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@ Short Caption: A view of a city street with a bridge in the background.

@ Dense Caption: The video presents a panoramic journey through a city street ...(77 weords)... movement from a
commercial zone towards a waterfront area, with the bridge becoming increasingly prominent in the view.

@ Main Object Caption: There are no main subjects such as people or animals ...(60 werds). .. bridge as a focal point.
@ Background Caption: Cityscape that includes a mix of architectural styles, from red-brick ...(49 words).... sunlight.
(® Camera Caption: Smooth and appears to be tracking shot moving ...(56 werds).... central element in later frames.
(® Style Caption: Realistic with clear, bright, and high-contrast depiction of an urban environment during a sunny day.

Figure 1: Video collection and annotation pipeline. An example shown at bottom.
Abstract

Sora’s high-motion intensity and long consistent videos have significantly impacted
the field of video generation, attracting unprecedented attention. However, existing
publicly available datasets are inadequate for generating Sora-like videos, as they
mainly contain short videos with low motion intensity and brief captions. To ad-
dress these issues, we propose MiraData, a high-quality video dataset that surpasses
previous ones in video duration, caption detail, motion strength, and visual quality.
We curate MiraData from diverse, manually selected sources and meticulously
process the data to obtain semantically consistent clips. GPT-4V is employed to
annotate structured captions, providing detailed descriptions from four different
perspectives along with a summarized dense caption. To better assess temporal
consistency and motion intensity in video generation, we introduce MiraBench,
which enhances existing benchmarks by adding 3D consistency and tracking-based
motion strength metrics. MiraBench includes 150 evaluation prompts and 17 met-
rics covering temporal consistency, motion strength, 3D consistency, visual quality,
text-video alignment, and distribution similarity. To demonstrate the utility and
effectiveness of MiraData, we conduct experiments using our DiT-based video
generation model, MiraDiT. The experimental results on MiraBench demonstrate
the superiority of MiraData, especially in motion strength.

*Equal contribution. T Project Lead. ! ARC Lab, Tencent PCG. 2The Chinese University of Hong Kong.
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1 Introduction

Recent advances in the Artificial Intelligence and Generative Content (AIGC) field, such as video
generation [[1} 2} 3], image generation [4} |5, |6} [7]], and natural language processing [8} 9]], have been
rapidly progressing, thanks to the improvements in data scale and computational power. Previous
studies [4}19, 2| [7] have emphasized that data plays a pivotal role in determining the upper-bound
performance of a task. A notable recent development is the introduction of Sora [1]], a text-to-video
generation model, shows stunning video generation capabilities far surpassing existing state-of-the-art
methods. Sora not only excels in generating high-quality long videos (10-60 seconds) but also stands
out in terms of motion strength, 3D consistency, adherence to real-world physics rules, and accurate
interpretation of prompts, paving the way for even more sophisticated generative models in the future.

The first step in constructing Sora-like video generation models is the construction of a well-curated,
high-quality dataset, as data forms the very foundation of model performance and capability. How-
ever, existing publicly video datasets, such as WebVid-10M [10]], Panda-70M [11], and HD-VILA-
100M [12], fall short of these requirements. These datasets primarily consist of short video clips
(5-18 seconds) sourced from unfiltered videos from the internet, which leads to a large proportion of
low-quality or low-motion clips and are inadequate for training generating Sora-like models. More-
over, the captions in existing datasets are often short (12-30 words) and lack the necessary details to
describe the entire videos. These limitations hinder the use of existing datasets for generating long
videos with accurate interpretation of prompts. Therefore, there is an urgent need for a comprehensive,
high-quality video dataset with long video durations, strong motion strength, and detailed captions.

To tackle these issues, we present MiraData, a large-scale, high-quality video dataset specifically
designed to meet the demands of long-duration high-quality video generation, featuring long videos
(average of 72.1 seconds) with high motion intensity and detailed structured captions (average of
318 words). The data curation pipeline is illustrated in Fig.|l} where we have built an end-to-end
pipeline for data downloading, segmentation, filtering, and annotation. I. Downloading. To obtain
diverse videos, we collect source videos from manually selected channels of various platforms. II &
III. Segmentation. We employ multiple models to compare semantic and visual feature information,
segmenting videos into long clips with strong semantic consistency by using a mixture of models to
detect clips within a video and cut long videos into smaller segments. IV. Filtering. To accommodate
high-quality clips, we filter the dataset into five subsets based on aesthetics, motion intensity, and
color to select clips with high visual quality and strong motion intensity. V. Annotation. To obtain
detailed and accurate descriptions, we first use the state-of-the-art captioner [[11] to generate a short
caption and then employ GPT-4V to enrich it, resulting in the dense caption. To provide fine-grained
video descriptions across multiple perspectives, we further design structured captions, which include
descriptions of the video’s main subject, background, camera motion, and style. To this end, statistical
results encompassing video duration, caption length and elaboration, motion strength, and video
quality demonstrate MiraData’s superiority over previous datasets.

To further analyze the performance gap between generated videos and high-quality real-world videos,
we identify a crucial limitation in existing benchmarks: the lack of a comprehensive evaluation
of 3D consistency and motion intensity in generated videos. To address this issue, we propose
MiraBench, an enhanced benchmark that builds upon existing benchmarks by adding 3D consistency
and tracking-based motion strength metrics. Specifically, MiraBench includes 17 metrics that
comprehensively cover various aspects of video generation, such as temporal consistency, motion
strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To evaluate
the effectiveness of captions, we introduce 150 evaluation prompts in MiraBench, consisting of short
captions, dense captions, and structured captions. These prompts provide a diverse set of challenges
for assessing the performance of text-to-video generation models. To validate the effectiveness of
our MiraData , we conduct experiments using our DiT-based video generation model, MiraDiT .
Experimental results show the superiority of our model trained on MiraData, when compared to the
same model trained on WebVid-10M and other state-of-art open-source methods on motion strength,
3D consistency and other metrics in MiraBench.
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2 Related Work

2.1 Video-Text Datasets

Large-scale training on image-text pairs [13}[14},[1516L[17] has been proven effective in text-to-image
generation [18}[19120] and vision-language representation learning [21}[22], showing emergent ability
with model and data scaling-up. Recent achievements such as Sora [[1] suggest that similar capabilities
can be observed in the realm of videos, where data availability and computational resources emerge
as crucial factors. However, previous text-video datasets, as shown in Tab. El, are constrained by short
durations, limited caption lengths, and poor visual quality.

