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Abstract

Cyber threat intelligence (CTI) is crucial in today’s cybersecurity landscape, pro-
viding essential insights to understand and mitigate the ever-evolving cyber threats.
The recent rise of Large Language Models (LLMs) have shown potential in this
domain, but concerns about their reliability, accuracy, and hallucinations persist.
While existing benchmarks provide general evaluations of LLMs, there are no
benchmarks that address the practical and applied aspects of CTI-specific tasks.
To bridge this gap, we introduce CTIBench, a benchmark designed to assess
LLMs’ performance in CTI applications. CTIBench includes multiple datasets
focused on evaluating knowledge acquired by LLMs in the cyber-threat land-
scape. Our evaluation of several state-of-the-art models on these tasks provides
insights into their strengths and weaknesses in CTI contexts, contributing to a
better understanding of LLM capabilities in CTL. Code and dataset available at
https://github.com/aiforsec/cti-bench.

1 Introduction

The evolving landscape of the digital world has led to an unprecedented growth in cyber attacks,
posing significant challenges for many organizations. Cyber Threat Intelligence (CTI), which involves
the collection, analysis, and dissemination of information about potential or current threats to an
organization’s cyber systems [36]], can provide actionable insights to help organizations defend against
these attacks. Large Language Models (LLMs) have the potential to revolutionize the field of CTI
by enhancing the ability to process and analyze vast amounts of unstructured threat and attack data;
allowing security analysts to utilize more intelligence sources than ever before. However, LLMs are
prone to hallucinations [53]] and misunderstandings of text, especially in specific technical domains,
that can lead to a lack of truthfulness from the model [35]]. This necessitates the careful consideration
of using LLMs in CTI as their limitations can lead to them producing false or unreliable intelligence
which could be disastrous if used to address real cyber threats.

The lack of proper benchmark tasks and datasets to evaluate LLM capabilities in CTI leaves their
reliability and usefulness an open research question. Without standardized benchmarks, it is difficult
to objectively measure and compare how effectively LLMs handle CTI tasks and generally understand
the domain. General benchmarks like GLUE [52], SuperGLUE [51], MMLU [27]], HELM [32],
KOLA [54], and various domain-specific benchmarks [26}, 55 |56] provide datasets and frameworks
for evaluating LLMs in terms of general language understanding or domain-specific capabilities.
However, these benchmarks fail to capture the practical aspects of cybersecurity. Limited works on
LLM evaluations in cybersecurity [[15, |16} 31,133} 134] have primarily catered to specific cybersecurity
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Figure 1: Overview of CTIBench.

industry or, focused on designing tasks that evaluate the memorization ability of LLMs, failing to
capture the comprehension and problem-solving capabilities in the broad domain of CTL

Addressing this gap, we propose CTIBench, a novel suite of benchmark tasks and datasets to evaluate
LLMs in cyber threat intelligence. To this end, we construct a knowledge evaluation dataset, CTI-
MCQ, comprising multiple-choice questions aimed at testing LLMs’ understanding of crucial CTI
concepts, including standards, threat identification, detection strategies, mitigation techniques, and
best practices. We utilize various authoritative sources and standards within CTI domain such as
NIST [29], MITRE [9], GDPR [1] to craft this dataset. In addition, we introduce three practical
CTI tasks designed to evaluate LLMs’ reasoning and problem-solving capabilities: (1) CTI-RCM,
which involves mapping Common Vulnerabilities and Exposures (CVE) descriptions [40] to Common
Weakness Enumeration (CWE) categories [41]; (2) CTI-VSP, which requires calculating Common
Vulnerability Scoring System (CVSS) scores [23]]; and (3) CTI-ATE, which focuses on extracting
MITRE ATT&CK techniques from threat descriptions [14]]. These tasks assess the LLMs’ proficiency
in understanding and evaluating cyber threats, vulnerabilities, and attack patterns. Furthermore, we
propose a more complex task, CTI-TAA, where LLMs are tasked with analyzing publicly available
threat reports and attributing them to specific threat actors or malware families. This task necessitates
a thorough understanding of how different cyber threats or malware families have behaved in the past
to identify meaningful correlations. Together, these tasks provide a robust framework for assessing
LLM:s in CTL Figure [I] provides an overview of our benchmark. We evaluate five state-of-the-art
LLMs—three commercial and two open-source—on these tasks. Our results and analysis provide
important insights into the LLMs’ capabilities in CTI analysis and highlight future avenues for
research. We make the datasets and code publicly available.

Through CTIBench, we provide the research community with a robust tool to accelerate incident
response by automating the triage and analysis of security alerts, enabling them to focus on critical
threats and reducing response time. To the best of our knowledge, CTIBench is the first benchmark
specifically designed to evaluate LLMs’ comprehension, reasoning, and problem-solving abilities
in the broad domain of CTI, addressing the limitations of existing benchmarks that either focus on
general language understanding or specific cybersecurity tasks.

2 Related Work

Large Language Models in Cybersecurity. The advent of large language models (LLMs) like
ChatGPT-3 [[17], ChatGPT-4 [12], LLama models [49], Gemini [48]] has enabled a wide range of
applications across different domains, including cybersecurity. For example: code-based LLMs
like CodeLlama [43]] that can generate secure code are already integral parts of various industries.
LLMs have also found applications in several other cybersecurity tasks like vulnerability detection
[44] 22} |39], incidence response [[13]], program repair [45]], IT operations [25], and cybersecurity
knowledge assistance [47]]. Despite these advancements of LLMs, there is a significant gap in their
evaluation in the cybersecurity domain.
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Evaluating Large Language Models. General evaluations benchmarks like GLUE [52], SuperGLUE
[51], MMLU [27], HELM [32] and KOLA [54]] assess general understanding capabilities of LLMs.
Existing evaluation works in cybersecurity are either limited by their lack of comprehensiveness or
being too narrow in their domain adaptation. For example: SECURE [16] proposes benchmarks
for ICS industries, Purple Llama CyberSecEval [15]], and SecLLMHolmes [50] evaluates LLMs’
propensity to generate insecure code. SevenL.LM [28]] design tasks focused on extracting entities,
relationships, and generating summaries categorized into understanding and generation tasks, and lack
practical problem-solving evaluation of LLMs in the CTI domain. Other cybersecurity benchmarks
[34] [31]] [33] only evaluate the memorization and information extraction capabilities of LLMs.

