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Abstract

In this work, we study the experts problem in the distributed setting where an
expert’s cost needs to be aggregated across multiple servers. Our study considers
various communication models such as the message-passing model and the broad-
cast model, along with multiple aggregation functions, such as summing and taking
the ℓp norm of an expert’s cost across servers. We propose the first communication-
efficient protocols that achieve near-optimal regret in these settings, even against
a strong adversary who can choose the inputs adaptively. Additionally, we give a
conditional lower bound showing that the communication of our protocols is nearly
optimal. Finally, we implement our protocols and demonstrate empirical savings
on the HPO-B benchmarks.

1 Introduction

Online prediction with expert advice is an indispensable task in many fields, including bandit learning
(Auer et al., 2002; Lattimore & Szepesvári, 2020), online optimization (Shalev-Shwartz et al., 2012;
Hazan et al., 2016), robot control (Doyle et al., 2013), and financial decision making (Dixon et al.,
2020). The problem involves n experts making individual predictions and receiving corresponding
costs on each of T days. On each day, we choose an expert based on the historical costs of the
experts on previous days, and we receive the cost of the selected expert on that day. The objective is
to compete with the best single expert in hindsight, i.e., to minimize the average regret, defined as
the additional cost the algorithm incurs against the best expert in a horizon of T days. It is known
that the Exponential Weights Algorithm (EWA) and Multiplicative Weight Update (MWU) method

achieve an optimal regret of O(
√

logn
T ) given all historical information, even in the presence of a

strong adversary Arora et al. (2012). With less information, the exponential-weight algorithm for

exploration and exploitation (Exp3) achieves near-optimal regret O(
√

n logn
T ) in the adversarial

bandit setup, where only the cost of one expert is observed on a single day.

For a large number of experts and days, it may not be feasible to run classical low-regret algorithms.
Motivated by this, recent work (Srinivas et al., 2022; Peng & Zhang, 2022; Woodruff et al., 2023; Peng
& Rubinstein, 2023; Aamand et al., 2023) considers the experts problem in the data stream model,
where the expert predictions are typically streamed through main memory, and a small summary of
historical information is stored.

In this paper, we consider an alternative model in the big data setting, namely, the distributed model,
where expert costs are split across s servers, and there is a central coordinator who can run a low-regret
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Table 1: Summary of our constant probability communication upper bounds.

UPPER BOUNDS
W/ A CONSTANT PROBABILITY

ALGORITHMS DEWA-S DEWA-M DEWA-L DEWA-L
AGG FUNC SUM MAX ℓp>2 ℓp(1 + ϵ < p ≤ 2)

BROADCAST
Õ( n

R2 ) +O(Ts)
Õ( n

R2 + Ts) Õ( n
R2 + Ts) Õ( n

R1+1/ϵ + Ts)
MESSAGE-PASSING - - -

Table 2: Summary of our high probability communication upper bounds.

UPPER BOUNDS
W/ PROBABILITY 1− 1/POLY(T )

ALGORITHMS DEWA-S-P DEWA-M-P DEWA-L-P DEWA-L-P
AGG FUNC SUM MAX ℓp>2 ℓp(1 + ϵ < p ≤ 2)

BROADCAST
Õ( n

R2 + Ts)
Õ( n

R2 + Ts) Õ( n
R2 + Ts) Õ( n

R1+1/ϵ + Ts)
MESSAGE-PASSING - - -

algorithm. However, communicating with different servers is expensive, and the goal is to design a
low communication protocol that achieves low regret.

A motivating example is a distributed online optimization problem, where different servers hold
different samples, and each expert could correspond to a different model in an optimization problem
over the union of the samples as in the HPO-B real-world benchmark (Arango et al., 2021). In this
case, it is natural for the cost of an expert to be the sum of the costs of the expert across all servers.
The goal is thus to minimize the cumulative costs in an online fashion by choosing models on a daily
basis. Another example of an aggregation function could be the maximum across servers; indeed,
this could be useful if there is a maximum tolerable cost on the servers, which we would like not to
exceed. For our lower bounds, we also ask the protocol to be able to tell at least if the cost of the
expert it chose on a given day is non-zero; this is a minimal requirement of all existing algorithms,
such as MWU or Exp3, which update their data structure based on such a cost. It is also desirable
in applications such as the experts problem where one wants to know if the prediction was right or
wrong.

In our setting, a coordinator needs to choose an expert based on historical interactions with s servers
each day. We focus on two widely studied communication models, namely, the message-passing
model with two-way communication channels and the broadcast model with a broadcast channel. In
the message-passing model, the coordinator initiates a round of interaction with a given server, and
the messages exchanged are only seen by the coordinator and that particular server. The coordinator
then decides who speaks next and repeats this process. The broadcast model is also commonly studied
in practice and theory. It can be viewed as a model for single-hop wireless networks. In the broadcast
model, each message exchanged is seen by all servers and the coordinator. We note that the broadcast
model was a central communication model studied for clustering in Chen et al. (2016).

As in the distributed online learning setup, we can view each server as a database, where it possibly
receives new data daily. The costs of the n experts on a day then correspond to n possibly different
functions of the data on that day. We note that the costs may be explicitly given or implicit functions
of the data, and if the latter, they may only need to be computed as required by the protocol.

We aim to achieve a near-optimal regret versus communication tradeoff in this setting over a horizon
of T days. Given the memory-efficient streaming algorithms of Srinivas et al. (2022); Peng & Zhang
(2022) and the close connection between streaming algorithms and communication-efficient protocols,
one might think that implementing a streaming algorithm in our settings is optimal. While we could
run a streaming algorithm, a critical difference here is that the coordinator is not memory-bounded
and thus can afford to store a weight for each expert. While it cannot run EWA or MWU, which
would require Ω(sn) communication per day, it can run a distributed Exp3 algorithm, which samples
a single expert and thus has low communication, but maintains a weight locally for all n experts
using Ω(n) memory. We stress this is not possible in the streaming model.

2
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Table 3: Summary of our communication lower bounds. We assume R ∈ [O(
√

logn
T ), O(

√
n logn

T )].
All lower bounds hold against oblivious adversarial cost streams with a memory bound M =
O( n

sTR2 + 1) on the servers.

LOWER BOUNDS
W/ A CONSTANT PROBABILITY

AGG FUNC ℓp(1 ≤ p ≤ ∞)

BROADCAST
Ω( n

R2 + Ts)MESSAGE-PASSING

With s servers in the message-passing model and with sum aggregation, a straightforward implemen-

tation of EWA achieves an optimal regret O(
√

logn
T ) with a trivial communication cost of Õ(nTs).

A distributed Exp3 algorithm achieves O(
√

n logn
T ) regret with a total communication cost of Õ(Ts).

Here Õ(f) denotes f · logO(1) (nTs). A natural question is whether these bounds are tight and what
the optimal regret versus communication tradeoff is.

We summarize our results in Table 1, Table 2 and Table 3. We assume R ∈
[Õ(( logn

T )
ε

1+ε ), Õ((n logn
T )

ε
1+ε )] for DEWA-L as well as DEWA-L-P when 1 + ε < p ≤ 2, and

R ∈ [Õ(
√

logn
T ), Õ(

√
n logn

T )] for the others. All upper bounds hold unconditionally against strong
adversarial cost streams. Our upper bounds hold unconditionally against strong adaptive adversarial
cost streams, where an adversary chooses its (distributed) cost vector after seeing the distribution
that the algorithm uses to sample experts on that day. Also, with a memory bound on the local
servers, our lower bounds hold against weaker oblivious adversarial cost streams, where the loss
vectors of all days are fixed in advance. A memory-bound on individual devices, excluding the
coordinator, is natural, as one should view the coordinator as a more powerful machine than the
individual servers. Empirically, we also provide comprehensive evaluations over real world (HPO-B
Arango et al. (2021)) as well as synthetic data traces to demonstrate the effectiveness of our methods.

2 Related Work

Online learning with expert advice. The Multiplicative Weights Update (MWU) method’s first
appearance dates back to the early 1950s in the context of game theory Brown & Von Neumann (1950);
Brown (1951); Robinson (1951). The exact form of MWU is carried out by adding randomness,
which efficiently solves two-player zero-sum games (Grigoriadis & Khachiyan, 1995). Ordentlich &
Cover (1998) further proves the optimality of such algorithms under various scenarios. The algorithm
has later been adopted in a wide range of applications (Cesa-Bianchi & Lugosi, 2006; Freund &
Schapire, 1997; Christiano et al., 2011; Garber & Hazan, 2016; Klivans & Meka, 2017; Hopkins
et al., 2020; Ahmadian et al., 2022), including the experts problem. See the comprehensive survey on
MWU by Arora et al. (2012).