Considering the domain of general video generation, a significant portion of open-source text-video
datasets is unsuitable due to issues such as noisy text labels, low resolution, and limited domain
coverage. Thus the majority of video generation models with impressive performance [23} 13} 124} 25|
20, 127, 28] rely heavily on internal datasets for training, which restricts transparency and usability.
The commonly used open-source text-video dataset for video generation [29} 30} 31} 32} 33} 34,
351136, 137, 1381 [39]] is WebVid-10M [10]. However, it contains a prominent watermark on videos,
requiring additional fine-tuning on image datasets (e.g., Laion [40]) or internal high-quality video
datasets to remove the watermark. Recently, Panda-70M [[L1], InternVid [41]], and HD-VG-130M [42]]
have been proposed and targeted for video generation. Panda-70M and InternVid aim to extract
precise textual annotations using multiple caption models, while HD-VG-130M emphasizes the
selection of high-quality videos. But none of them systematically considers correct video splitting,
visual quality filtering, and accurate textual annotation at all three levels during the data collection
process. More importantly, all previous datasets consist of videos with short durations and limited text
lengths, which restricts their suitability for long video generation with fine-grained textual control.

Table 1: Comparison of MiraData and pervious large-scale video-text datasets. Datasets are
sorted based on average text length. Datasets with gray background are used in a text-to-video

generation. MiraData significantly surpasses previous datasets in average text and video length.

Dataset Avgtextlen Avg/ Total videolen Year Text Domain Resolution
HowTol100M [43] 4.0 words 3.6s 135Khr 2019 ASR Open 240p
LSMDC [44] 7.0 words 4.8s 158h 2015  Manual Movie 1080p
DiDeMo [45]] 8.0 words 6.9s 87h 2017  Manual Flickr -
YouCook?2 [46] 8.8 words 19.6s 176h 2018 Manual  Cooking -
MSR-VTT [47] 9.3 words 15.0s 40h 2016  Manual Open 240p
HD-VG-130M [42] ~9.6 words ~5.1s ~184Khr 2024 Generated Open 720p
WebVid-10M [10] 12.0 words  18.0s 52Kh 2021  Alt-Text Open 360p
Panda-70M [11] 13.2 words  8.5s 167Khr 2024 Generated  Open 720p
ActivityNet [48] 13.5 words  36.0s 849h 2017  Manual Action -
VATEX [49] 15.2 words ~10s ~115h 2019  Manual Open -
HD-VILA-100M [12] 17.6words 11.7s  760.3Khr 2022 ASR Open 720p
How?2 [50] 20.0 words 5.8s 308h 2018  Manual Instruct -
InternVid [41] 32.5words  13.4s 371.5Khr 2023 Generated  Open 720p
MiraData (Ours) 318.0 words  72.1s 16Khr 2024 Generated  Open 720p

2.2 Video Generation

Video generation is a challenging task that have advanced from early GAN-based models [51} 52] to
more recent diffusion. Diffusion-based methods have made significant progress in terms of visual
quality and diversity in generated videos while entailing a substantial computational cost [24} [3]].
Consequently, researchers often face a trade-off between the quality of the generated videos and the
duration of the videos that can be produced within practical computational constraints.

To ensure visual quality under computational resource constraints, previous diffusion-based video
generation methods primarily focus on open-domain text-to-video generation with a short duration.
Video Diffusion Models [235] is the first to employ the diffusion model for video generation. To
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generate long videos in the absence of corresponding dataset, Make-A-Video [29] and NUWA-
XL [53] explore coarse-to-fine video generation but suffer from maintaining temporal continuity
and producing strong motion magnitude. Apart from these explorations of convolution-based ar-
chitecture [29, 30, 31} 25} 23], 127, 24, 132} 142} 137, 134, 135, 133} 138, 139]], transformer-based methods
(e.g., WALT [26]], Latte [54], and Snap Video [3]]) become more prevalent recently, offering a better
trade-off between computational complexity and performance, as well as improved scalability.

All previous methods can only generate short video clips (e.g., 2 seconds, 16 frames) with weak
motion strength. However, the recent success of Sora [[1] demonstrates the potential of long video
generation with enhanced motion strength and strong 3D consistency. With the belief that data is the
key to machine learning, we find that existing datasets’ (1) short duration, (2) weak motion strength,
and (3) short and inaccurate captions are insufficient for Sora-like video generation model training
(as shown in Tab. [T). To address these limitations and facilitate the development of advanced video
generation models, we introduce MiraData, the first large-scale video dataset specifically designed
for long video generation. MiraData features videos with longer durations and structured captions,
providing a rich and diverse resource for training models capable of generating extended video
sequences with enhanced motion and coherence.

3 MiraData Dataset

MiraData is a large-scale text-video dataset with long duration and structured detailed captions.
We show the overview of the collection and annotation pipeline of MiraData in Fig.[I] The final
dataset was obtained through a five-step process, which involved collection (in Sec.[3.1)), splitting
and stitching (in Sec.[3.2), selection (in Sec.[3.3), and captioning (in Sec. 3.4).

3.1 Data Collection

The source of videos is crucial in determining the dataset’s data distribution. In video generation tasks,
there are typically four key expectations: (1) diverse content, (2) high visual quality, (3) long duration,
and (4) large motion strength. Existing text-to-video datasets [[11} [12}42]] mainly consist of videos
from YouTube. Although YouTube offers a vast collection of diverse videos, a large proportion of the
videos lack the necessary aesthetic quality for video generation needs. To address all four aspects
simultaneously, we select source videos from YouTube, Videvo, Pixabay, and Pexels|’| ensuring a
more comprehensive and suitable data source for video generation tasks.

YouTube Videos. Following previous works [12} 11} 42], we include YouTube as one of the video
sources. However, prior research mainly focuses on collecting diverse videos that are suitable for
understanding tasks while giving limited consideration to the need for generation tasks (e.g., duration,
motion strength, and visual quality), which are crucial for learning physical laws and 3D consistency.

To address these limitations, we manually select 156 1« ideo Number 5l Namber
high-quality YouTube channels that are suitable for gen- 10 65K
eration tasks. These channels encompass various cate- s
gories with rich motion and long video clips, including o
(1) 3D engine-rendered scenes, (2) city/scenic tours, (3) K
movies, (4) first-person perspective camera videos, (5) ob- ! R |
ject creation/physical law demonstrations, (6) timelapse R
videos, and (7) videos showcasing human motion. We col-
lect around 68 K videos with 720p resolution from these
YouTube channels (K denotes thousand). After the video
splitting and stitching operation described in Sec.[3.2] we obtain around 34K videos with 173K
video clips. The number of videos and clips for each category are shown in Fig.[2] We collect more
videos from 3D engine-rendered scenes and movies because they exhibit greater diversity and better

6K 39K

0K

Category
Figure 2: The Vide(‘)gand video clip dis-
tribution of different video categories.
(1) to (7) is explained in Sec. @

2YouTube: https://www.youtube.com/, Videvo: https://pixabay.com/, Pixabay: https://www!
videvo.net/, Pexels: https://www.pexels.com/
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148 visual quality. Moreover, the simplicity and consistency of the physical laws in 3D engine-rendered
149 videos are crucial for enabling video generation models to learn and understand physical laws.

