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Abstract

Anomaly detection in time series data is fundamental to the design, deployment,
and evaluation of industrial control systems. Temporal modeling has been the
natural focus of anomaly detection approaches for time series data. However, the
focus on temporal modeling can obscure or dilute the spatial information that can
be used to capture complex interactions in multivariate time series. In this paper,
we propose SARAD, an approach that leverages spatial information beyond data
autoencoding errors to improve the detection and diagnosis of anomalies. SARAD
trains a Transformer to learn the spatial associations, the pairwise inter-feature
relationships which ubiquitously characterize such feedback-controlled systems. As
new associations form and old ones dissolve, SARAD applies subseries division to
capture their changes over time. Anomalies exhibit association descending patterns,
a key phenomenon we exclusively observe and attribute to the disruptive nature of
anomalies detaching anomalous features from others. To exploit the phenomenon
and yet dismiss non-anomalous descent, SARAD performs anomaly detection
via autoencoding in the association space. We present experimental results to
demonstrate that SARAD achieves state-of-the-art performance, providing robust
anomaly detection and a nuanced understanding of anomalous events.

1 Introduction

Time series anomaly detection is critical for industrial automation (Rieth et al., 2018), intrusion
detection (Mathur and Tippenhauer, 2016), and healthcare sensing (Goldberger et al., 2000). Anomaly
detection in these contexts is typically treated as an unsupervised learning problem, owing to the
novelty of anomalies and the scarcity of labeled anomalies.

Temporal modeling is the mainstream basis of current time series anomaly detectors. By learning
the dependencies between discrete time steps, temporal modeling can pinpoint the time spans
of anomalies. During anomalies, unseen and peculiar temporal dependence patterns degrade data
autoencoding (Wang et al., 2023b) or autoregression (Zhao et al., 2020) performance, thereby enabling
detection. Alternatively, irregular temporal representations can be driven to breach learned enclosing
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Figure 1: Spatial associations captured by Transformer on a service monitoring benchmark. 1a shows
the raw time series right before, during, and after an anomaly (colored in red). Association mapping
AL

h by final L-th layer’s MHSA are averaged across heads to derive A before (1b), during (1c),
and after (1d) the anomaly. Darker cells have larger values. Anomalous features (#12 and #15) are
highlighted with red bounding boxes. The reduction-only changes from before or after the anomaly
to during the anomaly are shown in 1e and 1f, i.e., ReLU(Apre −Ain) and ReLU(Apost −Ain). The
anomaly leads to association reductions on anomalous features, prominently column-wise on A.

hyperspheres (Shen et al., 2020), resulting in high anomaly scores that enable detection. Despite its
temporal precision in anomaly detection, temporal modeling either assumes feature independence
or combines variables of diverse physical nature, the former simplifying the modeling and the latter
mitigating the multicollinearity issue. Such assumptions lead to either omission or dilution of spatial
information crucial to anomaly detection. Specifically, it overlooks the long-time-range spatial
associations, the relationships between various features which ubiquitously characterize normal
behaviors of multivariate time series. Where anomaly detection pinpoints the temporal locations of
an anomaly, anomaly diagnosis identifies the spatial locations, i.e., the anomalous feature set, of an
anomaly. Temporal methods also restrict diagnostic capabilities, as the lack of spatial information
mismatches autoencoding-based or autoregression-based anomaly criterion, which de facto measures
temporal novelty, with its objective of capturing spatial novelty.

Linear

Linear

Softmax

Linear Linear

Transpose

Dot Product

Dot Product

Figure 2: MHSA.

Furthermore, time series anomalies frequently dissolve spatial associa-
tions, motivating anomaly detection in the association space. Using an
vanilla Transformer (Vaswani et al., 2017), we investigate the changes
in spatial associations throughout anomalies. Applied on transposed
time windows (the spatial dimension comes before the temporal), an
encoder-only Transformer is trained to minimize reconstruction errors
on unlabeled N -variate time series and, by doing so, learns to model the
multivariate series spatially via the Multi-Head Self-Attention (MHSA)
illustrated in Figure 2. MHSA at each stacked l-th layer computes an inter-
mediate association mapping Al

h ∈ RN×N per h-th head, mapping back
input X to produce attention scores. The last layer’s mapping AL

h thus
effectively captures the contributions of k-th feature to the reconstruction
of j-th feature at each location (j, k), not least for its architectural prox-
imity to the reconstructed output. Recent research (Liu et al., 2024) also
highlights the important role MHSA plays in capturing the inter-feature
associative relationships when applied on the multi-variate dimension.
As new associations emerge and old ones dissolve over time, Figure 1
shows the association changes on a real-world benchmark. We observe
that anomalies exhibit reductions for anomalous features, a phenomenon we herein coin as Spatial
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Association Reduction (SAR). The rationale is that anomalies either originate from or result in
dissolution of pre-existing associations, detaching anomalous features from their non-anomalous
counterparts. Additionally, we make the observation that SAR is most prominent column-wise on
AL

h , since each j-th column characterizes the dropouts of j from associating with other, mostly
non-anomalous, features. Due to lack of explicit spatial information, temporal modeling is inadequate
for exploiting SAR. More examples are given in Appendix C.

From a spatial modeling perspective, we propose SARAD to leverage spatial information and to
exploit SAR for enabling robust time series anomaly detection and diagnosis. For quantifying
anomalous spatial novelty in the data space, we train a Transformer on transposed time windows
as an autoencoder. To capture the spatial association progression, the reduction-only changes of
associations over time, the data reconstruction divides the input window by time into two halves to
be processed in parallel. Consequently, the progression is the non-negative backward difference of
the intermediate association mappings via MHSA. Subseries division circumvents memory storage
of latest association mappings and enables time window shuffling during training, which reduces
order bias, enhances generalization, and prevents catastrophic forgetting. For quantifying anomalous
reduction novelty, we train a Multi-Layer Perceptron (MLP) as an antuencoder on progression in
the association space. Whereas progression encompass all association reduction, autoencoding
rules out those not caused by anomalies. The reconstruction errors via the data module measure
data-only anomalous deviation from expected system behaviors and falter when such deviations
are not prominent, e.g., at the start of an anomaly. The reconstruction errors via the progression
module are sensitive to change in spatial associations, thus complementing the former. We develop
a joint anomaly detection criterion that combines both. Experiments show SARAD delivers state-
of-the-art detection and diagnosis performance with architectural elegance. Code is available at
https://github.com/daidahao/SARAD/. We summarize our contributions as follows.

• We reveal and extract spatial association descending patterns of time series anomalies with a
bespoke Transformer and subseries division. The former learns the pairwise inter-feature
associations via autoencoding in the data space and the latter enables shuffled autoencoding
training and memory-less progression aggregation.

• We propose progression autoencoding to quantify anomalous descent in the association
space and a joint detection criterion in both data and association spaces, which complement
each other.

• Experimentally, SARAD performs state-of-the-art anomaly detection and diagnosis on
multivariate time series and ablation studies support our design choices.

2 Related Work

Influenced by the dominance of temporal modeling in time series forecasting (Wang et al., 2023a;
Zhang et al., 2023; Wu et al., 2021), temporal modeling is also prevalent in time series anomaly
detection. Recurrent neural networks such as LSTM (Hochreiter and Schmidhuber, 1997) have
innate capabilities for handling sequential data. These approaches use hidden states for past input
memorization, enabling detection (Li et al., 2019; Malhotra et al., 2015) and diagnosis (Qian et al.,
2021). Transformer (Vaswani et al., 2017) network is widely adopted (Fan et al., 2023; Xu et al.,
2022) approach that is commonly applied to model temporal associations between different time
points using its attention mechanism. Linear regression (Zeng et al., 2023) and MLP (Wang et al.,
2024; Audibert et al., 2020) directly model temporal dependencies. TranAD (Tuli et al., 2022)
replaces the MLP in Audibert et al. (2020) with a Transformer, making the detection criterion more
robust through its adversarial training paradigm. Temporal modeling, however, is restricted by the
exceptionally small receptive field in time and adversely impacted by the timestamp misalignment
across features. In the context of anomaly detection, temporal modeling helps capture anomalous
temporal associations (Xu et al., 2022; Yang et al., 2023), but offers limited detection capabilities
in absence of spatial information. In a diagnostic context, temporal detectors mismatch anomaly
criterion of temporal novelty with spatial interpretation.

Spatial associations characterize the multivariate time series commonly found in such supervisory
systems for industrial control. The relationships range from strongly correlated, e.g., due to spatial
proximity, to fully independent, e.g., due to mechanical disconnection. For forecasting, iTrans-
former (Liu et al., 2024) applies Transformer on the transposed time series to enable direct spatial
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modeling. Crossformer (Zhang and Yan, 2023) screens the time series through custom Two-Stage
Attention layers for more efficient spatial modeling. In terms of detection, GDN (Deng and Hooi,
2021) learns a directed graph of features for the prediction of last time points, whose errors serve
as anomaly scores. GDN is partially limited by a mismatch between its singe-timestamp prediction
target and the prevalent range-wise anomalies as well as unstable Top-K node selection during
training. InterFusion (Li et al., 2021) learns compressed spatial and temporal dependencies, using a
hierarchical Variational Auto-Encoder (Kingma and Welling, 2014) to reconstruct the series. Neither
inspects temporal changes in associations throughout anomalies.

