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Abstract

In this paper, we tackle the challenge of generating high-quality hash codes for
cross-modal retrieval in the presence of incomplete labels, which creates uncertainty
in distinguishing between positive and negative pairs. Vision-language models
such as CLIP offer a potential solution by providing generic knowledge for missing
label recovery, yet their zero-shot performance remains insufficient. To address
this, we propose a novel Prompt Contrastive Recovery approach, PCRIL, which
progressively identifies promising positive classes from unknown label sets and
recursively searches for other relevant labels. Identifying unknowns is nontrivial
due to the fixed and long-tailed patterns of positive label sets in training data, which
hampers the discovery of new label combinations. Therefore, we consider each
subset of positive labels and construct three types of negative prompts through dele-
tion, addition, and replacement for prompt learning. The augmented supervision
guides the model to measure the completeness of label sets, thus facilitating the
subsequent greedy tree search for label completion. We also address extreme cases
of significant unknown labels and lack of negative pairwise supervision by deriving
two augmentation strategies: seeking unknown-complementary samples for mixup
and random flipping for negative labels. Extensive experiments reveal the vulnera-
bility of current methods and demonstrate the effectiveness of PCRIL, achieving
an average 12% mAP improvement to the current SOTA across all datasets. Our
code is available at github.com/E-Galois/PCRIL.

1 Introduction

Cross-modal hashing (CMH) [2} 14} 17,111} 23} 25]] addresses the highly demanding cross-modal sim-
ilarity search in both web search systems and academic domains [10,[13]. By efficiently transforming
multi-modal data (images, text, efc.) into a collection of compact binary codes, CMH maintains
high-dimensional cross-modal semantic similarity while significantly minimizing computational
and storage costs. Deep cross-modal hashing has achieved remarkable development by leveraging
dual-stream networks or semantic encoding branches based on semantic labels [[14}[17]. However,
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Figure 1: Incomplete labels can severely damage cross-modal similarity learning by reducing paired
samples. For MIRFlickr-25k annotations (left), 35% unknown classes can completely exclude all
negative pairs. For MS COCO (right), even 20% labels under-annotated can fundamentally remove
the negative relationships.

due to limited labour resources, fully supervised annotation becomes impractical for large-scale
datasets [27, 33]]. A realistic compromise would be partial annotation, in which only a subset of
classes are explicitly labeled, while others are marked as unknown. Although facilitating adaptation
to large datasets, this labeling scheme provides significantly reduced semantic supervision. Therefore,
learning with partial annotation has become a significant challenge in multi-label learning tasks.

Furthermore, CMH with partial labels inevitably encounters disrupted similarity learning due to
pairwise uncertainty [27,[22]]. Jointly missing classes cause incomplete labels to not only obscure
class knowledge but also eliminate pairwise similarity by introducing unknown pairs. Among these,
negative pairs constitute the majority and become particularly scarce with the increasing frequency of
unknown labels. As shown in Fig. [I] negative pairs are completely removed even with 35% unknown
labels in Flickr dataset. Therefore, such pairwise uncertainty can severely impair similarity-preserving
hashing. However, existing CMHs desperately rely on clear positive and negative pairs to maximize
supervision. It remains crucial yet unresolved how to accurately perceive potential categories and
restore similarity learning in the task of CMH to prevent semantically uninformative binary codes.

To address the issues of incompleteness, some multi-label image recognition methods have in-
vestigated a feasible solution, i.e., leveraging prior knowledge in large vision-language models
[19 (18l [15}24]. Pre-trained with a contrastive loss on massive image-text pairs, CLIP [28] has shown
its capability to align the global representation of visual and textual modalities with loaded prior
knowledge (modal correspondence, similarity structures, partial semantics, ezc.). Although effective
in many downstream tasks, they are hardly applicable for pairwise similarity recovery in CMH.
Original CLIP’s ability is empirically ineffective for label recovery via class-sample similarity scores.
As revealed in Sec. 4.4] the original CLIP prompt yields an unsatisfactory 68% recovery precision
even on the easier Flickr 30% unknown case, introducing substantial noisy classes and even degrading
the final performance. Therefore, CLIP label recovery for deep CMH remains under-explored.

In this paper, we seek to overcome the aforementioned deficiencies and propose Prompt Contrastive
Recovery for cross-modal hashing with Incomplete labels (PCRIL) by considering the CLIP prior
knowledge of descriptive completeness, which is the ability to measure the completeness of a text
caption for its described image. By selecting anchor class sets, we develop a simple learnable prompt
to encode selected anchor class combinations into CLIP text embeddings. Multiple negative variants
are constructed via editing operations on the anchor set. A prompt contrastive recovery paradigm then
imposes separation gaps between these label subsets. By learning scores conditioned on their sample
modalities, instance-aware class perception is enabled. Thereafter, potential labels are recovered via
a tree search on the learned scores. To enhance hard incomplete samples, different instances’ features
and unknown labels are complementarily mixed. We also introduce an adaptive negative masking
strategy to deal with negative pair scarcity at high missing rates. The main contributions of our work
are as follows:

e We propose a PCRIL framework, which jointly performs semantic recovery and pairwise uncertainty
elimination for efficient cross-modal hashing with incomplete labels. To the best of our knowledge,
there is no prior study on CLIP-based label recovery strategies in cross-modal hashing.

https://doi.org/10.52202/079017-1608 50827



e A novel recovery architecture is proposed to recover the neglected semantic labels and pairwise
similarities. Particularly, a contrastive learning objective between the anchor set and its negative
variants learns instance-conditioned matching scores. A tree search process then leverages the learned
scores to detect potential classes. Meanwhile, a complementary semantic augmentation and an
adaptive negative masking strategy jointly enhance the similarity learning in extreme cases. Thus,
PCRIL can fully restore potential labels and pairwise similarity.

e Extensive experiments verify that our PCRIL can consistently outperform state-of-the-art CMH
methods across a range of incompleteness levels and different benchmarks. Comprehensive analyses
further validate our effective recoverability for incomplete labels.

