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Abstract

Delivering precise point and distributional forecasts across a spectrum of predic-
tion horizons represents a significant and enduring challenge in the application
of time-series forecasting within various industries. Prior research on developing
deep learning models for time-series forecasting has often concentrated on isolated
aspects, such as long-term point forecasting or short-term probabilistic estimations.
This narrow focus may result in skewed methodological choices and hinder the
adaptability of these models to uncharted scenarios. While there is a rising trend in
developing universal forecasting models, a thorough understanding of their advan-
tages and drawbacks, especially regarding essential forecasting needs like point and
distributional forecasts across short and long horizons, is still lacking. In this paper,
we present ProbTS, a benchmark tool designed as a unified platform to evaluate
these fundamental forecasting needs and to conduct a rigorous comparative analysis
of numerous cutting-edge studies from recent years. We dissect the distinctive
data characteristics arising from disparate forecasting requirements and elucidate
how these characteristics can skew methodological preferences in typical research
trajectories, which often fail to fully accommodate essential forecasting needs.
Building on this, we examine the latest models for universal time-series forecasting
and discover that our analyses of methodological strengths and weaknesses are also
applicable to these universal models. Finally, we outline the limitations inherent in
current research and underscore several avenues for future exploration.[ﬂ

1 Introduction

Time-series forecasting has extensive applications in various industries, including traffic flow forecast-
ing [43]], renewable energy forecasting [67]], and diverse forecasting demands in retail [8]], finance [29],
physical system [39]], and climate [48]]. It is crucial to provide forecasts across different prediction
horizons, addressing both short- and long-term planning needs [13} 26} 4,161]. Moreover, modern
decision-making processes typically require not only point forecasts to quantify planning efficiency
but also robust distributional estimations to manage uncertainty effectively [24}30]]. The fundamental
need to produce accurate point and distributional forecasts across various horizons presents significant
challenges to existing forecasting approaches.

*This work was done during the internship at Microsoft Research Asia.
"Project repository: https://github.com/microsoft/ProbTs
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Nevertheless, much of the previous research on developing deep learning models for time-series
forecasting has often focused on isolated aspects, such as long-term point forecasting or short-
term distribution estimations. This narrow focus may result in skewed methodological choices and
hinder the adaptability of these models to rarely evaluated scenarios. For example, studies such
as [78L 172,138, [76, 111 71} 149, [73],|40] have primarily explored neural architecture designs tailored
for long-term point forecasting with strong trending and seasonal patterns. However, it remains
unclear how these advancements can be effectively extended to capture complicated distributions and
whether these designs maintain their effectiveness in short-term scenarios. Conversely, research such
as [581157,162} 7, 133] adapts deep generative models [17, 28] for probabilistic forecasting, specializing
in characterizing complex data distributions. Yet, these models have mainly been developed and
evaluated in short-term scenarios, leaving questions about their effectiveness in long-term forecasting
and their ability to preserve point forecasting performance.

Despite the recent surge in building time-series foundation models over the past year [[18}, 56} |14}
104 1154 12501411 120L 1704 2 1231 [74], our understanding of their advantages and limitations, especially
regarding essential forecasting needs like point and distributional forecasts across various horizons,
is still limited. Many of these models claim to support arbitrary prediction horizons, employing
different mechanisms that come with their own set of advantages and drawbacks. Among them, a
select few offer capabilities for distributional forecasting, which, however, are typically confined to
predefined closed-form distributions [56, [70] or discrete distributions with value quantization [2].
The emergence of these foundation models has brought about unprecedented zero-shot forecasting
capabilities. Consequently, it is both timely and crucial to delve into an evaluation of their strengths
and weaknesses, especially in relation to the fundamental forecasting needs mentioned earlier.

In this study, we present ProbTS, a benchmark tool crafted to serve as a comprehensive platform
for assessing those key forecasting needs and for performing a detailed comparison of several state-
of-the-art models developed in recent years. To address the core forecasting requirements, ProbTS
includes a broad array of datasets and spans various forecasting horizons. It also utilizes both point
and distributional metrics to facilitate a thorough performance evaluation.

Our research reveals that the specific data characteristics inherent to different forecasting requirements
often play a crucial role in guiding the selection of model designs. As a result, it is crucial to have a
comprehensive view of the essential forecasting needs. To aid in the analysis and interpretation of
performance, we measure three essential data characteristics in ProbTS: the strength of trends and
seasonality, and the complexity of the data distribution. Moreover, we have explicitly distinguished
three fundamental methodological aspects within ProbTS that differentiate the existing forecasting
models, largely influencing their pros and cons. The first aspect involves the approach to distributional
forecasting, ranging from models focused on point forecasts [49] 40] to those using pre-defined
distribution heads based on specific data assumptions [56, [70]. The second aspect is the decoding
scheme used to generate multi-step forecasts, which can be either autoregressive (AR) or non-
autoregressive (NAR). The third aspect pertains to the normalization choice, where the long-term
point forecasting models typically employ reversible instance normalization (RevIN) [32] while
short-term probabilistic ones often use mean scaling strategies 58} 57].

By utilizing ProbTS, we conduct a systematic comparison between studies that focus on long-
term point forecasting and those aimed at short-term distributional estimation, employing various
forecasting horizons and evaluation metrics. Our overarching finding is that the strengths of these
methods tend to diminish in scenarios they are rarely evaluated in, highlighting several important but
unresolved research questions. Notably, while recent probabilistic forecasting approaches have shown
proficiency in short-term distribution estimation, we find that long-term distributional forecasting
remains a significant challenge. This challenge stems from achieving distribution estimation that
remains both efficient and effective as the prediction horizon extends—a topic that has not been
thoroughly investigated in existing literature. Additionally, our analysis uncovers a clear divide in
the choice of decoding schemes: most long-term point forecasting methods opt for NAR, whereas
choices in short-term forecasting studies are more evenly split. Further investigation suggests that
the preference for NAR methods stems from existing AR models’ difficulty in managing error
accumulation, particularly over extended horizons with strong trends. However, we observe that a
proper normalization strategy can significantly improve AR models in long-term forecasting, opening
new possibilities for AR-based approaches. Moreover, AR decoding performs better in scenarios
with pronounced seasonality, indicating potential for refining these strategies, particularly for long-
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term forecasts. Given the inefficiency of existing NAR-based probabilistic methods like CSDI, our
comparison highlights the need for further exploration of decoding strategies in future research.

Furthermore, we have expanded the analytical framework of ProbTS to include an examination
of several very recently developed time-series foundation models, which has allowed us to re-
validate some of our earlier findings. Interestingly, there appears to be a relatively even split in
their preference for AR and NAR decoding schemes. Our analysis reaffirms the limitation of AR in
handling time-series data, as we observe that AR-based foundation models tend to excel at shorter
horizons. However, their performance advantages often significantly diminish over longer forecasting
periods. This underscores the critical need for future research to focus on addressing the issue of
error accumulation in AR-based foundation models. Besides, our exploration reveals that current
probabilistic foundation models may face challenges when dealing with complex data distributions.
This observation suggests that the integration of more sophisticated distribution estimation techniques
could enhance the development of time-series foundation models.

In summary, we have made the following contributions.

¢ Introduction of ProbTS, a benchmark tool designed for a thorough evaluation of essential
forecasting needs, towards precise point and probabilistic forecasting across varied horizons.

» Comprehensive analysis of methodological variations within forecasting models, especially
regarding distributional estimation methods and decoding schemes (AR vs. NAR), which
illuminates significant yet previously underexplored research challenges.

» Extension of our analytical framework to include the latest time-series foundation models,
providing insights into the implications of their methodological choices and underscoring
important directions for future research endeavors.

2 Related Work

Classical Time-series Forecasting Models In recent years, classical research in time-series fore-
casting has bifurcated into two distinct but complementary streams. The first stream has con-
centrated on refining neural architecture designs for long-term forecasting, primarily employing
non-autoregressive decoding schemes to address scenarios with pronounced trend and seasonality.
This stream has evolved from enhancing multi-layer perceptrons [53l [76] to developing special-
ized recurrent or convolutional neural networks [34,|37]], and introducing Transformer-based mod-
els [66, 149, 40]]. Despite achieving advancements in point forecasts, these efforts mainly capture
average future changes, with only a few adopting approaches like quantile regression to partially
overcome this limitation [69} [36]]. On the other hand, the second stream, probabilistic time-series
forecasting specializes in capturing the intricate data distribution of future time series. It encompasses
a spectrum of techniques, from utilizing predefined likelihood functions [55) |60] and Gaussian
copulas [59,19] to exploring advanced deep generative models [58, [7]. Unlike the first stream, this
branch employs both AR [58,157] and NAR decoding schemes [62} (7} 33]], often utilizing standard
neural network architectures to represent time series [16} 158l 57,7, [19]], though some studies propose
customized designs [62} 35 15]]. Together, these streams highlight the diverse approaches to forecast-
ing, ranging from point predictions focusing on the mean future variations to probabilistic forecasts
that capture the full distribution of future values. In Appendix [A.T| we summarize a comparison of
these models on the coverage of essential forecasting needs and their methodological preferences.

Universal Time-series Foundation Models Over the past year, the development of time-series
foundation models has greatly accelerated, driven by the success of language foundation models [9].
This wave has seen models such as Lag-Llama [56], TimesFM [15], Timer [41]], and Chronos [2]
adopting the decoder-only Transformer architecture with an AR decoding scheme. Conversely, models
like ForecastPFN [18]], MOIRAI [70], TTM [20], and UniTS [23]] employ the NAR decoding, often
using variable-length placeholders to indicate prediction positions for different horizons. Probabilistic
forecasting is less common, with MOIRAI and Lag-Llama integrating pre-defined distribution
heads (Student-t for Lag-Llama and a mixture for MOIRAI) while Chronos uses quantized bins to
accommodate time-series values and adopts Softmax outputs for distribution approximation. The
strategic choice between AR and NAR decoding and the method for distributional estimation highlight
distinct trade-offs. For an extensive comparison, see Appendix[A.2]
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Figure 1: An overview of ProbTS.

Toolkits for Time-series Forecasting. We observe a plethora of toolkits that have been developed
for time-series forecasting. These range from those primarily designed for point forecasting, such as
Prophet [63]], sktime [42], tsai [52], and TSlib [71], to others that incorporate probabilistic forecasting,
including GluonTS [1]], PyTorchTS [58], PyTorchForecastindﬂ and NeuralForecasﬂ In creating
ProbTS, we built upon the foundations laid by tools like PyTorchTS, GluonTS, and TSlib. Our unique
contribution is a detailed approach that supports both precise point and probabilistic forecasting over
various horizons, and examines methodological differences in forecasting models, especially regard-
ing distributional estimation and decoding schemes (AR vs. NAR). Additionally, ProbTS integrates
cutting-edge time-series foundation models, making it a comprehensive benchmark tool for tackling
current and future challenges in time-series forecasting. A comparison of ProbTS with existing
toolkits, focusing on functionalities and features, is provided in Appendix [A3]

3 The ProbTS Tool

This section offers a concise overview of the ProbTS tool’s design and implementation. The core
modules and the primary pipeline of ProbTs are depicted in Figure[I]

Data We aggregate publicly accessible datasets used for both short-term and long-term forecasting.
Initial data visualization analyses reveal that the data domains and forecasting horizons significantly
influence specific data characteristics within a given forecasting horizon. For instance, many long-
term forecasting scenarios exhibit clear trend and seasonality patterns within a forecasting window,
while numerous short-term forecasting cases display irregular variations within a short sliding window.
Consequently, we have developed quantified indicators, such as trend and seasonality strengths, along
with non-Gaussianity to indicate the complexity of data distribution within a forecasting window.
Detailed information about dataset statistics, visualization analyses, and quantified measures can be
found in Appendix [B.1.1}[B.1.2}[B.1.3| and[B.T.4] The quantified measurements for all forecasting
scenarios are compiled in Table

Metrics ProbTS incorporates a broad range of evaluation metrics to enable a thorough assessment
of both point and distributional forecasts. These metrics are elaborated in detail in Appendix [B.2] In
this paper, we primarily use the normalized mean absolute error (NMAE) for point forecasts and the
continuous ranked probability score (CRPS) for distributional forecasts to succinctly communicate
the critical insights discovered. It is noteworthy that some methods reproduced in ProbTS, their
original papers reported certain point forecast metrics before de-normalizing forecasts to the initial
scale [[75,[71} 49| or primarily reveal aggregated distributional metrics over all time-series variates,
namely CRPS-sum [59 157, 58]]. We have verified our reproduced results align with their reported
results and utilized the unified metrics in this study to offer a comprehensive and fair comparison of
these studies from different research threads.