Multi-armed bandits. Similar to the experts problem, Multi-armed bandits (MAB) is another
fundamental formulation in sequential optimization since its appearance in Thompson 1933; Robbins
1952. Unlike the experts problem, where each expert’s cost is revealed each day, MAB limits players
to observing only the cost of one expert (arm) each day. Both stochastic and adversarial MAB
problems have been studied extensively (Audibert et al., 2009; Garivier & Cappé, 2011; Korda
et al., 2013; Degenne & Perchet, 2016; Agrawal & Goyal, 2017; Kaufmann, 2018; Lattimore &
Szepesvári, 2020; Auer et al., 2002; Auer, 2002). As we mainly consider adversarial cost streams,
the Exponential-weight algorithm for Exploration and Exploitation (Exp3) and its Upper Confidence
Bound (UCB) variant are most relevant due to their effectiveness in achieving near-optimal regret in
the presence of adversaries (Auer et al., 2002).

Distributed learning with expert advice. Kanade et al. 2012 also study the expert problem under a
coordinator-server model. However, the results are incomparable as Kanade et al. 2012 only considers
the special case where the cost is allocated to one server rather than an arbitrary number of servers,

3
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which makes their setup a special case under our more general scheme. Also, our lower-bound
proof is against oblivious adversaries rather than adaptive adversaries, as in Kanade et al. (2012),
which is more challenging to prove. Detailed comparisons with Kanade et al. (2012) are described
in Section C.

Hillel et al. 2013; Szorenyi et al. 2013 give a distributed MAB setting where arms on each server
share the same cost distribution, and the goal is to find the best arm cooperatively. Shahrampour
et al. 2017; Landgren et al. 2016; Bistritz & Leshem 2018, on the other hand, assume the costs on
each server are i.i.d. across days while being different for different servers. Cesa-Bianchi et al. 2016
considers a setup where servers are nodes on a connected graph and can only talk to neighboring
nodes while restricting the cost for each arm on the servers to be the same within one day. Korda et al.
2016 studies the multi-agent linear bandit problem in a peer-to-peer network where agents share the
same group of arms with i.i.d. costs across days. Some works also consider the setup where servers
need to compete against each other, which is outside of our scope (Anandkumar et al., 2011; Besson
& Kaufmann, 2018; Bubeck et al., 2020; Wang et al., 2020). Unlike most of these setups, we make
no assumptions about the costs across days and servers.

Distributed functional monitoring. The coordinator-server communication model is also commonly
seen in the distributed functional monitoring literature (Cormode et al., 2011; Woodruff & Zhang,
2012; Arackaparambil et al., 2009; Cormode et al., 2012; Chan et al., 2012), where the goal is to
approximate function values, e.g., frequency moments, across streams with minimal communication.
We note that the goal of the distributed experts problem is different in that the focus is on expert
selection rather than value estimation, and the algorithms in the distributed functional monitoring
literature, to the best of our knowledge, are not directly useful here.

3 Preliminaries and Notation

We use T to denote the total number of days, n the number of experts, and s the number of servers.
lti,j represents the cost observed at step t for expert i on the j-th server. l̂ denotes an estimate to l
and [n] denotes {1, 2, . . . , n}. A word of memory is represented as O(log (nT )) bits and we use
Õ(·) to suppress logO(1) (nTs) factors. We refer to the Exponential Weight Algorithm (EWA) and
Multiplicative Weights Update (MWU) method interchangeably.

3.1 Distributed Experts Problem

In the single server expert problem, each expert ei, i ∈ [n] has its cost lti ∈ [0, 1] on day t. Based
on the history, an algorithm A needs to select one expert eA(t) for each day before the outcome is
revealed on that day. The goal for the single server expert problem is to minimize the average regret
defined as: R(A) = 1

T

(∑T
t=1 l

t
A(t) −mini∗

∑T
t=1 l

t
i∗

)
.

In the distributed setting, we have s servers and one coordinator where the cost lti now depends on
costs lti,j observed locally across all the servers. The coordinator selects the expert for the next day
based on any algorithm A of its choice. For each j ∈ [s], the j-th server can receive or compute its
cost lti,j , i ∈ [n] for the i-th expert on day t. The actual cost for the i-th expert on day t is defined
as lti = f(lti,1, l

t
i,2, · · · , lti,s), where f(·) is an aggregation function. We assume the costs lti,j are

non-negative. We consider three natural choices of f(·): 1. the summation function lti =
∑s

j=1 l
t
i,j

and an integer power of the sum function lti =
(∑s

j=1 l
t
i,j

)q
2. the maximum/minimum function

lti = maxj∈[s] l
t
i,j 3. the ℓp>1 norm function, lti =

(∑s
j=1

(
lti,j
)p) 1

p

, p > 1. In the distributed

setting, regret is defined as in the single server setup with lti = f(lti,1, l
t
i,2, · · · , lti,s). Without loss of

generality, we normalize lti ∈ [0, 1], lti,j ≥ 0. In practice, if lti ∈ [0, ρ], the regret will increase by a
factor of ρ accordingly, which only affects the scale of the regret and preserves optimality. Note that
the cost vector for all the experts is observed by the corresponding local server. Furthermore, we
explore the distributed experts problem in two different communication models:

Message-passing model. For the message-passing model, the coordinator can initiate a two-way
private channel with a specific server to exchange messages. Messages can only be seen by the
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coordinator and the selected server. The coordinator then decides which server to speak to next and
repeats based on the protocol.

Broadcast model. In the broadcast model, the coordinator communicates with all servers using a
broadcast channel. Again, the communication channel can only be initiated by the coordinator.

We further assume local servers have a memory bound of M in what they can store from previous
days, which is a more practical scenario as discussed in Srinivas et al. (2022); Peng & Zhang
(2022). We leave the definition and description of strong adaptive adversaries and the EWA algorithm
in Definition A.1 and Appendix A.2 accordingly.

4 Proposed Algorithms

4.1 Overview

In the message-passing model, we let be ∈ [n] be a hyper-parameter of our choice. We first propose
a baseline algorithm DEWA-S that can achieve Õ(

√
n

Tbe
) regret with constant probability using

O(T (be + s)) total communication when the aggregation function is the summation function or
an integer power of sum function. The intuition for the baseline algorithm is to get an unbiased
estimation of the experts’ underlying cost by sending a signal to the coordinator with a probability
that is proportional to the local cost, which is simple yet effective. We further introduce the full
algorithm DEWA-S-P that achieves Õ(

√
n

Tbe
) regret with probability 1− 1

poly(T ) using Õ(T (be+ s))

total communication. Both DEWA-S and DEWA-S-P work in the broadcast model with the same
guarantees since the message-passing model is only more costly.

In the broadcast model, we propose DEWA-M-P that achieves Õ(
√

n
Tbe

) regret with probability

1− 1
poly(T ) and using only Õ(T (be + s)) overall communication when the aggregation function is the

maximum function. Besides the summation aggregation function, we leverage a random-walk-based
communication protocol to find out the aggregated cost with a minimal communication cost. Since
all of our protocols use (and require) at least Ts communication, the coordinator can figure out the
exact cost for the selected expert on each day by querying each of the s servers for that expert’s

cost on that day. Lastly, we propose DEWA-L-P that achieves O((n logn
Tbe

)
ε

1+ε +
√

log T
T ) regret with

probability 1− 1
poly(T ) and using only Õ(T (be + s)) overall communication when the aggregation

function is the ℓp-norm function for any fixed constant 0 < ε ≤ 1 such that 1+ ε < p. The algorithm
employs the idea of embedding ℓp into ℓ∞, thus efficiently estimating the aggregated cost using the
previously introduced DEWA-M-P . For all our bounds, be ∈ [n] is a hyperparameter that trades
off the communication with the optimal regret we can get. For instance, setting be = o(1) can

achieve a regret of R = Õ(
√

n logn
T ) and setting be = o(n) can achieve a regret of R = Õ(

√
logn
T ).

Thus, setting be = o( n
TR2 ) can achieve the optimal communication bound we provide in Table 1

and Table 2.