2 Related Work

2.1 Cross-modal Hashing

Cross-modal hashing (CMH) aims to encode different high-dimensional modalities into a common
space of compact binary codes where modal similarity is preserved for fast and accurate retrieval.
Early machine learning methods, including those by [32, 21} 26| [3]], learn common codes from
encoded features. Though simple, non-deep methods are restricted by two-step training paradigm
and limited in discriminative similarity learning. Jiang et al. [14]] proposed deep cross-modal hashing
(DCMH), introducing a pairwise similarity matrix into deep similarity preservation for the first time.
Li et al. [17] constructed a label net to project labels into a common space with modal binary codes.
To close modality gaps, Gu et al. [11] adopted cross-modal feature attentions with an adversarial
learning scheme for semantic discriminability and modal consistency. Zhang et al. [35] proposes to
preserve multi-level knowledge in CMH with a variational information bottleneck. As efficient feature
learners, pretrained vision-language models have been leveraged in recent works. Tu ef al. [30]
introduced transformer-based CLIP image encoders with selective hash optimization. Liu et al. [23]]
further investigated multi-granularity cross-modal alignment based on vision-language transformers.
These methods rely heavily on the guidance of complete semantic labels for similarity learning, while
they fail to handle the practical incompleteness problem of label annotations in large-scale datasets.

2.2 Learning with Incomplete Labels

Learning with incomplete labels involves only partially known classes, which are a compromise
resulting from inaccessible exhaustive supervision [7]]. Existing studies regarding incomplete labels
mainly focus on the image recognition task. Some works seek to recover learnability upon partial
labels with modified loss functions. Bucak et al. [[1] proposed to learn a modified ranking loss to
alleviate the effects of false negatives while assuming all unknown labels to be negative. Durand et al.
[9] proposed to learn only known labels with the prior knowledge of the label ratios. Cole et al. [6]
proposed to solve the single positive label issue by imposing training constraints on label statistics.
Another type of work investigates lost labels directly. Veit et al. [31] resorted to learning from human
re-annotations to recover original labels. Chu ef al. [4] proposed a variational generative model to
explore data correlations with partial labels. Kim et al. [16] proposed to distinguish exceedingly
large losses of false negatives and reverse them during training. By adopting vision-language models
with rich prior knowledge, Sun et al. [29] proposed a prompt-tuning method with separately learned
positive and negative prompt parameters. Ding et al. [8] further considered constructing a graph-based
label structure in vision-language models to enhance image recognition. In cross-modal retrieval, the
problem is however unexplored. Some methods [27] focus on the problem of entirely missing labels.
Ni et al. [27] and Liu et al. [22] proposed shallow CMH methods that re-predict the labels with
consistency constraints between instances and labels. However, without a fine-grained measurement
of sample-label consistency, their ability for class perception is limited to only distinguish salient
ones.

3 Proposed Approach

3.1 Problem Definition

We focus on image-text hashing, which is prioritized and fundamental. CMH with incomplete labels
learns hash functions on a training set O = {(f;, g, 1;)},, where f; and g; are the image and text
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Figure 2: Our proposed PCRIL consists of two major stages: prompt contrastive recovery and
augmented pairwise similarity learning. The prompt contrastive recovery stage effectively perceives
incompleteness via label prompts to learn contrastive matching scores with modal samples, recovering
informative semantics. The similarity augmentations further eliminate unknown labels through a
complementary blending of samples and recover the scarce negative pairs using an adaptive negative
masking strategy.

modalities of the i-th sample, respectively, and [; is its label vector, which is the ¢-th column in the
label matrix L € {1,0,u}“*¥. Here, C is the number of classes, IV is the number of instances, and
u denotes an unknown value. Hence, a sample class could be positive (1), negative (0), or unknown
(u). A similarity matrix S is derived from L, where s;; = 1 iff f; and g; share at least one positive
label. CMH aims to learn hash functions H! and H" to encode text and image samples into binary
codes b! = sign(H(f;)) € {0,1}¢ and b? = sign(H"(g;)) € {0,1}4, preserving cross-modal
similarity in the Hamming space. Incomplete labels can inject uncertainty in both L and S. To tackle
this, we propose our PCRIL framework in Fig. [2| Herein, a novel learnable CLIP prompt for label sets
is designed to recover potential positive labels in Sec. [3.2] Additionally, an unknown-complementary
sample augmentation and a negative masking strategy are developed in Sec. [3.3|to deal with hard
samples and negative pair scarcity, respectively.

3.2 Prompt Contrastive Recovery

Prompt for Positive Anchors. Prompt finetuning is a
promising solution for lightweight model adaptation. The

typical prompting method for CLIP decorates the class 8
tokens, either with a predefined prefix [28] or a vector of > ¢
learnable tokens [36, 29]. A typical handcrafted prompt 5
template for a single unknown class can be “A photo of &4
a CLS," where CLS is the class name. However, its fixed <&

N

tokens and single-class scope hinder it from capturing
inter-class complexity for label-wise recovery. In pursuit

o
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of separating labels of varied informativeness, we propose
to encode label sets into CLIP embeddings.

