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Figure 1: MMScan provides the largest ever multi-modal 3D scene dataset with 6.9M hierarchical
grounded language annotations, covering holistic aspects on both object- and region-level.

Abstract

With the emergence of LLMs and their integration with other data modalities,
multi-modal 3D perception attracts more attention due to its connectivity to the
physical world and makes rapid progress. However, limited by existing datasets,
previous works mainly focus on understanding object properties or inter-object
spatial relationships in a 3D scene. To tackle this problem, this paper builds the
first largest ever multi-modal 3D scene dataset and benchmark with hierarchical
grounded language annotations, MMScan. It is constructed based on a top-down
logic, from region to object level, from a single target to inter-target relation-
ships, covering holistic aspects of spatial and attribute understanding. The overall
pipeline incorporates powerful VLMs via carefully designed prompts to initialize
the annotations efficiently and further involve humans’ correction in the loop to
ensure the annotations are natural, correct, and comprehensive. Built upon exist-
ing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M
meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M
diverse samples for 3D visual grounding and question-answering benchmarks. We
evaluate representative baselines on our benchmarks, analyze their capabilities in
different aspects, and showcase the key problems to be addressed in the future.
Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual
grounding and LLMs and obtain remarkable performance improvement both on
existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks
will be available at https://github.com/OpenRobotLab/EmbodiedScan,
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1 Introduction

Multi-modal 3D perception is a crucial capability needed by embodied agents and has been extensively
studied [12} 16,28}, [15,50]]. As Large Language Models (LLMs) have had great success in recent years,
integrating them to build 3D-LLMs is an inevitable trend. However, previous 3D-LLMs [24} 50, 23|
41]) can only access object-level datasets [34] or existing limited multi-modal scene datasets [[12}16}135]
71, thus being constrained to object-level understanding and the recognition of spatial relationships
between objects. In contrast, our 3D world has complex hierarchies and rich contexts, suggesting that
current 3D-LLMs do not meet our expectations. It urges us to build a comprehensive multi-modal 3D
dataset and benchmark to improve the training and evaluation of these models.

To address this problem, this paper aims to build a holistic multi-modal 3D dataset and benchmark at
the scene level. Prior works have focused on specific tasks such as 3D visual grounding [[12} 6] and
question-answering [7, 35] through rule-based or free-form human labeling, resulting in annotations
that are either limited to inter-object spatial relationships [6, 47] or influenced by annotators’ biases.
Recent efforts [57, [29] to expand 3D-language annotations using VLMs have improved scalability
but fall short in ensuring correctness and comprehensiveness. Moreover, current annotations lack
hierarchical scene structures with fine-grained grounding information, leading to inefficient training
for 3D-LLMs and suboptimal instruction following performance.

In contrast to previous works, we introduce a top-down 3D-language annotation logic and present
the largest ever multi-modal 3D scene dataset (Fig. [T), MMScan, featuring hierarchical language
annotations grounded in different granularities of scene context. Constructed using VLM-initialized
and human-corrected meta-annotations, the process systematically decomposes complex 3D scenes
into region- and object-level instances for comprehensive spatial and attribute annotation. These
meta-annotations comprise 1.4M captions over 5k existing real-scanned scenes, 109k objects, and
7.7k regions, forming the basis to produce samples for benchmarks and training.

Given these meta-annotations, we establish two multi-modal 3D perception benchmarks: visual
grounding and question-answering. All the samples are generated following two streams, a single
target and inter-target relationships and 5 sub-classes (Fig. [3) for different aspects, resulting in 1.28M
and 1.76M samples on each benchmark, respectively, to evaluate the model’s capabilities from
various aspects. In addition, the retained correspondence information of meta-annotations allows us
to seamlessly integrate them into scene-level captions. All these caption data, as well as benchmark
samples, can serve as a valuable resource for training 3D grounding and large language models.

We evaluate representative baselines on our benchmarks and discuss emerging challenges. Specifically,
the performance of visual grounding models is much lower than existing benchmarks, indicating
the difficulty of understanding complex prompts that entangle comprehensive spatial and attribute
understanding. Including the image modality to enhance semantic understanding and improving the
selection of candidate objects are promising directions. For the question-answering benchmark, we
observe unsatisfactory results of current 3D-LLMs on our benchmark and a significant improvement,
up to 25.6% accuracy, using our data for instruction tuning. Furthermore, we leverage MMScan’s
captions to train grounding and 3D-LLM models, resulting in a 7.17% AP increase and state-of-the-art
performance on existing visual grounding and question-answering benchmarks, more importantly,
enabling a much better instruction following performance in the wild.

2 Related Work

Multi-Modal 3D Scene Datasets. Despite the availability of various 3D scene datasets ranging from
the early SUN RGB-D [44] to more recent large-scale ones [21, 19} 146, [11}/42], there remains a scarcity
of datasets with multi-modal annotations that focus on language-grounded 3D scene understanding.
Predominantly, earlier efforts like ScanRefer [12]], ReferIt3D [6], and ScanQA [7] have been centered
on ScanNet, pioneering the way of human annotations and template-based generation. SQA3D [35]
further emphasizes the role of ’situation” in the context. As subsequent efforts, RIORefer [36] and
ARK:itSceneRefer [|32] are similar to ScanRefer but focus on 3RScan and ARKitScene. However,
most of them are still limited in amount and scene diversity. Recent initiatives began to pursue scaling
up such 3D-text data pairs to push multi-modal 3D learning towards the next stage. For example,
3D-VisTA [57] generates scene descriptions from existing 3D vision-language tasks, templates,
and GPT-3 to obtain ScanScribe for pre-training. EmbodiedScan [47] and SceneVerse [29](real&
synthetic) either collect more scenes or annotate more objects, scaling up annotations to millions.
However, since there are only object annotations in previous scene datasets, all these works lack
explicit hierarchical information in 3D scenes, i.e., different granularities of grounding entities.
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Dataset \ #Scans  #Language  #Tokens Correspondence Focus Annotation

ScanRefer [12] 0.7k 11k 1.18M Sent.-Obj. Natural Human
Nr3D [6] 0.7k 42k 0.62M Sent.-Obj. Natural Human
Sr3D [6] 0.7k 115k 1.48M Sent.-Obj. OO-Space Template

ScanQA [7] 0.8k 41k - Sent.-Obj. QA AutoGen+Human
SQA3D [35] 0.7k 53.8k - Sent.-Obj. Situated QA Human
ScanScribe [57] 1.2k 278K 18.49M Sent.-Obj. Description GPT
Multi3DRef [52] 0.7k 62K 1.2M Sent.-Multi-Ob;j. Multi-Ob;. GPT+Human
EmbodiedScan [47] 5.2k 970k - Sent.-Obj. OO-Space Template
RIORefer [36] 1.4k 63.6k 0.94M Sent.-Obj. Natural Human
ARK:itSceneRefer [32] 1.6k 15.6k 0.22M Sent.-Obj. Natural Human
MMScan (Ours) 5.2k 6.9M 114M Pharse-Obj./Reg. Holistic GPT+Temp.+Human

Table 1: Comparison with other multi-modal 3D real-scanned scene datasets. “Sent.”, “Obj.”, “Reg.”,
“O0-Space” and “Temp.” refer to “Sentence”, “Objects”, “Regions”, “Object-Object Space” and
“Template”. MMScan has significant superiority in both the number and quality of annotations.

Furthermore, most works scale up the annotation without humans in the loop, making them not
suitable to serve as benchmarks for 3D-LLMs. This paper addresses these gaps and introduces the
largest ever multi-modal 3D dataset with comprehensive annotations for both training and benchmarks

(Tab.[T).

Language-Grounded 3D Scene Understanding. Accompanying these datasets, algorithms for
language-grounded 3D scene understanding also make rapid progress. Earlier works focused on
crafting specialized models for individual tasks, and recent research has ventured into consolidating
these tasks or delving into universal frameworks, capitalizing on the powerful capability of LLMs.

Specialists for Conventional Tasks. In the domain of language-grounded 3D scene understanding,
traditional tasks encompass: 1) 3D visual grounding [12} 28} 15, 156], which involves identifying 3D
objects through 3D bounding boxes or segmentation masks using language cues; 2) 3D question-
answering [7, 137, 35]], emphasizing the generation of language-based responses; and 3) 3D dense
captioning [18} 51,130, [16]], highlighting the synthesis of descriptive language for 3D scenes. Early
research was dedicated to refining individual frameworks [28 53] or modules [[15} 56, 45] for these
tasks, with some recent efforts exploring task unification [10} [13]] and pre-training strategies [57,
31]. Despite these advancements, existing models remain constrained by their task-specific design,
hindering broader applicability.

3D Multi-modal LLMs. The integration of 3D encoders with LLMs to foster versatile multi-modal
3D intelligence represents an emerging paradigm. Initial efforts [50} 23} 40, 41]] have predominantly
addressed object-level 3D understanding, leveraging ample 3D-text pairs and simpler configurations.
Pioneering work in scene-level comprehension includes 3D-LLM [24], which utilizes pre-trained 2D
VLM features, and incorporates positional embeddings and location tokens. Subsequent approaches
such as Chat-3D [49]] and LL3DA [14] have enabled object-centric interactions through pre-selection
techniques. Embodied Generalist [26] underscores the significance of 3D comprehension, delving
into the amalgamation of reasoning and action within multi-modal LLMs. Despite the swift evolution
of 3D-LLMs, there is an absence of a high-quality, extensive multi-modal 3D scene dataset with
hierarchical language annotations. Such a dataset is essential for effectively training these models
and for a holistic assessment of their capabilities. This paper endeavors to fill this void, offering a
foundational resource for training and evaluating 3D-LLMs.