On another front, Isolation Forest (IF) models build a binary decision tree ensemble by partitioning
either the data space (Liu et al., 2008) or the deep embedding space (Xu et al., 2023) formed by
randomized neural networks. They are constrained by the lack of temporal and spatial (in the former
case) or spatial (in the latter case) information, and their anomaly scores are not reflective of the
degrees of anomalies.

We emphasize anomalous association descending patterns towards better time series detection and
diagnosis. Different from previous work, we explicitly utilize the reduction in spatial associations
over time during an anomaly, an insight we derived from the cyber-physical defense space. Dynamic
watermarking (Satchidanandan and Kumar, 2017) and similar defense techniques (Dai et al., 2023)
overlay actuation with private signals to reveal attacks resulting in correlational breakdowns. While
their approaches are intrusive and actively alter system behaviors, our detector remains non-intrusive,
passively monitors the spatial associations, and is applicable to any supervisory system.

We refer to spatiality in this work as the multi-dimensional vector nature inherent to multivariate time
series data. The terminology is also used in literature on time series related tasks (Gangopadhyay
et al., 2021; Zheng et al., 2023). We note that spatiality may carry different meanings in other AI
contexts, such as geographic positions or characteristics on Earth. We differentiate those meanings
from our definition of spatiality, which traces its root to the spatial distribution of sensors and actuators
in control systems where time series are routinely collected.

3 Method

The problems of anomaly detection and diagnosis are specified as follows.

Anomaly Detection Given a N -feature time series T = {x1, · · · , xN} where xn ∈ RT is of the
same length T , the objective is to predict the anomaly label yt ∈ {0, 1} at each timestamp t.

Anomaly Diagnosis Given the same time series T , the objective is to predict the diagnosis label
gt ⊆ [N ], the set of anomalous features at each timestamp t.

3.1 Overview

SARAD comprises two sequential modules; a Transformer for time series data reconstruction and a
MLP network for spatial progression reconstruction. Table 1 decomposes the system framework of
SARAD. The Transformer temporally divides by 2 and reconstructs the input time series to learn
pairwise inter-feature associations and to enable order-free memory-efficient progression aggregation.
The MLP reconstructs the aggregated progression to quantify anomalous association reduction while
dismissing non-anomalous reduction. Towards robust anomaly detection, reconstruction errors from
the two modules jointly serve as a criterion, sensitive to data-only anomalous deviation and anomalous
association reduction.

3.2 Data Reconstruction

In light of restricted capabilities of temporal detectors, here we adapt Transformer to spatially
reconstruct the series data. The data module contains two components, Subseries Split & Merge
and Subseries Reconstruction, shown in the first and second columns in Table 1. The former wraps
around the second by temporally splitting a multivariate input series in half at its beginning and
temporally merging at its end. Subseries division enables capturing of spatial progression within
a single time window. Without the former, the model must store in memory the last association
mappings at each step and keep to the time ordering during training, which is prone to overfitting and
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Table 1: SARAD is a composition of two modules and three components: data reconstruction
(subseries split and merge, and subseries reconstruction) and spatial progression reconstruction.

Data Reconstruction Progression Recon.

Subseries Split & Merge Subseries Recon.

Architecture - Encoder-only Transformer MLP

Diagram

Subseries Split:

Subseries Merge:

Time

Fe
at

ur
e

Embedding

MLP

Linear

Encoder

MHSA

ReLU

Aggregate

MLP

Training Objective min ||X̂ −X||22 min ||Ŝ − S||22
Detection Criterion ||X̂ −X||22 ||Ŝ − S||22
Diagnosis Criterion ||X̂(j,·) −X(j,·)||22 ||Ŝ(·,j) − S(·,j)||22

catastrophic forgetting. The latter is an encoder-only Transformer composed of an embedding layer,
a L-layer attention-based encoder, and finally a linear projection layer. Encoder-only Transformers
are commonly found in Transformer-based detectors (Kang and Kang, 2024; Kim et al., 2023)
due to its simplicity and the length uniformity of the target output, i.e., the reconstructed series.
Ours exclusively models spatial associations, unconventional to the aforenamed detectors and most
temporal forecasters (Nie et al., 2023; Zhou et al., 2022; Liu et al., 2022) and yet more aligned
with recent spatial-aware forecasters (Liu et al., 2024; Zhang and Yan, 2023). At each encoding
layer, MHSA computes pairwise association mappings, a representation of inter-feature dependencies
which ubiquitously characterize the multivariate time series and are crucial to anomaly detection.

Subseries Split and Merge We suppose the input series is a time window X ∈ R2W×N of length
2W , where 2 is for the convenience of a temporal split. Before reconstruction, X is split into
two half multivariate subseries of equal temporal length: X = {X1 ∈ RW×N ,X2 ∈ RW×N}.
After subseries reconstruction, the two reconstructed subseries are concatenated to form the full
reconstructed X̂ = {X̂1 ∈ RW×N , X̂2 ∈ RW×N}.

Embedding To lead subseries reconstruction, each Xi is embedded as X 0
i = Ei +M , wherein

Ei = Linear(XT
i ) ∈ RN×D and M = {mi ∈ RD|i ∈ [N ]} is a learnable feature-level embedding.

Spatial-Aware Encoding A stack of L Transformer encoding layers is used to encode the series in
the D-length attention space. Each layer is stacked with MHSA and MLP with residual connections:

Z l
i = LN(MHSA(X l−1

i ) +X l−1
i ), X l

i = LN(MLP(Z l
i) +Z l

i) (1)

where X l−1
i ,Z l

i,X
l
i ∈ RN×D are l−1 layer’s output, l-th layer’s hidden state and output respectively

and LN(·) is Layer Normalization (Ba et al., 2016). It is spatial-aware because MHSA explicitly
learns a pairwise inter-feature association mapping to exchange information in between feature
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representations. Notably within the MHSA with H heads as shown in Figure 2, each (j, k)-th
element on the association mapping Ah ∈ RN×N of its h-th head computes how much j-th feature’s
attention scores should originate from the k-th feature’s key. From a broader perspective of data
reconstruction, it is the quantification of the residual impact of k-th feature’s originals on the j-th
feature’s reconstructions. We refactor MHSA implementation to enable parallel encoding of subseries.

Linear Projection Output from the last encoding layer XL
i is linearly projected and transposed to

derive the reconstructed subseries X̂i ∈ RW×N .

3.3 Spatial Progression Reconstruction

To exploit SAR caused by anomalies, the module first extracts and aggregates the spatial progression,
the non-negative backward difference of the association mappings via MHSA. In line with general
anomaly detectors (Aggarwal, 2013), the module conducts autoencoding in the association space to
quantify anomalous SAR and to dismiss non-anomalous SAR. Anomalous SAR occurs when, say, a
compromised sensor’s readings are no longer correlating with its spatially adjacent or mechanically
related counterparts.

Association Progression We define association progression Sl
h ∈ RN×N at the h-th attention head

in the l-th layer to be the non-negative backward difference in association mappings {Al
1,h,A

l
2,h}:

Sl
h = ReLU(Al

1,h −Al
2,h) (2)

where ReLU(·) passes through only non-negative values and outputs zeros otherwise.

Progression Aggregation To center the detection on association dropouts, we aggregate the column
sums of progression Sl

h from all attention heads in the final L-th layer to form S ∈ RH×N :

S = {
N∑
j=1

SL
h,(j,k)|h ∈ [H], k ∈ [N ]} (3)

We recall from the data module, each k-th column in Al
i,h quantifies the impact of k-th feature on all

features’ reconstruction. Taking the sum per each k-th column, we measure with S the dropout rates
of k from participating all features’ reconstruction. As we have observed in Section 1, SAR at the
column level is indicative of time series anomalies, more so than at the row level. The last layer’s
progression is focused not least for its proximity to the final reconstructed output, whereafter no more
information is exchanged between features. Liu et al. (2024) manifests that final layer’s mappings
resemble closely with the inter-feature correlations of the target, in our case, the reconstructed.

Autoencoding With S flattened as an one-dimensional vector, a 2-layer MLP is trained to output
the reconstructed and reshaped Ŝ ∈ RH×N , synchronously with the data module training.

3.4 Joint Training and Anomaly Detection

Training Objective We train an end-to-end model with a joint minimization objective:

LR = ||X̂ −X||22, LS = ||Ŝ − S||22, L = LR + λLS
LS (4)

where LR is the data reconstruction loss, LS the progression reconstruction loss, and λLS
a weight

hyper-parameter. Gradients are stopped from flowing into S to prevent updates to the data module
and collapses in association representation. We are training two anomaly detectors simultaneously,
one working in the original data space, the other in the spatial progression space.

Anomaly Detection Criterion For an input series X , the anomaly score s is a scalar defined to be:

r = ||X̂ −X||22, p = ||Ŝ − S||22, s = (r − µr)/σr + (p− µp)/σp (5)

where r is the data reconstruction error, p the progression reconstruction error, µr, µp the means of
r, p on the validation set, and σr, σp the standard deviation of r, p. The criterion takes into account the
normalized errors in the data space and the progression space, each of which quantifies the anomalous
magnitude in respective spaces and complment the other.
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Table 2: Statistics of the main datasets.