Given a sample (f;,g;,l;) with incomplete labels, the
known classes of this instance can be extracted as the pos-
itive label subset K, = {c | I{ = 1} and the negative
one K! = {c | I¢ = 0}. However, directly maximizing
agreement between K’ and modal representations is insuf-
ficient to capture its level of completeness. We quantified

Sorted index of label sets

Figure 3: The sorted frequency his-
togram of unique positive label sets in
MIRFlickr-25k samples at 70% known
labels. This long-tail distribution in-
duces bias for learning because many
rare label combinations in the dataset
are associated with limited samples.
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and ranked the various combinations of labels in Fig. E} As illustrated, certain dominant combinations
can overshadow less frequent cases in the current CMH scheme, obscuring their impact on model
fitting. This long-tail distribution of K can induce bias and disable balanced learning. Furthermore,
the number of label sets available is constrained by the samples in the training dataset, which further
restricts the learned correspondence. Therefore, we propose to measure semantic completeness
through a contrastive learning paradigm instead, in which we consider an anchor set K} C K ; as

50829



positive instance and encode it into CLIP embeddings. For instance, a typical handcrafted template
can be “A photo of some seagulls flying above the beach." for K, = {seagull, beach} and K,
= {seagull, beach, sky}. It is observed that class names are often surrounded by class-related
prefixes and suffixes. Therefore, we further construct a learnable prompt template. The proposed
prompting operation is formulated as:

P(Ké) = (pheada0-<{pc}’c€Kjl)aptail)
p° = (uf,us,...,u’, , CLS® v{ vs, ..., v5), e))

Y n

where p€ is the specialized learnable prompt for the c-th class, ppeqq € R™ xdf and Ptail € R xdy
are the learnable class-agnostic prefix and suffix, and o (-) represents a random permutation operation.
A specific example of the constructed prompt is given in Suppl. Sec. [A.T]

Negative Subsets and Contrastive Learning. For the selected anchor label set, dropping any positive
class object would degrade its alignment with modalities. The same is true for adding negative classes.
Therefore, we aim to detect potential positive labels among the unknown ones by constructing
negative subsets relative to the anchor set. Three types of negative subsets are constructed by 1)

deleting a class: K;° = K — {s}, 2) joining a negative class in K,: K" = K} U {t}, or 3)
replacing a class by a negative one in K': K%' = K! — {s} U {t}, where s € K and t € K_.
Note that generating a negative set by replacement is equivalent to successively performing deletion
and joining. This variant is introduced to improve model robustness.

To learn a completeness measurement, we define a simple matching score that is compatible with the
CLIP prior:

®Y(K) = E(P(K))"hi/T, ()

where K is a label set, F;(-) and 7 are the CLIP textual encoder and its temperature parameter, h;
represents the average of modal CLIP features E,(f;) and E¢(g;), which is analyzed in Sec.
The contrastive loss between a positive anchor set and a negative variant is formulated as

LYKy, K.) = maz(®'(K,) — ®'(K,) +m,0), 3)

where K, is a negative variant of anchor set K, and m is a margin parameter that separates sets of
different completeness levels. The overall contrastive loss is derived as

N
com =N N (N LKLY+ Y LKL RN + Zﬁ (KL KMY), @)
i=1 KiCK} s€K] teK}
Notably, the only parameter introduced for contrastive learning is the learnable prompts.

Potential Label Tree Search (PLTS). Through con-

trastive learning between label sets, knowledge in the - ( )

scores is supposed to generalize as a hierarchical mea- ’ -3
surement to distinguish potential positive classes in the

unknown set K;, i.e., an anchor (positive) set can be a ‘ ’ o
negative set for another larger anchor set. Therefore, a =2
simple greedy search is designed to recover potential pos- ‘ ‘ ’ I

itive labels. The label search starts with the entire positive [

set K as a node with score ®*(K}). At each step, we =1
search for an unknown class that maximizes the class set @ i
score, and merge it into the positive set. Specifically, we

denote the positive and unknown label sets before the w-th | (1):a. ()=« () {1}
iteration as K (w) and K (w), where K/,(1) = K\ and = (Q):x.y.z. ()<«» () { # }

Ki(1) = K. At the w-th iteration, we try adding each ,
cu € K (w) into K (w) and find the one that maximizes Figure 4: An example of the potential

the score. This process is formulated as label tree search process. Discs represent
label sets.
= arg max ' (K (w) U {eu}) ©)
cy €KY (w)

We then transfer the optimal ¢}, into the positive label set. K} (w) and K,(w) are updated as
Ki(w+1) = K} (w) U{c;} and K},(w + 1) = K},(w) — {c}. This process continues with the
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updated sets at iteration w + 1 to further discover potential labels. The termination condition is
designed as ®°(K (w*) U {c}}) < ®'(K}(w*)) + %2, which ensures monotonic increase in the
scores. Suppose it ends at w*-th iteration, the search stops with a final score of ¢ = ®%(Q), where
Q= K;;(w*) is the final recovered positive set. For a specific example, Fig. |[4|demonstrates a typical
PLTS process. An optional choice is to further calculate a pseudo label for each of the remaining
unknown classes ¢, by I{* = H(®"(Q U {c,}) — ¢), where H(z) = max(0, min(1,  + £)) is the
hard sigmoid function with a linear window of m.

3.3 Augmentation Strategies for Handling Extreme Cases

Although PLTS can recover substantial positive labels, two issues can remain unresolved in highly
incomplete cases. After recovery, a large portion of unknown labels can still exist. Meanwhile,
negative pairs can become extremely scarce at high unknown ratios. To enhance the model for these
cases, we further impose the following two augmentation strategies.

Complementary Semantic Augmentation. As PLTS only recovers positive labels, the unknown
values cannot be fully determined, leaving uncertainty in similarity learning. Therefore, we propose to
eliminate the residual uncertainty by mixing up complementary samples. However, the symmetrical
mixup [34] augmentation can be ineffective because the complementary relationship is asymmetric,
i.e., cases that sample f;’s positive set contains an uncertain class of sample g; but not vice versa.
Hence, we formulate an asymmetric matrix AV > to express sample matching scores as 0i5 =

%, where U[-] sets unknown elements to 1 and others to 0, and P[] (M]-]) sets only positive

(negative) entries to 1, respectively. §; ; measures the proportion of sample i’s unknown categories
that are positive for sample j. This asymmetrical score evaluates the volume of semantic certainty that
sample j can transfer into the semantic background of sample 7. Based on the scores, an asymmetric
mix-up is introduced for a sample feature f; and its complementary counterpart f; = f; with
label I7 = l;, where j is selected randomly from the top-K indices on the i-th row of A. The
complementary mix-up is represented as