3 Dataset

In this section, we present our approach to building a large-scale 3D scene dataset with hierarchical
grounded language annotations. This involves raw data preparation, top-down meta-annotation
generation, and extraction of visual grounding and QA task samples. Finally, we make statistics on
our annotations and analyze their superiority over existing datasets.

3.1 Data Collection & Processing

For constructing a multi-modal 3D dataset, we prioritize selecting a foundational 3D scene dataset
with extensive, real-scanned sensor data to minimize the sim-to-real gap and facilitate VLMs’
automatic 2D image annotation. In addition, extensive object annotations are important to start the
annotations from the object level. We opt for EmbodiedScan, chosen for its comprehensive collection
of open-source, real-scanned datasets and its detailed object annotations aided by SAM-assisted
labeling tools. Additionally, its Sr3D-based [6] language annotations provide a solid base for spatial
relationship descriptions among objects.
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Figure 2: Object-level (top) and region-level (down) meta-annotation UI, pipeline, and examples.

3.2 Meta-annotations

We employ a top-down logic to generate comprehensive, hierarchical annotations for scenes, which
include non-overlapping captions for scene elements like objects and regions. These meta-annotations
are designed for broad information coverage and will be further processed to generate specific data
samples for benchmarking in Sec.[3.3] We outline our top-down annotation approach and detail the
object and region-level language annotations subsequently.

Overview of Top-Down Logic. We employ a top-down approach to holistically annotate scenes
by segmenting them into regions and objects, potentially including object parts in the future. This
method captures information at various levels of granularity. At each level, we solicit human or
VLM descriptions of key properties and inter-target relationships, focusing on spatial and attribute
understandingﬂ In this way, we can obtain the scene captions with a hierarchical structure and
holistic descriptions for each level. Based on this logic, we will first demonstrate the use of VLMs
for object-level language annotation. For the region level, due to the lack of region annotations, we
need to annotate regions in each scene and then annotate the key information for each region.

Object-Level Language Annotation. We annotate object-level captions based on the bounding boxes
from EmbodiedScan. For each object, we establish its main properties, including spatial (geometric
shape, pose) and attribute (category, appearance, material, state, functional use) understanding. We
then use VLMs with the best image view to initiate descriptions, followed by human annotators
refining these with a tailored UI (Fig. 2). Key factors influencing annotation quality are 1) optimal
view selection for objects and 2) VLMs selection with appropriate multi-modal prompts for effective

caption initialization. i L
Table 2: VLMs on object-level captioning. “Acc.”

and “Ann. Ratio” refer to the “accuracy” and “an-
notation ratio” (some can reject annotation due to
security mechanisms). We prioritize “accuracy”
here and provide complementary results to achieve
a high annotation ratio.

For view selection, we first evaluate image qual-
ity by calculating the Laplacian kernel and ex-
clude frames with a variance below 100 to en-
sure clarity. Next, we project the center and
evenly sampled surface points of each object’s
3D bounding box onto the image plane. The

optimal image is chosen based on the object’s Models Free  Acc. _ Ann. Ratio
center being within the central 25% area and opT Hl (W[’4°] crop) § orcil
. . . . o eq eqe -4v . ‘0 .. 0
maximizing surface point visibility. Qwen-VL-Max [§] X 87.63% 91.30%
IR T . : E— InternLM-XComposer [22] v 83.63% 92.86%
To initialize captions with VLMs, we meticu InternVLChat v1.2 [19] 7 8575% 91.06%
lously craft language prompts and systemati- CogVLM [48] v 8951%  8521%

cally evaluate various visual prompts and VLMs
to ensure high-quality descriptions. We find that providing a cropped object patch as a visual prompt

'Since our 3D scene data lacks dynamics, we omit other orthogonal aspects, such as fremporal and behavior.
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Table 3: Efficiency comparison of differ- Table 4: Efficiency comparison of different labeling
ent labeling methods on the object-level methods on the region-level annotations. ‘“seconds”,

(I3 "o n o<

annotations. “seconds", “objects”, “to- “‘sentences”, “regions", “tokens" are abbreviated as “s",

[P TP I3

kens" are abbreviated as “s", “0", “t". “sent.", “r", “t"
Method Time (s/0) Avg. Tokens (t/0) Method Time (s/r) Avg. Sent. (sent/r) Avg. Tokens (t/sent)
FM 64.5 44.6 FM 1155.9 16.0 19.8
HIL 36.6 85.5 HIL 739.0 22.0 21.8

yields slightly better results than showing the entire image with 3D bounding boxes. After testing
several VLMs on their ability to accurately describe the object properties, we manually checked a
subset of 200 objects and determined that CogVLM [48]] and InternVL-Chat-V2 [19] perform the
best in granularity and accuracy (Tab. [2)). Leveraging their complementary strengths, we use the
outputs from these two models as initial annotations, which annotators can then modify and refine
to enhance the comprehensiveness of the information. See more details on language prompts and
additional considerations in the supplementary materials.

Region Segmentation Annotation. We’ve introduced a new UI (Fig. [2) for annotating different
regions in each scene, offering a set of predefined categories, including living, study, resting, dining,
cooking, bathing, storage, toilet, corridor, open area, others. Annotators are prompted to use 2D
polygons to define regions in scenes displayed in a bird’s eye view. They can tap on the BEV to
access related views of nearby objects, improving annotation accuracy. We eventually amassed 7692
valid annotated regions, excluding “others" and “open area".

Region-Level Language Annotation. Based on these region annotations, we further annotate their
language descriptions by adapting the object-level language annotation pipeline. Initially, VLMs
generate captions from selected views, followed by human revision. For region view selection, we
identify target objects and assess their visibility across views based on sharpness and surface points,
similar to object view selection. A greedy algorithm is then used to select a minimal set of views to
cover all objects. Given the distinct properties of regions, including object-object and object-region
relationships, we develop a customized annotation structure and employ varied visual prompts for
multi-view images to anchor objects with their identity in captions.

Specifically, we annotate the region for intrinsic property and inter-entity relationships, respectively.
Intrinsic properties include location and function, spatial layout and dimensions, architectural ele-
ments (doors, windows, walls, floors, ceilings), decorative and soft fitting details, lighting design,
color coordination, and style themes, all of which collectively characterize the region. For inter-entity
relationships, we annotate 1) object-object relationships, including spatial relationships (based on
Sr3D) and attribute relationships, and 2) object-region relationships, such as the role and distinctive-
ness of the object in the region, to facilitate connections between objects and their respective regions.
Finally, we ask annotators to write several advanced QA situated in the scene as a complement.

To anchor objects within captions and ensure consistent object identification across multiple views, we
overlay 3D bounding boxes with unique IDs on images as visual cues (Fig.[2). These images are then
input into GPT-4 to initiate the annotation process. GPT-4 is instructed to format object references
using the template, such as <table 4>, within regional descriptions. This format enables precise object
grounding for training and evaluating 3D-LLMs. Note that after preliminary testing with existing
VLMs, only GPT-4 can produce reliable captioning with precise object identity information, so we
chose it in this round of annotation.

Efficiency Gains from the GPT-assisted Method. We have conducted a detailed analysis comparing
the annotation efficiency as well as the quality between fully manual annotation and human-in-the-
loop annotation. We selected 20 objects and 2 regions from some representative scenes for annotation
for this purpose and compared the annotation efficiency quantitatively with similar quality. The
comparison includes 1) the annotation time and the number of tokens for each object, measured in
seconds/object and tokens/object, 2) the annotation time and the number of sentences for each region,
along with the number of tokens per annotation, measured in seconds/region, sentences/region and
tokens/sentence. (Tab. [3]and Tab. ] "fully manual" abbrev. as "FM" , "human-in-the-loop" abbrev. as
"HIL"). The comparison results show an overall increase in effective annotations with significantly
less time spent using our annotation method.

3.3 Post-processing

Given the comprehensive meta-annotations, we subsequently post-process them to obtain data
samples for visual grounding and question-answering benchmarks. In addition, we can further
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Figure 3: Post-processed annotations for benchmarks. “O” and “R” means “objects” and “regions”.
Apart from samples shown in the figure, there is a minor part of QA samples for advanced under-
standing and reasoning, such as situated QA related to everyday life, accounting for 2.18%.

generate grounded scene-level captions from meta-annotations and integrate them to train 3D-LLMs
to understand the 3D scene with hierarchical grounding capability more efficiently. Next, we first
detail the conversion of meta-annotations to benchmark data samples and then demonstrate the
reformatting process for training purposes.

Post-processing Annotations for Benchmarks. Meta-annotations have covered most information in
each scene, including each object, region, and simple relationships among these entities. Except for
simple captioning tasks by directly using meta-annotations, visual grounding and question-answering
are two fundamental tasks that necessitate the model to generate responses for more specific targets
or questions. As shown in Fig.[3] we categorize the main questions into two cases: asking about a
single target or inter-target relationships. For each of them, we similarly target two aspects, space and
attribute understanding, on different granularities, objects and regions, to produce data samples for
our benchmark. Next, we detail our approach to obtaining samples for different aspects. By default,
the following mentioned data samples are converted by ChatGPT [4] and then checked and corrected
by humans. Since the main work is information extraction and rephrasing, ChatGPT can complete it
well, and humans only need very little effort afterward.