4.2 DEWA-S

We describe DEWA-S in Algorithm 1. The intuition is to obtain an unbiased estimate l̂t for lt
using limited communication and then run EWA based on our estimate. More precisely, we use the
following estimator to estimate lt on day t: l̂ti =

n
be
(
∑s

j=1 α
t
i,jβ

t
i,j), where αt

i,j are i.i.d. Bernoulli
random variables following αt

i,j ∼ Bernoulli( ben ), and the βt
i,j are sampled from Bernoulli(lti,j). As

lti ∈ [0, 1], lti,j ≥ 0, Bernoulli(lti,j) is a valid distribution. We can easily verify that this is an unbiased

estimator: E[l̂ti ] = E[ nbe (
∑s

j=1 α
t
i,jβ

t
i,j)] =

n
be
(
∑s

j=1 E[αt
i,j ]E[βt

i,j ]) =
n
be

∑s
j=1

bel
t
i,j

n = lti . The
same sampling technique can be used to obtain an unbiased estimator of lti when the aggregation
function is an integer power of the sum over local costs, where each monomial in the expansion of the
aggregation function is unbiasedly estimated by taking the product of sampled local costs. On each
day, we only incur communication cost O(s+

∑n
i=1

be
n

∑t
j=1 l

t
i,j) ∈ O(be + s). Thus, the overall

communication cost is O(T (be + s)).

5

50693 https://doi.org/10.52202/079017-1603



Algorithm 1 DEWA-S
Input: learning rate η, sampling budget be;
Initialize L̂0

i = 0,∀i ∈ [n];
for t = 1 to T do

Coordinator chooses expert i with probability p(i) ∝ exp (−ηL̂t−1
i );

for j = 1 to s do
Coordinator initiates private channel with server j;
for i = 1 to n do

Server j observes cost lti,j and samples αt
i,j ∼ Bernoulli( be

n
), βt

i,j ∼ Bernoulli(lti,j);
Server j sends tuples (i, j) to the coordinator if αt

i,j = 1, βt
i,j = 1 and clears its memory;

Coordinator calculates l̂ti = n
be
(
∑s

j=1 α
t
i,jβ

t
i,j);

Update L̂i by L̂t
i = L̂t−1

i + l̂ti , ∀i ∈ [n];

4.3 DEWA-S-P

As we are using unbiased estimators instead of actual costs, we only obtain the desired regret with
constant probability. In order to achieve near-optimal regret with high probability, we propose
DEWA-S-P in Algorithm 2. The idea is to run multiple baseline algorithms in parallel to boost the
success probability, where we regard each baseline algorithm as a meta-expert. As each meta-expert
has constant success probability, the probability that they all fail is exponentially small in the number
of meta-experts. Thus, by running EWA on the meta-experts, we can follow the advice of the best
meta-expert and achieve near-optimal regret with high probability.

Algorithm 2 DEWA-S-P
Input: learning rate ηmeta, sampling budget be, failure rate 1/poly(T );
Let K = ⌈log (poly(T ))⌉, initialize K baseline algorithms Ak and let L0

k = 0, k ∈ [K];
for t = 1 to T do

Coordinator chooses expert according to Ak(t) with probability p(k) ∝ exp (−ηmetaL
t−1
k );

Coordinator updates memory states for all Ak according to Algorithm 1;
Coordinator receives cost ltAk(t)

=
∑s

j=1 l
t
Ak(t),j

;
Update all Lk by Lt

k = Lt−1
k + ltAk(t)

;

More precisely, to obtain 1− 1
poly(T ) success probability, we initiate ⌈log (poly(T ))⌉ meta-experts

Ak, k ∈ [⌈log (poly(T ))⌉] at the start of the algorithm. Each meta-expert runs its own DEWA-S
independently across T days. The cost of the k-th meta-expert on day t is defined to be the cost the
expert Ak selects on the same day, which is denoted as ltAk(t)

. With the definition of the cost for the
meta-experts, we can then run EWA on the meta-experts.

The meta-level EWA needs to know the actual cost ltAk(t)
from the s servers of each meta-expert in

order to recover the best meta-expert with 1− 1
poly(T ) success probability. Therefore for DEWA-S-P ,

on each day, we incur a communication cost of Õ(s+ (be + s) log (poly(T ))) = Õ(be + s), and the
overall communication is Õ(T (be + s)).

4.4 DEWA-M-P

We propose DEWA-M described in Algorithm 3 that achieves a near-optimal regret versus communi-
cation tradeoff up to log factors for the maximum aggregation function in the broadcast model.

The intuition of DEWA-M is that for each expert, if we walk through the servers in a random order
and only update l̂ti if we encounter lti,j > l̂ti , then with high probability, we only need a small number
of updates per expert. This cannot be achieved in the message-passing model due to the fact that
broadcasting l̂ti requires Ω(s) communication per expert. In contrast, no communication is required
for broadcasting l̂ti in the broadcast model. In fact, with probability 1− δ, each expert will update
at most O(log(s/δ)) times. By setting δ = 1

bepoly(T ) and applying a union bound over our sampling
budget be and number T of days, we have the desired low communication with probability at least
1− 1

poly(T ) . More precisely, we have the following theorem (see detailed proof in Section B.1):

6
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Algorithm 3 DEWA-M
Input: learning rate η, sampling budget be;
Coordinator initializes L̂0

i = 0, ∀i ∈ [n];
for t = 1 to T do

Coordinator chooses expert i with probability p(i) ∝ exp (−ηL̂t−1
i );

Coordinator randomly chooses be experts with corresponding IDs Be = {t(1), t(2), · · · , t(be)};
Coordinator initializes l̂ti = 0,∀i ∈ [n];
Coordinator permutes [s] randomly and denotes the resulting sequence as St

for j in St do
Coordinator initiates channel with server j;
for i = 1 to n do

Server j observes cost lti,j and sends lti,j to the coordinator if lti,j > l̂ti and i ∈ Be;
Server j cleans memory buffer;

Coordinator updates l̂ti with received lti,j ;
Update L̂i by L̂t

i = L̂t−1
i + l̂ti ,∀i ∈ [n];

Theorem 4.1. For a sampling budget be ∈ [n], with probability 1− 1
poly(T ) , the communication cost

for DEWA-M is Õ(T (be + s)).

Even though we have a high probability guarantee with minimal communication, we still only have a

constant probability guarantee for achieving optimal regret O(
√

n logn
beT

). We can boost the success
probability using the same trick as in Algorithm 2 by initiating log (poly(T )) copies of DEWA-M
as meta-experts and running EWA on top of them. We refer to the high-probability version as
DEWA-M-P . We thus have the following theorem (see detailed proof in Section B.2):

Theorem 4.2. For a sampling budget be ∈ [n], with probability 1− 1
poly(T ) , the communication cost

for DEWA-M-P is Õ(T (be + s)).

4.5 DEWA-L-P

In this section, we present DEWA-L (Algorithm 4) for the ℓp>1 norm aggregation function in the
broadcast model. The key idea of DEWA-L is to embed ℓp into ℓ∞ using the min-stable property
of exponential distribution. More specifically, if Ei is a standard exponential random variable, then

maxj
(lti,j)

p

Ej
∼ (lti)

p

E where E is also a standard exponential random variable. Therefore, we can

employ DEWA-M to efficiently compute (lti)
p

E , and obtain an unbiased estimator of lti by normalizing.

Algorithm 4 DEWA-L
Input: learning rate η, sampling budget be;
Coordinator initializes L̂0

i = 0, ∀i ∈ [n];
for t = 1 to T do

Coordinator chooses expert i with probability p(i) ∝ exp (−ηL̂t−1
i );

Coordinator randomly chooses be experts with corresponding IDs Be = {t(1), t(2), · · · , t(be)};
Coordinator initializes l̂ti = 0,∀i ∈ [n];
Coordinator permutes [s] randomly and denotes the resulting sequence as St

for j in St do
Coordinator initiates channel with server j;
Server j samples Ej ∼ Exponential(1);
for i = 1 to n do

Server j observes cost lti,j and computes cti,j =
(lti,j)

p

Ej
;

Server j sends cti,j to the coordinator if cti,j > cti and i ∈ Be;
Server j cleans memory buffer;

Coordinator updates cti = maxj c
t
i,j with received cti,j ;

Coordinator computes l̂ti = 1

1−(1− 1
n )

be

(cti)
1/p

E[(E)−1/p]
, where E ∼ Exponential(1);

Update L̂i by L̂t
i = L̂t−1

i + l̂ti , ∀i ∈ [n];
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It is not hard to see that the communication cost of DEWA-L stays the same as DEWA-M . In terms
of regret, if we fix any constant 0 < ε ≤ 1 such that 1 + ε < p, DEWA-L achieves a vanishing regret
R = O((n logn

Tbe
)

ε
1+ε ) with constant probability. Note that, for all ℓp-norm functions with p > 2, by

choosing ε = 1, we obtain a near-optimal regret versus communication tradeoff up to a log factor

R = O(

√
n log n

Tbe
). Again, to get the high probability regret guarantee of DEWA-L , we propose

DEWA-L-P that initiates log (poly(T )) copies of DEWA-L as meta-experts and runs EWA on top of
them. More precisely, we have the following theorem with the same proof as Theorem 4.2:
Theorem 4.3. For a sampling budget be ∈ [n], with probability 1− 1

poly(T ) , the communication cost

for DEWA-L-P is Õ(T (be + s)).