{ .fi:)\vfi"i_(l_)‘v)f: (6)
L= XPlli]+ (1= A)PL]

where Y (\!) is a learnable coefficient for the image (text) modality, determining the asymmetry in
the complementary mix-up. The formula for the text modality is similar. Through this augmentation,

pairwise relationship s;; is adjusted as deterministic values by s;; = 1 — Hil (1- l;cl;c)

Adaptive Negative Masking. As illustrated in Fig. [I] negative pairs can disappear drastically at
high unknown ratios. The existence of negative pairs is especially vulnerable yet significant in
learning robust cross-modal relationships. Naive solutions such as AN (Assume Negative) [0] set
all unknown values to 0, introducing excessive noisy pairs that can mix up with the true negative
pairs and inhibit the model fitting. Therefore, we propose adaptive negative masking to restore a
correct number of negative pairs. Through semantic augmentation, a real-valued similarity matrix
SP e ([0,1] U {u})P*P is constructed between unknown pairs with batch size D. By denoting
U = U[SP] and the ratio of ]} = 0to S} > 0as r = IN[SP]|/|P[SP]], the similarity matrix is
adjusted adaptively as

S r>t
Dx __ =
S { (1-U)oSP + Ro(UoSP) r<t ' @

where o denotes the Hadamard product, R € {0, 1}”*? is a random mask that sets unknown values
to O for a number that resets r = ¢, and ¢ is a threshold close to 0 that prevents noisy similarity
structure while slightly enabling AN when there are few negatives. To learn hash codes with these
augmentation strategies, the overall hash optimization is defined in Appendix Sec. [A.7]

4 Experiments

4.1 Experiment Settings

We evaluate our method on the MIRFlickr-25k (Flickr) [12], MS COCO (COCO) [20], and NUS-
WIDE (NUS) [5] datasets. We use the frozen ViT-B-32 CLIP as backbones for all methods and set
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Table 1: The MAP comprisons on Flickr, NUS, and COCO datasets with state-of-the-art CMH
methods by different known ratios (30%, 50%, and 70%). We report performance rises in red
compared to the second-best results. *: cited results with their original experiment settings. Our
proposed PCRIL significantly outperforms both deep and non-deep CMH methods, verifying the
ability to recover efficient similarity learning.

Dataset  Method 30% known labels 50% known labels 70% known labels Mean
it t— 1 Mean iat t—1 Mean it t—1i Mean
DCH [32 69.8 65.9 67.8 75.7 70.2 72.9 71.5 72.1 74.8 71.9
SDMCH [26] 64.3 67.2 65.8 66.0 739 70.0 69.5 76.0 72.8 69.5
SCRATCH [3] 75.8 68.7 722 82.1 74.6 78.3 85.0 77.8 81.4 713
Flickr WCHash [22]* - - - - - - 62.5 62.6 62.6 -
DCMH [14] 63.0 65.2 64.1 67.4 70.2 68.8 71.3 74.5 72.9 68.6
SSAH [17 58.8 67.6 63.2 69.2 73.3 71.3 753 77.4 76.4 70.3
AGAH [11] 59.8 63.4 61.6 784 76.6 71.5 84.1 79.2 81.6 73.6
DCHMT [30] 64.1 64.0 64.0 783 75.6 76.9 81.0 80.0 80.5 73.8
PCRIL (ours)  78.5(2.7) 75.4(6.7) 77.04.8) 854(3.3) 79428 824@4.1) 87525 82222 84933 8144.1)
DCH [32 65.1 66.1 65.6 65.2 66.9 66.0 67.1 68.2 67.6 66.4
SDMCH (26! 55.7 59.9 57.8 58.9 61.2 60.0 59.3 62.2 60.7 59.5
SCRATCH [3] 355 64.1 49.8 28.9 67.4 48.2 32.6 68.9 50.7 49.6
NUS DCMH [14] 29.5 31.3 304 324 334 329 36.3 355 359 33.1
SSAH [17] 359 453 40.6 384 57.1 478 46.7 64.0 553 479
AGAH [11] 46.7 49.7 48.2 58.8 49.9 54.4 66.7 67.2 66.9 56.5
DCHMT [30} 35.7 35.0 354 57.6 55.9 56.7 67.3 67.4 67.4 53.1
PCRIL (ours) 67.2(2.1) 70.1(4.00 68.73.1) 68.9@3.7) 7043.00 69.73.7) 704@3.1) 72334 7143.8 69.93.5
DCH [32 60.9 61.1 61.0 63.0 63.4 63.2 64.2 64.9 64.5 62.9
SDMCH [26] 53.7 55.5 54.6 57.3 56.9 57.1 58.5 58.7 58.6 56.8
SCRATCH [3] 335 59.1 46.3 34.6 60.9 47.8 32.6 63.4 48.0 474
Ccoco DCMH [14 49.2 47.0 48.1 523 53.1 52.7 529 53.1 53.0 51.3
SSAH [17] 32.0 40.4 36.2 31.1 50.5 40.8 36.7 55.6 46.1 41.0
AGAH [11] 54.2 56.1 55.1 58.5 58.8 58.6 61.2 62.4 61.8 58.5
DCHMT [30 44.8 443 44.5 52.1 49.5 50.8 62.0 61.5 61.8 524

PCRIL (ours) 62.8(1.9) 63.5(24) 63.2(22) 64.0(1.00 64.7(1.3) 644(1.2) 67.8(3.6) 68.8(39) 68.3(3.8 653(2.4)

Table 2: The ablation study results on Flickr, NUS, and COCO datasets. B: Baseline CMH method,
IU: ignoring unobserved pair relationships, AN: assuming all unknown pairs to be negative, ANM:
adaptive negative masking, PCR: prompt contrastive recovery, and CSA: complementary semantic
augmentation.