Single-target. Given descriptions for each entity, a natural way to convert them into specific questions
is by directly asking about the spatial or attribute characteristic of a single target. As shown in the
right part of Fig. 3] questions in QA benchmarks expect the model to identify the spatial features or
attributes of the entity, while VG benchmarks directly require the model to locate specific entities
within a scene. Two cases here are noteworthy. First, there is a kind of question concerning the
existence and quantity of a specific target, which cannot be grounded and thus only exists in our
QA benchmark. Second, the spatial or attribute characteristics can either be unique for a specific
entity in the scene or common among multiple entities. To address this problem efficiently, we
employ ChatGPT to extract descriptions for each spatial feature or attribute, e.g., placement: leaning
against the wall at a small angle, devise a set of coarse yet orthogonal categories, e.g., placement:
{standing upright, piled up, leaning, lying flat, hanging}, and categorize objects into the set to
produce samples for understanding common characteristics. Additionally, we generate data samples
to understand unique characteristics by combining the original detailed object-level descriptions with
human annotations about the particularity of objects in each region.

Inter-target. Similarly, inter-target samples can be divided into understanding spatial and attribute
relationships among objects and regions. We focus on object-object and object-region relationships
for the current dataset due to scene simplicity, excluding region-region pairs. Specifically, the object-
object spatial relationships, a well-studied problem, are refined based on EmbodiedScan annotations.
Object-object attribute relationships and object-region relationships are derived from preliminary
region-level meta-annotations. We utilize templates to create initial samples, refine them, and expand
the dataset using ChatGPT. Note that there are two formats for each object-object relationship sub-
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class in the QA benchmark (Fig. [3): to directly inquire about the relationship between two objects or
to identify a specific object based on its relationship to another object and inquire about its properties.

Post-processing Annotations for Training. Beyond post-processing meta-annotations for bench-
marks, we also harness these data for training purposes. We present two primary approaches for
leveraging this data: (1) generating grounded scene captions to facilitate efficient grounding training
and (2) using all the captions for 3D-LLMs instruction tuning.

Grounded Scene Captions Generation for Efficient Grounding Training. Previous multi-modal 3D
datasets typically generate holistic captions for objects or scenes without hierarchical grounding,
lacking detailed correspondence for efficient model training. Drawing on Grounded 3D-LLM [17]
and 2D multi-modal learning experiences [38} 43]], we retain all correspondence information from
meta-annotations. This allows us to seamlessly integrate object- and region-level captions into scene
captions, complete with identity information. We log the indices of positive tokens to train the
correspondence between 3D features and text phrases. Utilizing this data enhances the model’s
ability to comprehend complex statements and ground specific objects at the phrase level. Further
implementation details are available in the supplementary materials.

General Captions for Instruction Tuning. Our meta-annotation offers the most extensive captions
for 3D scenes, encompassing various granularities and perspectives for each entity. These captions,
along with object- and region-level annotations enriched with grounding information, enable the
creation of scene-level captions. They serve as valuable resources for 3D-LLMs’ instruction tuning.

Except for these captions used for training, data samples of VG and QA benchmarks are also training
resources for instruction tuning. Related attempts are presented in the supplementary materials.

3.4 Analysis

Statistics. Our dataset comprises 6.9M language annotations and 114M tokens overall, encompassing
a comprehensive range of correspondence granularities, as detailed in Tab. [T} It includes 1.4M
meta-annotations, with 1.05M specific property captions and 380k complete captions, totaling 18.3M
tokens across 109k objects from 285 categories and 7692 regions of 12 types. These meta-annotations
facilitate the creation of 1.76M QA samples (4.06M captions), 1.28M VG samples, and 97k grounded
scene captions (with 90 tokens per caption), providing various types of data resources for training
and benchmarks. See more statistics and distribution figures in the supplemental.

Comparison to Previous Datasets Annotated with VLMs. Some recent works like 3D-VisTA[57]],
LEOI26], Multi3DRef[52]], including ours, utilized powerful Visual Language Models for annotation.
Among them, MMScan is unique and can bring new insights in the following aspects:

» Top-down annotation logic covering region/object level, single/inter-target descriptions, and
spatial/attribute understanding.

» Systematic and customized annotation workflows for objects and regions, including carefully
designed language/visual prompts to cover different aspects to obtain meta-annotations
instead of direct benchmark samples and detailed ablation for the performance of different
Visual Language Models choices.

» Adaptable methods for deriving different benchmark samples from meta-annotations.

* Human-in-the-loop design ensures quality and minimal biases, with Ul tools prompting
explicit error identification, achieving a sub-5% error rate.

4 Experiments

This section presents two main benchmarks based on MMScan: 3D visual grounding and 3D question
answering, along with a preliminary 3D captioning benchmark as a potentially more challenging task
in the future. We demonstrate new challenges of these tasks with different evaluations from GPT,
human, and conventional metrics. Furthermore, we used the rich annotations from MMScan to obtain
state-of-the-art grounding models and 3D-LLMs. Finally, we make an analysis of the scaling law
of multi-modal 3D learning regarding language annotations. More qualitative and in-the-wild test
results and analyses and detailed implementation details can be referred to the appendix.

4.1 3D Visual Grounding Benchmark

Dataset & Evaluation Metrics. As mentioned previously, we follow the original scene split of
EmbodiedScan and obtain 848867/217002/209717 data samples for training/validation/testing on
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Table 5: 3D visual grounding benchmark on MMScan.

Methods Overall Single-target Inter-target
APy ARo5 AP5g AR5 ST-attr ST-space OO-attr 0OO-space OR
ScanRefer [12] 3.83 42.40 1.37 20.96 1.44 2.84 522 432 1.12
BUTD-DETR (28] 2.29 65.61 0.84 33.11 4.79 2.04 1.49 1.75 11.87
ViL3DRef [15] 5.17 72.50 2.07 51.61 6.29 4.20 7.89 5.29 6.81
ReGround3D [54] 4.12 48.12 1.98 22.12 4.23 3.98 7.32 6.98 8.23
MVT [27] 3.65 72.38 1.02 51.50 1.74 2.34 3.58 4.45 1.49
3D-VisTA [57] 5.24 72.51 1.91 51.85 491 4.39 5.75 5.99 6.35
EmbodiedScan [47] 1049 | 47.21 2.94 21.76 7.44 7.53 13.65 11.19 7.74

our visual grounding benchmark. All the data samples are categorized into a sub-class from the set
{ST-attr, ST-space, OO-attr, OO-space, OR}, where Single-target, attribute, Object-Object, Object-
Region are abbreviated as ST, attr, OO, OR. We use 20% samples for training to reduce all the
models’ training time into 2 days and report the results on the validation set. For the evaluation
metric, we adopt the conventional 3D IoU-based Average Precision (AP) used in 3D detection here,
considering we can have multiple targets grounded instead of a single one in most previous grounding
benchmarks. In addition, we also show the recall and performances for different sub-classes of
samples for reference.

Implementation Details. We implement four popular baselines, ScanRefer [12]], BUTD-DETR [28]],
ViL3DRef [[15]], and EmbodiedScan [47], to establish the initial benchmark, considering that they are
representative of different types of methods. Note that ViL3DRef requires a prior segmentation of
the point cloud as the grounding foundation. We employ the bounding boxes predicted by a trained
EmbodiedScan [47] model for point cloud segmentation to ensure a fair comparison. In addition, we
replace the RGB-D input of the EmbodiedScan grounding model with the reconstructed 3D point
clouds and remove the image feature branch to keep the consistency with other baselines.

Results. As shown in Tab. |5} although we train these grounding models with our dataset, the
performance is much lower than previous grounding benchmarks (e. g., state-of-the-art 48.1% accuracy
on ScanRefer). The new challenges come from diverse and complex prompts that may need to involve
LLMs and stronger 3D encoders, more difficult 9-DoF oriented box estimation in EmbodiedScan,
and an uncertain number of grounding targets diverging from previous simple settings. In addition,
we can find that the single-target performance is typically lower than that of inter-target, indicating
that the model can understand inter-target relationships better. We conjecture that there are many
small objects and appearance attributes that require involving the image modality to identify. It is
also necessary to include image modality as the model design of EmbodiedScan to achieve better
performance. We demonstrate several representative failure cases in the supplementary materials.
Finally, we observe that ViL3DRef achieves high recall performance due to pretrained detection
models on EmbodiedScan but encounters major problems when selecting the correct grounding
targets. In contrast, the EmbodiedScan baseline achieves a better selection performance but can
further improve the recall capability.

4.2 3D Question Answering Benchmark

Dataset & Evaluation Metrics. Similarly, following the scene split of EmbodiedScan, our 3D QA
benchmark has 1167966/297014/295073 data samples for training/validation/testing correspondingly.
Considering the intricacies of questions and answers, and in line with recent practices for assessing
LLMs [504133120], we employ both human evaluators and GPT-4 to ascertain answer accuracy. This
approach is complemented by data-driven and conventional metrics. Owing to the prohibitive costs
of human evaluation, we primarily present GPT-4’s evaluation results in Tab. [§|and demonstrate the
concordance between human and GPT-4 assessments on a subset in the supplementary materials.