2github.com/jdb78/pytorch-forecasting
*github.com/Nixtla/neuralforecast
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Table 1: This table includes a quantitative assessment of the inherent characteristics for all forecasting
scenarios, each corresponding to a dataset with a specific forecasting horizon. We use the suffixes
"-S" and "-L" to differentiate between short-term and long-term scenarios. Quantified indicators
encompass trend and seasonality strengths, as well as non-Gaussianity, where a higher value signifies
a greater deviation from a Gaussian distribution.

Dataset-Horizon | Exchange-S  Solar-S  Electricity-S  Traffic-S Wikipedia-S ETTml-L  ETTm2-L

Trend Fp 0.9982 0.1688 0.6443 0.2880 0.5253 0.9462 0.9770
Seasonality Fs 0.1256 0.8592 0.8323 0.6656 0.2234 0.0105 0.0612
Non-Gaussianity |  0.2967 0.5004 0.3579 0.2991 0.2751 0.0833 0.1701
Dataset-Horizon | ETThl-L ~ ETTh2-L  Electricity-L.  Traffic-L. ~ Weather-L. ~ Exchange-L ILI-L
Trend Fp 0.7728 0.9412 0.6476 0.1632 0.9612 0.9978 0.5438
Seasonality Fs 0.4772 0.3608 0.8344 0.6798 0.2657 0.1349 0.6075
Non-Gaussianity |  0.0719 0.1422 0.1533 0.1378 0.1727 0.1082 0.1112

Model The model module in ProbTS explicitly differentiates critical methodological decisions,
especially the decoding scheme (AR vs NAR) and the distributional estimation approach. Specifically,
we employ the following mathematical formulation. We denote an element of a multivariate time
series as xf € IR, where k represents the variate index and ¢ denotes the time index. At time step
t, we have a multivariate vector z; € R¥. Each ¥ is associated with covariates ¢/ € RY, which
encapsulates auxiliary information about the observations. Given a length-T" forecast horizon, a
length- L observation history x;_,.; and corresponding covariates c;_y,.;, the objective in time series
forecasting is to generate the vector of future values x4 1..47. Based on established conventions, we
categorize forecast as short-term if the horizon T' < J[57,162]], and long-term if 7" > T [[75. 149} 140,
where J represents the primary periodicity of the data (e.g., 24 for hourly frequency). To represent
point and distributional forecasting in a unified way, here we divide a model into an encoder fy4
and a forecaster pg. An encoder is tasked with generating expressive hidden states h € RP.
Under autoregressive decoding scheme, encoder forecasts variates using their past values: h; =
fo(@i—1, ct, hi—1). Under the non-autoregressive scheme, the encoder generates all the forecasts
in one step: hiy1.447 = fo(®Ti—r:t,ct—re+7). A forecaster pg is employed either to directly
estimate point forecasts as &; = pg(h;), or to perform sampling based on the estimated probabilistic
distributions as &; ~ pg(x+|h+). In addition, the normalization choices utilized by different research
branches vary, with a detailed analysis provided in Appendix

4 Results and Analyses

Utilizing ProbTS, we conducted a comprehensive benchmarking and analysis of a diverse range of
state-of-the-art models from different strands of research. We mainly assessed these models using
NAME and CRPS metrics across multiple forecasting horizons, repeating each experiment five times
with different seeds to ensure result reliability.

Selected Models for Comparison. Our selection criteria for models focused on a balance of
performance, reproducibility, and simplicity. For long-term point forecasting, we included models like
iTransformer [40], PatchTST [49], TimesNet [[71]], N-HiTS [11]], and LTSF-Linear [[75]. Probabilistic
forecasting methods selected include GRU NVP, GRU MAF, Trans MAF [58], TimeGrad [57],
and CSDI [62]. Additionally, general architectures like Linear, GRU [12], and Transformer [66],
along with simple non-parametric baselines, were evaluated as a reference. For foundation models,
reproducible methods such as Lag-Llama [56[], TimesFM [[15]], Timer [4 1], MOIRAI [70], Chronos [2],
and UniTS [23] were included. Detailed implementation specifics are in Appendix [B.3]

Due to space constraints, comprehensive comparison results are placed in Appendix [C] with detailed
results for short-term and long-term forecasting in Tables[9]and[I0] respectively. Zero-shot evaluations
of pre-trained time-series foundation models are detailed in Tables [I1] and [I2] Our evaluation
highlights the critical relationship between forecasting requirements, data properties, and modeling
strategies. It aims to shed light on the strengths and limitations of current approaches, paving the way
for uncovering novel research avenues.
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Figure 2: We present a comprehensive comparison between classical models designed for long-term
point forecasting and short-term distributional forecasting across various prediction horizons. It
utilizes a non-Gaussianity score to highlight the complexity of the data distribution across different
datasets. The aggregated performance metrics are derived from Tables E] and

4.1 Analyzing Classical Models for Time-series Forecasting

We examine traditional non-universal time-series models from distinct research branches: one branch
focuses on developing customized neural architectures tailored for long-term point forecasting, while
the other branch concentrates on creating advanced probabilistic methods for short-term distributional
forecasting. Our investigation confirms the effectiveness of these models for their intended purposes.
However, we observe a notable trend: the strengths of these methods tend to diminish in scenarios
where they are seldom tested.

Diminishing Advantages of Customized Architectures in Short-term Forecasting Scenarios
The comparative analysis presented in Figures [Za] and [2¢| showcases the performance of point and
probabilistic forecasting methods with respect to the NMAE metric. These figures also illustrate how
NMAE values correlate with non-Gaussianity, a measure we employ to evaluate the complexity of
data distributions. It becomes evident that customized architectures, originally crafted for long-term
forecasting, tend to lose their competitive performance in short-term scenarios. This phenomenon
could be attributed to the increased importance of accurately characterizing complex data distributions
within shorter forecasting windows, where higher non-Gaussianity scores are indicative of this
necessity. A closer look at Figures [2c|and [2d| further reveals that the performance disparity measured
with CRPS becomes even more pronounced for datasets characterized by significant non-Gaussianity,
such as Solar-S. This observation underscores the critical need for incorporating short-term patterns
and distributional estimation capabilities into the design of new forecasting architectures.

Significant Performance Degradation for Existing Probabilistic Methods in Long-term Distri-
butional Forecasting The performance of current probabilistic forecasting models in long-term
scenarios, even when assessed using distributional metrics such as CRPS, reveals notable limitations.
This is highlighted by the comparison between Figures [2b]and [2d] which shows a significant drop
in performance for models like TimeGrad on ETTm1-L, GRU NVP on ETTh2-L, and Weather-L.
datasets. The decline in performance can be attributed to the fact that these probabilistic models
were not specifically designed with the unique challenges of long-term forecasting in mind. This
oversight has mixed influences. On the positive side, the design of these methods has led to a more
balanced approach in the choice between AR and NAR decoding schemes, providing a versatile
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Figure 3: We explore the challenges faced by current models in conducting long-term distributional
forecasting, with insights drawn from Table [I0] and Table[I6] Subplot (a) shows significant error
increases in AR-based models, averaged across all datasets except Traffic. Subplot (b) demonstrates
how the instance-level normalization impacts performance in long-term forecasting. Subplots (c)
examine how trends and seasonality impact performance across all long-term forecasting datasets
and horizons.

Subplot (d) further investigates the combined effects of trend and seasonality, using lighter and

smaller circles to indicate situations where AR-based models are favored over NAR-based ones.

foundation for probabilistic forecasting. However, the downside is more significant: no matter using
which decoding schemes, existing probabilistic models face considerable challenges when applied to
long-term distributional forecasting. We will dive deeper into the specific challenges associated with
each decoding scheme next. Here the performance gap underscores the need for future research to
systematically investigate long-term distributional forecasting.

Different Decoding Schemes & Challenges in Long-term Distributional Forecasting Existing
probabilistic forecasting methods exhibit a balanced preference for both AR and NAR decoding
schemes. For instance, TimeGrad employs an AR decoding scheme, whereas CSDI utilizes an
NAR approach. This contrasts starkly with the aforementioned customized architectures, which
solely opt for NAR decoding. These two types of decoding schemes, however, confront distinctive
challenges when applied to long-term probabilistic forecasting. With original normalization strategy,
AR probabilistic models like TimeGrad struggle with error accumulation, particularly as the forecast
horizon extends or trends strengthen, the performance gap widens, as shown in Figures [3a]and
On the other hand, NAR models such as CSDI encounter memory constraints in long-term forecasts
(detailed in Appendix [D.7). Moreover, Table[I0]reveals that even on smaller datasets, such as ETTm2
and ETThI1, CSDI’s performance in long-term scenarios is less than optimal, indicating reduced
learning efficiency by the extension of the forecasting horizon.

The Unexpected Superiority of AR Decoding in Addressing Strong Seasonality Despite its
drawbacks, AR-based models, as used in TimeGrad, excels in capturing strong seasonality, outper-
forming models like PatchTST in scenarios such as the Traffic dataset (Table[I0). This advantage
is further analyzed in Figures|3c|and showing AR’s increasing benefit with stronger seasonal
patterns. This suggests AR’s potential in long-term forecasting could be revitalized with solutions to
its error accumulation challenge in long horizons.
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Figure 4: We evaluate the efficacy of time-series foundation models for various forecasting horizons
and distributional estimation. Subplot (a), derived from Table [TT] and excluding results from the
Electricity dataset, demonstrates the short-term forecasting capabilities and long-term error accumu-
lation of AR-based models. Subplot (b), draw from Table[T2] investigates short-term distributional
estimation, highlighting the performance challenges of foundation models compared to CSDI in
handling complex data distributions. Note that we include MOIRAI with two different context
lengths, 96 and 5000, as context length significantly affects its transfer performance.

ReVIN’s Effectiveness in Long-term Forecasting with Exceptions. RevIN significantly enhances
AR-based models in long-term forecasting, as shown in Figures [3b]and[7] Notably, on the ETTh1
dataset, GRU NVP (w/ RevIN) even outperforms PatchTST (w/ RevIN). While RevIN offers sub-
stantial improvements for most models across most datasets, it brings negative impact on the Traffic
dataset. The Traffic dataset features strong seasonality but minimal trends, thus we speculate that
the major distribution shift addressed by RevIN is related to normalizing the effect of trending.
These findings indicate that normalizing the trending effect could be a direction to alleviate error
accumulation of AR-based models in long-term forecasting. However, we also observe that RevIN
does not seem to be an ideal match for the NAR probabilistic model. For instance, CSDI (w/ RevIN)
performs worse than CSDI (w/ Scaling) on the Weather dataset. Further research in developing
effective normalization strategies for NAR probabilistic models is necessary.

No Dominating Normalization Strategies in Short-term Forecasting. While RevIN is effective
for long-term scenarios, it does not adequately address the challenges faced by short-term probabilistic
models. As shown in Table [I4] RevIN fails to consistently deliver significant improvements for
models such as CSDI, TimeGrad, and GRU NVP in short-term forecasting. The mean scaling strategy
has proven to be the most reliable option for these models, explaining its widespread use. Although
omitting instance-level normalization is occasionally acceptable, it can lead to significant issues, as
seen with TimeGrad (without normalization) on the Wikipedia and Solar datasets, and GRU NVP
(without normalization) on Electricity. We provide detailed analysis in Appendix

4.2 Analyzing Foundation Models for Universal Time-series Forecasting

We next explore the capabilities of recent foundation models in universal time-series forecasting,
focusing on their performance across different prediction horizons and their ability to estimate
distributions, especially regarding their zero-shot transfer capabilities on unseen datasets. Table[TT]
showcases their significant progress, sometimes outperforming traditional models without re-training.
Using the analytic framework of ProbTS, we delve into their methodological pros and cons.

Navigating the AR Decoding Challenge over Extended Forecasting Horizons Figure [4alillus-
trates how the performance of various time-series foundation models evolves in relation to expanding
forecasting horizons. It is evident that for shorter horizons, AR-based foundation models such as
TimesFM and Timer exhibit highly competitive performance, on par with NAR-based models like
MOIRAI. However, the advantage of NAR-based decoding becomes increasingly apparent as the
forecasting horizon lengthens, as demonstrated by the widening performance gap between TimesFM
and MOIRAL This trend is consistent with our earlier observation that without proper normalization
strategies, AR-based methods could suffer from significant error accumulation when applied to
long-term time-series forecasting. Given the inherent strengths of AR decoding, such as its supe-
riority at capturing strong seasonality and its robust performance in certain short-term forecasting
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scenarios, it is clear that further research is warranted to explore ways to overcome its limitations
in long-term forecasting contexts. This could potentially unlock new avenues for enhancing the
versatility and effectiveness of AR-based time-series foundation models across a broader range of
forecasting horizons.