3 CTIBench: A Benchmark for Evaluating LLLMs in CTI

We are motivated by the need to create knowledge-intensive tasks to evaluate the cognitive capabilities
of LLMs in Cyber Threat Intelligence (CTI) [30]. Our benchmark aims to verify that LLMs can
understand, investigate, and analyze cyber threat reports. To this end, we have designed tasks and
datasets that emphasize four fundamental cognitive capabilities of LLMs in CTI: memorization
(ability to recall and utilize previously learned information), understanding (ability to comprehend the
content and context), problem-solving (ability to apply knowledge and reasoning to address specific
challenges), and reasoning (ability to draw logical conclusions and make informed decisions based
on available information) [[54].

3.1 CTI-MCQ: Cyber Threat Intelligence Multiple Choice Questions

Data Collection. To generate the CTI-MCQ dataset, we utilize various authoritative sources
within the CTI domain. These sources include, among others, CTI frameworks such as NIST [29]],
the Diamond Model of Intrusion Detection [[18], and regulations like GDPR [1l]. Additionally,
we incorporate CTI sharing standards such as STIX and TAXII [11]] to formulate questions on
fundamental cybersecurity and CTI knowledge. We leveraged the MITRE ATT&CK framework
[46]], CWE database [20], and CAPEC [19] to develop questions on attack patterns, threat actors,
APT campaigns, detection methods, mitigation strategies, common software vulnerabilities and
attack pattern enumeration. Finally, we supplement our dataset by manually collecting and curating
questions from publicly available CTI quizzes, ensuring their relevance and accuracy by referencing
established CTI resources. While these quizzes may introduce some bias, as they may not fully
represent the entire spectrum of CTI knowledge, we ensured our diverse range of sources and manual
curation process mitigated this potential limitation.

Generating Questions Using GPT-4. We utilize GPT-40 [3] to prepare the MCQs. Initially, we
preprocess the content from the webpage to remove sections inappropriate for MCQ generation
(such as page creation or update dates, references, etc.). We then optimize the prompt for creating
questions that are challenging enough to test the knowledge of LLMs in cybersecurity. An example
prompt is shown in Prompt [A] We vary the number of questions we generate based on document
length; we create more questions as the length of the document increases. We then randomly sample
approximately 3000 questions for manual validation. This approach ensures a variety of questions
while retaining quality

Dataset Validation. We manually analyze the quality of MCQs extracted from ChatGPT-40 to
ensure the quality of the CTI-MCQ dataset. The human annotators were given access to the source
URLSs when analyzing the questions. We identified two major issues from LLM-generated questions:
some questions had multiple correct options in the answers, and sometimes the LLM-given answer
was incorrect. We removed the questions that were unanswerable from the given context or questions
that included multiple correct options. We fixed the responses that had incorrect annotations provided
by ChatGPT-4o.

Our final dataset consists of 2500 questions, out of which, 1578 questions are collected from MITRE,
750 from CWE, 40 from the manual collection, and 32 from standards and frameworks. This approach
ensures a variety of questions while retaining quality.
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3.2 CTI-RCM: Cyber Threat Intelligence Root Cause Mapping

Root cause mapping (RCM) identifies the underlying cause(s) of a vulnerability by correlating CVE
records and bug tickets with CWE entries [20]. Accurate RCM is crucial for guides investments,
policies, and practices to address and eliminate the root causes of vulnerabilities, benefiting both
industry and government decision-makers. However, the current vulnerability management ecosystem
does not perform this task accurately at scale [38]], due to the complexity and nuance of CVE
descriptions, the vast number of CWE categories (over 900 as of May 2024), and the need for domain
expertise to interpret the relationships between them. To address this challenge, we designed the
CTI-RCM task. Here is an example of RCM from MITRE [38]]. The description for CVE-2018-15506
is as follows:

In BubbleUPnP 0.9 update 30, the XML parsing engine for SSDP/UPnP functionality is vulnerable
to an XML External Entity Processing (XXE) attack. Remote, unauthenticated attackers can
use this vulnerability to: (1) Access arbitrary files from the filesystem with the same permission
as the user account running BubbleUPnP, (2) Initiate SMB connections to capture a NetNTLM
challenge/response and crack the cleartext password, or (3) Initiate SMB connections to relay a
NetNTLM challenge/response and achieve Remote Command Execution in Windows domains.

The CWE is mapped to CWE-611: Improper Restriction of XML External Entity Reference. Here is
the reasoning excerpt as shown in the reference link:

Reasoning: Description says “vulnerable to an XML External Entity Processing (XXE) attack.”
There is additional information that focuses on technical impact, for instance, “attackers can do [X]”,
which is rarely useful for weaknesses, so that can be ignored. When you perform a text search on
CWE for “XML External Entity Processing (XXE) attack” and “XXE,” it returns CWE-611. When
you click the entry, you see that the entry lists XXE as an “Alternate Term.” Therefore, CWE-611 is
the right mapping for this CVE.

As can be seen, this is a very nuanced task and requires a deep understanding of both the CVE
descriptions and the CWE taxonomy to make accurate mappings.