Implementation Details. Given that contemporary 3D-LLM:s are anticipated to exhibit generalization
in open-world scenarios, we first focus on assessing their zero-shot performance directly on our test
set, avoiding the potential overlap of training scenes used by these methods. The baselines consist
of 3D-LLM [24], Chat3D-v2 [25], LEO [26], LL3DA [14] and LLaVA-3D [55]. LLaVA-3D is a
modified version of PointLLM[55]] with RGB-D input to fit scene-level understanding (more details
in the supplemental). We utilize the officially released versions of these models, tailor our data
and questions to align with their input requirements and evaluate their performance accordingly.
Additionally, we fine-tune the models from three recent works, LEO, LL3DA and LLaVA-3D, using
our training set to offer reference results under the fine-tuning setting.
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Table 6: 3D question answering benchmark on MMScan. “S.-BERT", “B-1”, “B-4”, “R.-L.”, “MET.”
represents “Sentence-BERT", “BLEU-1", “BLEU-4”, “ROUGE-L”, “METEOR”, respectively. Here,
we report the top-1 exact match with (the refined exact-match protocol results) for “EM@1”.

. Single-target Inter-target ] Data-driven Metrics Traditional Metrics

Methods Setiing | Overall gy R i 00 saceOR | Advanced | g k'S "BERT | B1. B4, R.L MET  EMe@l
3D-LLM [24 28.6 37.8 18.8 13.7 26.3 154 20.8 40.4 403 134 15 173 60 62(19.6)
Cha3D-v2 251 | . oo 27.9 38.1 18.3 9.3 22.4 13.5 254 454 463 180 3.0 229 75 10.2(19.6)
LL3DA [14 15.8 15.5 14.7 14.2 25.2 43 6.4 40.7 43.6 54 Al 16.4 4.4 8.3(19.4)
LEO [26 22.2 28.9 17.6 18.1 20.4 15.0 163 40.4 41.0 11.0 07 171 49  9.6(18.7)
LL3DA [14 385 40.4 462 14.7 47.1 26.4 7.1 65.3 67.0 264 85 443 147 302(37.6)
LEO [26 Fine-tuning | 47.8 55.5 49.5 36.1 45.6 32.1 38.4 71.2 72.2 32.0 125 521 177 36.6 (44.5)
LLaVA-3D [55 574 64.9 53.6 417 56.2 33.7 22.4 74.3 75.0 40.0 135 56.0 20.0 43.7(49.5)

Table 7: Training EmbodiedScan
grounding models with MMScan Table 8: Captions tuning of LLaVA-3D on traditional 3D

data. “HF” means “Human Fix”’. question answering benchmarks.

ScanQA (val) SQA3D (test)
Methods HF % Methods B4 R-L___ MET EM@]I EM@1
baseline B 3727 17.78 baseline 10.5 39.2 15.1 23.1(39.0) 51.6 (54.1)
pre-training K3 42.18 21.84 + meta-ann. captions 10.7 41.2 14.2 23.3(39.3) 52.7 (54.8)
co-training X 42.96 2277 + scene captions 12.3 46.4 18.1 24.3 (46.6) 53.2(55.4)
pretraining |/ | 4249 2217 + all captions 127 481 198 247489) | 54.1(568)
co-training v 44.44 23.69

Results. As shown in Tab.[6] the key observation is that fine-tuning with our dataset is necessary
and significantly effective, resulting in up to 25.6% accuracy and 27% EM improvement with GPT-4
and EM evaluation (LEO). The results of LL3DA also have a significant improvement. As for
zero-shot experiments, we observe much lower performance than expected and a ranking different
from previous benchmarks, potentially due to our more comprehensive capability evaluation. For
different types of samples, we find the single-target performance is typically higher than that of
inter-target, diverging from the visual grounding performance, because previous QA datasets cover
more data in this aspect compared to VG datasets. In addition, the single-target performance can
be further significantly improved with our data training. For advanced question-answering cases,
zero-shot Chat3D-v2 and fine-tuned LLaVA-3D perform much better than others, showing their
stronger complex reasoning capabilities.

4.3 3D Captioning Benchmark

In addition to the visual grounding and question-answering benchmarks for specific targets, we also
build a 3D captioning benchmark based on our meta-annotations. Due to its complexity in evaluation,
we present our preliminary attempt here and will further polish the setting in the future.

Dataset & Evaluation Metrics. We first split all the objects and regions according to the division
of scenes and use the meta-annotations for each object or region as the ground truth. Similarly to
the 3D Question Answering benchmark, we employ both human evaluators and GPT-4 to ascertain
answer accuracy, complemented by data-driven and conventional metrics, and give the results on the
validation set. For the human evaluators, we select 300 samples from the validation set to make the
evaluation costs affordable.

Results. Similar to fine-tuning with QA samples, we fine-tune LL3DA [14] and LEO [26] and show
the results in Tab. [9] the first seven columns in the table represent the scores evaluated by GPT
evaluator / humans. We observe that for such complex language tasks, small models such as LL3DA
with 1.3B parameters perform much worse than larger ones like LEO.

4.4 Analysis

MMScan is a sufficiently challenging dataset benchmark, and beyond employing MMScan for
benchmarking state-of-the-art methods, the data can also be leveraged to train stronger models
for visual grounding and dialogue tasks. Next, we first demonstrate the challenging nature of the
MMScan benchmark, then demonstrate two preliminary attempts to use MMScan data for training
and finally present a study regarding the scaling law for multi-modal 3D learning.

Human Performance Evaluation. To clearly demonstrate the challenging nature of our MMScan
benchmark, we conduct a human performance evaluation . We randomly selected 20 scenes, with one
question per sub-category in our benchmark, totaling 120 QA samples to test human performance.
We use manual evaluation to ensure the results are accurate. We can see that humans performed much
better, and the benchmark is moderately challenging (Tab. [T0).

Grounded Scene Captions for Grounding Training. As mentioned in Sec. we create scene
captions with object and region identities to train grounding models effectively. By training the visual
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Table 9: 3D captioning benchmark on MMScan.

Methods GPT / Human evaluation . ] ] Dala-driven Metrics Traditional Metrics
Overall Type Color Shape Position Function Design SimCSE  S-BERT | B-1 B-4 MET. R.-L.
LL3DA | 33.6/21.1 [ 10.0/19.2 2637/18.0 40.6/36.0 389/202 675/146 21.7/18.1 44.9 435 336 53 119 272
LEO 51.3/432 | 349/452 29.7/37.0 63.0/48.7 63.7/44.1 75.0/43.8 42.7/39.2 57.1 55.2 355 83 138 295

Table 10: Humans’ and models’ performance on the MMScan QA benchmark (human evaluation).

Method Overall | ST-attr ST-space OO-attr OO-space OR  Advanced
LL3DA (finetuned) 42.8 45.0 40.0 31.6 40.0 50.0 45.0
LEO (finetuned) 44.6 52.6 40.0 45.0 30.0 45.0 35.0
Human 77.8 85.0 68.4 66.7 77.8 84.2 70.0

grounding baseline on EmbodiedScan with MMScan, we achieve a substantial increase in benchmark
performance (up to 7.17% AP), as shown in Tab. [/| Co-training slightly outperforms pre-training,
and while human involvement improves data quality, its effect is less pronounced than expected.

Captions for Instruction Tuning. A key challenge for current 3D-LLMs to achieve stronger
performance is the scarcity of high-quality multi-modal 3D datasets. Utilizing our annotated object
and region captions, along with aggregated scene captions, for instruction tuning is a logical approach.
We feed these data to our baseline, LLaVA-3D, and observe the significant improvement on traditional
question-answering benchmarks (Tab. [§), achieving state-of-the-art performance. Furthermore, it
also shows much better in-the-wild test performance, and we present the qualitative results in the

supplementary materials.
. . . . . Scaling Law for VG and QA
Scaling Law for Multi-modal 3D Learning. Finally, to guide 50

future research, we employ EmbodiedScan VG baseline and 01 VG (AP@.25) -60
LL3DA with different amounts of data to study the scaling & QA (Acouracy) g
law for multi-modal 3D learning. As shown in the upper part & %07 40 g
of Fig. @ the VG performance increases steadily while the & 207 3
QA performance exhibits an initial sharp increase followed = 10 1% <
by a gradual ascent, indicating the VG task still needs more ol . ' ' '
data while our generated QA samples approach saturation. In 0.00 025 050 075 1.00
summary, both tasks show significant improvement with the Training Data Quantity
data increase, from 8.7% to 20.6% AP and 15.84% to 44.81%  Scaling Law compared with Sample Strategy
accuracy on the VG and QA benchmarks, respectively. %0 sampl unifornly (P @25)

i sample by scene (AP@.25)
Furthermore, we conducted an investigation into the scaling & zz
law regarding different diversities, i.e., scene diversity vs. data g 5]
sample diversity. The study evaluated the performance of the &
models when subjected to distinct sampling methodologies: < ]
uniform sampling of data samples and selective sampling based °]
on scenes (with retention of only samples present within the %0b0 o025 0b0 0%  1ho
chosen scenes). As depicted in the lower part of Fig. [ the Training Data Quantity

performance was found to be relatively lower under scenarios
with restricted scene diversity, even with an equal distribution of
samples. It indicates that both data sample and scene diversity
matter when scaling up the training and more diverse scenes
can result in more significant improvement.