The Critical Role of Addressing Complex Data Distributions Figure[da]illustrates the incremental
changes in CRPS among leading probabilistic time-series foundation models, such as MOIRAI and
Chronos, compared to the best-performing short-term probabilistic model, CSDI. It becomes apparent
that in scenarios characterized by complex data distributions, indicated by higher non-Gaussianity
scores, the performance decline of MOIRALI in relation to CSDI becomes notably more pronounced.
This phenomenon may be attributed to MOIRAI’s approach to supporting distributional forecasting,
which involves utilizing a mixture of predefined distribution heads. While this method is efficient and
effective for certain applications, it may lack the expressiveness required to accurately model more
complex data distributions. Furthermore, these observations underscore that, in specific contexts,
foundation models might not be able to fully replace traditional models that have been specifically
tailored and trained for particular domains. Additionally, the prospect of fine-tuning these foundation
models as a remedy is less economically viable, primarily due to their significantly larger size.
This highlights the importance of not only continuing to refine foundation models to enhance their
adaptability and performance across a wide spectrum of data distributions but also recognizing the
continued relevance of domain-specific models, especially for handling intricate data distributions
where a more nuanced approach may be necessary.

5 Conclusion

In this study, we introduced ProbTS, a benchmark tool tailored for evaluating essential forecasting
needs, which facilitates a detailed comparison of various state-of-the-art models in the context of
time-series forecasting. Through our comprehensive analysis, we identified significant challenges and
opportunities in the realm of time-series forecasting, particularly highlighting the need for models
that can effectively address both point and probabilistic forecasting across diverse horizons.

Limitations While our study represents a significant step forward in understanding and evaluating
time-series forecasting models, it does come with many limitations. A predominant focus of our work
is on empirical analysis, relying heavily on intuitions and experimental observations, which may lack
the depth that theoretical foundations could provide. Additionally, our exploration, though extensive,
might not encompass all the nuanced factors that influence model performance. By concentrating on
major methodological decisions such as AR versus NAR decoding schemes, we may inadvertently
overlook other critical aspects that could play a decisive role in forecasting accuracy. Moreover, the
datasets employed for evaluation, despite their diversity and relevance to current research threads,
may not fully capture the vast spectrum of real-world forecasting challenges. This limitation is
particularly pronounced when comparing different foundation models, as their pre-training often
involves an even broader array of data, potentially skewing the comparative analysis.

Future Directions The insights derived from our study open the door to numerous promising
research directions. Addressing the shortcomings of AR and NAR decoding schemes, especially
in their application across varying forecasting horizons, emerges as a critical area for future ex-
ploration. Innovating effective architecture designs that can navigate the intricacies of short-term
forecasting challenges and devising efficient methods for long-term probabilistic forecasting stand
out as urgent needs. For AR-based models, reducing error accumulation remains essential, with
ReVIN-style normalization showing potential for improving long-term forecasting. Additionally,
exploring effective normalization strategies for NAR-based probabilistic models is an underdeveloped
yet promising area. Equally important is the enhancement of models’ abilities to characterize complex
data distributions, which could significantly improve the adaptability and effectiveness of foundation
models. Beyond these technical endeavors, expanding the scope of datasets used for evaluation to
encompass a wider range of real-world scenarios will be crucial for validating the robustness and
versatility of future forecasting models. Lastly, integrating theoretical insights with empirical findings
could provide a more holistic understanding of model behaviors, contributing to the development of
more sophisticated and nuanced forecasting solutions.
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A Additional Related Work

A.1 A Comparison with Traditional Models on Covering Essential Forecasting Needs and
methodological decisions

Table [2] presents a comparative summary of our approach, which adopts an integrated perspective,
and representative studies from the existing literature.

Table 2: We provide a concise comparison between the methodologies presented in this paper and
those from two distinct research branches. The comparison is based on data scenarios (short-term
versus long-term forecasting), primary evaluation metrics (point versus distributional forecasts), and
key methodological choices (general or customized neural architecture designs, and autoregressive or
non-autoregressive decoding schemes).

Method Pred. Horizon Paradigm Arch. Design_ Dec. Scheme
Short  Long | Point Distr. | General Customized | AR Non-AR

N-BEATS [53] v v v v
Autoformer [72]) v Ve v v
Informer [[78]] v v v v
Pyraformer [38] v v v v
N-HiTS [L1]] v v v v
LTSF-Linear [75]] v v v v
PatchTST [49] v v v v
TimesNet [71]] v v v v v
iTransformer [40] v v v v
DeepAR [60] v v v v
GP-copula [59] v v v v

LSTM NVP [58] v v v v

LSTM MAF [58] v v v v

Trans MAF [58]] v v v v
TimeGrad [57]] v v v v

CSDI [62] v v v v
SPD [7] v v v v
TSDiff [33] v v v v
This Study | v v | Vv e v | v v

A.2 A Comparison of Pre-trained Time-series Foundation Models

We have incorporated eight recently emerged time series foundation models, namely Lag-Llama [56]],
Chronos [2], TimesFM [[15]], Timer [41], MOIRAI [70], UniTS [23]], ForecastPEN [ 18], and TTM [20],
into our framework. These foundation models are categorized based on their capabilities, such as zero-
shot forecasting, adaptability to varying prediction lengths, and support for probabilistic predictions,
as well as their architectural designs, including whether they are auto-regressive and the nature of their
backbone networks. Additionally, we have detailed their training processes, including the lengths of
prediction horizons used during pre-training and the sizes of look-back windows. These details are
summarized in Table 3l

Furthermore, we have compiled a summary of these foundation models’ pre-training and evaluation
on several classical time series forecasting datasets. This compilation is presented in Table ]

A.3 A Comparison with Existing Libraries on the Coverage of Data, Model, and Metrics

ProbTS is a research toolkit designed to advance forecasting research across varied horizons, focusing
on both point and distributional forecasting. To achieve these objectives, ProbTS includes state-of-
the-art models, comprehensive evaluation protocols (point vs. distributional), and explores different
methodological aspects of forecasting models, particularly in terms of distributional estimation
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Table 3: Foundation Models for Time Series. Zero-shot indicates whether the original work tests zero-
shot capabilities. Any-horizon indicates if the same pre-trained model can adapt to prediction tasks of
varying lengths. AR denotes if the model performs auto-regressive forecasting. Prob. indicates if the
model natively supports probabilistic forecasting. Arch. denotes the model’s backbone architecture:
D-O for decoder-only transformer, E-O for encoder-only transformer, E-D for encoder-decoder
transformer, and unique for specially designed backbones. Multi-variate indicates if the model
explicitly handles multivariate relationships. Pre-train Horizons specifies the forecasting task
horizons during pre-training. Look-back Window specifies the context history length settings used
in the original experiments.

Model Zero-| Any- AR | Prob.| Arch. | Multi- | Pre-train Look-back
shot | horizon variate | Horizons Window
Lag-Llama v v v v D-O 24~60 32~1024
Chronos v v v v E-D 64 512
TimesFM v v v D-O - 512
Timer v v v D-O up to 1440 672
MOIRAI v v v E-O O varying 100~5000
UniTS v v E-O - 60~720
ForecastPFEN | v v E-O 050 50 500
T™M v Unique v 96 512

Table 4: Evaluation Datasets for Time-series Foundation Models. We selected several popular datasets
to evaluate time-series foundation models. v'indicates pre-training on the dataset, () indicates zero-

shot evaluation on the dataset, few indicates few-shot evaluation on the dataset, and / indicates the
dataset is not mentioned in the paper or documentation. ‘*’ indicates that the data comes from the
same source but may be processed differently.

Model |Solar| Wikipedia|[ETTm1|ETTm2|ETTh1|ETTh2|Electricity| Traffic| Weather | Exchange|ILI

MOIRAI O v O O O O O v O

Lag-Llama | v'* v O v v v v O O
TimesFM | O* vOE O O O O v v v

Chronos v vE O O O O v O O O

TT™ O O O O O O O

UniTS O few v few v v v v v
Timer few Sfew few few few few few

methods and decoding schemes (AR vs. NAR). In Table[5] we provide a comprehensive comparison
of ProbTS with existing libraries in terms of toolkit functionalities and the benchmarking aspects we
aim to investigate.

B More Details on ProbTS

B.1 Data

The data module unifies varied data scenarios to facilitate thorough evaluation and implements
standardized pre-processing techniques to ensure fair comparison.

Moreover, we utilize a quantitative approach to visually delineate datasets’ intrinsic characteristics,
which employs decomposition to assess trends and seasonality in a time series and evaluate the
similarity between data distribution and a Gaussian to depict the complexity of data distribution.

B.1.1 Time-series Forecasting Datasets

Table [6] provides a summary of the public datasets employed in our study. These datasets have been
sourced from recent research studies in the field of deep time-series forecasting.
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Table 5: Comparison of Various Time Series Tools.

Tools Featul"es ) Benchmarking )
SOTA Model Dist. Evaluation | Short-term  Long-term AR vs. NAR  Point vs Prob.
Merlion [6] v
Kats [31]
pytorch-transformer-ts [65]
Prophet [63] v
Darts [27] v
sktime [42] v
pytorch-forecasting [64] v
NeuralForecast [51] v v
tsai [52] v
TFB [54] v v
TSlib [[71] v v v v
GluonTS [1] v v v v
ProbTS \ v v \ v v v v
Table 6: Dataset Summary.
Horizon \ Dataset \ #var. range freq. timesteps Description
ETTh1/h2 7 Rt H 17,420  Electricity transformer temperature per hour
ETTm1/m2 7 R* 15min 69,680 Electricity transformer temperature every 15 min
Electricity 321 R* H 26,304 Electricity consumption (Kwh)
Long-term Traffic 862 0,1) H 17,544 Road occupancy rates
Exchange 8 R+ Busi. Day 7,588  Daily exchange rates of 8 countries
ILI 7 0,1) w 966  Ratio of patients seen with influenza-like illness
Weather 21 R* 10min 52,696 Local climatological data
Exchange 8 R* Busi. Day 6,071 Daily exchange rates of 8 countries
Solar 137 RT H 7,009  Solar power production records
Short-term | Electricity 370 R+ H 5,833  Electricity consumption
Traffic 963 0,1) H 4,001 Road occupancy rates
Wikipedia | 2,000 N D 792  Page views of 2000 Wikipedia pages

B.1.2 Data Visualization

To provide a more tangible understanding of the different forecasting scenarios, we visualize time-
series segments from both short-term and long-term forecasting datasets. The segments’ window size
is determined by the specific forecasting setup.

In Figure[5] we present samples extracted from short-term forecasting scenarios. At this scale, the
series primarily exhibit local variations, and the compact window size often obscures pronounced
seasonal or trending patterns. However, these short-term scenarios may reveal irregularly varied
patterns, suggesting a more complex underlying data distribution.

On the contrary, Figure [6]illustrates long-term forecasting scenarios. With extended forecasting hori-
zons, as showcased in datasets like Traffic, Electricity, and ETT, the series display more pronounced
seasonality and trends. These characteristics render the series more regular patterns in the long-term
scenarios.

It’s important to note that these visualizations are not selectively chosen or "cherry-picked". We have
depicted multiple time-series segments from various time steps, and the observed patterns remain
consistent across these different instances.

exchange_rate_nips_pred_len_30 solar_nips_pred_len_24 traffic_nips_pred_len_24 electricity_nips_pred_len_24 400000 wiki2000_nips_pred_len_30
40000
300000
0.4 i 30000
100 200000
20000

10000 . g 100000 -

A e - o & o
0 10 20 0 10 20 0 10 20 0 10 20 30

Figure 5: We have sampled and visualized multiple time-series segments from the short-term
forecasting datasets. The size of the segment window is set equal to the prediction horizon.
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Figure 6: We have also sampled and visualized multiple time-series segments from the long-term
forecasting datasets, where the size of the segment window matches the prediction horizon.

B.1.3 Quantifying Trend and Seasonality Strengths

Based on the intuition obtained from data visualization, we would like to quantify the strengths of
trend and seasonality for a time-series segment with a predefined window size (corresponding to the
prediction horizon). Then we can quantify the trend and seasonality strengths at the dataset level by
averaging over all time-series segments of a dataset.

