
JaxMARL: Multi-Agent RL Environments and
Algorithms in JAX

Alexander Rutherford1∗† Benjamin Ellis1∗† Matteo Gallici2∗† Jonathan Cook1†

Andrei Lupu1† Garðar Ingvarsson3† Timon Willi1† Ravi Hammond1†

Akbir Khan3 Christian Schroeder de Witt1 Alexandra Souly3

Saptarashmi Bandyopadhyay4 Mikayel Samvelyan3 Minqi Jiang3 Robert Lange5
Shimon Whiteson1 Bruno Lacerda1 Nick Hawes1 Tim Rocktäschel3

Chris Lu1∗† Jakob Foerster1
1University of Oxford, 2Universitat Politècnica de Catalunya, 3University College London,

4University of Maryland, 5Technical University Berlin

Abstract

Benchmarks are crucial in the development of machine learning algorithms, with
available environments significantly influencing reinforcement learning (RL) re-
search. Traditionally, RL environments run on the CPU, which limits their scalabil-
ity with typical academic compute. However, recent advancements in JAX have
enabled the wider use of hardware acceleration, enabling massively parallel RL
training pipelines and environments. While this has been successfully applied to
single-agent RL, it has not yet been widely adopted for multi-agent scenarios. In
this paper, we present JaxMARL, the first open-source, Python-based library that
combines GPU-enabled efficiency with support for a large number of commonly
used MARL environments and popular baseline algorithms. Our experiments show
that, in terms of wall clock time, our JAX-based training pipeline is around 14 times
faster than existing approaches, and up to 12500x when multiple training runs are
vectorized. This enables efficient and thorough evaluations, potentially alleviating
the evaluation crisis in the field. We also introduce and benchmark SMAX, a JAX-
based approximate reimplementation of the popular StarCraft Multi-Agent Chal-
lenge, which removes the need to run the StarCraft II game engine. This not only
enables GPU acceleration, but also provides a more flexible MARL environment,
unlocking the potential for self-play, meta-learning, and other future applications
in MARL. The code is available at https://github.com/flairox/jaxmarl.

1 Introduction

Benchmarks are crucial for developing new single and multi-agent reinforcement learning (MARL)
algorithms. They define problems, enable comparisons, and focus research efforts. For example, the
development of MuZero was driven by the challenges presented by Go and Chess [54]. Similarly,
decentralised StarCraft Micromanagement tasks [18] led to the creation of algorithms like QMIX [51],
a popular MARL technique.

In RL research, the runtime of simulations and algorithms is a critical factor affecting the efficiency,
thoroughness, and feasibility of experiments. RL training pipelines often require a large number
of environment interactions and long, expensive, experimental runs significantly impede research
progress. Hardware acceleration and parallelization is an approach to address this: by running

∗Equal Contribution
†Core Contributor

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

50925 https://doi.org/10.52202/079017-1612

https://github.com/flairox/jaxmarl

(a) MPE (b) Overcooked (c) Multi-Agent Brax (d) STORM

(e) Hanabi (f) Switch Riddle (g) Coin Game (h) SMAX

Figure 1: JaxMARL environments. We provide JAX-based implementations of a wide range of
customizable MARL environments, covering continuous and discrete dynamics, variable number of
agents, full and partial observability, and cooperative, competitive and mixed-incentive settings.

environments on hardware accelerators (e.g. GPUs), we can use many more environment instances
in parallel than is feasible with a CPU, drastically improving runtime. However, such an approach
typically requires significant engineering effort and often relies on non-Python codebases [56], which
reduces its accessibility for many Machine Learning researchers where Python is the lingua franca.
That said, recent releases, such as the JAX [7] library and PyTorch’s functorch module [22],
have improved accessibility by enabling Python code to be parallelized and just-in-time compiled
on hardware accelerators. This laid the foundation for PureJaxRL [38], which leveraged JAX to
implement a parallelized approach, demonstrating that running both the environment and the model
training on the same GPU yields a 10x speedup over a traditional pipeline with a GPU-trained policy
but a CPU-based environment, and 4000x when multiple training runs are vectorized. This speedup
enables new research directions [40, 28] and makes large-scale RL research more accessible [46].