Figure 4: The performance of both
tasks grows steadily with the in-
crease of training data, and more
diverse scenes can result in more
significant improvement.

5 Limitations and Conclusion

This paper establishes the largest ever multi-modal 3D scene dataset featuring hierarchical language
annotations. We employ a top-down approach and harness both VLMs and human annotators to
encompass holistic and precise annotations of 3D scene understanding. Based on meta-annotations,
we further derive data samples and grounded scene captions for evaluating and training 3D grounding
and language models comprehensively. Although this paper proposes a potentially scalable method
to construct large-scale multi-modal 3D datasets, it still relies on human annotators and can be further
improved regarding scene diversity. Exploring how to reduce human correction efforts and scale up
the scene diversity are objectives for future work.

Social Impact. This paper proposes a multi-modal 3D scene dataset based on existing open-source
real-scanned data and facilitates the training and evaluation of 3D-LLMs, potentially benefitting
downstream 3D content generation and robotic applications. Meanwhile, the trained 3D-LLMs can
still have occasional hallucination problems, leading to potential risks when being integrated into the
entire system.
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A Demo Video

We make a demo video on our project page https://tai-wang.github.io/mmscan/ for readers
to quickly grasp the key idea of this paper. It combs the main content and shows more in-the-wild
test results.

B Annotation Details

This section supplements several details in the annotation pipeline, including: 1) prompts used
for different annotation stages and the implementation of grounded scene captions generation, 2)
potential biases in the dataset and how we ensure the validity of the dataset.

B.1 Meta-annotation

Object-level Prompts. We introduce the subsequent prompt, coupled with a real-captured im-
age, as shown in Fig. 5] to Visual Language Models (VLMs) to initiate the preliminary meta-
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annotation process. In accordance with our top-down architectural approach, this meta-annotation
is directed to encompass all significant attributes of the object. Within the prompt, the placeholder
{img_object_name} is intended to be substituted with the actual category label of the object, as
determined by ground truth data.

* You are an expert interior designer, who is very sensitive at room furniture and their
placements. You are visiting some ordinary rooms that conform to the daily life of an
average person. You use your professional expertise to truthfully point out their various
aspects. Please describe the single {img_object_name} in the center of the image, mainly
including the following aspects: appearance (shape, color), material, size (e.g., larger or
smaller compared to similar items), condition (e.g., whether a door is open or closed),
placement (e.g.,vertical/leaning/slanting/stacked), functionality (compared to similar items),
and design features (e.g., whether a chair has armrests/backrest). Please aim for a roughly
200-word description, and avoid using expressions like ’the image’ in the description.

Figure 5: Visual prompts for object-level meta-annotation. The images are cropped to the project
area within the object’s bounding box after view selection, leading to images of different sizes.

Region-level Prompts. To enhance the initial quality of annotation, a structured framework is
essential for delineating regions characterized by object-object functional or spatial relationships, as
well as for describing the singular or multiple roles of objects within regions, alongside the features
of the regions themselves. To facilitate this process, we utilize a multi-stage dialogue with GPT4,
requesting structured outputs through API calls with the json_mode enabled, which aids in human
editing due to the complexity of the factors involved. Additionally, for improved text generation, we
incorporate illustrative examples at each point, which are omitted in this prompt. An example of
image groups sent to GPT4 can be found in Fig. [6]

* System Prompt: You are an expert interior designer, who is very sensitive at room furniture
and their placements,and you are particularly familiar with how each piece of furniture
relates to everyday human activity. The expected reader is a high-school student with
average knowledge of furniture design. I will share photos of a room’s <region_type> and
use 3D boxes to highlight important items within it. In this region, the items that must be
described include <objects_list>, don’t leave out any of them.
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» [ want you to list the location relationships between these objects, where location relation-
ships are between two objects, chosen from <spatial_relation_list>. I want you to provide a
JSON file that describes the location relationship of these important items, A dict in the form
of ’(A,B) : their location relationship’((’<pillow_2>’,<bed_1>"):’on’. Here *on’ means that
the first item is "on’ the second item).

* Which objects are lying/hanging on the wall? Which objects are standing on the floor? Just
pick them out and give me a JSON file.

» [ want you to think about are these objects related to each other in the use of functions in
everyday activities? Please list the these relationships, in the format of a JSON file. (a dict,
the key is a tuple of two items, the value is a sentence describe their relationship)

* What makes the item special in this region? Why did you notice the item? You can think
about it in these terms: its special position (like "the chair in the middle of several chairs"),
its special role in everyday life (like "I will sit on this chair while eating"). Just give me
the result as a JSON file. (a dict, the key is the item, the value is a sentence describe its
particularity)

* Which set of these items together belong to a larger class or perform some function together
in the region (a set must contain at least two items)? I want you to write this into a JSON
file (a dict, the key is a list of items, the value is a sentence. The sentence describes a larger
class they belongs to, their role, and their function in the region.

* What’s more, based on these layouts, could you share information about the region,
these should be included:<Region_features>. Just give me a JSON file. (a dict with
keys:<Region_features>,with corresponding values are strings)

Figure 6: Visual prompts for region-level meta-annotation. Bounding boxes are painted on selected
images, accompanied by unique object identifiers and their respective categories. All the images for
the region are presented to GPT4 in the first round of conversation.

B.2 Post-processing

Prompts for Data Samples Generation. Both the prompts for 3D Question Answering and 3D Visual
Grounding directly or indirectly use the meta-annotations as shown in Fig.[7]and [8] mainly consisting
of Single-target Attribute, Single-target Space, (Existence and Quantity), Inter-target Object-Object
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Prompts Generation Examples for 3D QA

Q: <bounding box of object X >/<a description without attribute Y of object X >+ What's the attribute/space

ST Attribute | P of <object X>?
/ A: <Unique attribute/space P of object X>/<Common attribute/space P of object X >
ST Space

Q: <bounding boxes of objects in region X>+ What's the attribute/space P of <region X> ?
A: <attribute/space P of region X >
Q
A

Is there a <region/object type>? | How many <region/object type> (with <attribute/space P >)?
Yes or No / <Number of object/region types>

EQ

Q: <bounding box of object X >/<bounding box of object Y >+ What's the attribute(functional / base attribute
P) relationship between <object X> and <object Y>?
A: <function relationship between ( X, Y )>/<The comparison between (X, Y) in attribute P>

IT OO-Attribute

Q: <bounding box of object X>+<object Y> has <function relationship between ( X, Y )> with <object
X>+What's <attribute/space P> of <object Y>?
A: <attribute/space P of object Y>

Q: <bounding box of object X >/<bounding box of object Y >+ What's the space(spatial position / base
space P) relationship between <object X> and <object Y>?

A: <spatial position relationship between (X, Y )>/<The comparison between (X, Y) in space P>

IT OO-Space
Q: <bounding box of object X>+<object Y> has <spatial position relationship between ( X, Y )> with <object
X>+What's <attribute/space P> of <object Y>?

A: <attribute/space P of object Y>

<bounding box of object X> + What's the single role of <object X> in the region?
<single role description of object X in the region>

ITOR

Q:
A:
Q: <bounding boxes of objects> + What's the multiple role of <objects> in the region?
A: < multiple role description of objects in the region>

Figure 7: Prompts for 3D question answering samples generation.

Prompts Generation Examples for 3D VG

ST Attribute 1. <description about Unique space/attribute of target > from <template> + Find / Choose it.
/
2. <Common space/attribute P of targets> + Find / Choose them.
ST Space
1. (< short description of anchor >) + <The functional relationship between ( anchor, target) >+ Find /
. Choose it.
IT OO-Attribute

2. (< short description of anchor >) + <The comparison between ( anchor, target ) in attribute P>+ Find /
Choose it.

1. (< short description of anchor >) + <The spatial position relationship between ( anchor, target) >+
Find / Choose it.

IT OO-Space

2. (< short description of anchor >) + <The comparison between ( anchor, target) in space P>+ Find /
Choose it.

1. <single role description of target in the region> + Find / Choose it.

ITOR
2. <multiple role description of targets in the region > +Find / Choose them.

Figure 8: Prompts for 3D visual grounding samples generation.

Attribute, Inter-target Object-Object Space, Inter-target Object-Region. Specifically, we use the
listed templates to integrate the meta-annotation, obtain <bounding box> from the Embodied Scan,
<attribute/space>, <description about space/attribute>, <Comparison in attribute> from the Object-
level language annotation, and <functional relationship>, <spatial position relationship>, <role
description> from the Region-level language annotation.

Grounded Scene Captions Generation. The generation of grounded scene captions proposed
by Grounded 3D-LLM [17] leverages ChatGPT and 2D vision-language models, utilizing dense
object annotations from existing 3D scan datasets. Here, we re-state the details to make the paper
self-contained. The process can be divided into 3 main steps:

Stepl. Summarizing object-level meta-annotations. For each object, we utilize its human-corrected
meta-annotations to generate a summarized version with ChatGPT.
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Step2. Condensing objects in local scenes into a caption. For each enumerated anchor object, we form
an initial object set by randomly selecting a group of nearby objects. Their captions and coordinates
are fed into GPT-4 for captioning, which is prompted to reference objects by their IDs in the caption.