To quantify the strengths of trend and seasonality for a fixed-length time-series segment, we draw upon
methodologies outlined in the work of [68]]. In particular, we employed a time series decomposition
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model expressed as:
yr =Ti + S + Ry,

where T} represents the smoothed trend component, S; signifies the seasonal component, and
R; denotes the remainder component. In order to obtain each component, we followed the STL
decomposition approach EI

In the case of strongly trended data, the variation within the seasonally adjusted data should consid-
erably exceed that of the remainder component. Consequently, the ratio Var(R;)/Var(T; + R;) is
expected to be relatively small. As such, the measure of trend strength can be formulated as:

Var (Rt)
Fr = 0,1 - —————— | .
T tax < ’ Var(Tt + Rt)>
The quantified trend strength, ranging from 0 to 1, characterizes the degree of trend presence.
Similarly, the evaluation of seasonal intensity employs the detrended data:

Var(R;)

Fg = 0,1 - ———————|.
S max ( Var(St + Rt)

A series with Fg near 0 indicates minimal seasonality, while strong seasonality is indicated by Fs

approaching 1 due to the considerably smaller variance of Var(R;) in comparison to Var(S; + R;).

Tables [I] depict the results for each dataset. Notably, the ETT datasets and the Exchange dataset
manifest conspicuous trends, whereas the Electricity, Solar, and Traffic datasets showcase marked
seasonality. Additionally, the Exchange dataset stands out with distinctive features. Figure [6]
also illustrates that with shorter prediction windows, the Exchange dataset sustains comparatively
minor fluctuations, almost forming a linear trajectory. This enables effective forecasting through a
straightforward batch mean approach. As the forecasting horizon extends, the dataset appears a more
pronounced trend while retaining minimal seasonality.

B.1.4 Quantifying Data Distribution Complexity

To differentiate between methods optimized for point or distributional forecasts, we aim to quantify
the complexity of data distribution within a time-series segment whose window size equals the
prediction horizon length. Such complexities may arise from the unpredictability of the data itself or
from noises accidentally introduced during the data collection process [[77]].

We propose that assessing non-Gaussianity, i.e., how closely the distribution of time-series values
within that window resembles a Gaussian distribution, could serve as a meaningful measure. This
is because point forecasting methods, optimized with mean squared loss, are essentially equivalent
to probabilistic counterparts that include a Gaussian output head and employ maximum a posteriori
estimation. This suggests that point forecasting methods inherently assume that time-series values
adhere to a Gaussian distribution. In contrast, advanced probabilistic methods, which do not make
prior assumptions about data distribution, can adapt to complex data distributions in a data-driven
manner.

Hence, we use the Jensen—Shannon divergence [50] to measure the similarity between the actual
value distribution of a time-series segment and a Gaussian distribution fitted to the observed values.
Short-term datasets used a window size of 30, while long-term datasets used a size of 336. By
averaging the calculated divergence values across all time-series segments of a dataset, we obtain a
dataset-level measure of non-Gaussianity. A larger divergence value indicates a larger deviation from
a Gaussian distribution in the data.

B.2 Metrics

In ProbTS, we integrate an extensive variety of metrics that take into account both point and
distributional forecasts, thereby providing a comprehensive and multifaceted assessment of forecasting
models.

*https://otexts.com/fpp2/stl.html
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B.2.1 Maetrics for Point Forecasts

Mean Absolute Error (MAE) The Mean Absolute Error (MAE) quantifies the average absolute
deviation between the forecasts and the true values. Since it averages the absolute errors, MAE is
robust to outliers. Its mathematical formula is given by:

MAE = L SN g g
—KXTZZL%_%L

k=1t=1

where K is the number of variates, 7" is the length of series, xf and :%f denotes the ground-truth value
and the predicted value, respectively. For multivariate time series, we also provide the aggregated

version:
sum "Sllm
sum = Ty —
-z § | !

i are the summation across the dlmenswn K of z¥ and 2F, respectively.

Lol sum

where 3" and &

Normalized Mean Absolute Error (NMAE) The Normalized Mean Absolute Error (NMAE) is a
normalized version of the MAE, which is dimensionless and facilitates the comparability of the error
magnitude across different datasets or scales. The mathematical representation of NMAE is given by:

NMAE — Zk 12:&  |of —af ‘
Zk:l Zt:l |zf]
Its aggregated version is:
sum __ sum
NMAE,,, — Zt p | |

S ]
Mean Squared Error (MSE) The Mean Squared Error (MSE) is a quantitative metric used to

measure the average squared difference between the observed actual value and forecasts. It is defined
mathematically as follows:

MSE =

K T
KxTZZ )"

k=1t=1

For multivariate time series, we also provide the aggregated version:

_ sum Asum
SLIHI - T

Normalized Root Mean Squared Error (NRMSE) The Normalized Root Mean Squared Error
(NRMSE) is a normalized version of the Root Mean Squared Error (RMSE), which quantifies the
average squared magnitude of the error between forecasts and observations, normalized by the
expectation of the observed values. It can be formally written as:

K T N
\/KiT 2 k=1 Zt:1(171]f — &f)?
K T . :
K§<T Dokt 2ot |$§|

For multivariate time series, we also provide the aggregated version:

\/ Z 1 sum zum)2
NRMSEqm = = .
T i

Mean Absolute Scaled Error (MASE) The Mean Absolute Scaled Error (MASE) divideds the
MAE of forecasted values by MAE of the in-sample one-step naive forecast, which is a scale-invariant

metrics: K .
KiT Zk:l Zt:l |1’f - i’ﬂ

K T :
leT Zk:l Zt:l |$1"€ - l’f—ﬂ

NRMSE =

MASE =
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B.2.2 Metrics for Distributional Forecasts

Continuous Ranked Probability Score (CRPS) The Continuous Ranked Probability Score
(CRPS) [47] quantifies the agreement between a cumulative distribution function (CDF) F' and
an observation z, represented as:

CRPS = /R(F(z) —I{z < 2})%dz,

where I{z < z} denotes the indicator function, equating to one if z < z and zero otherwise.

Being a proper scoring function, CRPS reaches its minimum when the predictive distribution F'
coincides with the data distribution. When using the empirical CDF of F’, denoted as F(z) =
L5 I{X; < z}, where n represents the number of samples X; ~ F, CRPS can be precisely
calculated from the simulated samples of the conditional distribution pg(x:|h:). In our practice, 100
samples are employed to estimate the empirical CDF.

For multivariate time series, the aggregate CRPS, denoted as CRPSg,y,, is derived by summing across
the K time series, both for the ground-truth data and sampled data, and subsequently averaging over
the forecasting horizon. Formally, it is represented as:

K
CRPS (Fqum(thzx?,z)] :
=1

CRPSgym = I,

B.3 Baselines

To ensure the integrity of the results, ProbTS adheres to a standard implementation process, employing
unified data splitting, standardization techniques, and adopting fair settings for hyperparameter tuning
across all methods.

Implementation Details ProbTS was developed using PyTorch Lightning [22]]. During training,
we sampled 100 batches per epoch and limited training to 50 epochs, using the CRPS metric for
checkpointing. All experiments employed the Adam optimizer and were run on single NVIDIA Tesla
V100 GPUs with CUDA 11.3. To enable evaluation of distribution-level metrics, we conducted 100
samplings to calculate metrics on the test set.

Following the most commonly adopted settings 75,149, [71]], in the long-term forecasting context, all
of the models are following the same experimental setup with prediction length T € {24, 36,48,60}
for ILI-L dataset and T € {96,192, 336, 720} for other datasets. Note that the lookback window
here is 96 for all the models, to ensure a fair comparison. In the short-term forecasting context, the
length of the lookback window is the same as the forecasting horizons, which are 30 for Exchange-S
dataset and Wikipedia-S dataset, and 24 for the rest, the same as [59].

Hyper-parameter Tuning For a fair comparison, we conducted a comprehensive grid search for
critical hyperparameters across all models in this study. Table [7]details the shared hyperparameters
tuned within the ProbTS pipeline, along with those kept constant. Due to the vast array of model-
specific hyperparameters, we present an example configuration in Table[§] Complete hyperparameter
configurations for each model, identified through this process, will be made available in a public
GitHub repository for transparency and reproducibility.

Implementation Details on Foundation Models We used reference implementations of eight time
series foundation models into ProbTS.

For Lag-Llama [56], we use its official codeE] and integrate the LagLlamaEstimator with its pre-
trained checkpoint. The look-back window is uniformly set to 512, irrespective of the forecast
horizon. The other hyper-parameters are aligned with the recommended settings.

For Chronos [2]], we use its official codeF_’] and integrate the ChronosPipeline into ProbTS using
amazon/chronos-t5 checkpoints (three models were tested: small, base and large). Two look-back

Shttps://github.com/time-series-foundation-models/lag-1lama
Shttps://github.com/amazon-science/chronos-forecasting
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Table 7: Hyper-parameters values fixed or range searched in hyper-parameter tuning.

Hyper-parameter | Value or Range Searched

learning rate
dropout
batch_size
use_lags
use_feat_idx_emb
use_time_feat
autoregressive

[le-4, 1e-3, 1e-2]
[0, 0.1, 0.2]
[8, 16, 32, 64]
[True, False]
[True, False]
[True, False]
[True, False]

scaler [Standard, Scaling, None]

limit_train_batches 100
num_samples 100
quantiles_num 20

Table 8: Hyperparameter settings for Electricity-S dataset.

Model ‘ Hyperparameter

DLinear ‘ learning_rate=0.01, kernel_size=3, f_hidden_size=40

PatchTST ‘ learning_rate=0.0001, stride=3, patch_len=6, n_layers=3, n_heads=8, dropout=0.1, kernel_size=3, f_hidden_size=32

TimesNet ‘ learning_rate=0.001, n_layers=2, num_kernels=6, top_k=>5, f_hidden_size=64, d_ff=64

GRU NVP ‘ learning_rate=0.001, f_hidden_size=40, num_layers=2, n_blocks=3, hidden_size=100, conditional_length=200

GRU MAF ‘ learning_rate=0.001, f_hidden_size=40, num_layers=2, n_blocks=4, hidden_size=100, conditional_length=200

Trans MAF ‘ learning_rate=0.001, f_hidden_size=32, num_heads=8, n_blocks=4, hidden_size=100, conditional _length=200

TimeGrad ‘ learning_rate=0.001, f_hidden_size=128, num_layers=4, conditional_length=100, beta_end=0.1, diff_steps=100
CSDI

‘ learning_rate=0.001, channels=64, emb_time_dim=128, emb_feature_dim=16, num_steps=50, num_heads=8, n_layers=4

windows are used during evaluation: 96 and 512. We set 1imit_prediction_length=False to
enable it to predict horizons longer than 64. However, this may potentially lead to a decrease in
predictive performance since the model was only trained to consider prediction lengths of 64 or less
during pre-training.

For TimesFM [15], we modify its official code{Z] into ProbTS and load checkpoints from
google/timesfm-1.0-200m. Look-back window is set to 96 for a fair comparison.

For Timer [41], we modify its official codﬂ into ProbTS and Timer_67M_UTSD_4G checkpoint
downloaded from its repo. Look-back window is also set to 96 for a fair comparison.

For MOIRAI [70], we employ its official codeﬂ and load checkpoints from
Salesforce/moirai-1.0-R-base. Two look-back windows are utilized during evalua-
tion: 96 and 5000. The original experiments suggest that MOIRATI’s forecasting capability can be
consistently enhanced by increasing the look-back window. Consequently, we have included a 5000
look-back window to test the model’s performance.

For UniTS [23]], we have adapted its official code[]E] into our ProbTS framework and loaded the
saved_weights from its repo. The look-back window is set to 96 to ensure a fair comparison. It is
important to note that this checkpoint was originally used for the Zero-Shot New-length Forecasting
experiment in the original work (where models are challenged to predict new lengths by adjusting
from the trained length, with offsets ranging from 0 to 384), which differs from the objectives of our
experiments.

For ForecastPFN [18], we have integrated its official coddzr] into our ProbTS framework and have
utilized the units_x128_pretrain_checkpoint. However, we have encountered some challenges

"https://github.com/google-research/timesfm

*https://github.
https://github.
https://github.
"https://github.

https://doi.org/10.52202/079017-1523

com/thuml/Large-Time-Series-Model
com/SalesforceAIResearch/uni2ts
com/abacusai/ForecastPFN
com/SalesforceAIResearch/uni2ts
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Table 9: Results (meangy) on short-term forecasting scenarios, each containing five independent runs
with different seeds.