150 Additionally, to ensure data diversity and amount, we also include videos from HD-VILA-100M [12]].
151 Although this dataset contains around 100 million video clips, after the splitting and stitching
152 operation in Sec.[3.2] only 195K clips remain. This further demonstrates the quality of our selected
153 video sources, as evidenced by a higher retention rate considering video duration and continuity.

154 Videvo, Pixabay, and Pexels Videos. These three websites offer stock videos and motion graphics
155 free from copyright issues, which are usually exceptionally high-quality videos uploaded by skilled
156 photographers. Although the videos are usually shorter in duration compared to YouTube, they can
157 compensate for the deficiencies in the visual quality of YouTube videos. Therefore, we collect and
158 annotate videos from these websites, which can enhance the generated videos’ aesthetics. We finally
159 obtain around 63 K videos from Videvo, 43K videos from Pixabay, and 318 K videos from Pexels.

160 3.2 Video Splitting and Stitching

161 An ideal video clip for video generation should have semantically coherent content, either without
162 shot transitions or with strong continuity between transitions. To achieve this, we conduct a two-stage
163 splitting and stitching process on YouTube videos. In the splitting stage, we use shot change detection
164 with a low threshold to divide the video into segmentf], ensuring that all distinct clips are extracted.
165 We then stitch short clips together to avoid incorrect separation, considering content-coherent video
166 transitions and accuracy. We employ Qwen-VL-Chat[55]], LLaVA[56} 57, ImageBind[58], and
167 DINOV2[359] to assess whether adjacent short clips should be connected. Vision language models
168 excel in detecting content-coherent transitions, while image feature cosine similarity is more effective
169 in connecting incorrect separations. A connection is made only if both vision language models or
170 both image feature extraction models agree. We retain clips longer than 40 seconds for MiraData.
171 Since Videvo, Pixabay, and Pexels videos are naturally in clip form, we select clips longer than 10
172 seconds to filter for longer videos with greater motion strength. Fig. 3] presents the distribution of
173 video clip duration from YouTube and other sources.

80K
YouTube Others

5
2 60K
g
2 40K
£ 20K
o

0K

N I T I S A R S N PRI SRS IO IR CIR SR SN SN IR

Clip Duration (seconds)

Figure 3: Distribution of video clip duration from YouTube and other sources.

174 3.3 Video Selection

175 MiraData provides 5 data versions with different quality levels for video generation training, filtered
176 using four criteria: (1) Video Color, (2) Aesthetic Quality, (3) Motion Strength, and (4) Presence
177 of NSFW Content. For Video Color, we filter videos shot in overly bright or dark environments by
178 calculating average color and the color of the brightest and darkest 80% of frames. Aesthetic Quality
179 1is assessed using the Laion-Aesthetic[40] Aesthetic Score Predictor. Motion Strength is measured
180 using the RAFT[60] algorithm to calculate optical flow between frames. NSFW content is detected
181 using the Stable Diffusion Safety Checker L8] on 8 evenly selected frames per video. For criteria
182 (1)-(3), we standardize the frame rate to 2 fps and filter videos into four lists based on increasing
183 threshold values. NSFW videos are filtered out from all datasets. The 5 filtered versions contain
184 788K, 330K, 93K, 42K, and 9K video clips. Details about the filtering process and thresholds are in
185 the supplementary files.

*We use PySceneDetect content-aware detection with a threshold of 26
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3.4 Video Captioning

As emphasized by PixArt[4] and DALL-E 3[20], the quality and granularity of captions are crucial
for text-to-image generation. Given the similarities between image and video generation, detailed and
accurate textual descriptions should also play a vital role in the latter. However, previous video-text
datasets with meta-information annotations (e.g., WebVid-10M[10]], HD-VILA-100M[12]]) often have
incorrect temporal alignment or inaccurate descriptions. Current state-of-the-art video captioning
methods generate either simple (e.g., Panda-70M][11]) or inaccurate (e.g., Video-LLaVA[61])) captions.
To obtain detailed and accurate captions, we use the more powerful GPT-4V [62], which outperforms
existing open-source methods.

To enable GPT-4V, a vision language model with image input only, to understand videos, we extract
8 uniformly sampled frames from each video and arrange them in a 2 x 4 grid within a single image.
This approach reduces computational cost and facilitates accurate caption generation. Following
DALL-E 3[20], we bias GPT-4V to produce video descriptions useful for learning a text-to-video
generation model. We first use Panda-70M|11]] to generate a "short caption”" describing the main
subject and actions, which serves as an additional hint for GPT-4V. The GPT-4V-generated "dense
caption” covers the main subject, movements, style, backgrounds, and cameras.

To obtain more detailed, fine-grained, and accurate captions, we propose the use of structured
captions. In addition to the short and dense captions, structured captions provide further descriptions
of crucial elements in the video, including: (1) Main Object: describes the primary object or subject
in the video, capturing their attributes, actions, positions, and movements, (2) Background: provides
context about the environment or setting, including objects, location, weather, and time, (3) Camera
Movements: details any camera pans, zooms, or other movements, and (4) Video Style: covers the
artistic style, as well as the visual and photographic features of the video (e.g., realistic, cyberpunk,
and cinematic). Thus, each video in MiraData is accompanied by six types of captions: short caption,
dense caption, main object caption, background caption, camera caption, and style caption. This
creates a hierarchical structure, progressing from a general overview to a more detailed description.

These structured captions provide extra detailed 45% - S,
L. R R 0% Short Caption
descriptions from various perspectives, enhanc- Dense Caption
. . ) . 35%
ing the richness of the captions. With our care- 0o Structure Caption
fully designed prompt, we can efficiently obtain %ﬂ 259
the video’s structured caption from GPT-4Vin & 20%
just one conversation round. As demonstrated & 15%
in Tab.[T]and Fig.[] the average caption length 12/
of dense descriptions and structured captions 0/
has significantly increased to 90 and 214 words I I IR IR SRR ORGP R R
respectively, greatly enhancing the descriptive Caption Length (words)
capacity of the captions. Figure 4: Distribution of caption length.

3.5 Comparison on Numerical Statistics

We calculate the average frame optical flow strength and aesthetic score on MiraData’s unfiltered
version (788K video clips) and filtered version (330K video clips) with previous video generation
datasets (Panda-70M [11l], HD-VILA-100M [12], InternVid [41], and WebVid-10M [10]). For
MiraData, we calculated the metrics on the full dataset. For other datasets, we randomly select 10 K
video clips to save computation costs. The frame rate is standardized to 2 for both metrics. The results
in Tab. [2] show the superiority of MiraData, considering both visual quality and motion strength.