5 Formal Guarantees

We present formal regret analyses of DEWA-S , DEWA-S-P , DEWA-M-P and DEWA-L-P . We show

that DEWA-S can achieve regret R = O(
√

n logn
Tbe

) with probability at least 9/10, DEWA-S-P and

DEWA-M-P can achieve regret R = O(
√

n log (nT )
Tbe

) with probability at least 1− 1
poly(T ) , and lastly

DEWA-L-P can achieve regret R = O((n logn
Tbe

)
ε

1+ε +
√

log T
T ) with probability at least 1− 1

poly(T )

for any fixed constant 0 < ε ≤ 1 such that 1 + ε < p.

We then give a communication lower bound, which holds even in the broadcast model, for both
summation and maximum aggregation functions with a memory bound on the individual servers. It
holds for oblivious adversarial cost streams, and thus also for strong adversarial cost streams and the
message-passing model. We use the communication lower bound for the ϵ-DIFFDIST problem Srini-
vas et al. (2022) but adapt it to our setting. By reducing the ϵ-DIFFDIST problem to the distributed
experts problem, we prove that any protocol for achieving R regret with constant probability requires
total communication at least Ω( n

R2 ). It will follow that DEWA-S , DEWA-M and DEWA-L (p > 2)

are near-optimal in their communication for all regret values R ∈ [O(
√

logn
T ), O(

√
n logn

T )].

5.1 Upper Bound

We state our regret upper bounds for DEWA-S in Theorem 5.1, DEWA-S-P in Theorem 5.2, DEWA-
M-P in Theorem 5.3 and DEWA-L-P in Theorem 5.4. The detailed corresponding proofs can be
found in Section B.

Theorem 5.1. For be ∈ [n], DEWA-S achieves regret R = O(
√

n logn
Tbe

) with probability at least 9
10

for the distributed experts problem in the message passing model with the summation aggregation
function and for strong adaptive adversarial cost streams.

Theorem 5.2. DEWA-S-P achieves regret R = O(
√

n log (nT )
Tbe

) with probability at least 1− 1
poly(T )

for the distributed experts problem in the message passing model with the summation aggregation
function and for strong adaptive adversarial cost streams.

Notice that the total communication cost for DEWA-S-P is Õ(T (be + s)). Thus DEWA-S-P can
achieve the same regret as EWA with a high probability guarantee when be = n, but requires only
Õ(T (n+ s)) communication instead of Õ(nTs) communication. DEWA-S-P further generalizes to
the case when be < n.

Theorem 5.3. DEWA-M-P achieves regret R = O(
√

n log (nT )
Tbe

) with probability at least 1− 1
poly(T )

for the distributed experts problem in the broadcast model with maximum aggregation function and
for strong adaptive adversarial cost streams.
Theorem 5.4. Fix any constant 0 < ε ≤ 1 such that 1 + ε < p, DEWA-L-P achieves regret

R = O((n logn
Tbe

)
ε

1+ε +
√

log T
T ) with probability at least 1− 1

poly(T ) for the distributed experts problem
in the broadcast model with ℓp norm aggregation function and for strong adaptive adversarial cost
streams.
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Table 4: Communication costs on the real-world HPO-B benchmark in different settings. We use
EWA as the comparison baseline. E.g., DEWA-S only costs about 0.07× communication of EWA.

ALGORITHMS EWA EXP3 DEWA-S DEWA-M
AGG FUNC SUM / MAX SUM / MAX SUM MAX
SAMPLING BATCH be n 1 1 / n 1 / n

BLACKBOARD
1× 0.1453× 0.0730× / 0.0758× 0.0849× / 0.1834×

MESSAGE-PASSING -

Since the regret and communication bounds hold with probability at least 1− 1
poly(T ) individually, by

a union bound, they both hold with probability at least 1− 1
poly(T ) .

5.2 Lower Bound

Theorem 5.5. Let p < 1
2 be a fixed constant that is independent of the other input parameters, and

suppose M = O( n
sTR2 + 1) is an upper bound on the total memory a server can store from previous

days. Any algorithm A that solves the distributed experts problem in the broadcast model with the
ℓp(1 ≤ p ≤ ∞) norm aggregation function with regret R and with probability at least 1− p, needs
at least Ω( n

R2 ) bits of communication. If the algorithm can also determine, with probability at least
1 − p, if the cost of the selected expert on each day is non-zero, then it also needs Ω(Ts) bits of
communication. These lower bounds hold even for oblivious adversarial cost streams.

We present the proof of Theorem 5.5 in Section B.7. Additionally, we present an Ω(ns) communi-
cation lower bound proof below for achieving sub-constant regret with the maximum aggregation
function in the message-passing model, which is optimal for T ∈ O(poly(log (ns))). This indicates
that we cannot do better than naïve EWA in this case, which achieves optimal regret with communi-

cation Õ(ns). Note that within the optimal regret R ∈ [O(
√

logn
T ), O(

√
n logn

T )] in which we are
interested, the T term can be canceled out by the 1

T term in R2. So, the memory-bound assumption
does not depend on the time step T .

6 Experiments

In this section, we demonstrate the effectiveness of our algorithms on the HPO-B benchmark (Arango
et al., 2021) under two setups: 1. Message-passing model with summation aggregation function and 2.
Broadcast model with maximum aggregation function. As a black-box hyperparameter optimization
benchmark, we can regard different models in the HPO-B benchmark as different experts in the
distributed experts problem, and different datasets are distributed across different servers. We further
regard each search step, which is random search for all model classes, as one day in our distributed
experts problem. The cost vector is then the normalized negative accuracy of models on different
datasets for a search step. Thus, minimizing regret directly corresponds to optimizing the overall
accuracy across all search steps. For both DEWA-S and DEWA-M , we set be = 1 to compare against
Exp3 and be = n to compare against EWA.

The results in Figure 1, Figure 2 and Table 4 show that our algorithms achieve similar regret as
the optimal algorithms (Exp3 and EWA) while having less communication cost. We further use
two synthetic datasets to evaluate our algorithms under various scenarios, including dense-cost
and sparse-cost. We present the results in Section D, which show that our algorithms can achieve
near-optimal regret with significantly lower communication cost across all scenarios consistently.
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Figure 1: Regrets on HPO-B w/ sum aggregation.
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Figure 2: Regrets on HPO-B w/ max aggregation.
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A Preliminaries

A.1 Strong Adaptive Adversaries

Definition A.1. (Distributed experts problem with a strong adversary). An algorithm A run by the
coordinator makes predictions for T days. On day t:

1. A commits to a distribution pt over n experts based on the memory contents of the coordi-
nator on day t.

2. The adversary selects the cost lti,j on each server after observing pt.
3. A selects an expert according to pt and incurs the corresponding cost.
4. The coordinator updates its memory contents by communicating with servers according to

the protocol defined by A.

We refer to adversaries that can arbitrarily define the lti,j with no knowledge of the internal randomness
or state of A, as oblivious adversaries. Notice that if we send each of the server’s local information to
the coordinator each day, then running the Exponential Weight Algorithm on the coordinator gives

an optimal O(
√

logn
T ) regret for strong adversarial streams. However, the communication cost is a

prohibitive Õ(nTs) words.

A.2 Exponential Weights Algorithm

As we will use the Exponential Weights Algorithm (EWA) as a sub-routine, we briefly describe it in
Algorithm 5. We have the following regret bound for EWA:

Algorithm 5 Exponential Weight Algorithm (EWA)
Input: learning rate η;
Initialize L0

i = 0,∀i ∈ [n];
for t = 1 to T do

Sample expert i with probability p(i) ∝ exp (−ηLt−1
i );

Update Li by Lt
i = Lt−1

i + lti , ∀i ∈ [n];

Lemma A.2. (EWA regret, Arora et al. (2012)). Suppose n, T, η > 0, t ∈ [T ], and lt ∈ [0, 1]n. Let pt
be the distribution committed to by EWA on day t. Then: 1

T (
∑T

t=1⟨pt, lt⟩ −mini∗∈[n]

∑T
t=1 l

t
i∗) ≤

logn
ηT + η. And with probability at least 1 − δ, the average regret is bounded by: R(A) ≤ logn

ηT +

η + O(
√

log (n/δ)
T ). Thus, taking η =

√
logn
T and δ = 1

poly(T ) gives us O(
√

log (nT )
T ) regret with

probability at least 1− 1
poly(T ) .

B Proofs.