Method Flickr NUS COCO
30% known  50% known 70% known  30% known  50% known 70% known 30% known  50% known  70% known
B w/1U [9 575 73.4 82.8 62.4 63.3 67.5 49.6 50.4 45.9
B w/ AN [6. 68.9 76.6 81.5 51.1 53.8 66.2 458 54.3 59.8
B w/ ANM 75.0 78.1 83.8 60.6 60.7 68.1 59.9 61.4 65.1
B w/ ANM + PCR 76.3 82.1 84.4 68.0 69.4 70.9 62.4 63.7 67.2
B w/ ANM + PCR + CSA 77.0 824 84.9 68.7 69.7 71.4 63.2 64.4 68.3

the main hash bit as 32. Details regarding datasets, implementation, evaluation settings, and results
for other bit configurations are presented in Appendix Sec. [BJand Sec. [C|

4.2 CMH with Incomplete Labels

To validate the model’s effectiveness on CMH with incomplete labels, we illustrate mAP comparison
results in Table[I] Our model consistently achieves superior results across various known ratios on all
benchmarks. We clarify that there is no prior deep CMH method specifically designed for incomplete
labels. Therefore, we have to use regular CMH baselines by setting different missing ratios but
keeping other settings equivalent. Compared to shallow methods, our method achieves higher results,

Table 3: Ablation results for comparison on the conventional AN setting. Results on the Flickr and
COCO datasets are reported.

Flickr COCO
Method
30% known  50% known  70% known  30% known  50% known 70% known
B w/ AN 68.9 76.6 81.5 45.8 54.3 59.8
B w/ AN + CSP 68.8 76.2 82.3 46.4 54.1 59.7
B w/ AN + PCR 75.0 79.4 82.9 55.7 58.2 65.8
B w/ AN + PCR + CSA 75.3 80.2 83.5 58.6 59.6 65.2
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Table 4: Prompt construction variants compared on Flickr dataset. The MAP and precisions of
recovered positive labels (PRECISION) are reported. Our PCRIL can successfully marry multi-label
information with CLIP prior knowledge (compared to Conventional) and yield learned prompts for
instance-label matching (compared to Phrasal).

Variant Prompt Type MAP PRECISION

Learnable Multi-label  30% known  50% known 70% known Mean 30% known 50% known 70% known Mean
Phrasal v 75.0 76.9 74.0 75.3 65.5 68.2 68.3 67.3
Conventional v 76.3 81.8 82.8 80.3 86.0 89.6 87.0 87.5
Ours v v 77.0 82.4 84.9 814 87.4 89.6 92.0 89.7

Table 5: Prompt search variants compared on Flickr and NUS datasets. Compared to single-modal
recovery, our proposed PLTS can perform instance-level matching to produce more precise results.
The one-step all variant validates the effectiveness of our recursive label recovery in PLTS.

. MAP PRECISION
Dataset ~ Variant
30% known  50% known  70% known Mean 30% known 50% known 70% known Mean
By image 78.2 79.2 85.3 80.9 86.2 86.6 88.1 87.0
Flickr By text 74.3 76.6 84.4 78.4 70.1 80.2 77.2 75.8
One-step all 64.6 774 82.9 75.0 21.0 384 54.6 38.0
Ours 77.0 824 84.9 814 874 89.6 92.0 89.7
By image 51.3 65.4 68.5 61.7 78.4 76.0 74.9 76.4
NUS By text 50.8 65.1 69.3 61.7 69.4 69.1 68.9 69.1
One-step all 48.4 64.9 67.5 60.2 12.1 23.7 27.1 21.0
Ours 68.7 69.7 714 69.9 79.5 78.1 80.3 79.3

especially on Flickr, with a 4.4% improvement on average, validating the representation ability of
our method. In comparison with deep CMH methods, our model enjoys greatly improved results
on all three datasets, with a mean 8.96% mAP enhancement. Some deep CMH methods perform
worse with incomplete labels especially on the NUS dataset, indicating their collapsed similarity
learning. In comparison with DCHMT, which also adopts CLIPs as backbones, the proposed PCRIL
obtains an average of 12.13% mAP improvement on all datasets. These results demonstrate that our
model can consistently obtain superior results across unknown ratios and benchmarks, validating the
effectiveness of our PCRIL in label recovery and similarity calibration for CMH.

4.3 Ablation Study

To verify the validity of each module, we conduct an ablation study of the proposed method by
comparing it with 4 variants shown in Table E] on the Flickr, NUS, and COCO datasets, and 4
module variants exclusively on the conventional AN setting. In contrast with the two conventional
baselines (IU and AN), our ANM-enhanced baseline surpasses them by 6.66% and 6.09% mAP,
respectively. This verifies the effectiveness of the balanced pairing strategy. By adding PCR, the
model’s performance is significantly improved by an average of 3.52%, validating its ability to
detect incompleteness and recover labels. Although initial recovery by ANM and PCR is substantial,
by adding CSA, the model further gains consistent improvements of 0.60% on average across all
datasets, verifying its ability of pairwise similarity augmentation. The two modules together make
a joint improvement of 4.12% on average, while the entire PCRIL rescues more than 10% of mAP
from unknown labels. In ablation studies within the AN setting (Table[3)), our proposed components
consistently deliver stable improvements, highlighting PCRIL’s ability to overcome limitations
inherent in traditional training schemes. These results have comprehensively verified the effectiveness
of PCRIL for CMH with incomplete labels.