Model Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S
CRPS NMAE ‘ CRPS NMAE ‘ CRPS NMAE ‘ CRPS NMAE ‘ CRPS NMAE
Glob. mean 0.188 0.188 1.403 1.403 0.412 0.412 0.540 0.540 0.577 0.577
Batch mean 0.012 0.012 1.244 1.244 0.365 0.365 0.503 0.503 0.336 0.336
Linear 0.012.901  0.012,901 | 0.704.036 0.704 036 | 0.138.009 0.138 009 | 0.327 032 0.327 032 | 0.874.151 0.874 151
GRU 0.013.002 0.013.002 | 0.594.144 0.594 144 | 0.134.009 0.134,909 | 0.193 002 0.193.002 | 0.394.013 0.394.013
Transformer 0.016,001 0.016.001 0538.066 0.538.050 0.115,(}05 0.115.005 0204.006 0.204,000 04408,011 0.408,011
N-HiTS 0.012.000 0.012.000 | 0572020 0572020 | 0.074.003 0.074 003 | 0.193.002 0.193.002 | 0.332.011 0.332.011
NLincar | 0.010. 000 0.010.000| 0.560 00 0.560 002 | 0.083.002 0.083 00 | 0.233.001 0.233.001 | 0.321 001 0.321 001
DLinear 0.012.901  0.012,01 | 0.547 009 0.547 009 | 0.076.003 0.076 903 | 0.250 902 0.250 002 | 0.412,001  0.412 901
PatchTST 0.010.900 0.010.900| 0.496 go2  0.496 gp2 | 0.067 go1  0.067 901 | 0.202,991 0.202901 | 0.257 001 0.257 001
TimesNet | 0.01%001 0.011.001 | 0.507 019 0.507 019 | 0.071 002 0.071 002 | 0.205.002  0.205.002 | 0.304 002 0.304 002
iTransformer 0‘010_000 0.010_000 0.496_000 0.496_000 0.074,000 0‘074_000 0.158,000 0.158_000 0.262_000 0‘262_000
GRUNVP | 0.016 o3 0.020 o3 | 0.396 921 0.507 g22 | 0.055.002  0.073 003 | 0.161 g0  0.203 009 | 0.282 003 0.330 903
GRU MAF | 0.015 901 0.020 901 | 0.386.026 0.492 g27 | 0.051 991  0.067 go1 | 0.131 906  0.165 gg9 | 0.281 004 0.337 05
Trans MAF | 0.011 01 0.014.001 | 0.400.035 0.503.035 | 0054 001 0.07T 005 |0-129 002 0.165.006 | 0.289 00s  0.344 005
TimeGrad 0.011,001 0.014.002 0.359,011 0.445,023 0.052,001 0.067,001 0.164,091 0.201,115 0-272.008 0.327,011
CSDI 0.008.600 0.011 000 | 0.366 605 0.484 gos |0.050.001 0.065.001 | 0.146 012 0.176 015 |0.219.006 0.259 000

in replicating the performance levels reported in the original paper across various datasets. It appears
that our experience aligns with the observations made in the Chronos paper [2], specifically as
depicted in Figure 5, where ForecastPFN’s performance was not as robust as initially anticipated.

For TTM [20]], we have adapted its official cod into our ProbTS framework and have loaded the
ibm-granite/granite-timeseries-ttm-v1 checkpoint. However, this method does not support
arbitrary lengths for forecasting. The publicly available model currently supports a forecast length of
96 only, and thus, we have not conducted evaluations at other forecast lengths.

It is worth noting that, due to time constraints, we did not adjust the context window for all mod-
els. Instead, we chose 96 as a balanced and fair window size, which might result in suboptimal
performance for some models.

B.4 Data and Code Availability

We release the ProbTS toolkit, documentation, and running scripts at https://github.com/
microsoft/ProbTS| under the MIT license. The repository includes parameter configurations
for benchmarking experiments, ensuring reproducibility of all results presented in the paper. Most
datasets used in this paper licensed under Creative Commons Attribution 4.0 International (CC BY
4.0), accessible via instructions in the repository.

C Overall Comparison Results

C.1 An Overall Comparison of Traditional Time-series Models on Short-term Forecasting

Table 0] presents a comprehensive comparison of various time-series models in ProbTS on short-term
forecasting scenarios. The results, reported as mean * standard deviation, are derived from five
independent runs with different seeds for each scenario.

C.2  An Overall Comparison of Traditional Time-series Models on Long-term Forecasting

Table[T0]presents a comprehensive comparison of various time-series models in ProbTS on long-term
forecasting scenarios. The results, reported as mean * standard deviation, are derived from five
independent runs with different seeds for each scenario. The input sequence length is set to 36 for the
ILI dataset and 96 for the others. Due to the excessive time and memory consumption of CSDI in
producing long-term forecasts, its results are unavailable in some datasets.

Zhttps://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_
getting_started.ipynb

48067 https://doi.org/10.52202/079017-1523


https://github.com/microsoft/ProbTS
https://github.com/microsoft/ProbTS
https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_getting_started.ipynb
https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_getting_started.ipynb

g00°geg 0 900°L0¢°0 | 890°gge 0 €80°GET 0 | £T0°66C°0 ETOERT 0 | P00 FFTI 0 Q00 HH1 0| €T0°0ez 0 ETO0ET 0 | 00 LT0  €00°LETT(Q | 000°RZT0 000°QZTI'0| 09
600'y1g 0 800°887°0 | €0°0ge'0  €€0°GeZ 0 | PEO'TOE0 9€0°GRZ 0 | 000'FET 0 000peT 0| 600 1gg0  600°1gg 0 | 800°9GT'Q0 800°9GT O | 000°gQT 0 000°gQT 0| 8F
£00°20e°0 700°18z°0 | 8¥0'865°0 4S0°gLz0 | 108670 0TO'gRZ'0 000710 000°TTTQ| €T0'0gz'0 S$TO°0gz 0 | €00°9gT'Q0 S€00°9gT 0 | 000°ZOT 0 900°ZOT'0| 9¢
T00°eQz 0  €00°467°0 | YP0'965°0 4¥0°GLz0 | ET0'g9z' 0 €T0°0GE 0 | 000°ggT 0 000°7Z1°0| 8€0'¢Iz 0 8E0'EIE 0 | €90°691°0 €00°691°0 | 000°'F60°0 000°'%60°0| ¥T

600°¢0T'0 600°6,0°0 | °TO°€TT'0 910766070 | 020'gLT0 0RO'EHTQ |200°ZTT0 2090ZTIT'0| €00°GL0°0 €00°GL0"0 |000°gLO"0 ©00°ZL0°0| ©00°9.0°0 ©00°9.0°0 | OTL
c00'160°0 ©00°zL0°0 | 800°'980°0 600°FL0°0 | 909,00 ¥00°090°0 | 900°'9g0"0 ©00°9¢0'0| TO0°'8%0°0 TO0'8%0°0| 00’800 ©0C'8%0°0| °°0'8%0°0 ©00'8%0°0| 9¢¢
900°280°0 700'890°0 | 6T0°00T"0 ®TO°.80°0 | €00°8G0°0 €00'GHO'0 | 900°TF0'0 000 1F0'0| 900°Gge0'0 0°0°G6g0 0 | °00'pg0'0 C00'pg0o0| °00°9¢0'0 ©90°9¢0°0 | T6l
600°T60°0 200°TL0°0 | €00°6L0°0 €00°890°0 | 00°9€0°0 €00'8g0°0 | 900°gg0 0 °00'ggo'0| 900Fzo0 000Fgo 0 |°00'gzo 0 ©00'gzo'0| °00°¢z0'0 090°¢Z0'0 | 96

800°¢eT'Q0 O0'QTT'O | 9°0°9gT0 FFOETT0 | €90°Z0T'0 €O0°480°0| '00°0LT0 '000LT0| TOOFFTO TOOFFTO | TOO'FE0°0 '9°%60°0 | °99°660°0 ©00°660°0 | OTL
ero'g9T'0  'T0'ggT0 | 900°g9T0  900°0gT'0 | 00'860°0 200°'€R0O°0|000°9LT'0 000°9LT'Q| TO0QET0 €00QET 0 |220°Z60°0 20°°°Z60°0 | °99°960°0 ©00°960°0 | 9¢€
9e0°Lp1°0  1e0°ggI0 | ¥e0'8GT0  610°LgI'0 [400°980°0 ©00°890°0|000°¢Tz 0 000°¢1g 0| T00°ggT0 '00°gZI0 | 000600 '0°°060°0 | 299°¢60°0 ©90°¢60°0 | T61
L0°ep1rQ €TO9TT0 | ¥EOF9T'0  L10°0ET'0 [2TO°L80°0 800°890°0(700°6gz 0 ¥00'6€Z 0| 00°ZTIT'0  TOOZIT'O [200°480°0 008070 | 090°680°0 ©90°680°0 | 96

TIT

T-o8ueyoxyg

T-1YIeaM

900°'p9z'0 ¥00'TTZ 0| T00°'g9Z 0 ©09°07Z 0 - - €00°Tpg 0 €00'1pg 0| 600°'gog g 600°gogrQ | 10099z’ '00°99g'0 | 000°grz'0  000°gLZO | OTL
900°8yz'0 ¥00'10Z°0|€00°9%Z 0 £00°¢T1Z 0 - - 000°zgg 0 000°zgg 0| 800°0ge0  800°QggrQ | ©00°LGzT0  ©00°LGgT0 | 000°ggz0  000°g8T0 | 9€€
200'ggz 0 '00°g6T 0| "096gz'0 £99°80Z°0 - - 000°gTg 0 000°gTE"Q| 600°9Fg 0 600°9pg 0 | T00°gpg0  00°Gyg0 | 000°6gz0  000°6SE0 | T6I
€00'1gZ 0 200728170 °00°Fgz'0 790°Z0Z 0 - - 000°¢6z" 0 000°¢ez 0| 600°9ge 0 600°9ge 0 | TO0'8pg'0  TO0'8pZ 0 | 000°9%Z'0  000°9%Z 0 | 96

T-oyjell

LIOCHHT0  ETOHIT0 | POO'HET0 €00'R0T'0 - - 000°6gT"Q 000°'GGT Q| T00'ZzT 0 T00'ZgI'0 |000°'9TT'Q 000'9TT'Q | 000°¢gr'0 ©00°ggT 0 | OCL
T00'ez1°0 TO0'660°0| 800°9Z1°0 £00°Z0T°0 - - 000725170 0007 L5 1°Q| 000'FQT°Q ©000'FQT°Q |900°QQT 0 000°00T 0 | 200°GTT'0 ©000°GTT'0 | 9¢¢
€00°TZT°0 200°260°0 | 200°%ZT°0 ¥O000T'0 | 6ETH9Z0 P60 00T 0 |000°9gT 0 000°9¢T 0| T00°gE0 0 T09°GE0°0 | TO0°Z60°0 TO0°Z60°0| 200°90T1°0 ©00°901°0 | 6l
€00°QTT°0 E00'FEO°0 | EOO'GTT0 ©00°960°0 | 68T'¢0z'0 £ET'€QT"0 | 000°0FT°0 990°0FT1°0| T00°060°0 T190°060°0 | T00'980°0 T00°'980°0| 200°860°0 999'860°0 | 96

T-KioInosrg

191°889°0 060°6gg 0 | 810°0Ggg'0 92T0°gyi 0 | 080°gge 0  OF0'gog 0 | 000°,8z 0 00072870 000°,0€'0 000°,0g°0 |000°Zgg 0 000°zgz 0| 990°F9z°0 9993970 | OTL
BOV'ZH6°0  OTE'EEL'0 | 960°909°0 BLOI8F 0 | 880'gge0  TEOHLEI0 | 000°%9g°0 000%9z 0| 800'F8z 0 800'F8T 0 | TOO'0HZ 0 TO0'0HT 0| 200°¢Hz 0 090°¢Hz 0 | 9¢¢
€22°99,°0 041'Ggg9 0 | 680°GLg'0 TBO'LGH 0 | £80°%62°0 810°9zz 0 | 000°9gz 0 000°9zz 0| 8¢0'8ez 0  8%0°8¢z 0 [ TOO'T0Z 0 P00z 0| 900°¢oz 0 090°¢0z 0 | Tel
8ST'Qpc 0 Wlgey 0 | TEO'QFF 0 920°gge 0 | 810%1g 0 ETOHQT 0| 000°¢0g 0 200°¢0z 0| 24201150 4B0°11g 0 [000°4LT 0 000°LL1°(Q [000°LLT 0 0007210 | 96