Step3. Integrating with rule-based spatial relations. To enrich scene captions, we integrate program-
generated spatial relationships from Sr3D. By selecting an anchor object from the set in Step 2, we
apply the spatial relation rules (e.g., between, supporting, nearest, back) to include related objects.
GPT-4 then combines these relationships into the prior caption from step 2.

B.3 Analysis of Potential Biases

Bias in datasets generally stems from uncertain annotation guidelines or situations where subjective
judgment is heavily relied upon. To address this, we designed a top-down logic to decompose
and refine the annotation requirements, thereby enhancing overall comprehensiveness and reducing
freeform annotations. This approach systematically reduces bias compared to previous works.
However, some bias is inevitable during annotation. In our screening of VLM and manual annotations,
we identified and addressed these biases as follows.

Bias from VLMs. Firstly, we will address the bias introduced by the Vision Language Models before
the manual annotation and correction.

Perception Bias. Bias may occur due to incomplete image inputs (e.g., a cropped image might cause
the VLM to focus on the object itself but overlook its relationship with the surrounding environment).
To address this, we provide both cropped images and global images with the target object highlighted.
At the region level, we supply several images taken from good angles that include all pertinent
objects.

Understanding Bias. VLMs might carry stereotypes (e.g., frequently describing a chair with "arm-
rests" even if the chair does not have any) or misunderstand requirements (e.g., describing unrelated
objects). Human annotators correct these by comparing images and revising errors.

Statement Bias. VLMs often use uncertain terms like “possibly” or “seems,” which are inappropriate
for definitive annotations. We screen these with templates and have annotators rewrite vague
expressions.

Bias from Human Annotators. Secondly, we will address the bias introduced by the manual
annotation.

Perception Bias. To mitigate the bias similar to that in VLMs, annotators receive multiple images,
bird’s eye view, and touchpoint display images, as shown in the attached pdf, to help them form a
3D concept of the scene and have enough observations from different perspectives to grasp detailed
information.

Understanding Bias. Annotators might be careless or make errors (e.g., they might overlook an aspect
of an object’s appearance, leading to incomplete descriptions, or they might fail to correct errors in
VLM results).

Statement Bias. Human annotations are expected to be natural and professional, but ambiguities and
incoherent expressions can arise when rewriting VLM results (e.g., modifying the description of color
in one place but not another, causing ambiguity, or omitting the subject of a sentence after edits).
Additionally, since the workers may not be proficient in English, all our user interfaces are designed
to support Chinese, helping the workers better understand and express the required annotations, but
we must avoid bias during the translation process. We address these issues through multiple rounds
of sampling, checking, and feedback.

B.4 Methods to Ensure the Validity

Meta-annotations Validity. To ensure the quality of the final annotations, we adhere to the 95%
principle. We randomly inspect 5%-10% of annotations in each screening round. If the pass rate is
below 95%, we identify issues, have annotators make corrections, and re-inspect until the standard
is met. Finally, we conducted one round of manual annotation and sampling verification for region
segmentation. For object-level annotation and region-level annotation, we performed three rounds
of manual annotation and sampling verification. Ultimately, each of these met the 95% quality
requirement.
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Post-processing Annotations Validity. For benchmark samples, we derive them following several
templates (for different aspects of questions shown in Fig. 3 in the main paper) and then enrich the
questions’ diversity by refining them with ChatGPT. The overall process introduces very few biases
and just relates to reorganizing the information, avoiding obvious risks of yielding factual errors. We
verify the logic of derived samples and ensure the overall quality following the previously mentioned
random inspection and 95% principle. It turns out that all the samples meet our requirements well.

C Implementation Details

This section supplements implementation details for different baselines used in experiments.

C.1 3D Visual Grounding Baselines

By default, our following re-implemented baselines use the same data augmentation strategy for
training. We randomly flip and apply global transformations to the aggregated points and ground-truth
boxes, including random rotation with angles in [—5°,5°], random scaling with a ratio in [0.9, 1.1]
and random translation following a normal distribution with standard deviation 0.1.

ScanRefer [12]. We adapt its officially released code to fit our dataset and experiments. To fit the
oriented 3D box output, we add a 6D rotation representation into original regression targets and use
a disentangled Chamfer Distance (CD) loss for eight corners to supervise it. We use a pretrained
VoteNet [39] detection backbone following the original setting. We use 1 GPU with 32 training
samples per batch to train the model for 11 epochs, setting the learning rate to le-3 and weight decay
to le-5.

BUTD-DETR [28]. Similar to the adaptation of ScanRefer, to fit the oriented 3D box output, we
add a three-layer MLP into each prediction head to predict the 6D rotation representation and use
a disentangled Chamfer Distance (CD) loss for eight corners to supervise it. We use 8 GPUs with
32 training samples per batch to train the model for 90 epochs, setting the learning rate to le-4, the
learning rate of the backbone to 1e-3, and weight decay to le-5.

ViL3DRef [15]. ViL3DRef needs instance mask predictions as prior inputs. To fit this requirement,
we utilize 3D bounding boxes for point cloud segmentation. Aligning with its original implementation,
we use EmbodiedScan’s ground truth boxes during training; for testing, we utilize predictions from
EmbodiedScan’s trained multi-view detection model for a fair comparison. To accommodate the
characteristics of multiple targets, we have replaced the single-target cross-entropy loss with its
multi-target counterpart. We train the teacher and point encoder models for 25 and 100 epochs,
respectively. We use a single GPU with 64 training samples per batch to train the student model for
50 epochs, setting the learning rate to Se-4, weight decay to le-2, and a cosine decay schedule is
applied to the learning rate.

EmbodiedScan [47]]. We basically replace the ego-centric views input with point clouds to make it
consistent with other baselines. We changed its multi-view image input to point cloud and removed
its corresponding ResNet-50 backbone, reducing it to a framework similar to L3Det [56]]. Following
the original setting, we use a disentangled Chamfer Distance (CD) loss for eight corners to supervise
the oriented 3D box output. We use 4 GPUs with 96 training samples per batch to train the model for
12 epochs, setting the learning rate to Se-4, weight decay to Se-4, and query number to 100.

ReGround3D [54]. Since the original ReGround3D supports multi-target grounding, no special
architectural modifications to the model are required. We use 8 GPUs with 16 training samples per
batch to train the model for 10 epochs. During the training phase, we freeze the vision encoder and
apply LoRA to fine-tune the language model (LLM) in the reasoning module. For the 3D grounding
module, we freeze the point encoder and train the query selection module and the 3D box decoder.
We use the AdamW optimizer with a learning rate of 3e-4, and the training process is guided by a
WarmupDecayLR learning rate scheduler with 100 warmup steps.

MVT [27]. We replaced Cross Entropy Loss in logits loss and language logits loss with Binary Cross
Entropy Loss to support multiple ground truths. Following the original setting, we use 1 GPU with
24 training samples per batch to train the model for 24 epochs, setting the base learning rate to Se-4,
the learning rate of the language encoder and refer encoder to Se-5.

3D-VisTA [57]. Similarly, we replaced Cross Entropy Loss in logits loss and text logits loss with
Binary Cross Entropy Loss to support multiple ground truths. We use 1 GPU with 64 training samples
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per batch to train the model for 90 epochs, setting the learning rate to 1e-4, the learning rate of the
language encoder to le-5.

C.2 3D Question Answering Baselines

3D-LLM [24]. We adapt the officially released code and pretrained model. Initially, the point cloud
with corresponding features was processed only on Scannet. To fit our dataset, we generate new scans
on MP3D and 3RScan. For questions requiring bounding box input, we provided only the question
text. Our inference is run using the officially released checkpoint.

Chat3D-V2 [25]. Instance masks are created using ground truth boxes. Since this pipeline already
fits our dataset, no additional adaptation is needed.

LL3DA [14]. The zero-shot test uses the officially released code and pretrained generalist model.
For supervised fine-tuning (SFT), since the model only allows a single object as input, we randomly
select one object for questions referring to multiple objects to obtain a visual prompt. The fine-tuning
process is performed using two GPUs, with a warming-up rate set to 0.1 epoch.

LEO [26]. The zero-shot test uses the officially released code and pretrained generalist model.
For SFT, instance masks for object-centric 3D tokens are created using ground truth boxes. When
questions refer to multiple objects, we randomly select one to obtain an embodiment token. The
fine-tuning process is performed using two GPUs in one epoch, using default settings.

LLaVA-3D [55]]. LLaVA-3D is an improved version of PointLLM [50Q]. Due to detailed question-
answering and the requirement of understanding the entire scene, we replace the original point cloud
encoder with a multi-view image encoder. The multi-view image encoder takes the image features
from the pretrained LLaVA and aggregates these patch-wise features by projecting them to 3D space
via depth maps. We follow the same downsam- pling strategy in the 3D space to compress these
features. We uses LLaVA-3D as the baseline for both the 3D Question Answering benchmark and the
Captions for Instruction Tuning experiment.

C.3 Other Baselines

In the analysis section of the main paper, we conduct experiments to validate the efficacy of training
with MMScan. Next, we present the used baselines for two experiments, respectively.

Grounded Scene Captions for Grounding Training. This experiment is mainly based on the
EmbodiedScan 3D visual grounding benchmark. We use its officially released baseline without
modification, which takes multi-view images as input and grounds target objects given language
prompts. Pre-training and co-training experiments both take 12 epochs. The improvement also
validates that using more complex multi-modal data for training can also boost the performance
of the specific capabilities for inter-object spatial understanding, which is the focus of the original
EmbodiedScan’s visual grounding data samples.