We introduce JaxMARL, which brings these benefits to multi-agent learning. To the best of our
knowledge, JaxMARL is the first open-source, Python-based library which leverages JAX for GPU
acceleration and supports a wide range of popular MARL environments (as shown in Figure 1) as
well as algorithms. We show that MARL greatly benefits from this approach as under the traditional
approach, of using CPU-based environments, experiments tend to be particularly slow due to the
increased computational burden of training multiple agents simultaneously and the higher sample
complexity arising from challenges like non-stationarity and decentralized partial observability.
Utilizing an end-to-end JAX-based pipeline for MARL significantly accelerates these experiments,
opening up new possibilities for research in this field.

Alongside computational issues, MARL research also struggles with thorough evaluation stan-
dards [21]. In particular, MARL papers typically only test on a few domains. Of the 75 recent MARL
papers analysed by [21], 50% used only one evaluation environment and a further 30% used only
two. While SMAC [53] and MPE [36], the two most used environments, have various tasks or maps,
the lack of a standard set raises the risk of biased comparisons and incorrect conclusions. This leads
to environment overfitting and unclear progress markers. By alleviating computational constraints,
JaxMARL allows for rapid evaluations across a broad set of environments and hence is a powerful
tool to address MARL’s current evaluation crisis.

2

50926https://doi.org/10.52202/079017-1612

Figure 2: Our philosophy. JaxMARL combines
a wide range of environments with ease of use
and evaluation speed.

21 22 23 24 25 26

Number of Environment Workers

100

101
14

Sp
ee

du
p

re
la

tiv
e

to
 P

yM
AR

L

JaxMARL (ours)
On-Policy
PyMARL

Figure 3: Speed of training an RNN agent us-
ing IPPO on a multi-particle environment in
JaxMARL compared to two popular MARL li-
braries, see the Appendix for details.

More specifically, in this paper, our contributions are as follows:

• JAX Implementations of Popular MARL Environments: We implement a wide range
of popular MARL environments in JAX, enabling fast experimentation across diverse
environments. Taking advantage of large scale parallelism, many of our environments run
over three orders of magnitude faster on a GPU than their CPU-based counterparts. They are
implemented in Python ensuring ease-of-use, following our philosophy set out in Figure 2.

• New MARL Environment Suites: We introduce two new MARL environment suites:
SMAX and STORM. SMAX is an approximate reimplementation of the popular
SMAC(v2) [15] benchmark entirely in JAX, rather than using the StarCraft II game engine
like SMAC. It is therefore more customizable and significantly faster: SMAX training is
40,000x faster than the equivalent SMAC implementation on a single NVIDIA 2080 when
multiple training runs are vectorized. STORM is a general-sum environment suite inspired
by the Melting Pot [34] environment suite that features temporally extended actions within
social dilemmas.

• Implementation of Popular MARL Algorithms in JAX: We implement many popular
MARL algorithms in JAX, such as IPPO, MAPPO and QMIX. As outlined in Figure 3, our
training pipeline is up to 14x faster than current popular approaches, and up to 12500x when
multiple training runs are vectorized.

• Comprehensive Benchmarking: We thoroughly benchmark the speed and correctness
of our environments and algorithms, comparing them to existing popular repositories.
Generally, our end-to-end JAX implementations run several thousand times faster than their
CPU-based counterparts while maintaining equivalent agent performance.

• Environment Evaluation Recommendations and Best Practice: Finally, we provide
environment evaluation recommendations for different MARL research settings, such as
centralized training with decentralized execution and zero-shot coordination. We also
provide scripts for large scale evaluation and plotting based on best-practice in the field.

2 Background

Our work brings the benefits of hardware acceleration to multi-agent reinforcement learning.

Hardware Accelerated Environments JAX enables the use of Python code with any hardware
accelerator, allowing researchers to write hardware-accelerated code easily. Within the RL community,
writing environment code in JAX has gained recent popularity. This brings three chief advantages.
Firstly, environments written in JAX can be very easily parallelised by using JAX’s vmap operation,
which vectorises a function across an input dimension. Secondly writing the environment in JAX
allows the agent and environment to be co-located on the GPU, which eliminates the time taken
to copy between CPU and GPU memory. Finally, the code written can be compiled just-in-time,
thereby improving performance. Combined, these factors bring significant increases in training speed,

3

50927 https://doi.org/10.52202/079017-1612

with PureJaxRL [38] achieving a 4000x speedup with vectorized training over traditional training in
single-agent settings.