970°¢y9'0  6€0°z0g0 | “10°gL9°0 4%0°ggg 0 | PTO'LG9'0 ©TO'8ggr0 | 000'gey 0 000'¢ggy0| 680°z0g 0 6%0°g0gT0 | 200°.6€°0 T00°.6€°0| 2908010 ©99°80%°0 | OTL
790°08¢ 0  790'8gy0 | 470°'999°0 9%0°gTg 0 | 9C0FLG 0 COFGH 0 | 000°86€°0 000860 400°61F0 400°6TF°0 | 200'FRE 0 T00'pRE 0| 000'88¢'0 000°88¢0 | 9¢€
810°Tgg'0  610°ggy 0 | 890°089°0 ®€0°9Tg 0 | €90°ggo0 90°96%°0 | 000°geg 0 000°gee 0| T00'g6e 0 T00'g6E 0 | 200°'69€°0 200°'69€°0|000°65E°0 ©00'65€°0| T6I
L80°18%°0  00'6LETQ | 890°gRG'0  9P0'gey 0 | P0TLGg 0 BTOTLEF 0 | 000°L9¢°0 000°L9¢70 TTO°gge0 TO'gger0 | £00'gge0  £00'8get0 | 000'TgEero 000°1ZEI0| 96

98E°6YL°0  $4ET9G°0 | PPO'19g°0  E00LF 0 | OF0'90€0  980°6E€C’0 | 000°LTg0 000°L1Z'0| 006120 €00°61g 0 | T00'goZ 0 '00'g0Z 0| °°0°11Z°0 ©09°11Z°0 | OTL
691°08¢'0  “¥I'6¥H 0 | 470°996°0 67069770 | PeO'8pg0  8TO°06T°0 | 000 T6T'0 000 T6T'0| TO0'88T'0 T00'88T'Q |000'9LT 0 ©000°9LT°0| 200°08T'0 C00°08T'0 | 9¢€€
£E0°L2H°0  9%0°9zgr0 | 090°0€g0  TO0pEH 0 | €T0°68T0 ®OOLPT 0| 000°GLT 0 000°cL1Q| £00'g9T 0 €00°g9TvQ | TOO'LgT 0 00°LGT'Q | 0090°191°0 ©000'191°0 | T6l
650°¢1p°0  TYO'6TE0 | 4P0°Ggg 0 CPOTLgH 0 | CFO9RT0 600°gTT- 0| 000°8GT 0 000'ggT Q| 000'geT 0 000'geT 0 | TOO'geT 0 '00°ZET0 | 000210 000°LET°0 | 96

090°2,0L°0 9€0°9pg0 | ¥80'g6L'0 480°1g9°0 | T90°8LG0  8EO'SFT0 | 000 0FF 0 000 0pF 0| 900°L8€0 900°L8¢70 | T00'gggro '00'gge 0| 0009.g'0 000°9L¢°0 | OTL
620°0g9'0  °€0°98%°0 | “10°6GL°0 801090 | TVO6IV0 €€0'ZTEe 0| 000°6Ty 0 0006z 0| 800'geg 0 800'gggt0 | TO0'ggero0 '00¢ge0 | 000°ggg'0  000°geg0 | 9gg
erOpIg0  080°96g70 | P8O'8FL'0  ©60°g09°0 | 980°LLE0 €9%0°T6T 0| 00°CHR0 00 ZE0| P00'60e0 P00'60€70 | T00°'g62°0 '00°Gez0 | °00°TOE0  ©90°10€°0 | T6l
890°g8%°0  £90°¢Re 0 | 62T'gy9'0 90T'ggg 0 | €90°80€°0 900°9gg 0| '00'88¢ 0 100'88¢'0| T00'ggr0 T00'g8z 0 | '00gLz0 00'gLz'O [000°TLZT0 C00°TLZO | 96

AVIAN sddD | avmaN Sd¥D | AvAN SddD | avmN SddD | avmN sd¥D | avaN SddD | avmaN SddD | uel
dAN N¥D pexoowr], 1aso oULIOjOINY Teauryq LSLUoEd TOWLIOJSUBIL L paid

T-cULLd

T-TULLA

T-cWLLd

TTWLLH

1o8B1R(]

"Sjasejep Qwos
Ul 9[qe[IBABUN QI SI[NSII S)1 ‘SISLOI0F WLIe)-3uo] Suronpoid ur [gSD Jo uondwnsuod AJOWW PUB SWI) JAISSIOX? 9U) 0} In(J "SIAYI0 Y} J0J 96 Pue Jaseyep -1 oyl
10J 9¢ 01 39s SI ISuQ[ 9ouanbas yndur oy, *spaos JuaIaIp Yim suni juspuadapul oAy SUIUTRIUOD YIB ‘SOLIBUDS FUNSBIAIO0J WI)-3uo] uo (Pueawr) synsay ([ 9[qeL

48068

https://doi.org/10.52202/079017-1523



C.3 An Overall Comparison of Time-series Foundation Models on Diverse Prediction
Horizons

Based on the results in Table [d] we selected several datasets that most foundation models have not
been pre-trained on for zero-shot evaluation. We compared these foundation models with fully-
supervised traditional non-universal time-series models. The results, presented in Table 1] are
reported as normalized MAE (NMAE). To comprehensively evaluate short-term and long-term
forecasting performance, we selected prediction horizons of {24, 48,96, 192,336, 720}. Due to
time constraints, the context window for most models was set to 96 unless otherwise specified. For
Lag-Llama, we chose a context window of 512 based on explicit recommendations from the original
paper and model specifications.

Additionally, on the MOIRAI model, we explored the impact of longer context windows. In some
datasets (e.g., ETTh2-L, Weather-L), there were significant improvements, which we retained for
reference. Other models also utilized longer context windows, but without consistent performance
gains. It is worth noting that the longer context window of MOIRAI had an adverse effect on the
Electricity dataset. To achieve optimal performance on unseen data, these models may require a
hyperparameter search using validation data, which we leave for future work.

Table 11: Results of time-series foundation models on diverse prediction horizons. Mean NMAE
value of five independent runs with different seeds is reported. The input sequence length is set to 96
if not specified. For every model, we exclude the evaluation results on its pre-trained datasets

Dataset \Pred\MOIRAI—SOOO MOIRAI Lag-Llama-512 Chronos TimesFM Timer UniTS ForecastPFN\CSDI DLinear PatchTST iTransformer

24 0.144 0.128 0.231 0.113 0.133  0.182 0.353 0.878 0.115 0.121 0.199 0.116
48 0.269 0.343 0.244 0.307 0.269 0.339 0.432 0.997 0.266 0.238 0.199 0.243
ETTmI-L 96 0.296 0.449 0.399 0.393 0.324  0.384 0.457 0.961 0.303 0.283 0.271 0.269
192 0.311 0.479 0.416 0.422 0.378  0.423 0.466 1.031 0.389  0.309 0.295 0.304
336 0.321 0.471 0.429 0.439 0.435 0.446 0475 1.012 0.449 0.337 0.324 0.337
720 0.351 0.515 0.472 0.467 0.511 0.480 0.499 1.053 0.530 0.385 0.353 0.380
24 0.100 0.113 0.128 0.110 0.117  0.130 0.173 1.506 0.096 0.103 0.162 0.106
48 0.116 0.132 0.162 0.132 0.132  0.141 0.165 1.471 0.121 0.121 0.162 0.118
ETTm2-L 96 0.141 0.168 0.188 0.158 0.156  0.153 0.169 1.386 0.133  0.138 0.133 0.141
192 0.159 0.192 0.205 0.183 0.186 0.175 0.184 1.397 0.201 0.167 0.158 0.158
336 0.173 0.209 0.226 0.206 0.209  0.193 0.199 1.422 0.226  0.188 0.176 0.184
720 0.200 0.242 0.249 0.240 0246  0.220 0.223 1.485 0264 0.222 0.206 0.213
24 0.304 0.297 0.313 0.265 0.277 0.315 0453 1.141 0292 0.277 0.356 0.275
48 0.312 0.326 0.341 0.294 0.307 0.339 0.461 1.161 0392 0.311 0.356 0.304
ETThi-L 96 0.324 0.354 0.353 0.321 0332 0.361 0.469 1.157 0.534 0.340 0.326 0.319
192 0.350 0.393 0.376 0.375 0383  0.399 0.482 1.226 0.698 0.394 0.357 0.364
336 0.366 0.417 0.393 0.410 0411 0.433 0.500 1.183 0.603 0.423 0.383 0.389
720 0.380 0.448 0.424 0.432 0.418 0.460 0.499 1.037 0.664 0.501 0.399 0.402
24 0.126 0.142 0.160 0.127 0.134  0.146 0.197 1.650 0.133  0.146 0.213 0.135
48 0.147 0.170 0.195 0.161 0.166  0.166 0.199 1.667 0.186 0.176 0.213 0.161
ETTh2-L 96 0.162 0.200 0.203 0.194 0.190  0.179 0.204 1.685 0.204 0.209 0.176 0.177
192 0.189 0.244 0.220 0.225 0.220 0.205 0.223 1.768 0272 0.206 0.200 0.205
336 0.224 0.269 0.245 0.252 0.266 0.247 0.262 1.719 0321 0.293 0.240 0.244
720 0.243 0.293 0.248 0.290 0.277  0.254 0.264 1.542 0.417 0.307 0.251 0.263
24 0.043 0.060 0.062 0.060 - 0.063 — 1.916 0.050 0.095 0.083 0.074
48 0.066 0.110 0.086 0.128 - 0.098 — 1.924 0.093 0.125 0.156 0.090
Weather-L 96 0.074 0.134 0.096 0.163 - 0.109 — 1.924 0.092 0.113 0.086 0.089
192 0.074 0.126 0.103 0.161 - 0.116 — 1.926 0.079 0.121 0.089 0.099
336 0.075 0.129 0.109 0.177 - 0.121 - 1.930 0.100 0.131 0.092 0.100
720 0.076 0.151 0.120 0.208 - 0.124 - 1.970 0.108 0.145 0.094 0.111
24 0.227 0.091 - - - 0.114 - - - 0.093 - 0.085
48 0.210 0.100 - - — 0.128 — — - 0.097 - 0.089
Electricity-L 96 0.194 0.101 — — - 0.130 - — 0.153  0.090 0.086 0.098
192 0.200 0.107 - - — 0.147  — — 0.200 0.095 0.092 0.106
336 0.202 0.119 - — - 0.168 — - -  0.104 0.100 0.115
720 0.217 0.190 - - — 0205 — — - 0.121 0.116 0.133

C.4 An Overall Comparison of Time-series Foundation Models on Short-term Probabilistic
Forecasting

Table |12 presents a comparison of two time-series probabilistic foundation models in short-term
forecasting scenarios. We excluded the results of datasets that has been used in pre-training based on
table [d We also explored both short and long context windows for MOIRALI.
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Table 12: Results of probabilistic foundation models on short-term distributional forecasting. For
every model, we exclude the evaluation results on its pre-trained datasets.

Model Exchange-S Solar-S Electricity-S Traffic-S

CRPS NMAE | CRPS NMAE | CRPS NMAE | CRPS NMAE
CSDI |0.008 000 0.011.000|0.366.005 0.484 008 |0.050.001 0.065.001|0.146.012 0.176.013
Chronos 0.007 0.010 — — — - 0.178 0.211
MOIRAI-96 0.007 0.010 0.502 0.681 0.069 0.084 - —
MOIRAI-5000| 0.007 0.010 0.521 0.702 0.059 0.079 — —

D Additional Results and Experiments

D.1 The Impact of Normalization

Normalization is a crucial aspect of time-series models, with different research branches adopting
distinct strategies that can affect model performance across various data scenarios. Motivated by
this, we provide a detailed analysis of different normalization methods in this section. Unless stated
otherwise, our benchmarking follows the default normalization methods used by each model.

D.1.1 Different Normalization Choice Between Distinct Research Branches

In time series forecasting, normalization typically occurs in two stages. First, during preprocessing,
dataset-level normalization is applied, where global statistics (e.g., mean and standard deviation)
from the training set are used to normalize all time-series values. Then, a local normalization module
might be used to perform instance-level normalization when feeding a batch of time-series segments
into the model.

Different research branches prefer distinct instance-level normalization strategies. Long-term point
forecasting models [49} 40] typically adopt the RevIN [32]. Given a batch of time-series segments
within a lookback window, RevIN applies a per-series z-score normalization, augmented with
learnable affine parameters. Its main advantage is its effectiveness in addressing distribution shifts,
particularly in long-term forecasting.