B.1 Theorem 4.1

In order to prove the communication bounds, we need the following lemma:

Lemma B.1. Welzl (2000). With a randomly permuted sequence S = {a1, a2, · · · , an} and γ = 0,
if we read from left to right and update γ = ai whenever we encounter ai > γ, define random
variable X as the number of times γ has is updated during the process. We have the following results:

E
[
2X
]
= n+ 1

Given Lemma B.1, we can then prove our statement.

Proof. For any expert on any day, we will first prove that with probability at least 1 − δ, the
servers only need to send the corresponding cost to the coordinator at most O(log (s/δ)) times. By
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Lemma B.1 with n = s in our setup, for any g ≥ 0, we have:

Pr (X > g) = Pr
(
2X > 2g

)
≤ E

[
2X
]

2g

=
s+ 1

2g

By setting g = log
(
s+1
δ

)
, we have Pr

(
X < log

(
s+1
δ

))
> 1− δ. Furthermore, letting δ = 1

bepoly(T ) ,
we have

Pr (X < log ((s+ 1)bepoly(T ))) > 1− 1

bepoly(T )
.

By a union bound over the be sampled experts and T days, the above guarantee simultaneously
holds for all experts sampled and all days, with probability at least 1 − 1/poly(T ). The overall
communication is then:

T∑
t=1

s+

be∑
j=1

X


≤

T∑
t=1

s+

be∑
j=1

log ((s+ 1)bepoly(T ))


=Ts+ Tbe log ((s+ 1)bepoly(T ))

=Õ(T (be + s))

which completes the proof.

In addition, in cases where the coordinator does not need to initiate communication, we can achieve
an O(be log (s/δ)) communication cost per time step with the following protocol: Initialization: each
individual server initializes a ĥt

i to record the maximum cost for each expert. 1. For each server
who has a cost larger than the current maximum, send its value to the broadcast channel after a δi,j
time delay, where δi,j is randomly sampled from [0, 1]. 2. Once the broadcast channel has been
occupied, all other servers stop the sending action and update their corresponding ĥt

i, δi,j instead.
Then we can repeat this process and use the maximum value collected after s unit time steps as an
estimate to the maximum value. In this protocol, we assume that the broadcast channel can only be
occupied by one server. The random ordering is guaranteed by the random delay and the expected
number of communication rounds to get the maximum value is given in Lemma B.1. Additionally,
notice that for each time step the protocol is guaranteed to end within s time steps as the worst case
delay is 1 unit time step for each server. By using this protocol, we can still obtain a near optimal
communication cost of O(be log s/δ).

B.2 Theorem 4.2

Proof. Let C be the communication required to obtain the cost of one expert on a single day. From the
proof of Theorem 4.1, we have C = O(log ((s+ 1)bepoly(T ))) with probability 1− 1

bepoly(T ) . For
DEWA-M-P , we need this communication bound to hold for Tbe log (poly(T )) + T log (poly(T ))
experts and meta-experts simultaneously across a horizon of T days. By a union bound, the failure
rate is

Tbe log (poly(T )) + T log (poly(T ))
bepoly(T )

= 1/poly(T ).

As the communication cost of each expert and meta-expert is

O(log ((s+ 1)bepoly(T ))) = Õ(1)

the overall communication cost is thus

Õ(Ts+ Tbe log (poly(T )) + T log (poly(T ))) = Õ(T (be + s))

with probability at least 1− 1/poly(T ), which concludes the proof.
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B.3 Theorem 5.1

We need the following lemmas:

Lemma B.2. Define L̂t
i =

∑t
t′=1 l̂

t′

i , ŵ
t
i =

exp (−ηL̂t−1
i )∑

i′ exp (−ηL̂t−1

i′ )
. Define ŵt = [ŵt

1, · · · , ŵt
n]

⊤, l̂t =

[l̂t1, · · · , l̂tn]⊤ and η is of our choice. For all 1 ≥ ε > 0, we have the following result:

T∑
t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗ ≤ log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

1+ε

Proof. Define Φt =
1
η log

(∑n
i=1 exp

(
−ηL̂t

i

))
We have:

ΦT − Φ0

=

T∑
t=1

Φt − Φt−1

=

T∑
t=1

1

η
log

∑n
i=1 exp

(
−ηL̂t−1

i

)
exp

(
−ηl̂ti

)
∑n

i=1 exp
(
−ηL̂t−1

i

)


=

T∑
t=1

1

η
log

(
n∑

i=1

ŵt
i exp

(
−ηl̂ti

))

≤
T∑

t=1

1

η
log

(
n∑

i=1

ŵt
i

[
1− ηl̂ti +

1

ε (ε+ 1)
η1+ε(l̂ti)

1+ε

])

≤
T∑

t=1

1

η

n∑
i=1

(
−ηŵt

i l̂
t
i +

1

ε (ε+ 1)
η1+εŵt

i(l̂
t
i)

1+ε

)

≤−
T∑

t=1

⟨ŵt, l̂t⟩+
ηε

ε (ε+ 1)

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

1+ε

where we used ∀x ≥ 0, e−x ≤ 1− x+ 1
ε(ε+1)x

1+ε for the first inequality and ∀x, log (1 + x) ≤ x

for the second inequality.

As Φ0 = logn
η by definition, we have:

log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

1+ε ≥ ΦT +

T∑
t=1

⟨ŵt, l̂t⟩

≥
T∑

t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

where the second inequality holds due to the fact that ∀i∗ ∈ [n]:

ΦT =
1

η
log

(
n∑

i=1

exp
(
−ηL̂t

i

))

≥ 1

η
log
(
exp

(
−ηL̂t

i∗

))
≥ −L̂t

i∗
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Lemma B.3. Let R be the average regret over T days. Then,

E[R] ≤ 1

T
· E
[

T∑
t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

]

Proof. We have:

T · E[R] = E

[
T∑

t=1

⟨ŵt, lt⟩ −min
i∗

LT
i∗

]

= E

[
T∑

t=1

⟨ŵt, lt⟩
]
−min

i∗
LT
i∗

= E

[
T∑

t=1

⟨ŵt, l̂t⟩
]
−min

i∗
E
[
L̂T
i∗

]
≤ E

[
T∑

t=1

⟨ŵt, l̂t⟩
]
− E

[
min
i∗

L̂T
i∗

]
= E

[
T∑

t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

]

Line 3 is due to l̂t being independent of ŵt on day t and l̂t is an unbiased estimator. Line 4 is by
Jensen’s inequality.

Proof. Back to our proof for Theorem 5.1, we have:

T · E[R] ≤ E

[
T∑

t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

]
(by Lemma B.3)

≤ E

[
log n

η
+

η

2

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

2

]
(by Lemma B.2 with ε = 1)

=
log n

η
+

η

2

T∑
t=1

E

[
n∑

i=1

ŵt
i(l̂

t
i)

2

]

=
log n

η
+

η

2

T∑
t=1

E

[
n∑

i=1

ŵt
iE[(l̂ti)2]

]

≤ log n

η
+

η

2

T∑
t=1

E

[
n∑

i=1

ŵt
i

(
2n

be

)]

=
log n

η
+ η

Tn

be
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Line 5 is by:

E


 n

be

s∑
j=1

αt
i,jβ

t
i,j

2


=
n2

b2e

 s∑
j=1

E
[
(αt

i,jβ
t
i,j)

2
]
+
∑
j ̸=h

E[αt
i,hα

t
i,kβ

t
i,hβ

t
i,k]


=
n2

b2e

be
n

s∑
j=1

lti,j +
b2e
n2

∑
j ̸=h

lti,j l
t
i,h


≤n2

b2e

be
n

+
b2e
n2

(

s∑
j=1

lti,j)
2

 ≤ 2n

be

Take η =
√

be logn
Tn . We then have:

E[R] ≤ 2

√
n log n

Tbe

Due to R > 0, by Markov’s inequality we have:

Pr

(
R > 20

√
n log n

Tbe

)
≤ E[R]

20
√

n logn
Tbe

≤ 1

10

which concludes our proof.

B.4 Theorem 5.2

Proof. Let be ∈ [n] and K = ⌈log (poly(T ))⌉. Let {A1,A2, · · · ,AK} be K independent DEWA-S
meta-experts initiated with be, bs. Let Ak = S be the event that Ak successfully achieves regret

O(
√

n logn
Tbe

) and let Ak = F be the event that it fails. From Theorem 5.1 we have:

Pr(Ak = F ) ≤ 1

10

Thus, the probability that the best meta-expert achieves regret O(
√

n logn
Tbe

) can be lower bounded by:

Pr

(
K⋃

k=1

(Ak = S)

)
≥ 1− (

1

10
)K ≥ 1− 1/poly(T )

By Lemma A.2, running EWA on top of these meta-experts gives us regret:

R = O(

√
n log n

Tbe
) +O(

√
log (K/δ)

T
)

with probability 1− 1/poly(T )− δ (by a union bound). Letting δ = 1/poly(T ) then guarantees an

O(
√

n log (nT )
Tbe

) regret with probability at least 1− 2
poly(T ) , which concludes the proof.