Data Collection. For this task, we collect data from the National Vulnerability Database (NVD)
[1O]. The NVD database provides descriptions of past vulnerabilities identified by CVE, along with
their associated mappings to Common Weakness Enumeration (CWE) entries. For our study, we
specifically focus on vulnerabilities reported in the year 2024 that include associated CWE mappings.
We then randomly sample 1,000 vulnerabilities to include in our dataset.

3.3 CTI-VSP: Cyber Threat Intelligence Vulnerability Severity Prediction

The Vulnerability Severity Prediction task involves predicting the Common Vulnerability Scoring
System (CVSS) vector string from a given vulnerability description [23]. The CVSS is a standardized
framework used to assess the severity of security vulnerabilities. It is composed of three metric
groups: Base, Temporal, and Environmental. The Base metric group, which we focus on in our study,
reflects the severity of a vulnerability based on its intrinsic characteristics. These characteristics are
constant over time and assume a reasonable worst-case impact across different deployed environments.
More details can be found in Appendix

While accurately calculating an accurate CVSS score requires additional detailed information such as
original bug identification, third-party exploit analysis, or technical documentation for the vulnerable
software, an approximation can be made using the initial CVE descriptiorﬂ The CVSS v3 Base
Score is derived from the following eight metrics: Attack Vector (AV), Attack Complexity (AC),
Privileges Required (PR), User Interaction (Ul), Scope (S), Confidentiality Impact (C), Integrity
Impact (I), and Availability Impact (A). Accurately calculating the CVSS score necessitates correctly
mapping the vulnerability description to the appropriate severity levels for each metric. This task
is inherently challenging due to the need for precise interpretation and understanding of technical
language and context. Consequently, it serves as a robust benchmark for evaluating the capability of
Large Language Models (LLMs) in understanding and processing cybersecurity-related information.

"https://wuw.first.org/cvss/v3.0/examples
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Note that while there is a newer CVSS standard, CVSS 4.0, it was standardized in November 2023,
and not all models might have adequate knowledge of the standard. Therefore, we focus on CVSS v3.

Data Collection. We use the same data source as the CTI-RCM for this task. Specifically, we
collect 1,000 vulnerability descriptions from 2024 and their associated CVSS v3 strings.

3.4 CTI-ATE: Cyber Threat Intelligence Attack Technique Extraction

The Attack Technique Extraction task involves identifying specific attack patterns from a given
description of threat behavior and mapping them to the corresponding MITRE ATT&CK technique
IDs [14]. These technique IDs represent distinct adversarial methods used at various stages of an
attack lifecycle.

Consider the following exampleﬂ

Janicab is an OS X trojan that exploited a valid Apple Developer ID to deceive users during
installation. It captured both audio and screenshots, which were then transmitted to a remote
command and control (C2) server. For persistence, Janicab employed a cron job on affected Mac
devices. The use of a legitimate Apple Developer ID enabled the trojan to bypass security restrictions
by signing the malicious code.

From this description, we can identify the following relevant attack technique IDs: (i) T1123 — Audio
Capture, (ii) T1053 — Scheduled Task, (iii) T1113 — Screen Capture, and (iv) T1553 — Subvert Trust
Controls.

This task is valuable for CTI practitioners, as accurately mapping observed behaviors to the corre-
sponding MITRE ATT&CK techniques is essential for designing effective mitigation strategies and
deploying targeted security measures. By linking specific behaviors to their respective technique
IDs, security teams can better understand the adversary’s tactics, techniques, and procedures (TTPs),
enabling them to take proactive actions to disrupt or mitigate ongoing threats.

Data Collection. For this task, we curated a dataset using information from the MITRE ATT&CK
framework [14], which provides comprehensive descriptions of various malware and their associated
adversarial behaviors, each categorized by a unique attack technique ID based on open-source threat
reports. Our dataset includes 30 instances of malware reported in 2024, alongside their corresponding
attack technique IDs—information that extends beyond the knowledge cutoff of the LLMs under
evaluation. We also supplemented the dataset with 30 malware instances reported before 2024. For
this task, we focused solely on techniques (excluding sub-techniques). In total, the dataset comprises
397 unique attack techniques.

3.5 CTI-TAA: Cyber Threat Intelligence Threat Actor Attribution

Threat actor attribution is a crucial process of identifying the individuals, groups, or organizations
responsible for a cyberattack or malicious activity. This is usually done by analyzing various
indicators of compromise (IOCs), such as malware signatures, attack vectors, infrastructure, tactics,
techniques, procedures (TTPs), and other contextual information like geopolitical motives or previous
attack patterns. This is a challenging task because threat actors often use sophisticated evasion
tactics, shared tools and techniques, limited and incomplete data, rapidly changing TTPs, and inherent
biases in analysis [37]]. This task exemplifies abductive reasoning, which involves forming plausible
conclusions from incomplete information, often seeking the best explanation [21]]. By evaluating
LLM:s on this task, we aim to benchmark their capability to perform complex reasoning and analysis
in the context of CTL

Data Collection We create a small-scale dataset to enable LLMs to reason about this intricate CTI
concept. To this end, we collect 50 threat reports from reputed vendors that have an Advanced
Persistent Threat (APT) group attributed to the reports [24]]. The reports vary in the amount of detail
provided about the threat actor.

To create a controlled evaluation setting, we remove all mentions of the threat actors and their
associated malware campaign names, replacing them with placeholders. We then task the LLMs with

https://attack.mitre.org/software/S0163/
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attributing the reports to known threat actors. To further ensure accuracy, we manually verify each
LLM response to account for the multiple aliases that threat actors often use.

4 Experiments and Results

4.1 Experimental Settings

We evaluate ChatGPT-3.5 (gpt-3.5-turbo) [3], ChatGPT-4 (gpt-4-turbo) [4], Gemini-1.5 [2],
LLAMA3-70B [7] and LLAMA3-8B [8] on our benchmark tasks. We set the temperature of LLMs
at 0 and top_p = 1 to obtain more deterministic responses. Each task is evaluated on a zero-shot
prompt template with instruction of LLMs to act as a cybersecurity expert. Below, we show a prompt
template used for the vulnerability root cause mapping. Please see Appendix [C|for evaluation prompts
used for all tasks.