Multi-Agent Reinforcement Learning Settings Multi-Agent Reinforcement Learning is a subfield
of reinforcement learning that focuses on environments where multiple agents interact and learn
simultaneously. MARL encompasses various settings that address interactions between multiple
agents. The most widely-studied MARL setting is the fully-cooperative one, in which agents work
together to achieve a common goal. One key framework is centralized training with decentralized
execution (CTDE) [37], which allows agents to share information during the learning phase or use
additional environment information. During execution, however, agents act based on their independent
and partial observations of the environment. Another is zero-shot coordination, which focuses on
training agents to coordinate successfully with unseen partners or in new environments without
additional training [30]. Beyond fully-cooperative settings, there are zero-sum and general-sum [34]
benchmarks that study competitive and mixed incentive interactions.

3 JaxMARL

We present JaxMARL, a library containing simple and accessible JAX implementations of popular
MARL environments and algorithms. JaxMARL enables significant acceleration and parallelisation
over existing implementations. To the best of our knowledge, JaxMARL is the first open-source
library that provides JAX-based implementations of a wide range of both MARL environments
and baselines. JaxMARL’s interface is inspired by PettingZoo [61] and Gymnax [32], while the
design philosophy is based on PureJaxRL [38] and CleanRL [26]. We designed it to be a simple and
easy-to-use interface for a wide range of MARL problems. A full specification is provided in the
Appendix.

3.1 Environments

JaxMARL contains a diverse range of JAX reimplementations of existing environments. It also
introduces SMAX, a novel SMAC-like JAX environment, and STORM, an expansion of matrix
games to grid-world scenarios. In this section, we introduce our environments while further details
on their implementations can be found in the Appendix.

We measure the speed of our environments in steps per second when using random actions and
compare our speed to that of the original environments in Table 3, see the Appendix for details.

3.1.1 New Environments

SMAX The StarCraft Multi-Agent Challenge (SMAC) is a popular benchmark in cooperative
multi-agent reinforcement learning (MARL) but has several limitations. SMAC’s environment lacks
sufficient stochasticity for complex policies [15], and its reliance on the StarCraft II engine makes it
slow and memory-intensive [43]. Additionally, StarCraft II’s constraints limit scenario variety and
do not support competitive self-play without significant engineering. To address these issues, we
introduce SMAX, a SMAC-like, hardware-accelerated, customizable environment. SMAX features
more lightweight dynamics and a less exploitable AI. SMAX incorporates original SMAC scenarios
and scenarios similar to those in SMACv2, but is also far more customizable. We provide more
details on SMAX and how it improves on SMAC and SMACv2 in the Appendix.

Spatial-Temporal Representations of Matrix Games (STORM) Inspired by the “in the Matrix”
games in Melting Pot 2.0 [1], the STORM [29] environment expands on matrix games by representing
them as grid-world scenarios. Agents collect resources which define their strategy during interactions
and are rewarded based on a pre-specified payoff matrix. STORM can represent cooperative,
competitive or general-sum games, like the prisoner’s dilemma [57]. Thus, STORM can be used
for studying paradigms such as opponent shaping, where agents act with the intent to change other
agents’ learning dynamics, which has been empirically shown to lead to more prosocial outcomes
[17, 65, 41, 29, 69]. Compared to the Coin Game or simple matrix games, the grid-world setting
presents a variety of new challenges such as partial observability, multi-step agent interactions,
temporally-extended actions, and longer time horizons. Unlike the “in the Matrix” games from
Melting Pot, STORM features stochasticity, increasing the difficulty [15].

4

50928https://doi.org/10.52202/079017-1612

3.1.2 Existing Environments

We have also provided JAX-based implementations of several existing environments.

Hanabi [3] is a fully-cooperative partially-observable multiplayer card game, where players can
observe others’ cards but not their own. It is a common benchmark for zero-shot coordination, theory
of mind, and ad-hoc teamplay research [23, 24, 9, 40].

Overcooked is commonly used for assessing fully-cooperative and fully-observable Human-AI task
performance. Our implementation mimics the original from Overcooked-AI [10]. For a discussion
on this environment’s limitations see [33].