B.5 Theorem 5.3

Proof. For DEWA-M we have a constant probability guarantee to have regret R = O(
√

n log (n)
Tbe

).
The proof simply follows from the proof of Theorem 5.1, except that we now have actual cost for the
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sampled experts instead of unbiased estimates. More specifically, we have:

T · E[R] ≤ E

[
T∑

t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

]

≤ E

[
log n

η
+ η

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

2

]

=
log n

η
+ η

T∑
t=1

E

[
n∑

i=1

ŵt
i(l̂

t
i)

2

]

=
log n

η
+ η

T∑
t=1

E

[
n∑

i=1

ŵt
iE[(l̂ti)2]

]

≤ log n

η
+ η

T∑
t=1

E

[
n∑

i=1

ŵt
i

(
n

be

)]

=
log n

η
+ η

Tn

be

Take η =
√

be logn
Tn . We then have:

E[R] ≤ 2

√
n log n

Tbe

Since R > 0, by Markov’s inequality we have:

Pr

(
R > 20

√
n log n

Tbe

)
≤ E[R]

20
√

n logn
Tbe

≤ 1

10

Thus, with probability at least 9
10 DEWA-M has regret R = O(

√
n log (n)

Tbe
). Since we have initiated

log (poly(T )) independent instances of DEWA-M , we have probability at least 1− 1/poly(T ) that

one of the instances of DEWA-M achieves regret R = O(
√

n log (n)
Tbe

). By Lemma A.2, running EWA
on top of these meta-experts gives us regret:

R = O(

√
n log n

Tbe
) +O(

√
log (log (poly(T ))/δ)

T
)

with probability 1 − 1/poly(T ) − δ (by a union bound). Let δ = 1/poly(T ). This guarantees an

O(
√

n log (nT )
Tbe

) regret with probability at least 1− 2
poly(T ) , which concludes the proof.
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B.6 Theorem 5.4

Proof. We first upper bound the expected average regret of DEWA-L . Since p > 1, for any fixed
constant ε > 0 such that 1 + ε < p, by Lemma B.2 and Lemma B.3, we have:

T · E[R] ≤ E

[
T∑

t=1

⟨ŵt, l̂t⟩ −min
i∗

L̂T
i∗

]

≤ E

[
log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

n∑
i=1

ŵt
i(l̂

t
i)

1+ε

]

=
log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

E

[
n∑

i=1

ŵt
i(l̂

t
i)

1+ε

]

=
log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

E

[
n∑

i=1

ŵt
iE[(l̂ti)1+ε]

]

≤ log n

η
+

ηε

ε (ε+ 1)

T∑
t=1

E

[
n∑

i=1

ŵt
iO

((
n

be

)ε)]

=
log n

η
+ T ·O

((
ηn

be

)ε)
Let q = 1−

(
1− 1

n

)be be the probability that an expert gets picked into Be. Line 4 is by:

E
[(

l̂ti

)1+ε
]
= q · 1

q1+ε
·
E
[
(cti)

(1+ε)/p
]

E1+ε
[
E−1/p

]
= q−ε

E
[
(lti)

1+ε · E−(1+ε)/p
]

E
[
E−1/p

]
= q−ε ·

(
lti
)1+ε · E

[
E−(1+ε)/p

]
E
[
E−1/p

]
≤ q−ε · E

[
E−(1+ε)/p

]
E
[
E−1/p

] (as 0 ≤ lti ≤ 1)

= O
(
q−ε
)

(as E
[
E−(1+ε)/p

]
and E

[
E−1/p

]
converge)

= O

((
n

be

)ε)
Pick η =

(
be
n

)ε · logn
εT , we then have:

T · E [R] = O

(
T

1
1+ε

(
n log n

be

) ε
1+ε

)
Hence,

E [R] = O

((
n log n

Tbe

) ε
1+ε

)

By Markov’s inequality, DEWA-L has an average regret R = O

((
n logn
Tbe

) ε
1+ε

)
with probability at

least 9
10 .

Since we have initiated log (poly(T )) independent instances of DEWA-L , we have probability at

least 1− 1/poly(T ) that one of the instances of DEWA-L achieves regret R = O

((
n logn
Tbe

) ε
1+ε

)
.
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By Lemma A.2, running EWA on top of these meta-experts gives us regret:

R = O

((
n log n

Tbe

) ε
1+ε

)
+O

(√
log (log (poly(T ))/δ)

T

)
with probability 1 − 1/poly(T ) − δ (by a union bound). Let δ = 1/poly(T ). This guarantees an

O

((
n logn
Tbe

) ε
1+ε

+
√

log T
T

)
regret with probability at least 1− 2

poly(T ) , which concludes the proof.

B.7 Lower Bound Proof

The communication lower bound proof for the maximum aggregation function in the message-passing
model follows using the multi-player number-in-hand communication lower bound for set disjointness
in Braverman et al. (2013). To solve the multi-player set disjointness problem with s players, where
each player has n bits of information cji ∈ {0, 1}, i ∈ [n], j ∈ [s], the communication lower bound is
Ω(ns) for the message-passing model.

In our problem, in the first case, all experts have at least one server that has a cost of 1, i.e.,
∃j ∈ [s],∀i ∈ [n], cji = 1. In the second case, we have one expert whose cost on every server is 0
while the other experts all have at least one server that has a cost of 1. Then, in the first case, the
sets (cost vectors on each server) are disjoint for all coordinates (experts) while in the second case,
there exists one coordinate (expert) whose intersection over all sets is non-empty. In the second
case, this expert has a maximum cost of 0 while all other experts incur a maximum cost of 1. If
we can decide which case we are in, then we solve the set disjointness problem, and thus there
is an Ω(ns) communication bound. By copying the same hard instance over T days, it follows
that if there exists an algorithm that can achieve sub-constant regret for this distributed experts
problem, then the algorithm also solves the above set disjointness problem. We have thus obtained
an Ω(ns) communication bound for the maximum aggregation function in the message-passing
model. Note that EWA can achieve the optimal regret with Õ(ns) communication if we assume
T ∈ O(poly(log (ns))), and therefore, we cannot do better than EWA up to logarithmic factors with
the maximum aggregation function in the message-passing model. To give the lower bound proof, we
first define the ϵ-DIFFDIST problem.

Definition B.4. (ϵ-DIFFDIST problem, Srinivas et al. (2022)). There are T players, and each has n
bits of information indexed from 1 to n. Let µ0 = Bernoulli( 12 ), µ1 = Bernoulli( 12 − ϵ), we must
distinguish between the following two cases:

• (Case A). Each index for each player is drawn i.i.d. from µ0.

• (Case B). An index i ∈ [n] is randomly chosen, then the i-th indexed bit of each player is drawn
i.i.d. from µ1 while other bits of players are all drawn i.i.d. from µ0.

Lemma B.5. (ϵ-DIFFDIST communication bound, Srinivas et al. (2022)). The communication
complexity of solving the ϵ-DIFFDIST problem with a constant 1− p probability under the broadcast
model, for any p ∈ [0, 0.5), is Ω( n

ϵ2 )

Note that a lower bound for the broadcast model is also a lower bound for the message-passing model.
By regarding different days as servers and bits as cost streams of experts, if we generate bits from
either case A or case B, then the algorithm needs to distinguish between case A and case B to obtain
regret at most ϵ. We design Algorithm 6 to connect the ϵ-DIFFDIST with the distributed experts
problem. Algorithm 6 gives a reduction from ϵ-DIFFDIST, and thus we obtain our lower bound in
Theorem 5.5. The additional Ts factor is from our requirement that we obtain an approximation to
the actual cost for the selected expert on each day. We present the complete proof as follows:

Proof. 1 We will prove this by showing for R = 1

2+
√

2 ln (24)
and p = 1

3 , Algorithm 6 can indeed

solve ϵ-DIFFDIST with probability at least 2
3 . The proof extends naturally to any constant δ, p < 1

2 .

1The proof follows Srinivas et al. (2022) with a different model and objective.
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Algorithm 6 An algorithm that reduces the ϵ-DIFFDIST to the summation-based distributed experts
problem in the broadcast model.