You are a cybersecurity expert specializing in cyber threat intelligence. Analyze the following CVE
description and map it to the appropriate CWE. Provide a brief justification for your choice. Ensure
the last line of your response contains only the CWE ID.

CVE Description:
{description}

4.2 Evaluation Metrics

We use accuracy to evaluate the CTI-MCQ and CTT-RCM tasks, as both tasks are equivalent to
multi-class classification. For the CTI-VSP task, we compute the mean absolute deviation (MAD)
between the CVSS v3.1 scores of the ground truth and the model’s predictions. Although we ask
the model to predict a vector string, the CVSS score can be deterministically derived from it. We
utilize the Python library cvss [42] to compute the CVSS score (a numerical value in the range of
0-10 that determines the overall severity of a vulnerability) from the predicted string, ensuring that
any potential errors from the LLM performing the computation are eliminated. This approach focuses
solely on assessing the LLM’s reasoning ability regarding vulnerability. We adopt the Micro-F1 score
as the evaluation metric for the CTI-ATE task. Given that this task requires accurately extracting the
relevant attack techniques from the provided text and mapping them to their corresponding MITRE
ATT&CK technique IDs, the Micro-F1 score is suitable for capturing both precision and recall in a
multi-label classification setting.

For the CTI-TAA task, we categorize the predictions into three types: correct answer (when the LLM
accurately identifies the threat actor or one of its aliases), plausible answer (when the threat report
lacks sufficient details to pinpoint the answer, but the LLM provides a plausible or related threat
actor within a similar group), and incorrect answer (when the LLM misattributes the threat actor
due to misjudgment, hallucination, or spurious correlation). Based on these categories, we compute
two types of accuracy: Correct Accuracy, which is the fraction of correct answers, and Plausible
Accuracy, which is the fraction of correct and plausible answers combined. Details on generating the
ground truth and evaluation for CTI-TAA are provided in Appendix

4.3 Results Summary

Table [T] presents the performance of various LLMs on our benchmark CTI tasks. The results indicate
that GPT-4 outperforms other models across all tasks except for CTI-VSP, where Gemini-1.5 takes
the lead. Despite being open-source, LLAMA3-70B performs comparably to Gemini-1.5 and even
outperforms it on three tasks, though it struggles with the CTI-VSP task. ChatGPT-3.5 exceeds
the performance of LLAMAS3-8B but is generally outperformed by the other models across most
tasks. LAMA3-8B, being a smaller model, fails to match the performance of larger models on
tasks requiring more nuanced understanding and reasoning. However, it performs decently on the
CTI-MCQ task.
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CTI-TAA (Acc)

Model CTI-MCQ (Acc) CTI-RCM (Acc) CTI-VSP (MAD) CTI-ATE (Macro-F1) Correct  Plausible
ChatGPT-4 71.0 72.0 1.31 0.6388 52 86
ChatGPT-3.5 54.1 67.2 1.57 0.3108 44 62
Gemini-1.5 65.4 66.6 1.09 0.4612 38 74
LLAMA3-70B 65.7 65.9 1.83 0.4720 52 80
LLAMA3-8B 61.3 447 1.91 0.1562 28 36

Table 1: Results of different LLMs on the benchmark datasets (bold indicates the best performing
model, lower is better for MAD)

5 Analysis

51 CTI-MCQ

The heatmap analysis of error correlations, in Figure [2[a), shows that the larger models exhibit
higher error correlations. This trend suggests that these models, such as ChatGPT-4, Gemini-1.5, and
LLAMAS3-70B, are likely to make similar mistakes when answering the CTI-MCQ. For instance,
ChatGPT-4 shows error correlations of 0.52 with Gemini-1.5 and 0.55 with LLAMAZ3-70B, while
Gemini-1.5 and LLAMA3-70B have a correlation of 0.54. In Figure |Zkb), we show the number
of questions incorrectly answered by a number of LLMs. Overall, 293 questions were answered
incorrectly by all the models (5) in the evaluation. Upon inspection, we found these questions to be
related to mitigation plans and tools and techniques used by adversaries. We show a sample of such
questions in Appendix Table 3]

ChatGPT-3.5 70 L Lantels

m— CWE
60
£s0
>
8 40
5
830
<
0
0
0
o & K & ®
& & d
o 1 4 s 5 & =

ChatGPT-4

Gemini-1.5

LLAMA3-708

N

LLAMA3-88

0 & ~
i Number of Incorect LLM Responses ® © > &
(a) Error correlation (b) Error frequency (c) Acc on ATT&CK & CWE

Figure 2: Error analysis on the CTI-MCQ tasks

Figure[2{c) displays the accuracy of different LLMs on multiple-choice questions (MCQs) from two
primary sources: MITRE ATT&CK and CWE. Given that MITRE ATT&CK information is more
volatile compared to the more stable nature of CWEs, models generally perform better on questions
sourced from CWE. However, even the best-performing model, ChatGPT-4, achieves an accuracy of
75.65%, indicating that there is still further room for improvement.

While Table [T] presents the results for the MCQ task without an explicit reasoning step, we also
performed an additional evaluation incorporating an explicit reasoning prompt. The detailed results
of this evaluation are provided in Appendix [E] However, this approach did not consistently lead to
performance improvements. We hypothesize that this is because the MCQ task primarily relies on
memorization rather than reasoning.