In contrast, most short-term probabilistic forecasting models [57, 58] employ an ad-hoc but still

effective normalization strategy. For example, given a batch of time-series segments X € RE*L

(where K is the number of variables and L is the length of the lookback window), a per-series scaling

is applied as X" = m, i =1,..., K to stabilize value ranges. For simplicity, we refer
t=1 )

to this type of normalization as Mean Scaling.

We summarize the instance-level normalization choices originally used by each model in the Table

I3

Table 13: Original instance-level normalization choices of each model.

Normalization Choice | Model

ReVIN iTransformer, PatchTST
Mean Scaling TimeGrad, GRU NVP
w/o Norm GRU, CSDI, DLinear

Existing probabilistic models rarely use RevIN and are seldom combined with AR-based models
that employ RevIN-style normalization. Similarly, the mean scaling strategy, commonly used in
probabilistic forecasting models, is rarely applied to models designed for long-term forecasting. To
better understand the effects of different normalization strategies, we selected representative models
from both categories and combined them with three normalization methods: RevIN, Scaling (i.e.,
mean scaling), and w/o Norm (no instance-level normalization, using time-series values as provided
by the dataset-level preprocessing). The results of these experiments are presented in Table[T4] [I5]

and[T7}
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Table 14: The impact of different normalization methods in short-term forecasting scenarios (CRPS).

Model PatchTST CSDI TimeGrad GRU NVP
ReVIN  Scaling w/oNorm | ReVIN  Scaling w/oNorm | ReVIN  Scaling w/oNorm | ReVIN  Scaling w/o Norm
Electricity-S 0.0659  0.0645 0.0660 0.0524 - 0.0502 0.0673  0.0563 0.9681 0.0659  0.0706 0.1607
Exchange Rate-S | 0.0102  0.0108 0.0111 0.0070  0.0083 0.0110 0.0100  0.0093 0.0170 0.0090 0.0147 0.0133
Solar-S 0.6275 0.7105 0.7169 0.4903  0.4347 0.4603 0.4945  0.5455 0.8356 0.9293  0.5926 0.4393
Traffic-S 0.2001  0.2036 0.2168 0.1505  0.1552 0.1389 0.1806  0.1280 0.1400 0.1827  0.1770 0.2277

Wikipedia-S 0.2529  0.3245 0.3695 0.2164  0.2060 0.2276 0.2757  0.2773 0.9969 0.3317 0.3187  0.4561

Table 15: The impact of different normalization methods in short-term forecasting scenarios (NMAE).

Model PatchTST CSDI TimeGrad GRU NVP
ReVIN  Scaling w/o Norm \ ReVIN  Scaling w/o Norm \ ReVIN  Scaling w/o Norm \ ReVIN  Scaling w/o Norm

Electricity-S 0.0659  0.0645 0.0660 0.0666 - 0.0648 0.0852  0.0710 0.9742 0.0861  0.0929 0.2246
Exchange Rate-S | 0.0102  0.0108 0.0111 0.0096 0.0111 0.0151 0.0115 0.0118 0.0220 0.0114  0.0189 0.0170
Solar-S 0.6275 0.7105 0.7169 0.5988  0.5616 0.5680 0.6041  0.7011 0.9162 1.1931  0.7424 0.5893
Traffic-S 0.2001  0.2036 0.2168 0.1752  0.1877 0.1669 0.2167 0.1516 0.1693 0.2257  0.2216 0.2837
Wikipedia-S 0.2529  0.3245 0.3695 0.2585  0.2437 0.2698 0.3278  0.3257 0.9998 0.4041  0.3559 0.5131

D.1.2 Analysis of Instance-level Normalization

RevIN Significantly Improves Most Models in Long-term Forecasting Scenarios, with Some
Exceptions. RevIN’s ability to mitigate the effects of data distribution shifts leads to significant
performance improvements in most models for long-term forecasting, as shown in Table[16] This
benefit extends beyond models like PatchTST and iTransformer, which originally employed RevIN,
to others such as DLinear that do not inherently use this approach. Notably, RevIN has greatly
enhanced AR-based models in long-term scenarios. For instance, on the ETT datasets, GRU NVP
(w/ RevIN) outperforms even PatchTST (w/ RevIN), suggesting that normalizing trend effects can
help reduce error accumulation in AR-based models.

However, RevIN can have a negative impact in certain cases. On the Traffic dataset, GRU (w/
ReVIN) and GRU NVP (w/ ReVIN) perform worse than without normalization, as shown in Table
Interestingly, this aligns with our analysis of data characteristics: the Traffic dataset displays
strong seasonality but less trending. We speculate that RevIN’s effectiveness in other datasets stems
from its ability to normalize trend-related distribution shifts, which is less relevant for the Traffic
dataset. Additionally, RevIN appears less suited for NAR probabilistic models. For instance, CSDI
(w/ RevIN) performs worse than CSDI (w/ Scaling) on the Weather, Electricity, Exchange, and
ILI dataset. Further research is needed to develop more effective normalization strategies for NAR
probabilistic models.

No Dominating Normalization Strategies in Short-term Forecasting. As shown in Table
RevIN does not consistently provide robust or significant improvements for models such as CSDI,
TimeGrad, and GRU NVP in short-term forecasting. The Mean Scaling strategy, though empirical,
proves to be the most reliable choice for these probabilistic models, likely explaining its widespread
use. In some cases, instance-level normalization can be omitted, but this approach can lead to serious
issues, as seen with TimeGrad (w/o normalization) on the Wikipedia and Solar datasets, and GRU
NVP (w/o normalization) on the Electricity dataset. Developing effective instance-level normalization
methods for complex data distributions in short-term forecasting remains an important yet often
overlooked research direction.

D.2 The Impact of Data Scale

To further explore critical characteristics of time-series forecasting, we have examined the correlation
between model performance gains, relative to the baseline model (GRU), and dataset dimensions,
length, and volume (see Table[I8). However, our analysis does not identify a significant correlation
between these factors and model performance.

D.3 Statistical and Gradient Boosting Decision Tree Baselines

To enhance the empirical robustness of our study, we integrate classical statistical models, includ-
ing ARIMA [44]] and ETS [30], along with the Gradient Boosting Decision Tree (GBDT) model,
XGBoost, into the ProbTS framework. The results in Table [I9] clearly demonstrate the superior
performance of deep learning methods over simple statistical baselines, emphasizing the importance
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ETT Traffic Exchange Weather Type
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Figure 7: Impact of different instance-level normalization methods on model performance.

Table 18: The correlation coefficient between the data volume and the relative performance improve-
ment compared to the baseline model (GRU).

Model DLinear PatchTST GRU NVP TimeGrad CSDI
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE
# Var. 0.2422 0.2422 -0.2676 -0.2676 -0.1856 -0.2136 -0.1665 -0.1793 -0.2315 -0.2592

-0.1422  -0.1422 03821  0.3821  0.3072 0.3329 0.2860 0.2971 0.3542  0.3826
0.0162 0.0162 0.0166 0.0166 -0.0068 -0.0011 0.0082 0.0117 -0.0053 -0.0133

# Total timestep
# Var. x Timestep

of capturing non-linear dependencies for accurate forecasts. Notably, ARIMA and ETS exhibit varied
performance across different data characteristics. ARIMA struggles with datasets like Solar, charac-
terized by weak trending and strong seasonality, while ETS shows better adaptability. Conversely,
in cases of strong trending and weak seasonality, as observed in the *Wikipedia’ dataset, ARIMA
significantly outperforms ETS.

Utilizing the implementation from [21], we find that XGBoost competes well, even surpassing
neural network models in certain scenarios. However, for datasets with more complex distributions
like ’Solar’ and ’Electricity,” advanced probabilistic estimation methods demonstrate a substantial
advantage over traditional learning methods and point estimation techniques. This highlights the
adaptability and strength of advanced probabilistic methods in handling intricate forecasting scenarios.

D.4 Experiments on Univariate Datasets

In pursuit of a comprehensive analysis spanning univariate and multivariate scenarios, we examined a
subset of M4 [45], M5 [46], and TOURISM datasets [3]]—crucial datasets for univariate time-series
forecasting. Table 20| provides a quantitative assessment of the intrinsic characteristics of these new
datasets, focusing on trending strength, seasonality, and data distribution complexity, as detailed in
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Figure 8: Impact of data characteristics on the effectiveness of different instance-level normalization
strategies.

Table 19: Results of statistical models and GBDT baseline on short-term forecasting datasets.

Model Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S
CRPS NMAE \ CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE
ARIMA 0.009 0.009 1.000 1.000 0.164 0.164 0.461 0.461 0.348 0.348
ETS 0.011 0.011 0.580 0.580 0.121 0.121 0.413 0.413 0.685 0.685
ETS-prob 0.008 0.011 0.795 0.695 0.123 0.129 0.380 0.433 0.625 0.697
XGBoost 0.011 0.011 0.599 0.599 0.074 0.074 0.196 0.196 - -
DLinear 0.012.901  0.012 901 | 0.547 009 0.547 009 | 0.095.006 0.095.006 | 0.273.012 0.273.912 | 1.046 037 1.046.037
PatchTST | 0.010.900 0.010.000 | 0.496.002 0.496 002 | 0.076 001 0.076.001 | 0.202 901 0.202.901 | 0.257 001 0.257.001
TimesNet | 0.011 go1  0.011 901 | 0.507.019 0.507.019 | 0.071. 002 0.071 go2 | 0.205 002 0.205 002 | 0.304 gp2 0.304 002
GRUNVP | 0.016.903 0.020.903 | 0.396.021 0.507.022 | 0.055.002 0.073.003 | 0.161 gp6 0.203.009 | 0.282 003 0.330.003
GRU MAF | 0.015.901  0.020.901 | 0.386.026 0.492 27 | 0.051 001 0.067.001 | 0.131.906 0.165.009 | 0.281 004 0.337.005
Trans MAF | 0.011 901 0.014 o1 | 0.400.022 0.503.022 | 0.054.004 0.071 905 |0.129.004a 0.165. 006 | 0.289 0os 0.344 o8
TimeGrad | 0.011 91 0.014 go2 [0.359. 011 0.445 023 | 0.052.001 0.067.001 | 0.164 991 0.201 115 | 0.272. 908 0.327 011
CSDI 0.008.000 0.011 oo | 0.366.005 0.484 gps [0.050.001 0.065 001 | 0.146 912 0.176.013 |0.219.006 0.259 009

our paper. Notably, these datasets, except for M4-Daily may exhibit fewer seasonal patterns, do not
introduce particularly unique characteristics.

Table 20: Quantitative assessment of the intrinsic characteristics of the univariate datasets. The JS
Div. denotes Jensen—Shannon divergence, where a lower score indicates closer approximations to a
Gaussian distribution.

Dataset | M4-Weekly M4-Daily M5 TOURISM-Monthly
Trend Frp 0.7677 0.9808 0.3443 0.7979
Seasonality Fg 0.3401 0.0467 0.2480 0.6826
JS Div. | 05106 0.4916 0.6011 0.3291

Table [21] presents experimental results for representative methods, consistent with our initial observa-
tions. Probabilistic estimation methods like GRU NVP and TimeGrad excel on datasets with complex
distributions (e.g., M4-Weekly and M5), while simpler point forecasting methods such as DLinear and
PatchTST perform well on datasets with relatively simple data distribution, like TOURISM-Monthly.
Both autoregressive and non-autoregressive decoding schemes show comparable performance in
short-term forecasting, as discussed in the main paper.
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Figure 9: Impact of different instance-level normalization methods on model performance.

Table 21: Results on M4, M5, and TOURISM datasets. We utilize a lookback window of 3H, with
"H’ denoting the forecasting horizon.

Dataset DLinear PatchTST GRU NVP TimeGrad

CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE
M4-Weekly 0.081 0.081 0.089 0.089 0.066 0.077 0.055 0.065
M4-Daily 0.034 0.034 0.035 0.035 0.030 0.038 0.026 0.032
M5 0.891 0.891 0.898 0.898 0.679 0.864

TOURISM-Monthly | 0.168  0.168 0.136 0.136  0.171  0.223  0.152  0.191

D.5 Experiments on Synthetic Datasets

To enhance the rigor of the insights presented, we employ synthetic datasets created with the
GluonTS library@ encompassing a baseline dataset and variants with pronounced trends, strong
seasonality, and complex data distribution (see Table 22)). Specifically, we generate these datasets
by superimposing four components - trend, seasonality, noise, and anomaly - each with adjustable
intensity parameters. The seasonality component is defined by period hyper-parameters and intensity
coefficients; the trend by slope intensity; the noise by Gaussian distribution sampling with adjustable
intensity; and the anomaly by occurrence probability and maximum intensity.