Training Test Anomalies Lengths Sampling

Dataset Features Set Set Count Ratio min med max Period

SMD 38 708,405 708,420 327 4.16% 2 11 3,161 1 min
PSM 25 132,481 87,841 71 27.73% 1 5 8,861 1 min
SWaT 51 496,800 449,919 34 12.02% 101 447 35,900 1 sec
HAI 79 921,603 402,005 50 2.23% 17 162.5 422 1 sec

Anomaly Diagnosis Criterion For an input series X and its j-th feature, its anomaly score sj is a
scalar defined to be:

sj = rj = ||X̂(j,·) −X(j,·)||22, (6)

where rj is feature j’s data reconstruction error. The criterion is sensitive to spatial novelty.

4 Experiments

SARAD is compared against state-of-the-art detectors on real-world benchmarks for detection and
diagnosis, the latter only when diagnostic labels are available.

4.1 Experimental Setup

Datasets We evaluate on four real-world datasets collected under industrial control and service
monitoring settings. These dataset are: 1) Server Machine Dataset (SMD) (Su et al., 2019b,a),
2) Pooled Server Metrics (PSM) dataset (Abdulaal et al., 2021a,b) 3) Secure Water Treatment
(SWaT) dataset (Mathur and Tippenhauer, 2016; iTrust, 2023), and 4) Hardware-In-the-Loop-based
Augmented ICS (HAI) dataset (Shin et al., 2021b,a). All training sets contain only unlabeled data
and the test sets contain data with anomaly labels. Anomalies range from service outages to external
cyber-physical attacks. We summarize the statistics of the datasets in Table 2. Descriptions of each
dataset are detailed in Appendix E.

Detection Metrics Real-world benchmarks are rife with range-wise anomalies spanning consecutive
time points (Wagner et al., 2023). We use the range-based metrics proposed in (Paparrizos et al.,
2022). Compared against their point-based counterparts, they provide robustness to labeling delay
and scoring noises as well as performant detector separability and series consistency. We compute
the threshold-independent AUC-ROC and AUC-PR scores to be rid of thresholding impact and fully
parameter-free Volume Under the Surface (VUS) AUC-ROC and AUC-PR scores. Full details are
discussed in Appendix I.

Diagnosis Metrics Consistent with previous works (Tuli et al., 2022; Zhao et al., 2020), we use
common metrics such as Hit Rate (HR) (Su et al., 2019b) and Normalized Discounted Cumulative
Gain (NDCG) (Järvelin and Kekäläinen, 2002) where diagnosis labels are available. At the range
level, we measure the Interpretation Score (IPS) initially proposed in Li et al. (2021) and here
expanded to fit the P% parameterization. Full details are discussed in Appendix J.

Baselines We compare SARAD against state-of-the-art anomaly detection baselines, including
Isolation Forest-based IF (Liu et al., 2008), Deep IF (DIF) (Xu et al., 2023); MLP-based USAD (Au-
dibert et al., 2020); graph-based GDN (Deng and Hooi, 2021); LSTM-based MAD-GAN (Li et al.,
2019); CNN-based DiffAD (Xiao et al., 2023); and Transformer-based TranAD (Tuli et al., 2022),
ATF-UAD (Fan et al., 2023), AT (Xu et al., 2022), DCdetector (Yang et al., 2023). Noticeably,
GDN employs explicit spatial modeling in its graph construction although spatial associations are
not directly involved in anoamly scoring. MAD-GAN emphasizes on anomaly detection within
cyber-physical systems. All baselines are trained using official implementations where available and
recommended hyperparameters from respectively papers are used.
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Table 3: Anomaly detection performance. Threshold-independent AUC-ROC and AUC-PR metrics
and fully parameter-free VUS-ROC and VUS-PR metrics are reported. All values are average
percentages from five random seeds. The best values are in bold and the second best underlined.

SMD PSM SWaT HAI

Method AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

IF 53.81 7.27 53.56 7.25 58.08 41.51 57.99 41.48 86.11 66.52 84.39 63.57 72.90 10.03 71.65 9.81
DIF 60.27 10.30 59.84 10.23 52.00 36.61 51.88 36.55 89.38 73.19 87.88 70.54 82.10 35.86 81.13 34.16
TranAD 46.86 5.92 46.54 5.88 50.20 35.22 49.47 35.19 47.78 17.65 47.13 17.57 75.60 25.80 75.06 25.41
ATF-UAD 43.41 4.98 43.10 4.97 46.44 33.20 46.03 33.18 55.18 20.66 54.35 20.58 70.56 22.47 69.81 22.06
AT 50.01 5.42 49.97 5.36 37.66 26.49 36.82 26.47 46.77 12.95 46.45 12.79 47.41 5.85 47.24 5.85
DCdetector 49.47 4.51 49.10 4.50 45.94 24.76 46.01 24.82 50.80 14.47 50.76 14.37 N/A N/A N/A N/A
USAD 50.20 6.93 50.01 6.91 42.45 33.23 42.30 33.20 80.36 60.06 78.53 57.33 72.59 23.27 71.84 22.73
GDN 66.37 9.40 66.07 9.34 63.51 40.66 63.13 40.53 79.30 28.12 78.79 28.17 84.79 35.82 84.03 35.05
MAD-GAN 64.35 9.77 64.16 9.74 57.50 40.08 57.37 40.03 86.51 61.95 86.10 62.03 84.92 49.06 84.09 48.14
DiffAD 58.71 7.22 58.40 7.19 51.60 32.10 51.02 32.01 27.02 9.22 26.45 9.21 86.96 21.95 86.25 21.74
Ours 79.97 15.09 79.67 15.02 61.87 41.06 61.77 41.01 88.29 72.90 87.52 70.68 96.87 67.78 96.17 64.70

4.2 Results

Anomaly Detection Table 3 shows the anomaly detection performance in metrics defined in
Section 4.1. It demonstrates that, despite its architectural elegance, SARAD either outperforms all
baselines by significant margins on the threshold-independent VUS-ROC scores (SMD: +15.51%
MAD-GAN, HAI: +9.92% DiffAD) or performs on par with current best detectors (PSM: −1.36%
GDN, SWaT: −0.36% DIF). IF scrutinizes the distributional shifts of anomalies with random data
partitions and delivers consistent performance across datasets. DIF extends IF into randomized
deep representation spaces and archives decent improvements due to more flexible partitions and
temporally local information extraction via dilated convolutions. Temporal modeling methods such
as DiffAD, ATF-UAD, and AT rely solely or heavily on reconstruction errors and when the errors
do not correspond the the underlying anomalies their performance plummet. Adversarial training in
USAD and MAD-GAN amplifies reconstruction errors of anomalies to mitigate but not eliminate
such issues and thus suffer less performance drops. In contrast, our SARAD additionally accounts for
the SAR frequent with anomalies and independent of data distributional shifts, thus outperforming all.
SARAD also overpasses GDN, which despite its explicit spatial modeling adopts prediction errors as
its sole detection criterion, limiting its performance. SARAD’s top performance on SWaT and HAI
underlines its ability to unravel complex spatial associations even in complex large-scale systems.
Standard deviations of Table 3 are reported in Appendix K.

Anomaly Diagnosis Table 4 shows the anomaly diagnosis performance in metrics defined in
Section 4.1. DiffAD uses a subset of SMD features and thus is discarded from comparisons for
fairness. SARAD outperforms baselines on the point-based HR@150% (SMD: +26.67% TranAD,
SWaT: +5.10% USAD, HAI: +3.81% GDN) and NDCG@150% (SMD: +27.97% TranAD, SWaT:
+4.76% GDN, HAI: +2.93% GDN). SARAD also outperforms on the range-based IPS@150%
on most datasets (SMD: 43.19% TranAD, SWaT: 33.43% TranAD). Unlike SMD which performs
forensic diagnosis to label anomalous features, SWaT and HAI label only the origins of cyberattacks
as diagnosis labels. Consequentially, attack origins sometimes might not behave anomalously, e.g.,
attacks had failed, or the full set of anomalous features were not identified, thus diminishing the
performance numbers on SWaT and HAI. SARAD generally outperforms detectors underpinned by
temporal modeling due to its sensitivity to spatial associative changes. SARAD also outperforms
spatial detectors such as GDN whose prediction errors limit its temporal scope to a single time point.
Standard deviations of Table 4 are reported in Appendix L.

Visualization Figure 3 visualizes a real-world anomaly example via SARAD. Our detector captures
the significant SAR caused by the anomalous features. The loose reconstruction of the progression
raises the progression-based score p and, in turn, the joint detection score s. Taking a broader view of
the series in Fig. 3h, SAR significantly raises the scores at the start of the anomaly, even when the
data-based errors r are small. SARAD exploits SAR to achieve more robust anomaly detection.
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Table 4: Anomaly diagnosis performance. Point-based HR@P%, NDCG@P%, and range-based
IPS@P% are reported. All values are average percentages from five random seeds.