4.4 Model Analysis

Prompt Construction. We analyze our proposed label prompt learning by comparing it with two
variants: 1) phrasal: a handcrafted prompt in CLIP’s original template of “A photo of CN“*, CN¢2,
..., and CN°"." is constructed to directly perform recovery search, and 2) conventional: averaging
single-class prompt embeddings to acquire the label prompt embeddings. The recovery results are
shown in Table ] Compared with handcrafted prompts, our learnable prompts achieve a 6.1%
mAP enhancement and improve the restoration precision by 22.33%, verifying the effectiveness of
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Figure 5: The recovered classes and scores of 3 case images w.r.t. search iterations. For brevity, we
only show top-3 results at all steps. The recursive recovery of potential classes results in successive
increases in the set scores.
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Figure 6: Recovery of labels and deterministic pairs. The left 2 subgraphs: the (a) recall and (b)
precision of recovered positive classes w.rf initial epochs of prompt tuning. The right 2 subgraphs:
pairwise similarity recovery by (c) complementary semantic augmentation and (d) prompt contrastive
recovery respectively, on the Flickr and NUS datasets. ‘p.’, ‘n.’, and ‘u.” stands for positive, negative,
and unknown, respectively. Dashed lines are corresponding results w/o applying our modules.

learned prompts. Compared with conventional prompts, our method achieves consistently improved
performances, further validating the effectiveness of the structural prior utilized in our method.

Prompt Search for Recovery. We validate our prompt recovery with three variants: 1) image: label
recovery search with the image modality only, 2) text: label recovery search with the text modality
only, and 3) one-step all: directly recovering pseudo-labels on the initial positive label set K;,(l)

without searching, which means @ = K/ (1). The results are shown in Table Compared with
image and text recoveries respectively, our recovery with both modalities displays about 3% and
more than 10% improvements. This reveals our model’s ability to evaluate the joint completeness in
label prompts. Performing “one-step all" recovery, it hardly recalls true positives but still achieves
acceptable mAPs, validating the latent hierarchical structure of the matching scores. It can be inferred
that the prompt search works by peeking at scores for confident classes that aid completeness the
most. Meanwhile, we plot how the number and precision of recovered positives change through the
beginning epochs w.r.. modalities in Fig. [f| (a-b). The precision rises with the growth of epochs while
recalling more ground-truth labels, validating that the prompt gradually separates more complete
and more incomplete semantic descriptors to make true positives emerge. Recovery with a single
modality can introduce a drop in precision, where the text modality has especially low results of
77.16% mainly due to its nature of partial reference to labels. However, recovery with both modalities
surprisingly boosts the precision to achieve a more effective 89.78%.

Matching Scores Visualization. To further analyze the property of descriptive completeness, we
illustrate some case images’ matching scores during the PLTS process in Fig. 5] In the results,
the recovery of a potential positive class is accompanied by an increase in the set score, indicating
that the recovered label set is more consistent with the instance. For example, the score increases
from the original 25.38 to its best 31.76 by successively recalling sky, clouds, and sunset for the
bottom-left instance. We can observe that class rankings can vary at each step, indicating that the
PLTS can generate more precise measurements of multi-label complexity. Meanwhile, though not
recovered as positives, the remaining scores (in orange discs) of true positives can still surpass their
anchors from the last iteration, validating their effectiveness as pseudo-labels.
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Enhancement of Pairwise Similarity. As shown in Fig. [I} CMH can suffer from severe pairwise
uncertainty. By adopting our proposed prompt contrastive recovery and complementary semantic
augmentation, respectively, the similarity structure is efficiently recovered in Fig. [6] (c-d). The
complementary semantic augmentation greatly alleviates the pairwise scarcity. For situations at
approximately 50% unknown where negative pairs are completely lost, a substantial 20% proportion
of negative pairs are reconstructed, ensuring its ability to rescue similarity learning at high unknown
ratios. Meanwhile, the prompt contrastive recovery significantly improves the distribution of both
positive and negative pairs via its pseudo-labeling, reducing an average of 80% uncertain pairs,
verifying its strong separability for completeness of labels. Generally, these two modules ensure the
method can learn CMH on sufficient data pairs with clear relationships.

5 Conclusion

In this paper, we identified the problem of incomplete labels and the consequent collapse of similarity
learning in CMH. To overcome these challenges, we introduced Prompt Contrastive Recovery for
CMH with Incomplete Labels (PCRIL), a novel framework that jointly recovers semantic classes and
pairwise similarity. This is the first CMH method to enable prompt learning with incomplete labels.
Specifically, by constructing contrastive learning with a hierarchical label prompting method, prompt
contrastive recovery learns the completeness of label descriptors and detects lost labels. Moreover,
complementary semantic augmentation eliminates the sparsity of semantic pairs via a complementary
feature blending strategy to restore similarity. An adaptive negative masking strategy is adopted to
further balance the pairwise hashing. Extensive experiments on widely used benchmarks validated
that PCRIL can significantly outperform state-of-the-art CMH methods with different partial levels.

Limitations. This study highlights the effectiveness of the vision-language model prior in perceiving
label completeness, specifically for cross-modal retrieval. However, we note that it does have
limitations. The prompt construction currently relies on the pretrained CLIP model with a limited
number of text tokens, which hinders its ability for richly labeled samples. However, annotation
length exceeding the CLIP capacity is extremely rare in practice. Meanwhile, the learning of PCR
relies on sufficient multi-labeled samples. Single positive cases [6] may infrequently exist in real
applications. We suspect that allowing unknown labels in the anchor sets could reactivate the proposed
paradigm.
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Appendix

In the following sections, we provide detailed information about our model (Sec. [A) and experimental
settings (Sec. [B]), and offer more extensive validations (Sec. [C) of our proposed PCRIL.

A Model Details

A.1 Constructed Prompts

We have formulated our constructed prompts in Eq. (I). Here, we describe a specific example of
prompt construction. Assume we have a sample with a positive label set {cat, wall, house} and a
negative one {dog, plane}. A naive textual prompt can be formulated as ‘A photo of a cat, next to
the wall of a house.’, while our prompt is constructed by selecting an anchor subset (e.g., C,={wall,
house}) to form P(C,) = (Phead, P*°"*%, P**, Dyair) with randomly shuffled class order by o.
Then, we can directly construct two negative prompts P(C}) = (pread, P, Prair) and P(C?) =
(Phead, P8, house, p™'1 py,i1) where the negative sets Cp,={wall} and C,,={dog, house, wall}
are formulated by adding the negative class ¢ = dog and removing the positive class s = house,
respectively. We can also construct another negative prompt P(C?) = (pread, PP***°, p°%, Drail)
by replacing class wall with the negative one plane in C,. Both positive and negative classes are
uniformly selected in our experiments. We illustrate our prompt construction and contrastive learning

in Fig. [7}
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Figure 7: The motivation and relationship of different components in our proposed prompt contrastive
recovery.