Phttps://ts.gluon.ai/stable/tutorials/data_manipulation/index.html
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Subsequent experiments on these synthetic datasets (refer to Table 23), using representative models,
validate the empirical findings established on other datasets with ProbTS. Key observations include
the declining performance of autoregressive decoding models, such as TimeGrad, in the presence of
increasing trends, improved performance for models using autoregressive decoding with intensifying
seasonality, and the competitive performance of probabilistic methods like CSDI in handling more
complex data distributions.

Table 22: Quantitative assessment of intrinsic characteristics for synthetic datasets. The JS Div
denotes Jensen—Shannon divergence, where a lower score indicates closer approximations to a
Gaussian distribution.

Dataset \ Normal Strong Trend Strong Seasonality Complex Distribution
Trend Fp 0.105 0.554 0.105 0.064
Seasonality Fis | 0.302 0.302 0.791 0.190
JS Div. | 0.261 0.248 0.272 0.469

Table 23: Results on synthetic datasets. The look-back window and forecasting horizon are 30.

Normal Strong Trend Strong Seasonality Complex Distribution
CRPS NMAE | CRPS NMAE | CRPS NMAE | CRPS NMAE

DLinear 0.013 0.013 | 0.001 0.001 | 0.014 0.014 0.301 0.301
PatchTST | 0.012 0.012 | 0.001 0.001 | 0.012 0.012 0.275 0.275
TimeGrad | 0.024  0.032 0.042  0.048 0.022 0.028 0.283 0.338
CSDI 0.013  0.014 | 0.010  0.007 | 0.020 0.027 0.269 0.301

Model ‘

D.6 Case Study

To intuitively demonstrate the distinct characteristics of point and probabilistic estimations, a case
study was conducted on short-term datasets. Figure[I0]illustrates that point estimation yields single-
valued, deterministic estimates, in contrast to probabilistic methods, which model continuous data
distributions as depicted in Figure[TT] This modeling of data distributions captures the uncertainty
in forecasts, aiding decision-makers in fields such as weather and finance to make more informed
choices. It is also observed that while both methods align well with ground truth values in short-term
forecasting datasets, they struggle to accurately capture outliers, particularly noted in the Wikipedia
dataset.

D.7 Model Efficiency

For reference, detailed results regarding memory usage and time efficiency for five representative
models on long-term forecasting datasets are provided here. Table [24] displays the computation
memory of various models with a forecasting horizon set to 96. Additionally, Table 23] compares the
inference time of these models on long-term forecasting datasets, illustrating the impact of changes
in the forecasting horizon.

Table 24: Computation memory. The batch size is 1 and the prediction horizon is set to 96.

Metric ‘ Dataset ‘ DLinear  PatchTST LSTM NVP  TimeGrad CSDI
ETTml 0.075 2.145 1.079 1.233 1.720

Electricity-L 0.076 2.146 3.680 3.472 1.370

NPARAMS (MB) Traffic-L 0.078 2.149 15.926 8.298 1.390
Weather-L 0.075 2.145 3.085 0.574 1.721

Exchange-L 0.075 0.135 1.979 0.488 1.720

ETTml 0.002 0.009 0.010 0.012 0.027

Electricity-L 0.060 0.068 0.129 0.128 1.411

Max GPU Mem. (GB) Traffic-L 0.161 0.168 0.361 0.333 9.102
Weather-L 0.004 0.012 0.021 0.012 0.070

Exchange-L 0.002 0.002 0.013 0.008 0.030
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Figure 10: Point forecasts from the PatchTST model and the ground-truth value on short-term
forecasting datasets.

D.8 Further discussion on uni- / multi-variate modeling

Our experiments indicate that the choice between univariate and multivariate modeling is not a
primary factor in fulfilling the essential forecasting needs considered in this paper.

D.8.1 Discussion
We discuss the differences between univariate and multivariate modeling from two perspectives:

» Dataset Perspective: Whether the dataset is prepared for univariate or multivariate bench-
marking.

* Model Perspective: How the model handles multivariate data, treating each variable channel
independently or not.

Dataset Perspective All datasets listed in Table [5]are typically referred to as multivariate datasets,
indicating that there may be strong connections across different variables. Despite this implication,
when developing forecasting models, we can treat each variable channel independently, essentially
turning a multivariate dataset into a univariate setup. In contrast, some datasets, like M4, M5, and
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Figure 11: Forecasting intervals from the TimeGrad model and the ground-truth value on short-term
forecasting datasets.

TOURISM listed in Table 20] explicitly serve univariate modeling. We rarely see multivariate models
being developed for these univariate cases.

Model Perspective We have observed different preferences for univariate and multivariate modeling.

Existing

models can be categorized into three groups:

Native Univariate Models

— Classical models like N-BEATS and N-HiTS.

— Most time-series foundation models, such as TimesFM and Chronos.
Native Multivariate Models

— Most probabilistic models, such as CSDI and TimeGrad.

— Some point forecasting models, such as Informer and Autoformer.
Hybrid Models of Univariate and Multivariate Modeling

— Some classical models, such as PatchTST.
— Some time-series foundation models, such as MOIRAI.
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Figure 12: Comparison of computational efficiency. The forecasting horizon is set to 96 for
calculating memory usage.

Table 25: Comparison of inference time (sec./sample).

Dataset \Pred len\ DLinear PatchTST LSTM NVP TimeGrad CSDI
96 |0.0003 % 0.0000 0.0003 + 0.0000 0.0352 +0.0007 4.1067 +0.0504 16.3280 + 0.0747
— 192 0.0003 % 0.0000 0.0003  0.0000 0.0697 + 0.0020 7.8979 +0.0403  25.8378 + 0.3124
336 0.0003 = 0.0000 0.0003 + 0.0000 0.1221 + 0.0044 13.6197 +0.1023 39.8832 + 0.2157
720 |0.0004 + 0.0000 0.0003 + 0.0000 0.2603 + 0.0020 28.6074 + 1.1346 86.1862 + 0.1863
96 [0.0004 % 0.0000 0.0045  0.0001 0.1783 = 0.0006 13.8439 + 0.0054 388.3150 + 0.2155
Electricity.| 192 |0:0006 +0.0000 0.0046 + 0.0000 0.3700 £ 0.0010 27.6683  0.0368 659.4284 + 0.2003
ectneity 336 0.0008 + 0.0000 0.0049 + 0.0000 0.7157 + 0.0028 48.4456 = 0.0279 N
720 |0.0015 % 0.0000 0.0057 + 0.0000 2.0785 + 0.0186 104.1473 + 0.1465 .
96 |0.0010 + 0.0001 0.0102 + 0.0000 0.3695 + 0.0022 31.7644 = 0.0101 -
Traffie.L 192 {0.0013 + 0.0000 0.0106 + 0.0000 0.8287 + 0.0094 63.5832 = 0.0060 .
rathic- 336 0.0020 = 0.0000 0.0114 + 0.0001 1.6945 + 0.0026 111.4147 = 0.0169 .
720 |0.0039 + 0.0000 0.0137 +0.0000 5.0963 + 0.0018 258.1274 + 0.6088 .
96  |0.0002 + 0.0000 0.0004 + 0.0000 0.0800 + 0.0016 4.1261 +0.0812  37.8984 + 0.0782
Weather.L | 192 0.0003 £0.0000 0.0004 £ 0.0000 0.1568 £ 0.0008 8.2913 +0.5544  62.0223 +0.2329
cather- 336 |0.0003 = 0.0000 0.0004 = 0.0000 0.2482 + 0.0297 14.2391 + 0.4891 96.8704 + 0.2258
720 {0.0003 % 0.0000 0.0005 + 0.0000 0.5447 + 0.0249 29.4407 +0.3519 216.6044 + 0.4253
96 |0.0006 % 0.0000 0.0004 + 0.0000 0.0284 +0.0001 4.1069 +0.0981 17.8655 + 0.1282
Exchance L | 192 |0.0007 £0.0000 0.0004 £ 0.0000 0.0563 £ 0.0008 8.1576 +0.0911 ~ 28.5456  0.0873
XChANZE-L | 336 10.0007 £ 0.0000 0.0004 = 0.0000 0.0966 % 0.0007 14.4593 + 0.4466 44.9733 + 0.3820
720 |0.0007 + 0.0000 0.0004 + 0.0000 0.2085 + 0.0046 30.1443 + 0.5378 97.7417 = 0.2606
24 0.0002  0.0000 0.0008 + 0.0001 0.0080 + 0.0001 1.0427 +0.0190 12.4038 + 0.1681
L 192 0.0002 % 0.0000 0.0008 + 0.0000 0.0121 + 0.0003 1.5762 +0.0282  12.7187 + 0.1344
336 0.0002 = 0.0000 0.0008 + 0.0000 0.0155 + 0.0002 2.1344 + 0.0660 12.7386 + 0.1868
720 |0.0002 + 0.0000 0.0008 + 0.0000 0.0196 + 0.0004 2.5787 +0.0594  12.5407 + 0.0481

Native univariate models can also be applied to multivariate datasets by treating them as univariate
cases. Similarly, native multivariate models can be applied to univariate datasets by setting the
variable dimension to 1. Hybrid models typically include specific modes to activate univariate and
multivariate functionalities. For example, in PatchTST, we can use a shared forecasting head for
univariate modeling or assign a specific forecasting head for each variable channel to differentiate
different variables.

We compile a summary table (Table 26) delineating how models from each branch address the
multivariate aspect. Despite a thorough investigation, we have not identified a clear pattern linking the
modeling of cross-channel interactions to overall model performance. A notable trend is the prevalent
use of a channel-mixing approach in most studies. However, findings are diverse; models like DLinear
and PatchTST suggest that processing channels independently can yield superior results, while others
like CSDI indicate that explicit modeling of cross-channel interactions offers significant advantages.
This diversity underscores the ongoing exploration of the impact of cross-channel interactions on
forecasting performance.
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Table 26: Summary of how existing models handle multivariate time series.

Model | Research branch | Process channels independently

N-BEATS [53] v
N-HiTS [11]] v
Autoformer [72]] X

Customized neural architectures Informer [[78] X
LTSF-Linear [73] Xiv
PatchTST [49] Xiv
TimesNet [[71] X

DeepAR [60]
GP-copula [59]
LSTM NVP [58]
Probabilistic estimation LSTM MAF [58]
Trans MAF [58]]
TimeGrad [57]]
CSDI [62]

SPD [7]

XX XXX X XN

D.8.2 Additional Experiments on uni- / multi-variate modeling

In Table[27] we include additional experiments comparing univariate and multivariate modeling of
PatchTST across different datasets. Our observation is that there is no definitive answer as to which
approach is superior; it depends on the nature of the dataset. Some datasets benefit from modeling
variable correlations, while others perform better with independent modeling. The performance gaps
are not significant.

Similar observations have been reported in MOIRAI, which allows either univariate or multivariate
modes by controlling its cross-variate attention masks. When applied to a downstream forecasting
scenario, it can search over the validation set to determine which configurations to activate. We
believe such a design could serve as a good example of unifying univariate and multvariate.

Table 27: The comparison of PatchTST on univariate and multivariate modeling.
Dataset | Pred. Horizon | PatchTST (Multivariate) | PatchTST (Univariate)

96 0.3239 03212

192 0.3609 0.3562

ETThl 336 0.3763 0.3737
720 0.3882 0.3909

96 0.2652 0.2739

192 0.2926 0.2961

ETTml 336 03101 03188
720 0.345 0.3463

96 0.0832 0.0857

Electricit 192 0.0899 0.0912
Y 336 0.0995 0.1001

720 0.1183 0.116

96 0.0243 0.0235

Exchange 192 0.0348 0.0336
g 336 0.0471 0.0462

720 0.0787 0.0777

96 0.0872 0.0837

Weather 192 0.0924 0.0858
336 0.0934 0.0903

720 0.0993 0.0953
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periments multiple times)? [Yes] We specify a fixed set of random seeds for each
experiment to indicate the error bars. We show the mean and standard deviation of
evaluation scores collected from multiple runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix [B.4]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The data utilized in this study is open-source and does not
necessitate consent. Acquisition details are available on our GitHub page.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The data we are using contains no personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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