MABrax is a derivative of Multi-Agent MuJoCo [49], an extension of the MuJoCo Gym environ-
ment [62] that is commonly used for benchmarking continuous multi-agent robotic control.

Multi-Agent Particle Environment (MPE) tasks feature a 2D world with simple physics where
particle agents can move, communicate, and interact with fixed landmarks [36].

Coin Game is a two-player grid-world environment which emulates social dilemmas such as the
iterated prisoner’s dilemma [57]. While this is a common benchmark for the general-sum setting,
previous work [29] has illustrated issues which STORM corrects.

Switch Riddle [16] is a simple cooperative communication task included as a debugging tool.

3.2 Algorithms

In this section, we present our re-implementation of five well-known MARL baseline algorithms using
JAX. All of our training pipelines are fully compatible with JAX’s jit and vmap functions, resulting in
significant acceleration of the training processes, as outlined in Figure 3. It also enables parallelisation
of training across many seeds and hyperparameters on a single GPU. We follow CleanRL’s philosophy
of providing clear, single-file implementations [26] and provide a brief overview of the implemented
baselines in the Appendix.

PPO We implement both Independent PPO (IPPO) [55, 14] and Multi-Agent PPO (MAPPO) [67],
with both implementations based on PureJaxRL [38]. We utilise parameter sharing across homoge-
neous agents and provide both feed-forward and RNN policies.

Q-learning Our Q-Learning baselines, including Independent Q-Learning (IQL) [60], Value
Decomposition Networks (VDN) [59], and QMIX [52], have been implemented in accordance
with the PyMARL codebase [52] to ensure consistency with published results and enable direct
comparisons with PyTorch.

4 Evaluation Recommendations

Previous work [21] has found significant differences in the evaluation protocols between MARL
research works. We identify four main research areas that would benefit from our library: cooperative
centralised training with decentralised execution (CTDE) [16], zero-shot coordination [23], general-
sum games, and cooperative continuous action methods.

To aid comparisons between methods, we recommend standard minimal sets of evaluation environ-
ments for each of these settings in Table 1. It’s important to note that these are minimal and we
encourage as broad an evaluation as possible. For example, in the zero-shot coordination setting, all
methods should be able to evaluate on Hanabi and Overcooked. However, it may also be possible
to evaluate such methods on the SMACv2 settings of SMAX. Similarly, SMAX could be used to
evaluate two-player zero-sum methods by training in self-play. For some settings, such as continuous
action environments and general-sum games, there is only one difficult environment. We encourage
further development of JAX-based environments in these settings to improve the quality of evaluation.

To compute aggregate performance statistics, we follow the recommendations of [2] and evaluate
the inter-quartile mean across the different classes of environments. To do this, we recommend
normalising performance of the algorithms on the relevant classes of environment (for example via
looking at the maximum and minimum performance across algorithms as discussed in [21]), and

5

50929 https://doi.org/10.52202/079017-1612

Table 1: Recommended minimal environment evaluation sets for different research settings

Setting Recommended Environments

CTDE SMAX (all scenarios), Hanabi (2-5 players), Overcooked
Zero-shot Coordination Hanabi (2 players), Overcooked (5 basic scenarios)
General-Sum STORM (iterated prisoner’s dilemma), STORM (matching pennies)
Cooperative Continuous Actions MABrax

computing a mean per seed. Then compute the inter-quartile mean across aggregated statistics in
each environment. We provide code for performing this calculation. This allows environment classes
to be compared fairly, without over-weighting those with more individual scenarios.

5 Results

To demonstrate the utility of our library, we evaluate PPO against Q-Learning algorithms on a range
of cooperative environments. We discover that not only does it have improved performance, but also
that it is more practical to use for end-to-end GPU training.

We then evaluate the speed of our library. We compare algorithm and environment runtimes with
similar CPU-based environments. We find that when training PPO, JaxMARL is 31x quicker on
SMAX when compared to training in SMAC and 14x quicker on MPE for a single run, and 12,500x
for vectorized training runs. Finally, we verify the correctness of our implementations by performing
thorough comparisons with prior work.