A.2 Optimization

To learn hash functions, the general CMH methods [[14.|17] optimize the following minimum negative
log-likelihood objective:

in —1 &9Vt a
min —log pr,(S5|®;6") + L
st. Be {-1,1}"*V, (8)

where £9 = |H(F) — B||% + |H!(G) — BJ||% is the quantization terms and H"' are the visual
and textual hash layers. By defining the conditioned probability of the similarity as

v 0(ij), sij =1
Pm (83516353 0°") = { 1(? ?s)(gb,;j), sy =0 ©)
where ¢;; = S(H(f;)) " (H'(g;)) and 6(¢) = Hﬁ’ the objective function learns to align the

inner-product similarity of hash codes with the ground-truth similarity values.

However, the estimated ground-truth similarity in our work, either generated by recovered pseudo
labels or by complementary blending, does not apply to the above probability due to its non-binary
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Algorithm 1 Optimization Algorithm for PCRIL

Require: Training dataset O.
Ensure: Optimal discrete hashing codes B, prompt variables 67, modal hash-net parameters 8, 6°.
1: Initialization
Randomly initialize learnable parameters.
Configure the learning-rate j1; the mini-batch size D; iterations E'P), ¢ and E Py,

while iter; < EP, ne: & not converged do

Sample a minibatch (f;, g;, li)i’;l;

Sample an anchor set K }1 for each label I; and generate its negative sets K i’s, K;’t, and K j”,

Compute loss £ and update 07;
end while
Recover labels and pseudo labels by prompt search stated in Sec. [3.2}

while iter; < EPj,sn & not converged do

9:  Sample a minibatch (f;, g;, li)izl;

10:  Sample and complementarily mix up instances with Eq. (6);

11:  Compute similarity supervision and randomly transfer unknown pairs as negatives by Eq. (7);
12:  Compute loss £"**" and update 8*;

13:  Update code B with B = sign(H"(F) + H'(Q))

14: end while

property. Therefore, we formulate a learnable objective by leveraging the Kullback-Leibler divergence
as

it Dict (pa(S) [pm (S];67)) + L1

s.t. pa(sij) = { 1—38;5, s853=0
Be {_17 1}r><N, (10)

where Dkr,(+|-) is the Kullback-Leibler divergence, and §;; € [0, 1] is the estimated ground-truth
similarity. Taking Eq. (9) into account, the final hashing objective is derived as

=1y

N N

: hash __ N sim

GI”I}tl,nB £ - (X;X;H[s,] # U}Eij ) + L9
s.t. B € {-1, 1}T><N_

(1D

where Ef}m = log(1 + e%i) — 3;;¢;;. The detailed batch-wise learning process for PCRIL is
displayed in Algorithm [T}

B Experimental Settings

B.1 Datasets

We evaluate our method extensively on three widely employed benchmarks for CMH, namely,
MIRFlickr-25K (Flickr)[[12], NUS-WIDE (NUS)[5]], and MS COCO (COCO)[20]. Flickr consists
of 20,015 image-text pairs that belong to 24 semantic classes in which 15% are annotated as
positive. NUS is a large-scale cross-modal dataset with about 300, 000 pairs of images and texts in
80 categories. The most frequent 21 categories are selected to form a labeled set where 10% are
positive. COCO is a cross-modal dataset consisting of about 120, 000 image-text instances associated
with 80 semantic classes, among which confirmed positives make up only 3.6% of label elements,
making it a rather harder dataset as shown in Fig. |1] As we stated in Sec. we randomly select a
given proportion of binary labels and mask them as unknown during training, and unmask them for
retrieval inference.
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Table 6: Data split for Flickr, NUS, and COCO in our experiments.
Dataset Test (query) Dataset  Train Total

Flickr 2,000 18,015 18,015 20,015
NUS 2,085 193,749 30,000 195,834
COCO 5,000 82,081 25,000 87,081

Table 7: The analysis for hyperparameters’ impact on the model’s performance on the Flickr dataset.
Evaluated parameters contain the number of complementary samples (K) for each sample and the
value of margin (m) used in prompt contrastive learning and PLTS process.

K=10 m = 1.00

m MAP PRECISION (%) K  MAP
0.25 0.826 86.76% 5 0.823
0.50 0.827 88.82% 10 0.824
1.00 0.824 89.61% 20 0.822
2.00 0.820 90.78% 50 0.823
3.00 0.816 91.54% 100 0.825
4.00 0.817 91.29% 200 0.826
5.00 0.814 91.81% 500 0.824

B.2 Data Split

For the three evaluated datasets, we select larger training subsets compared to general CMH methods
to better approximate the real incomplete label scenario. The statistics of our evaluated datasets are
summarized in Table[6] All experiments conducted have adopted this same configuration.

B.3 Implementation Details

We simply adopt publicly available ViT-B-32 based CLIP backbones and frozen weights for both
image and text feature encoders of our PCRIL and other compared methods. Upon them, two 4-layer
MLPs with the tanh function as the last activation project the 512-dimensional image and text CLIP
features into 32-bit binary codes, respectively. Other layers use ReLU as the activation function. The
MLP layer dimensions are 512-1,024-2,048-512-32 from input to output. The MLP parameters are
initialized with normal distributions and optimized with Adam optimizers for each modality. The
learning rate is 10~%- for image and 102 for text.