5.2 CTI-RCM

In the CTI-RCM task, LLMs are assigned to identify the underlying cause(s) of a vulnerability by
correlating CVE Records with CWE entries. Figure 3(a) shows the frequency distribution of word
counts across the CVE descriptions in our dataset, revealing a right-skewed distribution where most
descriptions have a lower word count. Figure3[b) demonstrates that all models, except LLAMA3-8B,
improve accuracy with longer descriptions, peaking in the 54-69 word range. This trend suggests that
longer descriptions offer more context, aiding the models in accurately mapping CVE records to CWE
entries. However, performance declines for the longest CVE descriptions. The most likely reason is
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that as description length increases, the potential for matching multiple weaknesses increases, causing

LLMs to struggle to identify the most appropriate one.
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Figure 3: CTI-RCM and CTI-VSP analysis

When creating the CTI-RCM dataset, we gathered CVE descriptions exclusively from 2024, which
is beyond the training cut-off date for the models we evaluated. To investigate model performance
further, we conducted an additional experiment using CVE descriptions and their associated CWE
mappings from 2021. The results, presented in Figure[3](c), show that four out of five models perform
slightly worse on the 2021 dataset. This suggests the task is inherently challenging and could serve
as a robust evaluation benchmark for future LLMs.

5.3 CTI-VSP

In the CTI-VSP task, LLMs are tasked with predicting the CVSS v3 Base String based on the CVE
description, which is then converted to a CVSS score using a predefined formula. We evaluate the
performance of the LLMs by computing the Mean Absolute Deviation (MAD) from the ground truth
in the dataset. Like the CTI-RCM task, models tend to perform better with longer descriptions, as
indicated by a decrease in MAD in Figure 3[c). However, there is a noticeable performance drop
for all the models, as evidenced by the sharp increase in MAD for the last quintiles. This pattern
suggests that while longer descriptions provide more context and generally improve performance,
they can also introduce complexity that leads to misattribution of the severity of the threat. This
combined finding from the CTI-VSP and CTI-RCM tasks indicates that additional description length
does not necessarily equate to better performance and may hinder the models’ ability to assess the
threat accurately.
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Figure 4: CTI-VSP analysis

We illustrate the accuracy of LLMs in predicting the CVSS v3 Base Metrics in Figure[d[a). The CVSS
Base Metrics include Attack Vector (AV), Attack Complexity (AC), Privileges Required (PR), User
Interaction (UI), Scope (S), Confidentiality Impact (C), Integrity Impact (I), and Availability Impact
(A) (detailed in Appendix [B). The heatmap shows that all models perform relatively well predicting
AV, AC, and UI. However, they struggle with PR, S, C, and I, suggesting that CVE descriptions often
lack sufficient detail to infer these metrics accurately.

https://doi.org/10.52202/079017-1607 50812



Figure f{b) illustrates the number of overestimations and underestimations made by LLMs when
predicting the CVSS base score from a vulnerability description. Overestimation occurs when the
predicted score is higher than the actual score, while underestimation occurs when the predicted score
is lower. All models exhibit a higher frequency of overestimation compared to underestimation, with
this tendency being particularly pronounced in the two open-source LLAMA models. This suggests
that LLMs may need calibration to improve their accuracy in threat severity prediction.

54 CTI-ATE

The results in Table[Tldemonstrate that ChatGPT-

4 significantly outperforms other models on the Model Before (F1)  After (F1)
CTI-ATE task, underscoring the complexity of ChatGPT-4 0.6542 0.6208
the task. To further investigate model perfor- ChatGPT-3.5 0.3420 0.3333
mance, we evaluated the models on samples Gemini-1.5 0.4360 0.5263
collected before and after their respective knowl- LLAMA3-70B 0.4934 0.4297
edge cutoff dates. These results are presented LLAMA3-8B 0.1813 0.1366

in Table 2] Most models exhibit slightly better
performance on samples collected before their Table 2: Performance comparison on the CTI-ATE
knowledge cutoff, except for Gemini, which per- task, evaluated on samples before and after the
forms better on post-cutoff samples. The per- models’ knowledge cutoff dates.

formance differences are generally insignificant,

suggesting that this can serve as a reasonable indicator of how LLMs will fare on future threat reports.

5.5 CTI-TAA

The results of the threat actor attribution tasks (Table[I) indicate that LLMs can perform nuanced
analyses of the information presented in threat reports and make insightful correlations. While smaller
models like LLAMA3-8B struggle with more complex reasoning tasks, larger models demonstrate
reasonable performance. Our analysis of the reasoning provided by LLMs suggests that they possess
a general understanding of the cyber threat landscape, though they may occasionally misattribute
information. Below, we present representative examples of threat-attribution predictions made by
ChatGPT-4.

Correct response: We task the LLM to predict the threat actor CHRYSENE given a threat report
by replacing the mention of the threat actor and its campaign with [PlaceHolder]’| CHRYSENE is an
Iranian cyberespionage group active since 2014, targeting Middle Eastern governments and various
industries. ChatGPT-4 predicted the threat actor as OilRig, which is an alias of CHRYSENE.

Plausible response: We task the LLM to predict the threat actor MuddyWater given a threat report
by replacing the mention of the threat actor and its campaign with [PlaceHolder]E] MuddyWater is
a cyber espionage group linked to Iran’s Ministry of Intelligence and Security (MOIS) that targets
government and private sectors across the Middle East, Asia, Africa, Europe, and North America.
ChatGPT-4 predicted the threat actor as APT35, which is not the alias of MuddyWater but shares some
common attack patterns like originating from Iran, targeting the Middle East and North America, and
using multi-stage attacks.

Incorrect response: We task the LLM to predict the threat actor APT41 given a threat report by
replacing the mention of the threat actor and its campaign with [PlaceHolder] | APT41 is an espionage
group from China that has been active since 2012 and involved in financially motivated operations,
targeting healthcare, telecom, technology, and video game industries. ChatGPT-4 incorrectly predicted
the threat actor as APT29, based on the fact that APT29 has been active since 2012 and its state-
sponsored espionage operations.