SMD SWaT HAI

Method HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P%

P 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

TranAD 33.33 45.26 34.71 41.81 22.21 33.25 4.82 6.36 4.82 5.76 17.47 20.91 4.08 6.27 3.98 5.33 12.67 21.78
ATF-UAD 27.80 40.94 26.67 34.46 17.34 26.16 1.85 3.19 1.83 2.65 5.45 8.28 2.96 5.22 3.08 4.48 5.04 8.59
USAD 27.03 39.74 25.83 33.44 18.31 26.07 4.39 7.73 4.39 6.48 12.83 27.17 3.78 5.83 3.76 5.01 12.37 16.22
GDN 28.67 41.57 28.62 36.27 21.18 30.76 5.99 7.21 6.13 6.89 14.04 21.72 5.45 8.29 5.50 7.23 7.41 12.07
DiffAD N/A N/A N/A N/A N/A N/A 1.82 2.90 1.81 2.47 5.45 12.63 3.32 4.79 3.41 4.32 12.00 17.26
Ours 56.73 71.93 60.79 69.78 61.38 76.44 9.57 12.83 9.61 11.65 35.45 54.34 6.45 12.10 6.69 10.16 7.48 14.07

#1

#9
#10
#12
#13
#14
#15

time range: [15798, 15949]

(a)
features

range: [0.0006, 0.2200]

(b)
features

range: [0.0006, 0.2200]

(c)
heads

range: 
[0.0000, 1.5716]

(d)
heads

range: 
[0.0000, 1.5716]

(e) (f) (g) (h)

rj

pj

sj

(i)

Figure 3: Visualization of applying SARAD for detection on SMD. 3a shows the raw time series right
before and during an anomaly pi (colored in red). An input time window for SARAD is bounded in
the black box. 3b and 3c show the average association mapping ĀL via final L-th layer’s MHSA. 3d
shows the aggregated progression S according to Eq. 3. 3e is its reconstruction. 3f, 3g, 3h show the
scores p, r, and joint s according to Eq. 5 per feature. 3i shows the anomaly scores for 3a’s segment.
Anomalous features (#1, #9, #10, #12, #13, #14 ,and #15) are highlighted with red bounding boxes.

Complexity and Time Overheads SARAD incurs 32 mins for training and and 0.39 ms for
inference per sample on HAI, the largest dataset, falling far below the data collection time and
sampling frequency. Those numbers are comparable with baselines and detailed in Appendix N.

4.3 Ablation Studies

Spatial Progression Reconstruction To evaluate the effectiveness of the progression module, we
perform ablation studies on its submodules in Table 5. Standard deviations are reported in Appendix K.
Removing the ReLU, i.e., to capture both association increases and reductions, in progression loses
the focus on asscoation reduction and impairs the detection performance. Replacing the column
sum operation in aggregation with the row sum which characterizes the disconnection of anomalous
features from others and is shown to be less effectiveness than the column sum representing the drop
out rates. Fully concatenating without sum operation dilutes the reduction patterns and significantly
hurts the detection, at a cost of complexity. For the detection submodule, using the progression directly
instead of the reconstruction errors registers reductions as anomalies directly and underperforms
except on SMD due to its inability to rule out normal reduction patterns.

Choice of Detection Criterion Table 6 compares the detection performance using Eq. 5 (Joint), us-
ing only data-based r (DR), and using only progression-based p (SPR). While the data reconstruction
is a robust criterion of anomalousness, SARAD embeds the spatial information into the joint criterion
and outperforms either single criterion overall. Standard deviations are reported in Appendix K.

Additional ablation studies on the choice of diagnosis criterion are detailed in Appendix D.
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Table 5: Anomaly detection performance under progression reconstruction changes.
SMD PSM SWaT HAI

Submodule Change AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

Ours - 79.97 15.09 79.67 15.02 61.87 41.06 61.77 41.01 88.29 72.90 87.52 70.68 96.87 67.78 96.17 64.70
Prog. (Eq.2) no ReLU 75.43 12.38 75.16 12.35 60.35 40.32 60.21 40.24 87.48 67.88 86.75 66.04 95.59 64.81 94.93 61.87
Aggr. (Eq.3) row sum 79.47 15.87 79.17 15.82 63.36 42.41 63.20 42.33 88.19 70.12 87.40 68.12 96.56 67.26 95.80 64.21
Aggr. (Eq.3) no sum 57.31 6.09 56.98 6.08 47.50 33.92 47.34 33.86 86.10 69.69 85.26 67.71 91.63 57.49 90.70 55.01
Detection S directly 80.42 15.79 80.14 15.73 60.59 39.71 60.49 39.63 87.33 69.38 86.70 67.59 95.72 64.95 94.98 61.91

Table 6: Anomaly detection performance under different choices of detection criterion.
SMD PSM SWaT HAI

Method Criter. AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

Ours both 79.97 15.09 79.67 15.02 61.87 41.06 61.77 41.01 88.29 72.90 87.52 70.68 96.87 67.78 96.17 64.70
DR r only 73.21 13.53 72.72 13.44 61.53 39.99 61.45 39.93 86.76 68.66 86.15 67.03 96.28 66.38 95.56 63.33
SPR p only 79.71 15.44 79.39 15.36 62.41 41.47 62.20 41.36 65.87 20.10 65.31 19.53 95.54 61.73 94.77 59.07

5 Conclusion

In this work, we propose SARAD for time series anomaly detection and diagnosis. The approach
effectively exploits the spatial association descending patterns of anomalies. Data reconstruction
with Transformer guides learning of spatial associations from data and captured as progression,
while progression reconstruction quantifies the anomalous association descent and complements
the insensitivity of the former to spatial disassociation during anomalies. SARAD experimentally
demonstrates state-of-the-art detection and diagnosis performance and foreshadows the power of
spatial modeling for related time series tasks.
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A Broader Impacts

The broader impact of the work presented rests in the increasingly pervasive nature of industrial
control systems, intrusion detection systems, and remote monitoring solutions in healthcare contexts,
all of which commonly utilize some form of anomaly detection. Further to the time series analysis
that is commonplace, the work presented in this paper demonstrates how Transformer can be used
to learn the spatial associations that ubiquitously characterize these feedback-controlled systems,
supplementing time series analysis to provide state-of-the-art performance. As such, the work
presented has broad applicability, whilst explicitly targeting automated industrial control systems.

B Limitations

While the model size scales linearly with the number of features, the time complexity of SARAD
is quadratic with respect to the features. SARAD could incur significant training and inference
overheads when the supervisory system is extensively large. We caution that the overheads of the
largest dataset in our experiments fall well below data collection overhead and sampling frequency
(see Appendix N). To scale, we will explore hierarchical time series anomaly detection via clustering.
Another limitation of this work is the scarcity of forensically labeled datasets like SMD for anomaly
diagnosis, not least due to the intensive labor and domain knowledge implied. To address that gap,
we will explore publicly available audit and operational time series data for sources.
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Figure 4: Spatial associations captured by Transformer on SMD (Su et al., 2019b).
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Figure 5: Spatial associations captured by Transformer on SMD (Su et al., 2019b).

C Examples of Spatial Association Reduction

As mentioned in Section 1, herein we provide more real-world examples of Spatial Association
Reduction (SAR) exhibited by time series anomalies. Figures 4, 5, 6, 7 showcase the spatial
associations captured within Transformer via MHSA. Subfigures in each aforementioned figure show,
in that order, (a) the raw time series right before, during, and after an anomaly pi ∈ P (colored in
red), (b) association mapping AL

h output by final L-th layer’s MHSA are averaged across heads to
derive average association A before pi, (c) AL

h during pi, (d) AL
h after pi wherein brighter cells have

smaller values and anomalous features are highlighted with red bounding boxes, (e) the reduction-only
changes from before the anomaly to during the anomaly, i.e., ReLU(Apre −Ain), and finally (f) the
reduction-only changes from after the anomaly to during the anomaly, i.e., ReLU(Apost −Ain).
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Figure 6: Spatial associations captured by Transformer on SWaT (Mathur and Tippenhauer, 2016).
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Figure 7: Spatial associations captured by Transformer on SWaT (Mathur and Tippenhauer, 2016).
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Table 7: Anomaly diagnosis performance under different choices of diagnosis criterion.
SMD SWaT HAI

Method Criter. HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P%

P 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

Ours rj only 56.73 71.93 60.79 69.78 61.38 76.44 9.57 12.83 9.61 11.65 35.45 54.34 6.45 12.10 6.69 10.16 7.48 14.07
SPR pj only 42.97 57.33 46.32 54.85 52.01 64.82 14.32 17.18 14.40 16.18 20.10 37.37 5.71 8.50 5.86 7.58 9.70 17.04
Joint both 48.91 61.49 53.12 60.59 56.56 70.06 2.60 3.50 2.66 3.20 16.16 20.40 10.28 15.42 10.74 13.92 12.59 16.52

D Choice of Diagnosis Criterion

Concerning the rationality of data-only diagnosis criterion in Eq. 6, we consider an alternate joint
diagnosis criterion in line with the detection criterion in Eq. 5.

rj = ||X̂(j,·) −X(j,·)||22, pj = ||Ŝ(·,j) − S(·,j)||22, sj = (rj − µrj )/σrj + (pj − µpj
)/σpj

(7)

where rj is feature j’s data reconstruction error, pj its progression reconstruction error, µrj , µpj
the

means of rj , pj on the validation set, and σrj , σpj
the standard deviation of rj , pj . Table 7 compares

the diagnosis performance using only rj (SARAD), using only pj (SPR), and using Eq. 7 (Joint).
Unlike in anomaly detection, the great discrepancy between rj and pj more than often degrades the
performance of the joint criterion. SARAD uses rj only which produces suboptimal and yet reliable
performance in the longer anomalous horizons. Standard deviations are reported in Appendix L.
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E Datasets

We include four real-world datasets collected under industrial control and IT service monitoring
settings for evaluations. Anomalies range from IT service outages to external cyber-physical attacks
against control systems.