Input: {X1, · · · , Xt, · · · , XT }, where Xt ∈ {0, 1}n for all t ∈ [T ] is a binary vector generated from
ϵ-DIFFDIST; Oracle algorithm A that solves the summation-based distributed experts problem with regret R
and probability larger than 1

2
;

Let c =
√

2 ln (24), ϵ = R(c+ 1) < 1/2;
Cost definition: For day t, we randomly sample a server j and define ltj = Xj and ltj′ = 0, ∀j′ ∈ [s]/{j};
Initialize M0 as the initial memory state on the coordinator for A, counter C = 0;
for t = 1 to T do

Obtain the actual cost l(t) = A(Mt−1) incurred by A;
C += l(t);
Update memory state to Mt by communicating with downstream servers according to A;

Let Ĉ = C
T

be the average cost;
if Ĉ > 1−Rc

2
then

Return Case A;
else

Return Case B;

We further need R < 1
2(c+1) to make sure 1

2 + ϵ is a valid probability. Let Ĉ be the average cost of
A. We will show we can solve the ϵ-DIFFDIST problem in both cases.

For case A, Ĉ is just the average of T i.i.d. coin flips. Thus, by Hoeffding’s inequality we have:

Pr
(
Ĉ ≤ 1−Rc

2

)
= Pr

(
1− Ĉ ≥ 1 +Rc

2

)
≤ exp (−TR2c2

2
)

≤ exp (−c2

2
)

<
1

3

where the third line is due to TR2 ≥ 1.

For case B, let C∗ be the average cost of the expert whose cost is generated from µ1 = Bernoulli( 12 −
R(c + 1)). As we know, A has the guarantee that Ĉ ≤ C∗ + R with probability at least 3

4 , so we
have:

Pr(Ĉ > 1−Rc
2 )

≤ Pr
((

Ĉ > C∗ +R
)
∪
(
C∗ +R > 1−Rc

2

))
≤ Pr

(
Ĉ > C∗ +R

)
+ Pr

(
C∗ +R > 1−Rc

2

)
≤ 1

4 + Pr
(
C∗ > 1

2 −R(c+ 1) + Rc
2

)
≤ 1

4 + exp (−TR2c2

2 )

< 1
3

Thus we have shown that we can solve the ϵ-DIFFDIST problem in both cases with probability at
least 2

3 , and therefore make Algorithm 6 a valid reduction. As a result, the total communication
cost of Algorithm 6 is at least Ω( n

R2 ) by Lemma B.5. In addition, if we need to know the cost of
the selected expert, we need to pay an extra Ω(s) communication per day. Indeed, we need Ω(s)
communication even if we just want to verify whether the selected expert incurs zero cost or not
with probability larger than 9

10 . This is due to the fact that we can choose our distribution so that on
each day, we choose a random server and with probability 1/2 make the cost 0 on that server, while
with the remaining probability 1/2 we make the cost 1 on that server. All other servers have cost 0.
Thus, if the protocol probes o(s) servers on each day, it only has a 1/2 + o(1) probability to know if
the cost is non-zero or not. Thus, we need to at least probe Ω(s) servers to succeed with constant
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probability on a single day, and since the days are independent, Ω(sT ) communication in total. Thus,
we overall have a communication lower bound of Ω( n

R2 + Ts).

Since we allow each server to have M = O( n
sTR2 +1) memory, we can actually save communication

for messages sent between the same server but on different days. However, the communication
required can be reduced by at most TMs. Let Cost(A) be the communication cost for A. We then
have Cost(A)+TMs ∈ Ω( n

R2 +Ts). As TMs ∈ O( n
R2 +Ts), we thus have Cost(A) ∈ Ω( n

R2 +Ts),
which completes the proof.

For the maximum/ℓp norm aggregation function in the broadcast model, we can use the same proof
with the same bound since the maximum/ℓp norm operation gives us the same cost streams as the
summation operation under our setting where one random server has cost Xt while others have zero
costs.

C Comparison with Kanade et al. (2012)

Although we address a similar topic with Kanade et al. (2012), we would like to stress that our setup
differs quite significantly. In our setup, the ground truth costs for experts are aggregated across all
servers. In contrast, the setup of Kanade et al. (2012) restricts the ground truth costs for each expert
to be allocated to exactly one server per day. Consequently, our setup is more general since instead of
finding out the only server that carries the cost on each day, we also incur additional costs from other
servers as well. In addition, Kanade et al. (2012) only proves their lower bound for n = 2 while we
handle general n. On the other hand, for n = 2, they show a lower bound for adaptive adversaries
rather than oblivious adversaries, which is our setting. However, we also make an assumption on
the server memory budget for proving lower bounds. In fact, our lower bound directly matches that
of Kanade et al. (2012) when n = 2 if we do not require the coordinator or current transcript to
dictate who speaks next as the additive Ts term is no longer needed. More specifically, we compare
in Table 5 for the case when only the coordinator can initiate conversation and in Table 6 for the case
when both the coordinator and servers can initiate conversation.

Table 5: Coordinator initiates message-passing channel

Lower Bound Upper Bound

Ours Ω(n/R2 + Ts)
and oblivious adversaries Õ(n/R2 + Ts)

Kanade et al. (2012) Ω(1/R2) for n = 2
and adaptive adversaries Not applicable

Table 6: Coordinator or server initiates message-passing channel

Lower Bound Upper Bound

Ours Ω(n/R2) for any n
and oblivious adversaries Õ(n/R2)

Kanade et al. (2012) Not applicable Not applicable

Note that we can remove the Ts term if the servers are allowed to spontaneously initiate conversation,
in which case synchronization between servers on each day is not required. We note that Kanade
et al. (2012)’s upper bound is not applicable in our setting as it assumes the cost (payoff vector) to be
distributed to only one server. At the same time, we allow the cost to be distributed to any number
of servers. Thus, their setup is a special case of ours. We note that our bounds also match those of
Kanade et al. (2012) in this special case, e.g., our upper bound is also Õ( n

R2 ). In short, our results
are incomparable as we allow: 1. Costs to be distributed to any number of servers 2. Any n for the
lower-bound proof against oblivious adversaries rather than adaptive adversaries.
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Table 7: Communication costs of constant-probability protocols on Gaussian distribution in different
settings. We use EWA as the comparison baseline.

ALGORITHMS EWA EXP3 DEWA-S BASE-S DEWA-M BASE-M
AGG FUNC SUM / MAX SUM / MAX SUM SUM MAX MAX
SAMPLING BATCH be n 1 1 / n 1 / n 1 / n 1 / n

BROADCAST (NON-SPARSE)
1× 0.0196× 0.0099× / 0.0203× 0.0104× / 0.0298× 0.0104× / 0.0503× 0.0145× / 0.7328×

MESSAGE-PASSING (NON-SPARSE) - -

BROADCAST (SPARSE)
1× 0.0196× 0.0099× / 0.0203× 0.0104× / 0.0298× 0.0100× / 0.0188× 0.0039× / 0.0198×

MESSAGE-PASSING (SPARSE) - -

D Simulated Experiments

Evaluation setup. In this section, we evaluate the performance of DEWA-S and DEWA-S-P with the
summation aggregation function, and DEWA-M and DEWA-M-P with the maximum aggregation
function. We measure the average regrets over the days and total communication costs and compare
the performance with EWA when be = n, and with Exp3 when be = 1. We further evaluate two
cost distributions, namely, the Gaussian and Bernoulli distributions. On each server, the costs of the
experts are randomly sampled from these distributions. For the best expert, the costs are sampled
from N (0.2, 1) or Bernoulli(0.25), and for the other experts, the costs are sampled from N (0.6, 1)
or Bernoulli(0.5). For the summation aggregation, all of the costs are truncated to the range [0, 1]
and then divided by the number of servers s. To show the robustness of our protocols under extreme
cost conditions, we also evaluate a scenario where the costs are sparsely distributed across the servers,
i.e., the cost of an expert is held by one server, and other servers receive zero cost for that expert. To
further emphasize the effectiveness of our protocol design in such sparse scenarios, we implement
and evaluate the performance of the simplified DEWA-S and DEWA-M and we treat them as BASE-S
and BASE-M along with their high probability versions BASE-S-P and BASE-M-P . We describe
the detail of the baseline algorithms in the following section. We set the learning rate η = 0.1, the
number of servers to be s = 50, the number of experts to be n = 100, and the total days to be
T = 105 for be = 1 and to be T = 104 for be = n. We set the sampling budget bs = 2 for BASE-S
and BASE-S-P . The experiments are run on an Ubuntu 22.04 LTS server equipped with a 12 Intel
Core i7-12700K Processor and 32GB RAM.