3https://www.welivesecurity.com/en/eset-research/oilrigs-outer-space-juicy-mix-same-ol-rig-new-drill-
pipes/

*https://www.deepinstinct.com/blog/darkbeatc2-the-latest-muddywater-attack-framework

>https://www.trendmicro.com/en_us/research/24/d/earth-freybug html
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Model Before (Acc) After (Acc)

Impact of Knowledge Cutoff: We

evaluate the LLLMs on the CTI-TAA Correct Plausible Correct Plausible
task using datasets from both before ChatGPT-4 58.06 90.32 42.10 78.95
and after their knowledge cutoff dates. ~ ChatGPT-3.5 50.00 75.00 43.48 60.87
The results are dlsp]ayed in the ta- Gemini-1.5 34.61 76.92 41.66 70.83

LLAMA3-70B  58.06 83.87 42.10 73.68

ble below. With the exception of
LLAMA3-8B 25.00 25.00 28.94 39.47

LLAMAS3-8B, all other LLMs demon-

strated better performance on datasets Table 3: Performance comparison of models before and after

availabl.e during their t?ain.ing period, knowledge cutoff dates for the CTI-TAA task.
suggesting that memorization plays a

role in improving performance to some extent in this task.

5.6 Compute Cost

Appendix [G| presents the detailed token counts for each task. GPT-4 generated significantly longer
responses across all tasks than the other models.

6 Ethical Concerns

All the evaluation tasks in our proposed benchmark utilize publicly available threat information from
reputable sources such as NIST, MITRE, CVE, CWE, and EU. None of the datasets include personal
information or make sensitive judgments related to social issues, bias, deception, or discrimination.

7 Limitations

While our evaluation of large language models (LLMs) for Cyber Threat Intelligence (CTI) tasks
provides valuable insights, it is important to recognize certain limitations. First, the extensive scope of
CTI activities presents a significant challenge, and our study has focused on a limited subset of tasks
to assess the capabilities of LLMs. This selection may not fully capture the breadth of functionality
required for comprehensive CTI operations. In future work, we plan to expand the range of evaluated
tasks to encompass a broader spectrum of CTI activities, thereby ensuring a more holistic assessment
of LLM performance in this domain.

Second, our evaluation is restricted to English-language CTI techniques. This limitation neglects the
global nature of cyber threats, which frequently span multiple languages and regions. To address this,
future studies will incorporate multilingual CTI evaluations, better reflecting the diverse linguistic
landscape of cyber threats and improving the applicability of LLMs in international cybersecurity
contexts.

Additionally, there is a genuine risk of the malicious use of LLMs to exploit CTI knowledge for
harmful purposes. For instance, if misused, LLMs could generate and disseminate compelling
but false threat intelligence reports. Such reports might mislead decision-makers, result in the
misallocation of resources, or prompt inappropriate responses. Benchmarking the potential for such
misuse remains an open area for future research.

8 Conclusion

The emergence of LLMs has opened up new possibilities in cybersecurity, especially in Cyber Threat
Intelligence (CTI). However, their capabilities and limitations in this domain remain unclear. In this
paper, we introduce CTIBench, a benchmark designed to evaluate LLM performance in various CTI
tasks. Our evaluation offers valuable insights into the knowledge and capabilities of LLMs across
various CTI aspects, as well as their limitations. We aim for our benchmark to help researchers
understand the practical applications of LLMs in CTI and to pave the way for their reliable use and
the effective detection and mitigation of cyberthreats.
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Appendix
A Prompt for generating CTI-MCQ

Prompt for generating MCQs with ChatGPT-40 from MITRE ATT&CK
(Italized parts are unique to MITRE ATT&CK)

You are a cybersecurity expert specializing in cyber threat intelligence. Given the text below, please
generate a maximum of 5 multiple-choice questions with four possible options each.

Follow these requirements:

1. Question Format: Each question must have four options. The options should be challenging and require
careful consideration. Avoid creating options that could be interpreted as correct under different circumstances.
2. Target Audience: The questions should be suitable for security professionals with three to five years of
experience in cyber threat intelligence. Avoid generic questions such as “What is the objective?”, “Which
operating system can be targeted?”.

3. Content Coverage: Aim to cover various sections of the document to ensure a comprehensive evaluation of
the candidate’s knowledge. Include context-specific questions that require an understanding of the document’s
content.

4. Technical Precision: Use precise terminology and concepts relevant to cyber threat intelligence. Incorporate
situational or scenario-based questions where applicable.

5. Include Technique IDs and Names: Ensure that all questions, where applicable, mention both the ID and the
full name of the MITRE ATT&CK pattern technique.

6. Premise Inclusion: Each question should include a premise indicating it pertains to MITRE ATT&CK,
specifying the relevant platform (Enterprise, ICS, or Mobile) where necessary.

7. Output Format: Return the output in TSV format (must be tab-separated) with the following columns:
Question, Option A, Option B, Option C, Option D, Correct Answer (A, B, C, D), and Explanation.

Important: Only return the TSV content as specified. Do not include any additional text or com-
mentary outside the TSV format.

Text:

B CVSS Base Metric

The Base Metrics group in CVSS encapsulates a vulnerability’s fundamental and immutable properties
and is crucial for understanding the potential impact and exploitability of a vulnerability [23]. It
consists of the following metrics:

1. Attack Vector (AV): The Attack Vector metric evaluates the proximity an attacker must
have to the vulnerable component to exploit it. Possible values:

* Network (N): The attacker can exploit the vulnerability remotely over a network. This
typically indicates the highest risk, as remote exploitation can be conducted without
physical access.

* Adjacent (A): The attacker requires access to the local network or adjacent hardware.
Examples include attacks over Bluetooth or local subnet.

* Local (L): The attacker needs local access to the system, either physically or via a local
account. This increases the difficulty compared to network attacks.

* Physical (P): The attacker must have physical contact or access to the target system,
which makes this the most challenging attack vector.