Table 2: Numerical statics comparison of previous datasets and MiraData.
Metrics \Panda-70M HD-VILA-100M InternVid WebVid-lOM\MiraDataun filter MiraDatasjse,

Optical Flow 1 4.37 4.45 3.92 1.08 5.22 6.93
Aesthetic Score 1 4.67 4.61 4.50 441 5.01 5.02
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220 4 MiraBench

231 4.1 Prompt Selection

232 Following EvalCrafter [63], we propose four categories: human, animal, object, and landscape.
233 We randomly select 400 video captions, manually curate them for balanced representation across
234 meta-classes, and prioritize captions closely matching the original videos. We select 50 precise
235 video-text pairs, using short, dense, and structured captions as prompts, forming a set of 150 prompts.

236 4.2 Metrics Design

237 We design 17 evaluation metrics in MiraBench from 6 perspectives, including temporal consistency,
238 temporal motion strength, 3D consistency, visual quality, text-video alignment, and distribution
239 consistency. These metrics encompass most of the common evaluation standards used in previous
240 video generation models and text-to-video benchmarks. Compared to previous benchmarks like
241 VBench [64], our metrics place more emphasis on the model’s performance with general prompts
242 instead of manually designed prompts and emphasize 3D consistency and motion strength.

243 Temporal Motion Strength. (1) Dynamic Degree. Following previous works [64} 41]], we use
244 the average distance of optical flow estimated by RAFT [60] to estimate the dynamics degree. (2)
245  Tracking Strength. In optical flow, the objective is to estimate the velocity of all points within a
246 video frame. This estimation is performed jointly for all points, but the motion is predicted only at
247 an infinitesimal distance. In tracking, the goal is to estimate the motion of points over an extended
248 period. Therefore, the distance of tracking points can better distinguish whether the video involves
249 long-range or minor movements (e.g., camera shake or local movements that move back and forth).
250 As shown in Fig.[5](a), the left figure exhibits a smaller motion distance than the right. However, in
251 Fig.[5](b), the dynamic degree is incorrectly 1.2 for the left and 0.7 for the right, suggesting that the
252 left motion is larger. Tracking strength in Fig.[5](c) accurately reflects the moving distance, with 4.1
253 for the left and 11.8 for the right. We use CoTracker [65] to calculate the tracking path and average
254 the tracking points’ distance from the initial frame as the tracking strength metric.

o~

(a) Input Video (b) Optical Flow o c) Tra;:ic-mg Stl;t;ngrh
Figure 5: Illustration of the difference between tracking strength and optical flow dynamic
degree. Best viewed with Acrobat Reader. Click the images to play the animation clips.

255 Temporal Consistency. (3) DINO (Structural) Temporal Consistency. DINO [59] focuses on
256  structural information. We calculate the cosine similarity of adjacent frames’ DINO features to assess
257 structural temporal consistency. (4) CLIP (Semantic) Temporal Consistency. We calculate the cosine
258 similarity of adjacent frames’ CLIP [[13] features to assess structural temporal consistency since CLIP
259 focuses on semantic information. (5) Temporal Motion Smoothness. Following VBench [64]], we
260 use the motion priors in the video interpolation model AMT [66] to calculate the motion smoothness.
261 Since larger motion is expected to contain smaller consistency and vice versa, we multiply Tracking
262 Strength by these feature similarities to obtain more reasonable temporal consistency metrics.

263 3D Consistency. Following GVGC [67], we calculate (6) Mean Absolute Error, and (7) Root Mean
264 Square Error to evaluate video 3D consistency from the perspective of 3D reconstruction.

265 Visual Quality. (8) Aesthetic Quality. We evaluate the aesthetic score of generated video frames
266 using the LAION aesthetic predictor [[18]]. (9) Imaging Quality. Following VBench [64], we evaluate
267 video distortion (e.g., over-exposure, noise, and blur) using the MUSIQ [68] quality predictor.

48961 https://doi.org/10.52202/079017-1551



268 Text-Video Alignment. We use ViCLIP [41] to evaluate the consistency between video and text. We
269 calculate from 5 aspects following MiraBench prompt structure: (10) Camera Alignment. (11) Main
270 Object Alignment. (12) Background Alignment. (13) Style Alignment. (14) Overall Alignment.

271 Distribution Similarity. Following previous works [3} 23} 154], we use (15) FVD [69], (16) FID [10],
272 (17) KID [71]] to evaluate the distribution similarity of generated and training data.

273 5 Experiments

274 5.1 Model Design of MiraDiT

275 To validate the effectiveness of MiraData for consistent long-video generation, we design an efficient
276 pipeline based on Diffusion Transformer [72]], as illustrated in Fig[§] Following SVD [2]], we use a
277 hybrid Variational Autoencoder with a 2D convolutional encoder and a 3D convolutional decoder to
278 reduce flickering in generated videos. Unlike previous methods[2, |34} 33]] that rely on short captions
279 and typically use a CLIP text encoder with 77 output tokens, we employ a larger Flan-T5-XXL [73]
280 for textual encoding, supporting up to 512 tokens for dense and structured caption understanding.
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Figure 6: MiraDiT pipeline for long video generation.

281 Text-spatial cross-attention. For latent denoising, we build a spatial-temporal transformer as the
282 trainable generation backbone. As shown in Figl6] we adopt spatial and temporal self-attention
283 separately rather than full attention on all video pixels to reduce the heavy computational load of
284 long-video generation. Similar to W.A.L.T [26], we apply extra conditioning on spatial queries during
285 cross-attention to stabilize training and improve generation performance. For faster convergence, we
286 partially initialize spatial attention layers from weights of text-to-image model Pixart-alpha [4]], while
287 keeping other layers trained from scratch.

288 FPS-conditioned modulation. Following DiT and Stable Diffusion 3 [6]], we use a modulation
289 mechanism for the current timestep condition. Additionally, we embed an extra current FPS condition
290 in the AdaLN layer to enable motion strength control during inference in the generated videos.

291 Dynamic frame length and resolution. We train MiraDiT in a way that supports generating videos
292 with different resolutions and lengths to evaluate the model performance on motion strength and
293 3D consistency in different scenarios. Inspired by NaViT [74], which uses Patch n” Pack to achieve
294 dynamic resolution training, we apply a Frame n’ Pack strategy to train videos with various temporal
295 lengths. Specifically, we randomly drop frames with zero padding using a temporal mask, then apply
296 masked self-attention and positional embeddings according to the temporal masks. The gradients of
297 masked frames are stopped as well. However, for varying resolution training, we didn’t adopt Patch
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n’ Pack since it made the model harder to train during our early experiments. Instead, we follow
Pixart [4] and use a bucket strategy where the models are trained on different resolution videos where
each training batch only contains videos of the same resolution.