E.1 Dataset Descriptions

1. Server Machine Dataset (SMD) (Su et al., 2019b,a) is a server metric dataset from a
large-scale IT company. Engineers annotated anomalous events in the second half of the
data with indicator-level attributions.

2. Pooled Server Metrics (PSM) dataset (Abdulaal et al., 2021a,b) captures key performance
indicators of servers on an online shopping platform. Website engineers annotated anomalous
events for data in the last eight weeks.

3. Secure Water Treatment (SWaT) dataset (Mathur and Tippenhauer, 2016; iTrust, 2023)
contains sensor readings and actuator status on a minuscule real-world water treatment
system during a six-day normal operational period. A knowledgeable attacker performed 36
cyber-physical attacks during a five-day attack period and they are labelled as anomalous
accordingly.

4. HIL-based Augmented ICS (HAI) dataset (Shin et al., 2021b,a) records measurements
and control actions within a Hardware-In-the-Loop (HIL) dual power (steam-turbine and
hydropower) generation testbed during its two-week operation. Both single-point primitive
and multi-point combined attacks are performed on the testbed to emulate a threat actor with
cyber-physical capacities. We use the 21.03 version of HAI.

All training sets contain only unlabeled data and the test sets contain data with anomaly labels.
Statistics of the datasets are given in Table 2.

E.2 Lengths of Anomalies

We further characterize the detection datasets by the lengths of the anomalous events. Figure 8
shows the empirical cumulative distribution function of the anomalous lengths. SWaT has the
longest median length of 447 among the four datasets considered, followed by HAI (162), SMD
(11), and lastly PSM (5). The very short lengths on SMD and PSM benefit temporal detectors which
tend to embed a single or few time points (see Appendix M), whereas SARAD adopts a half time
window embedding strategy. The catch is that SARAD can learn spatial relationships with temporal
aggregated information per feature, while temporal detectors could not, bringing about benefits of
performing anomaly detection in the spatial association space. A more scalable approach for temporal
aggregation is to be explored in the future, though variable window sizes or subseries splits might be
implied.

E.3 Lengths of Diagnosis Labels

Figure 8 shows the empirical cumulative distribution function of the diagnosis label lengths. Whereas
SMD forensically labels features which deviate from their normal behavioral patterns as anomalous,
SWaT and HAI only label the points of attacks as anomalous as the their creators have advanced
knowledge of such attacks. The latter labeling strategy results in incomplete sets of anomalous
features and diminishes the diagnosis performance of all models, as evidence in Table 4 in Section
4.2.
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Figure 8: Empirical distribution function of the lengths of anomalies.
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Figure 9: Empirical distribution function of the lengths of diagnosis labels.
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F Implementation Details

We implement SARAD in Python using pyTorch library (Paszke et al., 2019) and Hydra frame-
work (Yadan, 2019). All experiments are run on a single NVIDIA A10 (24GB) GPU. Adam
optimizer (Kingma and Ba, 2015) is used and learning rate is halved every epoch for 3 epochs to
prevent over-fitting. The time window size is 2W = 100. The data reconstruction module has
H = 8 attention heads per layer with attention length D = 512 and hidden length DFF = 2048.
For hyperparameter tuning, training set is temporally partitioned into 80% for training and 20% for
validation. On each dataset we first perform TPE sampling (Bergstra et al., 2011) for number of
encoding layers L ∈ {3, 5} and learning rate ∈ [10−4, 10−2] to derive the best data reconstruction
loss LR on the validation set. The progression module by default has hidden length of DP = 64. We
then perform TPE sampling to search weight λLS

∈ [10−2, 102] for the progression reconstruction
loss LS on the validation set.

G Open-accessed Code and Data

During the review period, code is anonymized and openly available at https://github.com/
daidahao/SARAD/ with specific instructions and scripts to reproduce experimental results. All data
used in our experiments can be openly accessed from public repositories or requested via original
authors’ websites. Full links are provided in Appendix E.
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Figure 10: Hyperparameter Sensitivity of detection performance in VUS-ROC scores.

H Hyperparameter Sensitivity

We examine the hyperparameter sensitivity of SARAD’s detection performance. Concretely, we
consider the effects of the sliding window size (default is 100), the number of training epochs (3), the
attention length of Transformer encoding layers D (512), and the hidden length of the progression
reconstruction module DP (64). Figure 10 and 11 present the results. On the window size, a
sliding window too small confines temporal modeling to small temporal receptive fields and contains
anomaly detection in the association space. However, a sliding window too large incurs higher
computational costs, although unlike temporal modeling the costs here are linear. On datasets with
shorter anomalous lengths such as SMD and PSM, the anomalous patterns are diluted even further,
resulting in performance degradation.

On the number of training epochs, fewer epochs lead to model underfitting, and yet overfitting is
largely prevented with more epochs due to the aggressive learning rate halving per epoch. On the
attention length D, a larger Transformer is prone to overfitting with visible performance drops on
SMD and PSM as D passes the default 512, both of whose monitored systems are smaller in scale.
On the hidden length DP , a more complex progression anomaly detector does not adversely impact
the performance, suggesting that the association space is less prone to detection overfitting than the
data space.
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Figure 11: Hyperparameter Sensitivity of detection performance in VUS-PR scores.
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I Detection Metrics

Conventional metrics such as precision, recall, F1 and the threshold-independent Area Under the
Curve (AUC) scores are commonly point-based, i.e., predicted labels are scored individually by time
points (Zhou et al., 2023; Zhang et al., 2022; Xu et al., 2018). Real-world benchmarks are rife with
range-wise anomalies spanning consecutive time points (Wagner et al., 2023). Point-based metrics are
generally ill-suited for evaluating detection performance due to the continuous-discrete conversion
and the series-label misalignment (labeling anomalies precisely is hard) (Garg et al., 2022; Tatbul
et al., 2018). Here, we use the range-based metrics proposed in (Paparrizos et al., 2022). Compared
against their point-based counterparts, they provide robustness to labeling delay and scoring noises as
well as performant detector separability and series consistency.

Given a set of anomalous ranges P = {pi = (si, ei)} wherein each anomaly pi starts at timestamp
si and ends at ei, we enclose each range with uniform l/2-length preceding and succeeding buffers.
Given the anomaly label yt ∈ {0, 1} at each timestamp t, we derive a new soft label ỹt ∈ [0, 1] as per
the minimum temporal distance of t to any anomaly pi ∈ P:

ỹt =


√
1− |si − t|/l, ∃pi ∈ P, t ∈ [si − l/2, si)√
1− |t− ei|/l, ∃pi ∈ P, t ∈ (ei, ei + l/2]

yt, otherwise
(8)

where l is the buffer length, normally set to the median segment length in P . Within the buffers, ỹt
monotonically increases from

√
2/2 to 1 as the distance decreases. With the new soft label series

Ỹ = {ỹt}, we define the True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN) accordingly:

TP = ỸT · Ŷ, FP = (1− Ỹ)T · Ŷ, TN = (1− Ỹ)T · (1− Ŷ), FN = ỸT · (1− Ŷ) (9)

We then compute the threshold-independent AUC for the Receiver Operating Characteristic (AUC-
ROC), i.e., TP rate vs FP rate, and the Precision-Recall (AUC-PR) curves respectively to be rid of
thresholding impact. Fully parameter-free Volume Under the Surface (VUS) scores for AUC-ROC
(VUS-ROC) and AUC-PR (VUS-PR) are also computed under different buffer lengths l̂ ∈ [0, 2l].
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J Diagnosis Metrics

In line with previous works (Tuli et al., 2022; Zhao et al., 2020), we use common metrics such as
Hit Rate (HR) (Su et al., 2019b) and Normalized Discounted Cumulative Gain (NDCG) (Järvelin
and Kekäläinen, 2002) to measure performance where diagnosis labels are available. Given a set of
anomalous features Gi ⊆ [N ] at an anomalous timestamp t ∈ pi ∈ P as a diagnosis ground-truth
and the set of top k-ranked features Γt@P% according to Eq. 5 where k = ⌈|Gi| × P%⌉, say k = 5
when |Gi| = 3 and P = 150, the HR at P% (P ≥ 100) features is the overlap ratio between the two:

HRt@P% =
|Gi ∩ Γt@P%|

|Gi|
(10)

In information retrieval, DCG measures the cumulative utility of retrieved documents by their ranking
order up to a certain position. NDCG normalizes the DCG by the maximum possible DCG. They are
parameterized by P% to determine the location in our evaluation and calculated as follows.

