: METRA [39], METRA†, DGPO [10], and SMERL [26]. For
METRA, we used the open-source METRA codebase and retained the original hyperparameters.
METRA† is a variant of METRA that incorporates hand-designed reward functions as a distance
metric. As described in the main paper, we manually designed the reward function and rescaled it to
be greater than zero since it is used as a distance metric. Like the DoDont method, we multiplied
METRA’s intrinsic reward by this hand-designed reward function.

DGPO introduces an intrinsic reward function rint = minz′ ̸=z log
q(z|s′)

q(z|s′)+q(z′|s′) . With this intrinsic
reward, we use our instruction network as a human intention. Total reward function for DGPO is
r = p̂ψ(s, s

′) + αminz′ ̸=z log
q(z|s′)

q(z|s′)+q(z′|s′) , where α is the balancing coefficient.

SMERL uses an intrinsic reward defined as rint = 1RM(πθ)≥RM(π∗
M)−ϵr̃. Like DGPO, we employed

our instruction network as a human intention. To train SMERL, we first trained a baseline SAC agent
with our instruction network and considered the maximum return achieved by the trained SAC agent
as the optimal return RM(π∗

M). We used the same r̃ = qϕ(z|s) as described in the original paper.
The total reward function for SMERL is r = p̂ψ(s, s

′) + α1RM(πθ)≥RM(π∗
M)−ϵqϕ(z|s), where α is

the balancing coefficient.

In Section 5.3, we introduce "Only Do’s," a variant of our algorithm that exclusively promotes desired
behaviors. We achieve this by eliminating the penalties for undesirable behaviors. Specifically, we
define pdos(s, s

′) as follows:

pdos(s, s
′) =

{
p̂ψ(s, s

′) if p̂ψ(s, s′) ≥ 0.5

0.5 if p̂ψ(s, s′) < 0.5
(11)

This approach ensures that the probability pdos(s, s
′) never falls below 0.5, thereby encouraging only

the desired behaviors.

D.3 License

• Environment
– Deepmind Control suite: We used the publicly available environment code in [39, 45]3.
– Kitchen: We used the publicly available environment code in [39, 15]4.

• Dataset
– ExORL: We used the publicly available dataset code in [52]5.

3https://github.com/seohongpark/METRA
4https://github.com/seohongpark/METRA
5https://github.com/denisyarats/exorl
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E Full results

E.1 Zero-shot RL

Table 4: Full results on the zero-shot RL performance. The table shows the zero-shot RL perfor-
mance averaged over four seeds in each setting. We adopted the results from HILP [37]

Dataset Environment Task FDM FB HILP DoDont

APS

Walker

Flip 426± 68 334 ± 178 573 ± 37 506 ± 70
Run 248 ± 23 388 ± 27 348 ± 14 355 ± 46
Stand 865 ± 77 824 ± 54 883 ± 42 953 ± 22
Walk 634 ± 91 842 ± 105 862 ± 31 930 ± 34

Cheetah

Run Backward 116 ± 116 250 ± 135 373 ± 72 383 ± 19
Run 360 ± 17 251 ± 39 316 ± 21 290 ± 44
Walk 396 ± 287 683 ± 267 939 ± 55 984 ± 2
Walk Backward 982 ± 2 980 ± 3 985 ± 2 985 ± 2

Quadruped

Jump 707 ± 30 757 ± 52 623 ± 149 721 ± 30
Run 481 ± 4 474 ± 33 411 ± 62 489 ± 6
Stand 961 ± 20 949 ± 30 797 ± 117 965 ± 4
Walk 578 ± 145 583 ± 12 605 ± 75 568 ± 55

Jaco

Reach Bottom Left 12 ± 18 14 ± 12 88 ± 41 61 ± 17
Reach Bottom Right 28 ± 20 24 ± 7 48 ± 24 60 ± 24
Reach Top Left 21 ± 16 23 ± 17 49 ± 18 88 ± 31
Reach Top Right 34 ± 40 17 ± 15 51 ± 32 64 ± 22

RND

Walker

Flip 415± 20 548 ± 94 563± 136 644 ± 33
Run 295 ± 70 409 ± 15 401 ± 30 436 ± 22
Stand 821 ± 84 866 ± 120 800 ± 61 894 ± 31
Walk 476 ± 259 811 ± 52 855 ± 34 872 ± 32

Cheetah

Run Backward 107 ± 26 183 ± 83 262 ± 53 257 ± 6
Run 177 ± 62 153 ± 41 187 ± 55 226 ± 10
Walk 494 ± 122 636 ± 291 823 ± 141 944 ± 15
Walk Backward 652 ± 274 677 ± 85 843 ± 184 955 ± 1

Quadruped

Jump 758 ± 98 642 ± 36 556 ± 101 684 ± 16
Run 491 ± 7 436 ± 26 393 ± 42 494 ± 35
Stand 971 ± 11 797 ± 72 810 ± 97 859 ± 79
Walk 601 ± 82 642 ± 202 542 ± 32 753 ± 58

Jaco

Reach Bottom Left 53 ± 20 18 ± 11 19 ± 20 33 ± 14
Reach Bottom Right 38 ± 14 29 ± 12 18 ± 17 29 ± 31
Reach Top Left 36 ± 19 45 ± 16 8 ± 10 33 ± 15
Reach Top Right 44 ± 24 22 ± 7 5 ± 4 9 ± 9

F Broader impact

Our research has a broader impact on the safety and reliability of unsupervised skill discovery
(USD) algorithms. By incorporating instruction-based learning to differentiate between desirable and
undesirable behaviors, our method significantly lowers the risk of agents developing unsafe behaviors,
such as tripping or navigating hazardous areas. This improvement enhances the practical usability
of USD in real-world scenarios where safety is critical, especially in applications like autonomous
vehicles and robotic manipulation. However, a major issue with USD remains its sample inefficiency
due to the need for extensive simulations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately reflect the paper’s contribution and scope in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitation and future work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, we provide the full set of assumptions and a complete proof in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode and hyperparameter list in Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide our code link in Appendix C
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the training and test details in Appendix C, D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars in all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

23

47763 https://doi.org/10.52202/079017-1512

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide our GPU resources, and time of execution in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conforms, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our paper in Appendix F

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

47764https://doi.org/10.52202/079017-1512

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited, and the license and terms of use are explicitly mentioned and
properly respected in Appendix D.3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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