Captions for Instruction Tuning. This experiment is built upon LLaVA-3D, the improved version
of PointLLM. Based on this network, we use MMScan for instruction tuning, and it shows significant
improvement and achieves state-of-the-art performance on conventional benchmarks, showing the
efficacy of training 3D-LLMs with MMScan on previous benchmarks.

D Experiments

This section supplements several experiments mentioned in the main paper, including the 3D caption-
ing benchmark based on our meta-annotations, supplementary visual grounding results, using VG
and QA samples for instruction tuning, qualitative analysis, and in-the-wild test.

D.1 Supplementary VG Experiments

Multi-View Inputs & Detection Pretrained Models. In accordance with the initial EmbodiedScan
approach, we further developed two models utilizing multi-view inputs and subjected them to training.
As shown in Tab. training a model directly with multi-view inputs leads to suboptimal results,
likely due to the slow convergence of the image backbone. To counteract this issue, we follow the
official implementation of EmbodiedScan and use the pretrained detection model to initialize the
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Table 11: Analysis on multi-view inputs & using pretrained detection models, where ‘“Recon. Points”
means “Reconstructed Points" used in the main paper’s benchmark.

. . Overall Single-target Inter-target
Modality W/ Pretrain x5 AR, T APsy | ARsg STttt ST%space 0O0-attr 00-s§ace OR
Recon. Points X 1049 | 4721 | 294 | 21.76 | 744 753 13.65 I1.19 774
Multi-View X 221 | 23.14 | 030 | 8.00 1.43 159 352 236 123
Multi-View v 1475 | 48.05 | 428 | 2141 | 1171 11.03 16.80 15.78 9.24

Table 12: Captions tuning for 3DLLMs (LEO,LL3DA and the improved PointLLM) on traditional

3D question answering benchmarks. (EM@ 1 metric)

Method ScanQA (val)  SQA3D (test)
LLaVA-3D (baseline) 23.1 51.6
LLaVA-3D (tuning) 24.7 52.7
LEO (baseline) 16.94 48.50
LEO (tuning) 17.54 51.13
LL3DA (baseline) 15.61 45.11
LL3DA (tuning) 16.83 45.35

network. It turns out that such initialization is critical for current visual grounding models and yields
even better results than using reconstructed point clouds.

D.2 Supplementary Caption Tuning Experiments

We have observed significant improvements on traditional question-answering benchmarks after
tuning LLaVA-3D with MMScan captions. Here, we demonstrate that tuning with MMScan captions
also enhances the performance of LEO and LL3DA on these benchmarks, as shown in the Tab. @
which confirms the benefits of large-scale MMScan annotation.

D.3 Using VG and QA for Instruction Tuning

In addition to using caption data for tuning 3D-LLMs, we can also use the VG and QA samples for
tuning. Taking the same traditional benchmarks as the example, as shown in Tab. [I3] using VG and
QA samples for tuning can both bring performance improvement and QA samples are more important
than VG and captioning data considering the data format is more consistent with the validation
benchmark.

D.4 Qualitative Analysis

Qualitative Results. As shown in Fig. 0] the utterances cover a variety of levels, from simple
single-object identification to complex inter-object relations, including both spatial relationships and
attribute recognition. In Fig.[T0] the questions span from basic existential queries to more complex
attribute-based and advanced inquiries. Finally, we show an example of 3D captioning for objects
in the scene in Fig.[TT] We can see that our model can produce reasonable results for these various
cases.

Failure Cases. We subsequently show several failure cases for analysis. In Fig. the model
encounters challenges with understanding precise comparative spatial relationships (left panel) and
occasionally predicts bounding boxes with imprecise sizes (right panel). Fig.[T3]illustrates the model’s
shortcomings, which include generating incorrect information (hallucination), misunderstanding
questions regarding object functions, and inaccuracies in object enumeration. Fig.[T4]demonstrates
the limitations of the LEO embodiment token design, which overlooks object dimensions and
consequently struggles to identify overlapping elements, exemplified by the failure to distinguish
between a shelf and a book resting upon it.

D.5 In-the-Wild Test

To test the generalization capability of trained 3D grounding and language models, similar to
EmbodiedScan, we use Azure Kinect DK to record the RGB-D streams with camera poses and feed
them into our models. The question-answering test uses the improved PointLLM tuned with MMScan
without any modification. The grounding test uses the trained EmbodiedScan baseline with the best
performance, and we only visualize the top-k predictions matching the language descriptions, where
k is adaptive according to the prompt, e.g., if the question corresponds to a single target, we will
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Table 13: Using VG and QA for tuning 3D-LLMs on traditional 3D question answering benchmarks,
while “B-4” stands for “BLEU4”, “M” for “METEOR”, “R” for “ROUGE”, and in “EM@1” we
report the top-1 exact match and the refined exact-match protocol results respectively.

ScanQA (val) SQA3D (test)
Methods g —NpT R EM@]I EM@TI
baseline 105 151 392 23.1(39.0) | 516341

Tcaptions | 127 198 481 24.7(d89) | 54.1(3638)

VG samples | 120 163 42.0  24.1(392) | 3521(552)

+QAsamples | 162 17.6 494 27.9(49.2) | 54.9 (58.9)

B. (Object-Region) In the resting region of this room, a X serves as the focal point for relaxation
and sleep in a room, being the primary piece of furniture used for resting. Please find the X.

A. (Inter-Object-Space) Select the GT boxes C. (Single-Object-Attribute) Find all the
sign that is close to the sink. pred boxes black and rectangular items in the room.

Figure 9: Visual grounding qualitative results, covering single and inter-target, spatial and attribute
understanding.

only visualize the top-1 prediction. El It shows decent performance both in QA and VG regarding
different aspects of language prompts, even with a different RGB-D sensor in unseen environments.
We visualize the results in the attached supplementary video.

E Evaluation Details

This section presents more details regarding the GPT evaluation adopted in the main paper and further
conducts human evaluation to validate the consistency of these two approaches.

E.1 GPT Evaluation

3D Captioning. GPT4 is assigned to compare captions provided by humans with those generated
by the model. During the labeling process, the captions are structured clearly to facilitate analysis.
We identify common aspects such as Object Type, Color, Shape, Position, Function, and Design,
and instruct GPT4 to assess whether these aspects are correct (scored as 1) or incorrect (scored as
-1). A score of 0 indicates that the aspect is absent in the human captions and is thus omitted from
evaluation. The evaluation prompt used is illustrated in Fig. [T3]

3D Question Answering. Chat-GPT4 is required to compare answers provided by human and
model-generated responses, identifying all key points in the human answers to serve as a reference for
scoring. The evaluation results are then categorized into three classes: Correct, Ambiguous, and Error.
‘Correct’ indicates that the model’s key points align with those of the human responses. ‘Ambiguous’
means it is unclear whether the key points are equivalent or incorrect. ‘Error’ denotes that the key
points are either incorrect or missing. Additionally, a chain-of-thought technique is employed to
prompt Chat-GPT4 to explain its responses. The prompt used is illustrated in Fig.[Tq

2Given the practical use, it is important to explore a certain score threshold to meet general grounding
requirements in the future.
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0,
" What is region role of this

2> Is there a door in the room?
object?
£ Yes.
The mirror is the focal point of
2 | will give you a description of the room, used for grooming
an item in the room: its type is and personal hygiene.
doorframe. lts color is white.
Its texture is smooth. Its shape " There is a toilet region in this
is rectangular. Its placement is room, these objects are in it.
vertical. Its state is functional. What is the color matching and
Its function is supports the style theme of this region?
door and keeps it stable. What
is material of this object? The color scheme of the toilet
=3 Wood area is neutral, with white tiles
and light-colored cabinets
&’ What can | do if | feel the room creating a clean and s'pacious
is a bit stuffy? fegl: Thg style thgme is
minimalist, focusing on
£ You can open the window to functionality rather than

ventilate the room. decoration.

Figure 10: Question answering qualitative results, covering existential, attribute understanding, and
advanced queries.

2 This single-seater couch is a modern
and stylish piece of furniture. It has a
rectangular shape with a slightly inclined
backrest, giving it a contemporary look.
The couch is upholstered in a light beige
or off-white color, complementing the
neutral tones of the room. In terms of
size, it's medium-sized compared to
similar items. The couch is well-
maintained, showing no obvious signs of
wear or damage. It stands vertically
against the wall, adding a touch of
elegance to the room. Functionally, it
serves as a comfortable seating area for
relaxation and socializing.

This chair is a modern office
chair with a stylish design. It
has a curved backrest and
armrests, providing
ergonomic support for the
user. The chair is
upholstered in light-colored
fabric. In terms of size, it is
medium-sized compared to
similar items. The chair is
well-maintained, showing no
obvious signs of wear or
damage. Itis placed
vertically on a carpeted floor
next to a desk.

Figure 11: Qualitative results for 3D captioning.
E.2 Human Evaluation

As mentioned in the main paper, we conduct human evaluation on the language tasks, including
question-answering and captioning benchmarks, to validate the consistency of human and GPT
evaluation.