DCGt@P% =

k∑
j=1

rj
log2(j + 1)

, IDCGt =

|Gi|∑
j=1

1

log2(j + 1)
, NDCGt@P% =

DCGt@P%

IDCGt
(11)

where rj ∈ {0, 1} is the relevance value of the j-th element and, in this case, the membership of
Γt@P%’s j-th feature in Gi. NDCG has a value strictly between 0 and 1.

At the range level, we measure the Interpretation Score (IPS) initially proposed in Li et al. (2021)
and here expanded to fit the P% parameterization. For each anomalous range pi, the IPS score is:

IPSi@P% =
|Gi ∩ Ωi@P%|

|Gi|
(12)

where Ωi@P% is the top k-ranked features according to maxt∈pi
sj,t, the j-th feature’s maximum

anomaly score during pi and k = ⌈|Gi| × P%⌉. It is the HR equivalence at the range level as per the
highest anomalous scores per feature.
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Table 8: Standard deviations of anomaly detection performance in Table 3. Standard deviations of
threshold-independent AUC-ROC and AUC-PR metrics and fully parameter-free VUS-ROC and
VUS-PR metrics are reported. All values are percentages.

SMD PSM SWaT HAI

Method AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

IF 0.45 0.11 0.40 0.11 1.15 1.11 1.13 1.10 1.42 2.49 1.56 2.58 1.30 0.94 1.25 0.79
DIF 0.81 0.16 0.76 0.15 0.94 0.64 1.00 0.64 0.26 0.73 0.33 0.90 1.65 3.31 1.64 3.18
TranAD 0.21 0.11 0.23 0.10 0.66 0.29 0.62 0.28 12.15 5.30 11.92 5.30 8.89 9.83 8.83 9.61
ATF-UAD 2.23 0.12 2.19 0.12 4.19 1.75 4.33 1.74 12.06 6.39 11.92 6.27 10.83 12.11 10.77 11.86
AT 0.39 0.50 0.39 0.48 3.05 0.87 3.22 0.86 3.51 1.43 3.61 1.43 5.50 1.96 5.24 1.90
DCdetector 0.39 0.12 0.39 0.12 1.72 0.13 1.57 0.13 0.06 0.23 0.06 0.24 N/A N/A N/A N/A
USAD 1.43 0.48 1.44 0.48 0.40 0.21 0.40 0.21 6.41 7.42 6.43 6.77 7.41 8.02 7.17 7.79
GDN 0.81 1.56 0.78 1.55 2.58 1.26 2.39 1.20 1.35 3.21 1.17 3.14 1.63 4.62 1.66 4.46
MAD-GAN 2.00 0.50 1.99 0.50 4.65 4.08 4.71 4.09 4.15 4.09 4.17 4.13 2.05 1.76 1.99 1.72
DiffAD 0.40 0.17 0.31 0.18 1.15 0.42 0.89 0.40 0.26 0.09 0.30 0.12 0.60 0.47 0.56 0.47
Ours 0.98 0.75 1.01 0.76 1.07 0.69 1.09 0.69 0.70 1.34 0.60 1.05 0.47 1.08 0.56 1.11

Table 9: Standard deviations of anomaly detection performance in Table 5. Standard deviations of
threshold-independent AUC-ROC and AUC-PR metrics and fully parameter-free VUS-ROC and
VUS-PR metrics are reported. All values are percentages.

SMD PSM SWaT HAI

Submodule Change AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

Ours - 0.98 0.75 1.01 0.76 1.07 0.69 1.09 0.69 0.70 1.34 0.60 1.05 0.47 1.08 0.56 1.11
Prog. (Eq.2) no ReLU 1.00 0.45 1.00 0.45 0.76 0.61 0.73 0.61 0.52 5.17 0.51 4.87 0.19 0.33 0.17 0.33
Aggr. (Eq.3) row sum 0.87 0.61 0.88 0.62 1.30 1.30 1.29 1.28 1.39 3.62 1.40 3.61 0.22 0.67 0.21 0.60
Aggr. (Eq.3) no sum 6.34 1.21 6.37 1.20 0.71 0.21 0.69 0.21 0.48 0.98 0.48 1.00 0.51 0.42 0.56 0.39
Detection S directly 0.70 0.51 0.69 0.50 0.85 0.42 0.85 0.42 1.17 1.20 1.12 1.12 1.74 4.39 1.81 4.18

K Standard Deviations of Detection Performance

Table 8 reports the standard deviations of anomaly detetion performance as reported in Table 3 in
Section 4.2.

Table 9 reports the standard deviations of anomaly diagnosis performance as reported in Table 5 in
Section 4.3.

Table 10 reports the standard deviations of anomaly detection performance as reported in Table 6 in
Section 4.3.

Table 10: Standard deviations of anomaly detection performance in Table 3. Standard deviations
of threshold-independent AUC-ROC and AUC-PR metrics and fully parameter-free VUS-ROC and
VUS-PR metrics are reported. All values are percentages.

SMD PSM SWaT HAI

Method Criter. AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR AROC APR VROC VPR

Ours both 0.98 0.75 1.01 0.76 1.07 0.69 1.09 0.69 0.70 1.34 0.60 1.05 0.47 1.08 0.56 1.11
DR r only 0.82 0.19 0.56 0.15 1.76 1.00 1.76 1.01 1.07 1.52 1.11 1.72 0.44 0.86 0.46 0.81
SPR p only 0.99 0.83 1.02 0.85 0.39 0.18 0.42 0.20 1.61 0.67 1.64 0.63 1.10 3.30 1.21 3.32
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Table 11: Standard deviations of anomaly diagnosis performance in Table 4. Standard deviations
of point-based HR@P%, NDCG@P%, and range-based IPS@P% are reported. All values are
percentages.

SMD SWaT HAI

Method HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P%

P 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

TranAD 0.08 0.29 0.22 0.20 0.25 0.69 1.10 2.50 1.13 1.99 4.25 7.37 0.84 2.16 0.54 1.36 1.47 3.07
ATF-UAD 1.62 1.68 2.60 2.39 2.67 2.73 1.19 2.45 1.17 1.92 4.42 5.81 2.37 4.39 2.68 3.93 5.06 6.52
USAD 0.37 0.81 0.90 1.06 0.50 0.77 1.73 1.54 1.75 1.59 5.77 3.06 0.52 0.27 0.72 0.56 2.04 1.98
GDN 1.41 1.27 1.63 1.57 1.08 1.20 1.36 1.33 1.36 1.32 2.51 3.15 2.08 2.59 2.38 2.70 2.37 6.06
DiffAD N/A N/A N/A N/A N/A N/A 0.09 0.16 0.09 0.12 3.18 3.11 0.37 0.52 0.35 0.44 0.67 1.45
Ours 0.46 0.46 0.56 0.58 1.61 0.96 0.98 1.68 1.03 1.45 4.20 2.52 0.64 0.96 0.74 0.88 1.71 1.57

Table 12: Standard deviations of anomaly diagnosis performance in Table 7. Standard deviations
of point-based HR@P%, NDCG@P%, and range-based IPS@P% are reported. All values are
percentages.

SMD SWaT HAI

Method HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P% HR@P% ND@P% IPS@P%

P 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

Ours 0.46 0.46 0.56 0.58 1.61 0.96 0.98 1.68 1.03 1.45 4.20 2.52 0.64 0.96 0.74 0.88 1.71 1.57
SPR 1.38 1.58 1.28 1.36 2.05 2.55 21.26 24.13 21.31 23.10 8.55 10.41 0.95 1.35 0.99 1.20 2.94 4.36
Joint 1.63 1.27 1.60 1.39 1.73 2.46 0.20 0.92 0.16 0.62 2.83 5.36 0.63 1.20 0.65 0.94 1.72 1.94

L Standard Deviations of Diagnosis Diagnosis

Table 11 reports the standard deviations of anomaly diagnosis performance as reported in Table 4 in
Section 4.2.

Table 12 reports the standard deviations of anomaly diagnosis performance as reported in Table 7 in
Appendix D.
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Table 13: Anomaly detection point-based performance. Threshold-dependent Precision, Recall, F1
scores and threshold-independent AUC-ROC and AUC-PR scores are reported. All values are average
percentages from five random seeds. The best values are in bold and the second best underlined.