2. Attack Complexity (AC): This metric measures the conditions beyond the attacker’s control
that must exist to exploit the vulnerability. Possible values:

* Low (L): Exploiting the vulnerability does not require any special conditions.
* High (H): Exploitation requires specific conditions or configurations.

3. Privileges Required (PR): Privileges Required assesses the level of access or privileges an
attacker must have to successfully exploit the vulnerability. Possible values:
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* None (N): The attacker does not need any privileges; they can exploit the vulnerability
as an unauthenticated user. This typically results in a higher score since the barrier to
exploitation is minimal.

* Low (L): The attacker needs basic user privileges. This implies that some level of
access is required, but not necessarily elevated privileges.

* High (H): Exploitation requires administrative or high-level privileges. This makes
exploitation significantly harder.

4. User Interaction (UI): User Interaction measures the degree to which a user must participate
in the attack. Possible values:

* None (N): The attacker can exploit the vulnerability without any interaction from the
user. This indicates a higher risk as the attack can be automated and spread more easily.

* Required (R): Successful exploitation requires user interaction, such as clicking a link
or opening a file. This adds a layer of difficulty for the attacker since it relies on social
engineering or user behavior.

5. Scope (S): Scope evaluates whether a vulnerability in one component impacts resources
beyond its security scope. This metric assesses the potential broader implications of an
exploit. Possible values:

* Unchanged (U): The vulnerability only affects resources within the same security scope.
This typically means the impact is contained within a single component or system.

* Changed (C): Exploitation of the vulnerability impacts resources beyond the vulnerable
component’s security scope.

6. Confidentiality Impact (C): Confidentiality Impact measures the extent to which informa-
tion disclosure can occur due to a successful exploit. Possible values:
* None (N): There is no impact on confidentiality; no sensitive information is disclosed.

e Low (L): Access to some information is gained, but the attacker cannot control what is
disclosed, or the information is not highly sensitive.

* High (H): Complete disclosure of all data on the affected system. This indicates a
severe impact, potentially exposing highly sensitive information.

7. Integrity Impact (I): Integrity Impact assesses the extent to which data can be altered or
tampered with by an attacker. Possible values:
* None (N): There is no impact on the integrity of the data or system.

e Low (L): Data can be modified, but the extent is limited or the attacker does not have
control over the modifications.

* High (H): The attacker can make extensive or significant modifications to the data,
potentially compromising the integrity of the entire system or dataset.

8. Availability Impact (A): Availability Impact measures the potential disruption to the
availability of the affected component due to a successful exploit.

* None (N): There is no impact on availability; the system remains fully operational.

* Low (L): Performance is degraded, or there are occasional disruptions, but the system
remains available.

* High (H): The system is completely unavailable or severely degraded, indicating a
significant impact on availability and potentially causing a denial of service.

C Evaluation Prompts

C.1 CTI-MCQ: Cyber Threat Intelligence Multiple Choice Questions

Prompt used for LLM Evaluation We use the following prompt to generate answers from LLMs
for the MCQs
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You are a cybersecurity expert specializing in cyber threat intelligence. You are given a
multiple-choice question (MCQ) from a Cyber Threat Intelligence (CTI) knowledge benchmark
dataset. Your task is to choose the best option among the four provided. Return your answer as a
single uppercase letter: A, B, C, or D.

Question:
{question}

Options:

A) {option,}
B) {optiony}
C) {option.}
D) {optiong}

Important: The last line of your answer should contain only the single letter corresponding to the
best option, with no additional text.

C.2 CTI-RCM: Cyber Threat Intelligence Root Cause Mapping

Prompt used for LLM Evaluation We use the following prompt to identify the vulnerability root
cause mapping:

You are a cybersecurity expert specializing in cyber threat intelligence. Analyze the following CVE
description and map it to the appropriate CWE. Provide a brief justification for your choice. Ensure
the last line of your response contains only the CWE ID.

CVE Description:

C.3 CTI-VSP: Cyber Threat Intelligence Vulnerability Severity Prediction

Prompt used for LLM Evaluation We use the following prompt to predict CVSS v3.1 string using
LLM:

Analyze the following CVE description and calculate the CVSS v3.1 Base Score. Determine the
values for each base metric: AV, AC, PR, UI, S, C, I, and A. Summarize each metric’s value and
provide the final CVSS v3.1 vector string.

Valid options for each metric are as follows:

- Attack Vector (AV): Network (N), Adjacent (A), Local (L), Physical (P)
- Attack Complexity (AC): Low (L), High (H)

- Privileges Required (PR): None (N), Low (L), High (H)

- User Interaction (UI): None (N), Required (R)

- Scope (S): Unchanged (U), Changed (C)

- Confidentiality (C): None (N), Low (L), High (H)

- Integrity (I): None (N), Low (L), High (H)

- Availability (A): None (N), Low (L), High (H)

Summarize each metric’s value and provide the final CVSS v3.1 vector string. Ensure the final line
of your response contains only the CVSS v3 Vector String in the following format:

Example format: CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:H/I:-H/A:H

CVE Description:

C.4 CTI-ATE: Cyber Threat Intelligence Attack Technique Extraction

Prompt used for LLM Evaluation We provide the list of all Enterprise attack techniques in the
prompt for the CTI-ATE task:
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You are a cybersecurity expert specializing in cyber threat intelligence. Extract all MITRE
Enterprise attack patterns from the following text and map them to their corresponding MITRE
technique IDs. Provide reasoning for each identification. Ensure the final line contains only the IDs
for the main techniques, separated by commas, excluding any subtechnique IDs. MITRE Enterprise
IDs are given below as reference.