Inference details. During inference, we use the DDIM [[75] sampler with 25 steps and classifier-
free guidance of scale 12. The fps condition can be set between 5 and 30, allowing for flexibility in
the generated video’s frame rate. For evaluation purposes, we test all our models at 6 fps to ensure a
consistent comparison across different settings. To further enhance the visual quality of the generated
videos, we provide an optional post-processing step using the RIFE [[76] model. By applying 4 x
frame interpolation, we can increase the frame rate of the generated video to 24 fps, resulting in
smoother motion and improved overall appearance.

5.2 Comparison with Previous Video Generation Datasets

Our experiments aim to validate the effectiveness of MiraData in long video generation by assessing
(1) temporal motion strength and consistency, and (2) visual quality and text alignment. We train
MiraDiT models on WebVid-10M and MiraData separately, evaluating them on MiraBench at
384 x 240 resolution with 5s length using 14 metrics covering motion strength, consistency, visual
quality, and text-video alignments.

Tab. [2] shows that the model trained on MiraData demonstrates significant improvements in motion
strength while maintaining temporal and 3D consistency compared to the WebVid-10M model.
Moreover, MiraData’s higher-quality videos and dense, accurate prompts lead to better visual quality
and text-video alignments in the trained model. We compare our MiraDiT model trained on MiraData
to state-of-the-art open-source methods, OpenSora [[77] (DiT-based) and VideoCrafter2 [35] (U-Net-
based). Our model significantly outperforms previous methods in terms of motion strength and 3D
consistency while achieving competitive results in visual quality and text-video alignment. This
demonstrates MiraData’s effectiveness in enhancing long video generation. Note that distribution-
based metrics like FVD are not reported due to the difference in training datasets. More visual and
metric comparisons are in the Appendix.

Table 3: Comparison of MiraDiT trained on MiraData and WebVid-10M [10]. 1 and | means
higher/lower is better. 1) - 14) indicates indices of metrics in MiraBench (Sec. Ef[) where DD for
Dynamic Degree, TS for Tracking Strength, DTC for DINO Temporal Consistency, CTC for CLIP
Temporal Consistency, TMS for Temporal Motion Smoothness, MAE for Mean Absolute Error,
RMSE for Root Mean Square Error, AQ for Aesthetic Quality, IQ for Imaging Quality, CA for
Camera Alignment, MOA for Main Object Alignment, BA for Background Alignment, SA for Style
Alignmnet, and OA for Overall Alignment. Best shown in blod, and second best shown in underlined.

Metrics Temporal Motion Strength| Temporal Consistency 3D Consistency
1) DDy 2) TSy 3) DTCy 4) CTCt 5) TMS4|6) MAE |, 19-2 7) RMSE ;151
OpenSora [77] 7.65 16.07 12.34 13.20 13.70 75.45 10.39
VideoCrafter2 [35] 1.71 6.72 6.41 6.36 6.60 101.55 13.05
MiraDiT (WebVid-10M [10]) 7.12 22.36 20.24 20.97 21.86 91.48 12.11
MiraDiT (MiraData) 15.46 49.47 43.78 45.95 47.24 85.27 11.74
Metrics Visual Quality Text-Video Alignmnet
8) AQ;y 10— 9) IQ+ 10) CAy 11) MOA4 12) BAy 13) SA4 14) OA¢

OpenSora [[77] 47.10 59.54 12.40 18.12 13.20 13.35 16.12
VideoCrafter2 [35] 58.69 64.96 12.00 17.90 11.25 12.15 16.90
MiraDiT (WebVid-10M [10])| 43.11 58.58 12.35 14.32 11.90 12.32 15.31
MiraDiT (MiraData) 49.90 63.71 12.66 14.67 12.18 12.59 16.66

To provide a more comprehensive assessment, we present the human evaluation results in Tab. 4]
We enlisted 6 volunteers to evaluate the entire validation set of MiraBench. Each volunteer was
provided with a set of 4 videos generated using OpenSora [[77], VideoCrafter2 [35], MiraDiT trained
on WebVid-10M [10], and MiraDiT trained on MiraData. The evaluators were asked to rank the four
videos from best to worst (1-4) based on five criteria: (1) motion strength, (2) temporal consistency,
(3) 3D consistency, (4) visual quality, and (5) text-video alignment. We observe that there are some
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alignments and discrepancies between human evaluation (Tab. ) results and automatic evaluation
results (Tab. [3)), and explain for the discrepancies here: (1) For the Temporal Consistency metric in
the automatic evaluation, we multiply Tracking Strength by the feature similarities among adjacent
video frames. This approach ensures that the metric does not unfairly favor static videos, which
would naturally achieve the highest temporal consistency due to their lack of motion. However,
in human evaluations, it is challenging to have annotators consider both metrics simultaneously.
Therefore, we simply ask the question "Is this video temporally consistent?". This make methods
like VideoCrafter receiving high human evaluation scores, as the videos generated by VideoCrafter
exhibit very low motion strength. (2) For 3D consistency metric, we find it hard for human beings
to accurately judge whether a video’s scene is 3D consistency (e.g., alignment with 3D modeling
standards and physical optics projection). However, automatic metrics also face difficulties due to
unignorable calculation errors in 3D modeling methods. Therefore, we believe that the most effective
approach is to incorporate both automated and human indicators in the evaluation process.

Table 4: Human evaluation results of MiraDiT trained on MiraData and WebVid-10M [10], as well
as open-source methods, OpenSora (DiT-based) [[77] and VideoCrafter2 (U-Net-based) [35].

Metrics \Motion Strength | Temporal Consistency | 3D Consistency | Quality | Text Alignment |
OpenSora [[77] 2.6 2.5 2.6 2.8 29
VideoCrafter2 [35] 2.9 1.8 2.3 14 2.3
MiraDiT (WebVid-10M [10]) 32 3.8 3.0 35 2.7
MiraDiT (MiraData) 1.3 1.9 2.1 2.3 2.1

5.3 Role of Caption Length and Granularity

We investigate the impact of caption length and granularity on MiraDiT’s performance by evaluating
the model using short, dense, and structural captions separately. The results in Tab. [5|demonstrate
that longer and more detailed captions do not necessarily improve the visual quality of the generated
videos. However, they offer significant benefits in terms of increased dynamics, enhanced temporal
consistency, more accurate generation control, and better alignment between the text and the generated
video content. These findings highlight the importance of caption granularity in guiding the model to
produce videos that more closely match the desired descriptions while maintaining coherence and
realism. Please see appendix for more qualitative results and detailed ablation studies.