SMD PSM SWaT HAI

Method P R F1 AROC APR P R F1 AROC APR P R F1 AROC APR P R F1 AROC APR

IF 15.22 18.53 16.61 66.26 12.67 39.12 76.75 51.50 71.00 45.61 99.54 59.06 74.13 84.25 72.86 12.87 22.00 16.12 70.68 8.20
DIF 29.62 21.67 24.87 69.20 16.47 34.17 93.14 49.98 65.00 40.68 96.79 61.24 75.01 87.37 75.63 62.67 39.75 48.59 79.71 30.62
TranAD 18.54 12.79 14.12 52.34 8.44 34.04 96.53 50.33 62.09 45.74 26.45 74.01 36.62 57.92 16.60 65.27 30.33 39.05 73.22 31.03
ATF-UAD 6.07 24.06 9.49 52.23 4.71 30.50 91.67 45.56 57.70 38.35 30.09 73.37 40.54 62.47 17.89 73.25 25.37 37.18 68.62 26.67
AT 4.16 100.00 7.98 49.97 4.55 27.73 100.00 43.42 45.79 26.21 12.02 100.00 21.46 42.43 10.23 6.86 8.88 7.60 35.82 4.40
DCdetector 4.20 100.00 8.05 49.12 4.19 25.01 100.00 40.01 49.47 24.82 11.82 100.00 21.14 49.93 11.82 N/A N/A N/A N/A N/A
USAD 14.15 22.20 17.12 63.14 10.08 30.04 97.68 45.95 57.96 42.64 95.99 62.00 75.30 83.26 72.59 69.20 28.80 39.54 71.35 29.18
GDN 16.47 26.84 17.87 65.30 9.62 39.08 84.15 53.25 69.09 42.18 38.04 71.12 49.53 76.89 24.10 68.95 45.61 52.64 82.39 39.43
MAD-GAN 15.31 21.39 17.63 63.31 10.53 30.80 92.42 46.08 63.07 43.75 84.83 69.53 76.42 86.63 63.69 79.97 49.00 60.76 81.07 49.02
DiffAD 10.51 19.89 13.75 60.34 7.67 27.76 100.00 43.45 55.09 33.04 12.02 100.00 21.46 18.71 7.27 46.76 16.53 24.37 80.96 20.74
Ours 17.06 41.26 24.10 79.82 15.10 41.55 58.60 48.60 65.42 43.28 96.20 66.92 78.92 86.91 74.81 65.42 62.63 63.99 93.40 49.22

Table 14: Standard deviations of anomaly detection point-based performance in Table 14. Standard
deviations of threshold-dependent Precision, Recall, F1 scores and threshold-independent AUC-ROC
and AUC-PR scores are reported. All values are percentages.

SMD PSM SWaT HAI

Method P R F1 AROC APR P R F1 AROC APR P R F1 AROC APR P R F1 AROC APR

IF 1.16 2.02 0.47 0.72 1.50 3.06 9.03 1.54 1.12 1.70 0.22 0.11 0.03 0.91 0.86 1.43 2.09 0.59 0.67 0.90
DIF 4.06 0.98 0.98 0.50 1.05 1.59 1.06 1.65 1.52 2.38 1.87 0.73 0.60 0.34 0.56 1.91 3.22 2.62 1.15 1.94
TranAD 5.98 3.31 0.46 0.28 0.50 0.33 0.62 0.30 0.62 0.74 12.41 16.00 12.29 19.93 6.80 14.08 11.13 6.63 7.58 8.08
ATF-UAD 1.00 7.60 1.05 1.21 0.25 2.70 9.45 2.52 4.88 3.10 12.68 9.36 12.34 15.50 6.36 9.99 10.18 12.94 8.39 11.35
AT 0.00 0.00 0.00 0.44 0.43 0.00 0.00 0.00 1.95 1.01 0.00 0.00 0.00 5.39 1.35 3.33 3.13 3.18 5.81 1.59
DCdetector 0.00 0.00 0.00 0.78 0.13 0.00 0.00 0.00 0.32 0.15 0.00 0.00 0.00 0.04 0.21 N/A N/A N/A N/A N/A
USAD 2.10 1.91 1.17 2.68 1.20 0.44 0.43 0.50 0.61 0.27 3.30 1.41 0.70 2.64 1.25 13.69 6.17 4.12 4.73 5.44
GDN 7.60 12.09 3.46 0.58 2.19 2.50 11.27 4.26 2.87 2.06 1.75 1.49 1.19 1.50 1.56 14.18 11.91 5.65 1.60 4.23
MAD-GAN 2.46 2.16 1.08 1.98 0.52 2.31 5.94 2.08 4.54 5.54 0.91 0.93 0.60 2.44 2.22 0.86 0.90 0.87 1.42 1.27
DiffAD 0.38 0.61 0.28 0.34 0.39 0.00 0.01 0.00 0.74 0.45 0.00 0.00 0.00 0.20 0.03 5.14 0.87 1.24 0.77 0.47
Ours 0.76 4.22 1.20 0.56 0.51 1.65 0.65 1.06 0.79 1.09 1.44 1.27 0.93 0.48 1.11 0.38 0.38 0.23 0.60 0.62

M Point-based Evaluations

In addition to the model evaluations using range-based metrics such as VUS-ROC and VUS-PR in
Sections 4.2 and 4.3, we conduct point-based evaluations herein using point-based metrics exclusively.
Table 13 reports report the Precision, Recall, and F1 scores under the threshold where the method of
interest achieves the best F1 score. To mitigate the impact of thresholding protocol, Table 13 also
reports the threshold-independent AUC-ROC and AUC-PR scores. Table 14 reports the standard
deviations.

SARAD achieves state-of-the-art performance on most datasets except PSM. The enlarged temporal
receptive field of SARAD (half input window) contributes to its underperformance by point-based
metrics, especially on datasets where anomalous ranges are short (see Table 2), when compared
against most others’ receptive filed of single or few time points (typical 1D Conv kernel size is
3). We again underline that most real-world anomalies are continuous and point-based metrics are
mismatched for such anomalies (see Appendix I for discussion).
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Table 15: Model complexity and overheads. The total training time (in minutes), the inference time
per sample (in milliseconds), and the total number of parameters (where applicable) are reported.
The best values are in bold and the second best underlined.

SMD PSM SWaT HAI
T = 708K T = 132K T = 497K T = 922K
N = 38 N = 25 N = 51 N = 79

T = 1 min T = 1 min T = 1 s T = 1 s

Train. Infer. Param. Train. Infer. Param. Train. Infer. Param. Train. Infer. Param.
Method (mins) (ms) (mins) (ms) (mins) (ms) (mins) (ms)

IF 0.01 0.01 N/A 0.00 0.01 N/A 0.01 0.01 N/A 0.03 0.01 N/A
DIF 10.13 1.66 874K 1.91 1.52 853K 7.67 1.68 895K 15.47 1.87 940K
TranAD 6.80 0.04 127K 0.96 0.03 57K 6.06 0.05 226K 17.15 0.07 531K
ATF-UAD 14.20 0.06 414K 1.90 0.05 408K 12.77 0.06 421K 16.42 0.06 436K
AT 0.74 0.00 867K 9.25 0.00 4.80M 36.53 0.00 910K 60.57 0.00 4.91M
DCdetector 102.16 0.01 867K 25.72 0.03 895K 214.56 0.02 910K Out of Memory
USAD 4.34 0.01 803K 0.86 0.01 441K 3.74 0.01 1.26M 9.34 0.01 2.54M
GDN 36.04 0.44 3K 9.64 0.34 3K 19.65 0.46 4K 65.69 0.68 6K
MAD-GAN 42.56 0.40 268K 45.06 0.46 261K 1416.26 0.40 274K 165.01 0.47 289K
DiffAD 11.93 1.49 38.85M 4.94 7.91 38.85M 15.32 1.69 38.85M 42.87 2.80 38.85M
Ours 1.47 0.11 9.57M 2.32 0.12 15.85M 10.87 0.16 9.59M 31.97 0.39 15.94M

N Model Complexity and Overheads

We study and compare the complexity and time overheads of all baselines and SARAD. Concretely,
we evaluate the model complexity by the number of parameters being used and the total training time
as well as the inference time per sample. All experiments on time overheads are performed on a
compute node with AMD EPYC 7443 (48 cores, 96 threads) CPU, NVIDIA A10 (24GB) GPU, and
512 GB RAM.

Table 15 reports the total training time (in minutes), the inference time per sampling point, and the
number of network parameters used (where applicable) of all baselines on the main datasets. The
size of the training set T , the number of features N , and the sampling period T are also reported per
dataset for easy reference. SARAD, while not the fastest nor the lightest model, incurs moderate time
overheads and model complexity.

We note that even SWaT, the smallest dataset in terms of actual clock time, spans approximately
6 days for collection. This is far exceeding most detectors’ training time besides MAD-GAN and
levigates concerns for training overheads for them. All detectors also incur an inference per sample
time several magnitudes below the smallest sampling frequency of 1 second, guaranteeing real-time
deployment of all detectors once trained.
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O Baselines

We trained all baselines using official implementations where available and recommended hyper-
parameters from respectively papers are used. Some baselines, such as DiffAD and AT, have
dataset-specific hyperparameters and here we adopted them as well. The open-accessed URLs of the
baselines used are listed as followed.

• IF (ICDM’08) (Liu et al., 2008): https://github.com/xuhongzuo/deep-iforest.
• DIF (TKDE’23) (Xu et al., 2023): https://github.com/xuhongzuo/deep-iforest.
• TranAD (VLDB’22) (Tuli et al., 2022): https://github.com/imperial-qore/
TranAD.