D.1 Baselines

For baselines to be compared, we use the simplified variants of DEWA-S and DEWA-M , namely
BASE-S and BASE-M . More specifically, for BASE-S , instead of sampling according to cost values,
BASE-S is set to sample servers uniformly. The estimate of cost lti is then defined as:

l̂ti =
ns

be

∑
j

αt
i,jβ

t
i,j l

t
i,j ,

where αt
i,j ∼ Bernoulli( ben ), βt

i,j ∼ Bernoulli( 1s ). This is a good baseline to compare with since l̂ti is
also an unbiased estimator. However, due to the uniform sampling strategy, BASE-S will fail in the
sparse setting and require an additional factor of s in the regret while DEWA-S does not suffer from
this.

For BASE-M , we uniformly sample among servers and take the maximum cost encountered as the
estimate of the actual cost lti . To illustrate the effectiveness of DEWA-M , we enforce that the overall
communication cost for BASE-M is close to DEWA-M when be = 1 or be = n.

D.2 Results of Gaussian Distribution Cost

In Figure 3, we first present the regrets of DEWA-S and DEWA-S-P on the Gaussian distribution
with the summation aggregation function in the non-sparse setting. As we can see in Figure 3a, with
sampling budget be = 1, DEWA-S achieves much smaller regrets than Exp3. And the protocols’
average regrets over t are converging to 0 with increasing t. The regrets of all the protocols are
comparable to that of EWA when the sampling budget be = n, as shown in Figure 3b. However,
for the sparse scenario, as shown in Figure 4, the regrets of DEWA-S and DEWA-S-P are much
better than BASE-S and BASE-S-P . When be = 100, DEWA-S and DEWA-S-P can still achieve
comparable performance to EWA in the sparse setting. The results further illustrate that our design is
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Table 8: Communication costs of high-probability protocols on Gaussian distribution in different
settings. We use EWA as the comparison baseline.

ALGORITHMS EWA EXP3 DEWA-S-P BASE-S-P DEWA-M-P BASE-M-P
AGG FUNC SUM / MAX SUM / MAX SUM SUM MAX MAX
SAMPLING BATCH be n 1 1 / n 1 / n 1 / n 1 / n

BROADCAST (NON-SPARSE)
1× 0.0196× 0.4829× / 0.5822× 0.4945× / 0.7624× 0.0781× / 0.1975× 0.0729× / 0.7718×

MESSAGE-PASSING (NON-SPARSE) - -

BROADCAST (SPARSE)
1× 0.0196× 0.4829× / 0.5823× 0.4945× / 0.7623× 0.0596× / 0.0862× 0.0706× / 0.1182×

MESSAGE-PASSING (SPARSE) - -
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Figure 3: Regrets on Gaussian distribution with summation aggregation, non-sparse scenario.

effective and can handle such extremely sparse cost conditions. As expected, the high-probability
versions of the protocols consistently achieve lower regret than their constant-probability versions.

For the maximum aggregation function, we observe similar results as shown in Figure 5 and Figure 6.
The regrets of DEWA-M and DEWA-M-P are close to EWA when be = n, and their performance is
much better than Exp3 when be = 1. We also observe that the regrets of BASE-M and BASE-M-P are
close to that of DEWA-M and DEWA-M-P in the non-sparse setting. However, their communication
costs are much higher than DEWA-M and DEWA-M-P when be = n, as shown in Table 7 and Table 8.
Consistent with our findings for the summation aggregation function, in the sparse setting, the regrets
of BASE-M and BASE-M-P are much higher than DEWA-M and DEWA-M-P . The results illustrate
that DEWA-M and DEWA-M-P are not restricted to i.i.d. costs among the servers, and they work
well in extremely sparse settings. Thus, we conclude that DEWA-M and DEWA-M-P have wider
application scopes.

We report our communication costs for constant a probability guarantee in Table 7 and for a high
probability guarantee in Table 8. We use the communication cost of EWA as the baseline (1×), which
is Õ(nTs + Ts). According to our results, for be = 1 and be = n, DEWA-S and DEWA-S-P use
much smaller communication than Exp3 and EWA respectively. We also notice that, in the sparse
setting, DEWA-M and DEWA-M-P use much smaller communication to achieve near-optimal regret,
since DEWA-M and DEWA-M-P can quickly identify the server holding large costs. Although the
BASE counterparts achieve comparable communication costs to DEWA-S , DEWA-S-P , DEWA-M ,
and DEWA-M-P , considering their much larger regret in the sparse setting, DEWA-S , DEWA-S-P
, DEWA-M , and DEWA-M-P are more consistent across settings. By increasing be, the protocols
achieve lower regret at the cost of more communication. Users can choose be according to their regret
requirements and communication budget. Even if we set be = n, the communication costs are still
much smaller than that of EWA, but the regret of our algorithms is very close to optimal.

D.3 Results of Bernoulli Distribution Cost

In this section, we present our regret and communication on Bernoulli distributed costs. Our regrets
are shown in Figure 7, Figure 8, Figure 9, and Figure 10 and our communication costs are presented in
Table 9 and Table 10, which are consistent with our observations for Gaussian distribution. DEWA-S
, DEWA-S-P , DEWA-M , and DEWA-M-P all perform well in both non-sparse and sparse scenarios,
with near-optimal regrets and much smaller communication costs compared with the EWA.
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Figure 4: Regrets on Gaussian distributions with summation aggregation, sparse scenario.
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Figure 5: Regret on Gaussian distribution with maximum aggregation, non-sparse scenario.
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Figure 6: Regret on Gaussian distribution with maximum aggregation, sparse scenario.

Table 9: Communication costs of constant-probability protocols on Bernoulli distribution in different
settings. We use EWA as the comparison baseline.

ALGORITHMS EWA EXP3 DEWA-S BASE-S DEWA-M BASE-M
AGG FUNC SUM / MAX SUM / MAX SUM SUM MAX MAX
SAMPLING BATCH be n 1 1 / n 1 / n 1 / n 1 / n

BROADCAST (NON-SPARSE)
1× 0.0196× 0.0099× / 0.0196× 0.0104× / 0.0298× 0.0102× / 0.0376× 0.0145× / 0.7328×

MESSAGE-PASSING (NON-SPARSE) - -

BROADCAST (SPARSE)
1× 0.0196× 0.0099× / 0.0196× 0.0104× / 0.0298× 0.0099× / 0.0160× 0.0039× / 0.0198×

MESSAGE-PASSING (SPARSE) - -

Table 10: Communication costs of high-probability protocols on Bernoulli distribution in different
settings. We use EWA as the comparison baseline.

ALGORITHMS EWA EXP3 DEWA-S-P BASE-S-P DEWA-M-P BASE-M-P
AGG FUNC SUM / MAX SUM / MAX SUM SUM MAX MAX
SAMPLING BATCH be n 1 1 / n 1 / n 1 / n 1 / n

BROADCAST (NON-SPARSE)
1× 0.0196× 0.4827× / 0.5676× 0.4945× / 0.7623× 0.0483× / 0.1303× 0.0729× / 0.7718×

MESSAGE-PASSING (NON-SPARSE) - -

BROADCAST (SPARSE)
1× 0.0196× 0.4827× / 0.5677× 0.4945× / 0.7624× 0.0397× / 0.0579× 0.0706× / 0.1182×

MESSAGE-PASSING (SPARSE) - -
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Figure 7: Regrets on Bernoulli distribution with summation aggregation, non-sparse scenario.
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Figure 8: Regrets on Bernoulli distribution with summation aggregation, sparse scenario.
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Figure 9: Regret on Bernoulli distribution with maximum aggregation, non-sparse scenario.
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Figure 10: Regret on Bernoulli distribution with maximum aggregation, sparse scenario.

D.4 Evaluation Results under Different be

To further study the influence of be on our algorithms, we evaluate the regret and communication cost
of DEWA-S-P and DEWA-M-P under different be, ranging from 1 to n = 100. The results on the
regret results can be found in Figure 11. As expected, using a larger be makes the regret converge
faster. We observe that using a reasonably large value (0.25n in our experiments) is sufficient to
achieve good regret. The resulting communication cost using different be can be found in Figure 12.
As expected, the cost generally grows linearly with respect to increasing be.
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Figure 11: Regret for Gaussian distribution under different be, non-sparse scenario.
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Figure 12: Communication cost of DEWA-S-P and DEWA-M-P using different be, and with EWA as
the baseline, non-sparse scenario.
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paper’s contributions and scope?
Answer: [Yes]
Justification: Claims are included
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The lower bound is conditional.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please refer to each individual claims and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: source code is included in the supplementary materials
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we provide running scripts for all experiments in the paper

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: please refer to Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: our results are averaged over multiple runs and variance bars are plotted
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: please refer to Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Not applicable
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: communication savings

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: citations are properly added
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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