For the label prompt encoder, we encode the prompts as text CLIP features and only tune the
parameters in the prompts. These parameters are randomly initialized with a normal distribution.
For prompt learning, we use the Adam optimizer with a learning rate of 10~*. During training,
we finetune the prompt and MLP parameters while keeping the weights of CLIP encoders fixed to
preserve prior knowledge.

We set the number of learnable tokens, specifically n, m, n,, and m,, as 2 for simplicity. We
empirically set £ = 0.01 as the ANP threshold and search for the best values for the margin m and the
top K number, which are analyzed in Sec. We run all our experiments with 2 NVIDIA 2080ti
GPUs.

B.4 Evaluation Settings

We evaluate the model effectiveness w.r.t. a range of known ratios. From slightly incomplete to
almost untrainable, the selected ratios are 70%, 50%, and 30%. To evaluate the retrieval ability of
CMH models, we leverage the mean average precision (mAP) as our evaluation metric following
common CMH works. When further analyzing our method in Sec. .4]and Sec. [C| we also show the
precision of recovered positive labels as evidence.
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Figure 8: The heatmap case visualization of the learned prompt net output. In every example: left:
untrained prompts; right: trained prompts. Our learned prompts contrastively learn to attend to
objects of potential classes compared to the untrained prompts.
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Figure 9: The t-SNE visualization for the binary codes in the baseline (AN) and our PCRIL. Colors
correspond to classes. The compact clusters of semantically similar sample points verify our effective
learning of discriminitive hash codes.

C More Experimental Analyses

C.1 More Results for CMH with Incomplete Labels

We further validate PCRIL for CMH with incomplete labels on the IAPR TC-12 dataset. As shown
in Table [§] stable improvements are achieved especially with fewer known labels, validating the
effective label recovery and hash learning of the proposed method.

Table 8: Comparison results on the IAPR TC-12 dataset.

Known ratios 30% 50% 70%
i—»t t—i mean i—t t—i mean i—t t—1i mean

SSAH 31.5 352 334 331 453 392 423 483 453
DCMHT 39.1 393 392 480 478 479 567 559 563
PCRIL (ours) 45.3 456 455 492 488 490 569 554 56.2

C.2 Hyper-parameters

We further analyze the contrastive margin parameter m and the complementary blending top-£ in
our work. The results in Table [7]demonstrate that our method is generally non-sensitive to parameter
changes. Although it obtained a slightly lower recovery precision, the proposed prompt contrastive
recovery can achieve its best performance of 82.7% mAP at a lower margin m = 0.50 by recalling
more positives. Higher margins prioritize precision over recall and result in a drop in the overall mAP
performance. When fixing m, the model achieves stable results around 82.4% mAP for different
top-K values.
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Table 9: Comparison with SOTA CMH methods at the hash code lengths of 16, 32, and 64 on Flickr.
Our PCRIL can perform consistently better across various code lengths.

#Bits  Method 30% known 50% known 70% known
i+t t—i Mean i—t t—i Mean i—t t—i Mean
AGAH 720 699 710 792 757 775 811 773 792
16 DCHMT 68.5 68.1 683 79.1 77.1 78.1 833 784 809
PCRIL (ours) 77.7 756 767 833 772 803 869 79.6 833
AGAH 59.8 634 616 784 766 775 841 792 81.7
32 DCHMT 64.1 640 641 783 756 77.0 81.0 80.0 80.5
PCRIL (ours) 785 754 770 854 794 824 875 822 849
AGAH 61.1 672 642 635 667 651 846 809 828
64 DCHMT 723 71.1 717 773 756 765 789 768 719

PCRIL (ours) 79.5 76.5 78.0 851 77.7 814 885 808 84.7

C.3 Completeness Attention Visualization

By treating each step of searching as a classification task, we list several case images in Fig. [§] with
their feature heatmaps overlaid, which are generated with the ResNet-50 image backbone. From the
results, we can observe that the learnable prompts successfully steer the model prior to be sensitive to
potential classes. By attending more to the unlabeled object, the trained model can precisely detect
incompleteness in label prompts, verifying its effectiveness in semantic detection and recovery.

C.4 Feature Visualization

We compare the t-SNE results of learned binary features with baseline outputs in Fig. [9} In the results,
our CMH learning with recovered semantics can gather hash codes of similar samples into compact
clusters. Our PCRIL generates semantically more discriminative codes than the baseline method,
hence achieving higher performance.

C.5 CMH of Different Code Lengths

We compare our method with others at 16 and 64 bits in Table@} From the results, PCRIL is validated
to perform consistently well with mean mAP values across hash bits. Meanwhile, larger bits often
produce higher average performance for CMH with incomplete labels, which is consistent with cases
in fully labeled CMH.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes a novel prompt contrastive recovery method for cross-
modal hashing with incomplete labels and validates its superior recovery ability through
extensive experiments, accurately matching the main claims in the beginning.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

» The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

https://doi.org/10.52202/079017-1608 50843



Answer: [NA]
Justification: Non-theoretical paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture is fully described in the main paper. The implementation
details are briefly introduced in the main paper and fully disclosed in the supplementary
sections. Source code can be found in the supplementary materials for reference.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided code and instructions about data and code in the supplemen-
tal material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We briefly notify the key information of datasets and backbone settings in the
main paper while provide full experimental details in the supplementary material.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although our results are acquired by averaging multiple runs, it’s too computa-
tionally expensive to run enough times and the space to put error bars is too limited. Various
original results need to be presented and they already occupy a significant portion of the

paper.
Guidelines:
» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computation resources used in our experiments in the supplemen-
tary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research in the paper fully conforms with the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Although our paper tackles the incomplete labels which is related to the
robustness of models, there is no direct association to societal aspects.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper solves incomplete labels in cross-modal hashing and does not have
these risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:
Justification: The CLIP model (MIT License) and the three datasets are well cited and

introduced in our paper. However, these datasets contain internet images with custom
licenses (in CC) and licenses we were unable to find.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The released code is well documented with a codebase repository link.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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