• ATF-UAD (NN’23) (Fan et al., 2023): https://github.com/wzhSteve/ATF-UAD.
• AT (ICLR’22) (Xu et al., 2022): https://github.com/thuml/Anomaly-Transformer.
• DCdetector (KDD’23) (Yang et al., 2023): https://github.com/DAMO-DI-ML/
KDD2023-DCdetector.

• USAD (KDD’20) (Audibert et al., 2020): https://github.com/manigalati/usad.
• GDN (AAAI’21) (Deng and Hooi, 2021): https://github.com/d-ailin/GDN.
• MAD-GAN (ICANN’19) (Li et al., 2019): https://github.com/LiDan456/MAD-GANs.

Official implementation was migrated to pyTorch for uniform environmental set-up. See our
codebase for details.

• DiffAD (KDD’23) (Xiao et al., 2023): https://github.com/ChunjingXiao/DiffAD.
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Figure 12: Joint detection criterion s of data reconstruction error r and progression reconstruction
error p.

P Joint Detection Criterion

Figure 12 visualizes the two components of the joint detection criterion s in Eq. 5, i.e., the data
reconstruction error r and the progression reconstruction error p. Balanced resampling is applied
here. Recall that s is the sum of normalized r and p. Most anomalous samples (input series) either
has high r or high p, and oftentimes both. The former measures the magnitude of anomalousness in
the data space, the latter in the spatial association space. The basis underpins the formalization of the
joint detection criterion.
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Figure 13: Distributions of anomalies scores.

Q Distributions of Anomaly Scores

Figure 13 the distributions of the joint anomaly scores. On SMD and PSM, the scores of the normal
and anomalous samples (input series) overlap more heavily than on SWaT and HAI. The observations
here highlight the difficulty of anomaly detection in the service monitoring space, more so than in
industrial control where measurements and actuation result from well-defined control logics. The
hardness is evident is Table 3 of detection performance and 4 of diagnosis performance.
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Table 16: Anomaly detection performance under different thresholds. TPRs under thresholds set by
pre-defined FPRs ∈ {1%, 5%, 10%} are reported. Higher TPRs are better. Similarly, FPRs under
thresholds set by pre-defined TPRs ∈ {90%, 95%, 99%} are reported. Lower FPRs are better. All
values are average percentages from five random seeds. The best values are in bold and the second
best underlined.

SMD PSM SWaT HAI

TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR)

Method 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99%

IF 0.29 3.02 7.22 78.49 86.46 93.63 0.50 3.50 11.09 80.94 89.64 94.26 32.88 56.45 65.77 48.48 56.06 64.54 4.15 18.14 28.67 57.31 61.96 68.40
DIF 1.56 8.43 15.17 79.37 87.22 92.33 0.23 1.77 4.63 78.51 83.80 91.86 48.07 63.25 69.63 41.18 50.41 59.62 31.32 41.90 49.40 48.56 54.21 58.81
TranAD 0.86 4.25 8.64 87.86 91.53 95.21 1.15 2.58 7.62 75.94 87.46 96.24 0.12 0.57 1.61 75.78 81.11 85.72 21.39 31.48 37.79 53.60 58.50 66.99
ATF-UAD 0.04 1.04 4.42 90.65 93.75 96.61 0.43 2.05 5.67 82.90 89.02 95.95 0.23 1.02 2.16 69.66 75.93 81.20 16.93 24.21 31.12 60.42 65.08 69.25
AT 1.47 3.78 3.94 99.77 99.77 99.77 0.56 2.73 5.43 99.77 99.77 99.77 1.43 4.07 7.68 98.46 98.46 98.46 4.37 11.61 17.51 95.60 96.91 99.11
DCdetector 0.32 3.40 8.10 97.47 98.43 99.07 0.25 1.88 4.32 99.85 99.85 99.85 0.91 2.19 2.19 98.48 98.48 98.48 N/A N/A N/A N/A N/A N/A
USAD 0.38 3.48 7.55 84.13 89.58 94.09 0.55 1.85 5.13 87.22 90.07 92.05 33.13 45.56 52.37 60.13 70.99 74.63 17.82 25.89 33.17 57.63 61.71 70.61
GDN 1.75 12.03 22.41 70.54 77.88 85.00 0.50 3.12 11.77 68.10 74.60 84.05 1.34 1.91 2.57 41.72 50.87 59.36 35.91 48.13 55.29 44.44 50.43 55.77
MAD-GAN 2.66 15.92 24.81 78.00 84.93 90.21 3.28 8.89 15.61 79.78 85.25 93.30 22.43 60.97 67.95 46.78 59.60 70.56 42.69 52.38 58.18 47.93 54.24 59.33
DiffAD 0.55 7.74 16.10 81.87 88.12 93.06 0.58 3.83 8.22 86.78 93.18 98.33 0.51 3.01 5.88 98.46 98.46 98.46 9.31 27.85 48.94 29.57 34.39 37.69
Ours 1.44 16.42 36.41 48.19 57.97 68.38 0.71 5.85 9.60 82.33 90.10 96.65 53.87 60.11 68.83 42.85 50.24 59.05 58.26 83.03 88.82 11.13 19.76 27.01

Table 17: Standard deviations of anomaly detection performance under different thresholds in
Table 16. Standard deviations of TPRs under thresholds set by pre-defined FPRs ∈ {1%, 5%, 10%}
are reported. Similarly, standard deviations of FPRs under thresholds set by pre-defined TPRs
∈ {90%, 95%, 99%} are reported. All values are percentages.

SMD PSM SWaT HAI

TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR) TPR↑ (@FPR) FPR↓ (@TPR)

Method 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99% 1% 5% 10% 90% 95% 99%

IF 0.08 0.52 0.46 1.34 1.82 0.91 0.09 0.84 1.00 3.07 1.03 2.23 4.29 4.61 2.39 2.68 2.88 2.74 0.51 1.04 1.11 2.00 1.46 2.98
DIF 0.48 0.90 1.44 1.27 1.45 1.48 0.16 0.66 0.38 2.11 1.73 1.91 4.64 2.05 2.18 1.48 0.78 0.84 2.91 3.61 3.00 2.37 2.74 2.17
TranAD 0.08 0.40 0.35 0.74 0.23 0.23 0.22 0.30 0.23 0.38 1.15 0.29 0.06 0.15 0.09 9.61 8.01 5.79 10.67 13.44 14.65 8.42 7.38 11.20
ATF-UAD 0.04 0.91 1.66 2.12 1.87 1.70 0.30 0.97 2.09 7.55 7.46 2.80 0.17 0.25 0.21 6.07 5.91 3.89 10.48 13.55 16.69 6.00 4.69 4.35
AT 0.06 0.51 0.67 0.00 0.00 0.00 0.05 0.53 0.91 0.00 0.00 0.00 0.62 0.81 1.31 0.00 0.00 0.00 2.24 4.63 5.58 3.32 2.06 0.00
DCdetector 0.04 0.61 1.39 5.15 3.00 1.57 0.03 0.42 1.04 0.00 0.00 0.00 0.02 0.60 0.60 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A
USAD 0.22 0.74 1.26 3.34 3.14 3.31 0.12 0.00 0.01 0.28 0.44 0.34 9.68 11.59 8.33 15.06 14.38 15.27 7.29 10.77 11.55 6.59 5.71 5.00
GDN 1.51 5.42 4.85 1.77 2.13 2.75 0.42 2.05 2.87 8.93 8.37 5.87 1.25 1.57 1.72 3.10 6.71 7.48 12.76 7.33 5.96 3.83 4.28 3.06
MAD-GAN 1.23 1.54 1.30 4.22 4.57 3.55 1.74 2.58 3.12 6.60 6.30 2.91 19.27 5.15 6.39 15.81 11.37 11.48 1.92 2.97 2.88 4.87 4.66 4.20
DiffAD 0.11 0.75 0.52 1.18 0.74 0.23 0.09 0.28 0.26 0.98 0.48 0.29 0.07 0.32 0.34 0.01 0.00 0.00 0.48 2.26 0.99 1.98 2.66 2.54
Ours 0.18 1.76 4.81 0.48 0.87 1.35 0.35 0.80 0.97 1.42 1.25 0.73 3.57 3.14 0.45 0.70 1.08 1.69 1.51 2.45 2.73 2.80 2.36 2.12

R Detection Performance Under Thresholds

Effectiveness of each anomaly detector is influenced by the selection of thresholds. Previously, we
reported the range-based and point-based threshold-independent performance metrics. Here, we study
the influence of threshold selection on the detection performance. Table 16 reports the range-based
True Positive Rates (TPRs) under thresholds set by pre-defined False Positive Rates (FPRs)as well as
the FPRs under different thresholds set by pre-defined TPRs. Table 17 reports the standard deviations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims clearly reflect the paper’s contributions and scope of time
series anomaly detection in the abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose full details of our experiments in Appendixes F and O.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide open access to the data and code in Appendix G.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We disclose essential experimental settings in Section 4.1 and full details in
Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations of the experiments in Appendices K and L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclose information on compute resources for experiments in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no risks of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and properly credit all datasets, baselines, and libraries used in this
paper (see Appendices E and O for details).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve IRB approvals and equivalent approvals/reviews.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

48410https://doi.org/10.52202/079017-1533