Table 5: Comparison of MiraDiT model with different caption length and granularity. 1) - 14)
indicates indices of metrics in MiraBench (Sec. ). See Tab. [3|for the meaning of metrics annotation.

Metrics | )DD; 2) TSt | 3) DTCy 4) CTCy 5) TMS: | 8) AQ: 9)1Q; | 14) OA4

Short Caption 945 27.03 | 2439 25.20 26.05 4.84  63.64 7.73
Dense Caption 17.39 5253 | 46.13 48.35 50.12 5.14 6343 | 14.88
Structural Caption | 19.53  68.85 | 60.83 64.31 65.56 499  64.07 | 15.36

6 Conclusion and Discussion

Conclusion. In conclusion, MiraData complements existing video datasets with high-quality, long-
duration videos featuring detailed captions and strong motion intensity. Curated from diverse video
sources and annotated with multiple high-performance models, MiraData shows advantages in
comprehensive evaluation framework MiraBench with the designed MiraDiT model, highlighting its
potential to push the boundaries of high-motion, temporally consistent long video generation.

Limitation. Despite MiraData’s advantages over previous datasets, it still has limitations, such
as inherent biases, potential annotation errors, and insufficient coverage. The evaluation metrics
in MiraBench may also yield inaccurate results in uncommon video scenarios, such as jitter or
overexposure. Due to the page limit, the appendix will provide a detailed discussion.

Potential Negative Societal Impacts. The enhanced video generation capabilities promoted by
MiraData could lead to negative societal impacts and ethical issues, including the creation of
deepfakes and misinformation, privacy breaches, and harmful content generation. We would engage
in implementing stringent ethical guidelines, ensuring robust privacy protections, and promoting
unbiased dataset curation to prevent these issues. The appendix provides a detailed discussion.

https://doi.org/10.52202/079017-1551 48964



ss7 References

ses  [1] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman,

369 E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation models as world simulators,”
370 2024.

371 [2] A.Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English,
372 V. Voleti, A. Letts, et al., “Stable video diffusion: Scaling latent video diffusion models to large
373 datasets,” arXiv preprint arXiv:2311.15127, 2023.

a74  [3] W. Menapace, A. Siarohin, I. Skorokhodov, E. Deyneka, T.-S. Chen, A. Kag, Y. Fang, A. Stoliar,
a75 E. Ricci, J. Ren, et al., “Snap video: Scaled spatiotemporal transformers for text-to-video
a6 synthesis,” arXiv preprint arXiv:2402.14797, 2024.

a7z [4] J. Chen, J. Yu, C. Ge, L. Yao, E. Xie, Y. Wu, Z. Wang, J. Kwok, P. Luo, H. Lu, and Z. Li,
ars “Pixart-a: Fast training of diffusion transformer for photorealistic text-to-image synthesis,”
379 2023.

ss0  [5] X. Dai, J. Hou, C.-Y. Ma, S. Tsai, J. Wang, R. Wang, P. Zhang, S. Vandenhende, X. Wang,
381 A. Dubey, et al., “Emu: Enhancing image generation models using photogenic needles in a
382 haystack,” arXiv preprint arXiv:2309.15807, 2023.

ss3  [6] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Miiller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
384 F. Boesel, et al., “Scaling rectified flow transformers for high-resolution image synthesis,” arXiv
385 preprint arXiv:2403.03206, 2024.

sss  [7] J. Chen, C. Ge, E. Xie, Y. Wu, L. Yao, X. Ren, Z. Wang, P. Luo, H. Lu, and Z. Li, “Pixart-\sigma:
387 Weak-to-strong training of diffusion transformer for 4k text-to-image generation,” arXiv preprint
388 arXiv:2403.04692, 2024.

389 [8] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
390 J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4 technical report,” arXiv preprint
391 arXiv:2303.08774, 2023.

32 [9] A. Meta, “Introducing meta llama 3: The most capable openly available 1lm to date,” Meta AL,
393 2024.

se4 [10] M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time: A joint video and image

395 encoder for end-to-end retrieval,” in Proceedings of the IEEE/CVF International Conference on
396 Computer Vision, pp. 1728-1738, 2021.

a9z [11] T.-S. Chen, A. Siarohin, W. Menapace, E. Deyneka, H.-w. Chao, B. E. Jeon, Y. Fang, H.-Y. Lee,
398 J. Ren, M.-H. Yang, et al., “Panda-70m: Captioning 70m videos with multiple cross-modality
399 teachers,” arXiv preprint arXiv:2402.19479, 2024.

400 [12] H. Xue, T. Hang, Y. Zeng, Y. Sun, B. Liu, H. Yang, J. Fu, and B. Guo, “Advancing high-
401 resolution video-language representation with large-scale video transcriptions,” in CVPR, 2022.

402 [13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

403 P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervi-
404 sion,” 2021.

405 [14] C.Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig,
406 “Scaling up visual and vision-language representation learning with noisy text supervision,”
407 2021.

408 [15] M. Byeon, B. Park, H. Kim, S. Lee, W. Baek, and S. Kim, “Coyo-700m: Image-text pair dataset.”
409 https://github.com/kakaobrain/coyo-dataset, 2022.

48965 https://doi.org/10.52202/079017-1551


https://github.com/kakaobrain/coyo-dataset

410
411
412

413
414
415

416
417
418

419
420
421
422

423
424
425

426
427
428

429
430

431
432
433

434
435
436

437
438

439
440

441
442
443
444

445
446
447

448
449
450

451
452

[16] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al., “Laion-5b: An open large-scale dataset for training
next generation image-text models,” NeurIPS, 2022.

[17] J.Lin, A. Zeng, S. Lu, Y. Cai, R. Zhang, H. Wang, and L. Zhang, “Motion-x: A large-scale 3d
expressive whole-body human motion dataset,” Advances in Neural Information Processing
Systems, 2023.

[18] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthe-
sis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10684—10695, June 2022.

[19] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al., “Photorealistic text-to-image diffusion models
with deep language understanding,” Advances in neural information processing systems, vol. 35,
pp. 36479-36494, 2022.

[20] J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo,
et al., “Improving image generation with better captions,” Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, vol. 2, no. 3, p. 8, 2023.

[21] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models,” in International conference on machine
learning, pp. 19730-19742, PMLR, 2023.

[22] Y. Ge, Y. Ge, Z. Zeng, X. Wang, and Y. Shan, “Planting a seed of vision in large language
model,” arXiv preprint arXiv:2307.08041, 2023.

[23] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,
D. J. Fleet, et al., “Imagen video: High definition video generation with diffusion models,”
arXiv preprint arXiv:2210.02303, 2022.