Text:

List of All MITRE Enterprise technique IDs

C.5 CTI-TAA: Cyber Threat Intelligence Threat Actor Attribution

Prompt used for LLM Evaluation We use the following prompt for the threat actor attribution
task:

You are a cybersecurity expert specializing in cyber threat intelligence. You are given a threat report
that describes a cyber incident. Any direct mentions of the threat actor group, specific campaign
names, or malware names responsible have been replaced with [PLACEHOLDER]. Your task is to
analyze the report and attribute the incident to a known threat actor based on the techniques, tactics,
procedures (TTPs), and any other relevant information described. Please provide the name of the
threat actor you believe is responsible and briefly explain your reasoning.

Threat Report:

D CTI-TAA Evaluation

To evaluate the threat actor attribution task, we crafted the CTI-TAA dataset. The ground truth for the
correct answer was established by extracting information directly from original documents, ensuring
an exact match with named entities. Additionally, we collected aliases associated with the threat
actors using Malpedia [6]. To ensure comprehensive coverage of possible aliases, we referenced the
individual Malpedia pages of the threat actors and explored alias pages, capturing secondary aliases
derived from primary ones that were not initially included.

We consider all identified aliases as equivalent to the ground truth. Furthermore, we included
all related threat actors for the original threat actors, sourced from related or associated groups’
information on the MITRE website. This forms the initial plausible set of actors. Given that an alias
of one threat actor may sometimes be an alias of another, creating a chain due to incomplete alias
lists on individual pages, and considering that related actors may have their aliases, we employed a
graph-searching algorithm to determine the accuracy of model predictions.

We used a breadth-first search (BFS) algorithm to verify correctness, starting from the LLM response
and traversing only nodes connected by an alias. The response is marked as correct if a match with
the ground truth is found before the search is exhausted. We considered nodes connected via both
aliases and related group nodes to identify related groups. The response is considered related if a
match with the ground truth is found through this expanded search. If no matches are found, the
response is deemed incorrect.

The algorithm is shown in Algorithm[I] We include the algorithm in our released code.

E CTI-MCQ with reasoning

We re-evaluated the LLMs on the MCQ task by modifying the prompt to explicitly instruct the models
to reason through the problem before providing an answer. Table[d] presents the results. While explicit
reasoning prompts substantially increased computational costs, they generally do not translate into
improved performance. As shown in the table, only GPT-3.5 exhibited a notable performance boost,
while for LLAMA3-8B, the reasoning prompt led to a decline in performance.
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Algorithm 1 Evaluate Model’s Prediction for the CIT-TAA task

Require: LLM response, Ground truth entities, Alias and related actor mappings
Ensure: Correctness or plausibility of the response
1: Initialize correct = False, related = False

2: Check for Correctness

3: Initialize BFS queue with LLM response node

4: while queue is not empty and correct is False do
5:  Dequeue a node

6:  if node matches ground truth then

7: correct = True

8: else

9: Enqueue all alias-connected nodes
10:  endif

11: end while

12: Check for Plausibility

13: if correct is False then

14:  Initialize BFS queue with LLM response node
15:  while queue is not empty and related is False do

16: Dequeue a node

17: if node matches ground truth then

18: related = True

19: else

20: Enqueue all alias and related group-connected nodes
21: end if

22:  end while

23: end if

24: Determine Result

25: if correct then

26:  Response is Correct
27: else if related then

28:  Response is Related

29: else

30:  Response is Incorrect

31: end if
Model Acc Without Reasoning Acc With Reasoning
ChatGPT-4 71.00 (105) 71.84 (618)
ChatGPT-3.5 54.08 (10) 59.16 (227)
Gemini-1.5 65.44 (5) 65.68 (360)
LLAMA3-70B 65.72 (1) 65.48 (230)
LLAMA3-8B 61.32 (5) 55.80 (269)

Table 4: Comparison of model accuracy with and without reasoning. Numbers in parentheses indicate
the approximate number of tokens generated (in thousand tokens)

F CTI-MCQ Samples

We show a sample of incorrectly answered MCQs by LLMs from CTI-MCQ dataset in Table[5]

G Compute Cost

We show the approximate number of tokens used in Prompts and in LLM responses in Table [6]
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Table 5: A sample of questions incorrectly answered by all the LLMs under evaluation

Question Type Question Option A Option B Option C Option D gorrect
nswer
Under the MITRE ATT&CK
framework for Enterprise, which
Mitigation 'mlllga‘tl(?n can help [')rgvent Behavior Preventl(m Malware Detection Pr'lvl']eged Account R§Strlct File & o c
adversaries from creating or on Endpoint Management Directory Permissions

interacting with system services
using a lower permission level?

In the context of MITRE ATT&CK
for Enterprise, which of the following
Tool tools can use PowerShell to discover ~ TrickBot MailSniper Magic Hound Lizar C
email accounts as per T1087.003
Account Discovery: Email Account?

‘What is a common method used by

Method ;lrt‘itreer:}:rrlllzsu iolr ]3"31"[:)(1)[‘;;‘2) (l)rzrlf,ﬁc Using DNS tunneling fg:ﬁzﬁg?{?&s i\‘/)[il::‘i giiiée&ze;;s Using FTP to upload data C
‘Which of the following malware

Malware examples triggers on a magic BUSHWALK Ryuk SYNful Knock Penquin D

packet in TCP or UDP packets?

Detection ::Z;gzﬁ% Clop avoid sandbox }iﬁg{g}o(r‘:elTickCoum ?é;igﬁ?f;ﬁ;%iom Calling NtDelayExecution ~ Using the sleep command D
Model CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CTI-TAA
Prompt 419 143 454 102 149
ChatGPT-4 105 269 485 30 32
ChatGPT-3.5 10 135 170 18 21
Gemini-1.5 5 100 344 27 32
LLAMA3-70B 1 140 442 22 25
LLAMA3-8B 5 136 365 36 21

Table 6: Approximate number of tokens for Prompt and LLM response for each task (in thousands of
token units)
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