Question answering evaluation. We randomly select 300 QA pairs from zero-shot 3D-LLM,
Chat-3D-V2, LL3DA, and LEO models, including both fine-tuned LL3DA and LEO versions. We
then recruit five well-educated human evaluators to assess each result based on specific guidelines
provided.

The human evaluation guidelines for question answering are as follows:
Please compare the ground truth answers and model-generated answer using the following metrics:
Hallucination: 0: Clear hallucination 1: No hallucination

Completeness: 0: Completely incorrect 1: Partial coverage 2: Complete coverage

Table 14: Human evaluation results for the 3D question answering benchmark.

Model Hallucination ~Completeness Overall
3D-LLM 33.1 25.7 294
Zero-shot Chat3d-v2 26.7 33.1 29.7
LL3DA 27.2 21.3 243
LEO 32.7 26.3 29.5
Fine-tuned LL3DA 67.0 63.7 65.3
LEO 71.7 70.2 70.9

We evaluate the fine-tuned LL3DA and LEO, with results presented in Tab.[T4] These results show
a similar trend with GPT evaluation shown in the main paper, validating the reliability of GPT
evaluation.

Caption evaluation. Similarly, for the captioning task, we randomly select 300 captions from the
fine-tuned LL3DA and LEO models. Subsequently, we hire five evaluators to assess each result,
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There is a light beige or grayish- Water is poured from the X into the teapot for
white color, wood (oak or similar boiling in the cooking region. Please find the X.
hardwood) material cabinet with a
rectangular with a flat top and vertical
sides shape. Find all the items larger
than the cabinet in the room.

GT boxes

( pred boxes

Figure 12: Vision grounding failure cases. Left: The model falsely selected the cabinet itself as
an item larger than the specified cabinet, also missing the shelf on the left. Right: The model
successfully understands the function of a sink, but predicts a box with inaccurate size.

O
S

&2 | will give you a description of
an item in the room: its type is
shelf. Its color is natural. Its
texture is wooden. lts material
is wood. lts size is rectangular,
two-layered. Its shape is
rectangular. Its placement is
standing upright against the
wall. Its state is empty, closed.
Its function is to store items.
What is region role of this
object?

? What is the function
relationship between these
two objects in the storage
region?

The cabinet is placed on the
shelf for easy access when
needed.

Object can be stored or
displayed on shelf.

ber

=’ How many other objects are
the same as this object in the

The shelf is located next to
the door, serving as a storage

unit for frequently used items. placement?
% The shelf leans against the 1

wall by the window, serving as

a focal point for storage or Five

displaying decorations. - =

Figure 13: Question answering failure cases. Errors are marked in red.

using the same criteria provided to Chat-GPT4 as shown in Fig. [I3] The results have been shown in
Tab. @ with the same consistent trend.

F Dataset Details

This section presents more dataset details, including more statistics on meta-annotations and the
license and access issues.

F.1 More Statistics

In the main paper, we only show the overall statistics for the dataset, such as the numbers of meta-
annotations, VG and QA data samples, and grounded scene captions. We also include the composition
information of post-processed data samples in the main paper’s Fig. 3. Here, we further supplement
the detailed word cloud comparison with EmbodiedScan and distribution statistics for objects and
regions of meta-annotations in Fig.[I7] We can observe that MMScan shows significantly better
diversity regarding language annotations than EmbodiedScan and also covers most of the common
object and region categories.

F.2 License and Access

Our dataset is built upon EmbodiedScan [47]], which collects the raw data from ScanNet, 3RScan,
and Matterport3D. To access and use these three raw datasets, users should follow their original
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This is a wooden bookshelf,
the focal object of the room.
The bookshelf is of moderate
size, rectangular in shape,
and has a dark brown color.
Itis placed vertically against
the wall and is well-
maintained. It is used to
store items. The design of
the bookshelf is simple and
practical, with no additional
decorative features.

This book is a standard-sized hardcover,
either a novel or a reference book. It has
a rectangular shape with a slightly tilted
spine, indicating that it has been opened
and read multiple times. The color of the
book is a light beige or off-white, which is
common for this type of book. In terms of
size, it is medium-sized compared to
similar items. The book is in good
condition, showing no obvious signs of
wear or damage. It is standing upright on
a surface, such as a bookshelf or table.

Figure 14: Object caption failure cases. The model fails to understand the size of the bounding box.

complete the last row of the table:
Human caption

In the center of the room stands a
spacious arched doorway, crafted
from dark wood, exuding a strong
sense of elegance. It is in excellent
condition. Compared to the other
items in the room, this door is quite
large, vertically placed against the
beige wall. The door is functional,
providing access to another room. Its
design features include dark wood
veneer and an arched top, adding a
touch of refinement to the room.

This is a single object, a chair. The

positioned slightly tilted to the right
on a light-colored floor. The chair is

is simple, without armrests or a
backrest. Compared to similar items,
this chair is of medium size. Its
function is to provide a comfortable
seat, and it effectively fulfills this
purpose.

[human caption]

Rules:

Gvaluate a model-generated object caption result against a human-generated caption for a 3D language model. Focus on the\
following aspects: object type, color, shape, position, function, and design. If the human caption does not include any of these
aspects, mark it as 0; otherwise, use 1 or -1 to indicate true or false(missing or incorrect). Following the examples provided,

Model caption

The doorframe is a prominent feature in the
room. It is rectangular in shape and painted in
a light beige or off-white color. Made of wood,
it exudes a warm and inviting feeling. The
doorframe is relatively large, taking up a
significant portion of the wall space. In terms
of functionality, it serves as a typical 1
doorframe, connecting one room to another.
Compared to similar items, this doorframe is
well-maintained with no obvious signs of
damage or wear. Its design is simple yet
elegant, blending seamlessly into the overall
aesthetic of the room.

chair is white and made of plastic. It is This is a white, rectangular box. The box is

made of material such as plastic or stainless
steel, and it's in good condition with no

empty and well-maintained. Its designobvious signs of wear or damage. It's placed

vertically on the floor, and there are no other -1
items next to it. Compared to similar items,

this box is of medium size. Its design is simple
and practical, without any extra features or
decorations.

[model caption]

1. First, carefully read the human caption to identify the six key attributes, then compare them with the model caption.
| 2. Format the 6 scores separated by "|" (beginning and ending with "|"). Respond with only the formatted scores.

Object type Color Shape/Position Function Design

v

Figure 15: Prompt for GPT evaluation. The table is provided in Markdown format.

licenses [T and ask their official hosts for authorization. It is typically smooth if only using
them for academic research. For the annotations of EmbodiedScan and MMScan, we follow a simple
approach for authorization by collecting Google forms [2] temporarily, with a simple license attached
to this form. Due to this work being a follow-up of EmbodiedScan regarding language annotations,
the code to reproduce baselines and experiments will also be released at https://github.com/
OpenRobotLab/EmbodiedScan.
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(Evaluate a model-generated QA result against a human-generated answer for a 3D model. Begin by identifying all key points in\

the human answer, then compare each of these attributes in the model-generated answer, providing reasons for each evaluation.
Following the examples provided, complete the last row of the table:
Question Human Answer Model Answer Total Key Points | Correct | Ambiguous |Error Reason
What is the Hanging clothes Providing 1 1 0 0 A place for hanging
purpose of the storage space clothes also provides
object storage space.
What is the usage | Support the feet Suitable for 0 1 0 "Suitable for daily use" is
of the object daily use ambiguous and does not
specify support for the
feet.
There is a toilet This is a bathroom | This area 2 0 1 The model identifies the
region in this that focuses on appears to be a area as a bathroom and
room, these cleanliness and bathroom or notes its usage, but misses
objects are init. | grooming activities. | toilet area, specific objects like the
What is the It includes facilities | specifically sink and vanity.
location and such as a sink, designed for
function toilet, and a personal
description of this | storage vanity. hygiene and
region? sanitation.
Are these two No, the chair is Yes, the chair '3 1 0 2 The model incorrectly
objects the same | irregular and the and the chair identifies both objects as
in shape? Why? lamp is cylindrical. | are both chairs and fails to
irregular. recognize the cylindrical
shape of the lamp.
Question Human Answer Model Answer
Rules:
1. Focus on comparing the two answers.

\2. Only include the completed last row of the table in your response, excluding the header.

J

Figure 16: Prompt for GPT evaluation. The table is provided in Markdown format.
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(b) MMScan word cloud.

The window is a rectangular one with a white frame and a white windowsill, made of ..

This printer is a multi-functional device with a body that is white and ..
E The basket is a round wicker basket with a lacy lining on the
inside. It is mainly brown with yellow flower patterns ..

This beautiful vase is mainly white, with intricate
golden decorations. Its shape resembles an oval ..

&

This dress is a stylish casual wear
with its bright blue color and elegant

" This towel is a white
hand towel with grey
stripes. It is made

of soft wool ...

s X < 3
CHEERC SRS 5 (e C ol
B g R A P N

(d) Objects’ category distribution.

Figure 17: Statistics. (a)(b) Comparing the word clouds of EmbodiedScan and MMScan, we can

observe the significant diversity improvement in the language annotations, from focusing on inter-

object spatial relationships only to holistic understanding. (c)(d) The distributions of region and
object annotations.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec.[5]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec. 5}
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Include the
URL in the appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. E}

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the appendix.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See the appendix.
(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [Yes] See the appendix.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See Sec.[3]and the supplemental material.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
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