[24] R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi, S. S. Rambhatla, A. Shah, X. Yin,
D. Parikh, and I. Misra, “Emu video: Factorizing text-to-video generation by explicit image
conditioning,” arXiv preprint arXiv:2311.10709, 2023.

[25] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion
models,” Advances in Neural Information Processing Systems, vol. 35, pp. 8633-8646, 2022.

[26] A. Gupta, L. Yu, K. Sohn, X. Gu, M. Hahn, L. Fei-Fei, 1. Essa, L. Jiang, and J. Lezama,
“Photorealistic video generation with diffusion models,” arXiv preprint arXiv:2312.06662, 2023.

[27] S. Ge, S. Nah, G. Liu, T. Poon, A. Tao, B. Catanzaro, D. Jacobs, J.-B. Huang, M.-Y. Liu,
and Y. Balaji, “Preserve your own correlation: A noise prior for video diffusion models,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22930-22941,
2023.

[28] D. Kondratyuk, L. Yu, X. Gu, J. Lezama, J. Huang, R. Hornung, H. Adam, H. Akbari, Y. Alon,
V. Birodkar, et al., “Videopoet: A large language model for zero-shot video generation,” arXiv
preprint arXiv:2312.14125, 2023.

[29] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang, O. Ashual,
O. Gafni, et al., “Make-a-video: Text-to-video generation without text-video data,” arXiv
preprint arXiv:2209.14792, 2022.

[30] D.Zhou, W. Wang, H. Yan, W. Lv, Y. Zhu, and J. Feng, “Magicvideo: Efficient video generation
with latent diffusion models,” arXiv preprint arXiv:2211.11018, 2022.

https://doi.org/10.52202/079017-1551 48966



453 [31] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis, “Align

454 your latents: High-resolution video synthesis with latent diffusion models,” in Proceedings of
455 the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563-22575,
456 2023.
457 [32] J. An, S. Zhang, H. Yang, S. Gupta, J.-B. Huang, J. Luo, and X. Yin, “Latent-shift: Latent diffu-
458 sion with temporal shift for efficient text-to-video generation,” arXiv preprint arXiv:2304.08477,
459 2023.

460 [33] J. Xing, M. Xia, Y. Zhang, H. Chen, X. Wang, T.-T. Wong, and Y. Shan, “Dynamicrafter:
461 Animating open-domain images with video diffusion priors,” 2023.

462 [34] H. Chen, M. Xia, Y. He, Y. Zhang, X. Cun, S. Yang, J. Xing, Y. Liu, Q. Chen, X. Wang, C. Weng,
463 and Y. Shan, “Videocrafter1: Open diffusion models for high-quality video generation,” 2023.

464 [35] H. Chen, Y. Zhang, X. Cun, M. Xia, X. Wang, C. Weng, and Y. Shan, “Videocrafter2: Overcom-
465 ing data limitations for high-quality video diffusion models,” 2024.

466 [36] S.Zhang,J. Wang, Y. Zhang, K. Zhao, H. Yuan, Z. Qin, X. Wang, D. Zhao, and J. Zhou, “I2vgen-

467 x1: High-quality image-to-video synthesis via cascaded diffusion models,” arXiv preprint
468 arXiv:2311.04145, 2023.

469 [37] X. Wang, H. Yuan, S. Zhang, D. Chen, J. Wang, Y. Zhang, Y. Shen, D. Zhao, and J. Zhou,
470 “Videocomposer: Compositional video synthesis with motion controllability,” Advances in
471 Neural Information Processing Systems, vol. 36, 2024.

472 [38] X. Wang, S. Zhang, H. Zhang, Y. Liu, Y. Zhang, C. Gao, and N. Sang, “Videolcm: Video latent

473 consistency model,” arXiv preprint arXiv:2312.09109, 2023.

474 [39] D.J.Zhang, D.Li, H. Le, M. Z. Shou, C. Xiong, and D. Sahoo, “Moonshot: Towards controllable
475 video generation and editing with multimodal conditions,” arXiv preprint arXiv:2401.01827,
476 2024.

477 [40] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
478 A. Katta, C. Mullis, M. Wortsman, et al., “Laion-5b: An open large-scale dataset for training
479 next generation image-text models,” Advances in Neural Information Processing Systems,
480 vol. 35, pp. 25278-25294, 2022.

481 [41] Y. Wang, Y. He, Y. Li, K. Li, J. Yu, X. Ma, X. Li, G. Chen, X. Chen, Y. Wang, et al., “Internvid:
482 A large-scale video-text dataset for multimodal understanding and generation,” arXiv preprint
483 arXiv:2307.06942, 2023.

484 [42] W. Wang, H. Yang, Z. Tuo, H. He, J. Zhu, J. Fu, and J. Liu, “Videofactory: Swap attention in
485 spatiotemporal diffusions for text-to-video generation,” arXiv preprint arXiv:2305.10874, 2023.

486 [43] A.Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, 1. Laptev, and J. Sivic, “Howto100m: Learning
487 a text-video embedding by watching hundred million narrated video clips,” in ICCV, 2019.

488 [44] A.Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele, “A dataset for movie description,” in
489 CVPR, 2015.

490 [45] L. Anne Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell, and B. Russell, “Localizing
491 moments in video with natural language,” in ICCV, 2017.

492 [46] L.Zhou, C. Xu, and J. Corso, “Towards automatic learning of procedures from web instructional
493 videos,” in AAAI, 2018.

494 [47] J. Xu, T. Mei, T. Yao, and Y. Rui, “Msr-vtt: A large video description dataset for bridging video
495 and language,” in CVPR, 2016.

48967 https://doi.org/10.52202/079017-1551



496
497

498
499

500
501
502

503
504

505
506
507

508
509

511
512

514
515

516

517

518
519
520

521
522
523

524
525
526

527
528

529

530
531
532

533
534
535

536
537

[48] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles, “Activitynet: A large-scale
video benchmark for human activity understanding,” in CVPR, 2015.

[49] X. Wang, J. Wu, J. Chen, L. Li, Y.-F. Wang, and W. Y. Wang, “Vatex: A large-scale, high-quality
multilingual dataset for video-and-language research,” in ICCV, 2019.

[50] R. Sanabria, O. Caglayan, S. Palaskar, D. Elliott, L. Barrault, L. Specia, and F. Metze, “How?2:
a large-scale dataset for multimodal language understanding,” arXiv preprint arXiv:1811.00347,
2018.

[51] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynamics,” Advances
in neural information processing systems, vol. 29, 2016.

[52] I. Skorokhodov, S. Tulyakov, and M. Elhoseiny, “Stylegan-v: A continuous video generator with
the price, image quality and perks of stylegan2,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3626-3636, 2022.

[53] S. Yin, C. Wu, H. Yang, J. Wang, X. Wang, M. Ni, Z. Yang, L. Li, S. Liu, F. Yang, et al.,
“NUWA-XL.: Diffusion over diffusion for extremely long video generation,” arXiv preprint
arXiv:2303.12346, 2023.

[54] X. Ma, Y. Wang, G. Jia, X. Chen, Z. Liu, Y.-F. Li, C. Chen, and Y. Qiao, “Latte: Latent diffusion
transformer for video generation,” arXiv preprint arXiv:2401.03048, 2024.

[55] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou, “Qwen-vl: A
frontier large vision-language model with versatile abilities,” arXiv preprint arXiv:2308.12966,
2023.

[56] H.Liu, C.Li, Y. Li, and Y. J. Lee, “Improved baselines with visual instruction tuning,” 2023.
[57] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in NeurIPS, 2023.

[58] R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin, and 1. Misra, “Imagebind:
One embedding space to bind them all,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15180-15190, 2023.

[59] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al., “Dinov2: Learning robust visual features without supervision,”
arXiv preprint arXiv:2304.07193, 2023.

[60] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical flow,” in Com-
puter Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 2328, 2020,
Proceedings, Part Il 16, pp. 402-419, Springer, 2020.

[61] B. Lin, B. Zhu, Y. Ye, M. Ning, P. Jin, and L. Yuan, “Video-llava: Learning united visual
representation by alignment before projection,” arXiv preprint arXiv:2311.10122, 2023.

[62] OpenAl, “Gpt-4v(ision) system card,” 2023.

[63] Y. Liu, X. Cun, X. Liu, X. Wang, Y. Zhang, H. Chen, Y. Liu, T. Zeng, R. Chan, and Y. Shan,
“Evalcrafter: Benchmarking and evaluating large video generation models,” arXiv preprint
arXiv:2310.11440, 2023.

[64] Z. Huang, Y. He, J. Yu, F. Zhang, C. Si, Y. Jiang, Y. Zhang, T. Wu, Q. Jin, N. Chanpaisit,
et al., “Vbench: Comprehensive benchmark suite for video generative models,” arXiv preprint
arXiv:2311.17982, 2023.

[65] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht, “Cotracker: It is
better to track together,” arXiv:2307.07635, 2023.

https://doi.org/10.52202/079017-1551 48968



538
539
540

541
542

543
544
545

546
547
548

549
550
551

553

554
555

556
557
558

559
560
561

562

564
565
566

567
568

569

570

571

572

573

574
575

576
577

578

579
580

[66] Z.Li, Z.-L. Zhu, L.-H. Han, Q. Hou, C.-L. Guo, and M.-M. Cheng, “Amt: All-pairs multi-field
transforms for efficient frame interpolation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9801-9810, 2023.

[67] X. Li, D. Zhou, C. Zhang, S. Wei, Q. Hou, and M.-M. Cheng, “Sora generates videos with
stunning geometrical consistency,” arXiv preprint arXiv:2402.17403, 2024.

[68] J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-scale image quality trans-
former,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 5148—
5157, 2021.

[69] T. Unterthiner, S. Van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly, “To-
wards accurate generative models of video: A new metric & challenges,” arXiv preprint
arXiv:1812.01717, 2018.

[70] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two
time-scale update rule converge to a local nash equilibrium,” Advances in neural information
processing systems, vol. 30, 2017.

[71] M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying mmd gans,” arXiv
preprint arXiv:1801.01401, 2018.

[72] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

[73] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph,
J. Wei, et al., “The flan collection: Designing data and methods for effective instruction tuning,”
in International Conference on Machine Learning, pp. 22631-22648, PMLR, 2023.

[74] M. Dehghani, B. Mustafa, J. Djolonga, J. Heek, M. Minderer, M. Caron, A. Steiner, J. Puigcerver,
R. Geirhos, I. M. Alabdulmohsin, et al., “Patch n’pack: Navit, a vision transformer for any
aspect ratio and resolution,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[75] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural
information processing systems, vol. 33, pp. 6840-6851, 2020.

[76] Z. Huang, T. Zhang, W. Heng, B. Shi, and S. Zhou, “Real-time intermediate flow estimation for
video frame interpolation,” in European Conference on Computer Vision, pp. 624—642, Springer,
2022.

[77] Z.Zangwei, P. Xiangyu, L. Shenggui, L. Hongxing, Z. Yukun, L. Tianyi, P. Xiangyu, Z. Zangwei,
S. Chenhui, Y. Tom, W. Junjie, and Y. Chenfeng, “Opensora,” 2024.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section [6and Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section [|and Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] See Section[6|and Appendix.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This paper
does not include theoretical results.

48969 https://doi.org/10.52202/079017-1551



581 (b) Did you include complete proofs of all theoretical results? [N/A] This paper does not

582 include theoretical results.

583 3. If you ran experiments (e.g. for benchmarks)...

584 (a) Did you include the code, data, and instructions needed to reproduce the main experi-
585 mental results (either in the supplemental material or as a URL)? [Yes] See the project
586 URL below the title.

587 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
588 were chosen)? [Yes] We include them in Sec. [5]and the GitHub code shown in the
589 project URL below the title.

590 (c) Did you report error bars (e.g., with respect to the random seed after running experi-
591 ments multiple times)? [Yes] See Appendix.

592 (d) Did you include the total amount of compute and the type of resources used (e.g., type
593 of GPUs, internal cluster, or cloud provider)? [Yes] We include them in Sec. E] and the
594 GitHub code shown in the project URL below the title.

595 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
596 (a) If your work uses existing assets, did you cite the creators? [Yes]

597 (b) Did you mention the license of the assets? [Yes] We include them in our code.

598 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
599 We provide our code, data, and model in the URL below the title.

600 (d) Did you discuss whether and how consent was obtained from people whose data you’re
601 using/curating? [Yes] Our data sources are all licensed for academic use

602 (e) Did you discuss whether the data you are using/curating contains personally identifiable
603 information or offensive content? [Yes] See Section [f]and Appendix.

604 5. If you used crowdsourcing or conducted research with human subjects...

605 (a) Did you include the full text of instructions given to participants and screenshots, if
606 applicable? [N/A]

607 (b) Did you describe any potential participant risks, with links to Institutional Review
608 Board (IRB) approvals, if applicable? [N/A]

609 (c) Did you include the estimated hourly wage paid to participants and the total amount
610 spent on participant compensation? [N/A]

https://doi.org/10.52202/079017-1551 48970



	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	0: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 
	75: 
	76: 
	77: 
	78: 
	79: 
	80: 
	81: 
	82: 
	83: 
	84: 
	85: 
	86: 
	87: 
	88: 
	89: 
	90: 
	91: 
	92: 

	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 