5.1 Multi-Environment Comparison

We provide a preliminary comparison of our PPO and Q-Learning baselines in Figure 4. The IQM
and mean were aggregated across 9 SMAX tasks, excluding the two maps with more than 10 units, all
5 Overcooked maps, and the 2 cooperative scenarios of MPE, running 10 seeds per task. We did not
evaluate on Hanabi or all SMAX tasks because of the large memory overhead of storing the replay
buffer for the Q-Learning methods on the GPU. We normalize the scores of each run on each task
against the highest score obtained by any algorithm in that task, and then average the scores in each
environment to avoid bias towards SMAX (which contributes more tasks).1

0.72 0.75 0.78 0.81
PPO

QLearning
Multi-Task IQM

0.750 0.775 0.800

Multi-Task Mean

Normalized Score

Figure 4: Normalised scores aggregated over SMAX, MPE
and Overcooked. PPO shows a clear advantage.

Environment PPO Q-Learning

SMAX 10 60
Overcooked 1 10
MPE 1.5 2
Hanabi 450 -

Table 2: Mean training time (in minutes)
of a single run. PPO is much faster.

The aggregated IQM and Mean scores in Figure 4 show a clear advantage of PPO baselines over
Q-Learning. Furthermore, in Table 2 we find that PPO is 6 times faster in SMAX and 10 times faster
in Overcooked. We provide additional analysis of this in the Appendix.

5.2 Speed Benchmarking

We compare the performance of our environments in steps per second when using random actions to
the original environments in Table 3, with details of this test provided in the Appendix.

We next compare the speed of our training pipeline to that of PyMARL. As shown in Figure 5a,
a single Q-Learning training run for MPE’s simple spread task takes 130 seconds with JaxMARL
while PyMARL requires over an hour. Furthermore, using JAX we can parallelise over the entire

1For PPO, we used MAPPO as the baseline algorithm, except for Overcooked where we used IPPO. For
Q-Learning, we used VDN, except for SMAX where we use QMIX as it performs slightly better.

6

50930https://doi.org/10.52202/079017-1612

Table 3: Benchmark results for JAX-based MARL environments (steps-per-second) when taking
random actions. All environments are significantly faster than existing CPU implementations.

Environment Original, 1 Env Jax, 1 Env Jax, 100 Envs Jax, 10k Envs
MPE Simple Spread 8.3× 104 5.5× 103 5.2× 105 4.0× 107

Switch Riddle 2.7× 104 6.2× 103 7.9× 105 6.7× 107

Hanabi 2.1× 103 1.4× 103 1.1× 105 5.0× 106

Overcooked 1.9× 103 3.6× 103 3.0× 105 1.7× 107

MABrax Ant 4x2 1.8× 103 2.7× 102 1.8× 104 7.6× 105

Starcraft 2s3z 8.3× 101 5.4× 102 4.5× 104 2.7× 106

Starcraft 27m vs 30m 2.7× 101 1.5× 102 1.1× 104 1.9× 105

STORM – 2.5× 103 1.8× 105 1.5× 107

Coin Game 2.0× 104 4.7× 103 4.1× 105 4.0× 107

100 101 102 103

Wall Clock Time (s)

140

120

100

80

60

40

Re
tu

rn
s

JaxMARL IQL
JaxMARL QMIX
JaxMARL VDN

PyMARL IQL
PyMARL QMIX
PyMARL VDN

(a)

102 103 104

Time (Seconds)

0

200

400

600

800

1000

No
. I

nd
ep

en
de

nt
 Tr

ai
ni

ng
 R

un
s

(b)

22 24 26

No. of Environment Workers

100

101

31

Sp
ee

du
p

re
la

tiv
e

to
 P

yM
AR

L

JaxMARL (ours)
PyMARL

(c)

Figure 5: JaxMARL speed benchmarking results. Figure 5a compares JaxMARL’s returns in MPE
over wall clock time with PyMARL’s when using Q-Learning algorithms. Figure 5b demonstrates
JaxMARL algorithms’ ability to train many seeds in parallel. The figure compares training time (on
the x-axis) for a varying number of training runs (on the y-axis) training using QMIX on MPE. The
red dotted represents the time taken to train a single agent with PyMARL. Figure 5c illustrates the
speedup of a JaxMARL IPPO training run using SMAX compared to PyMARL using SMAC across
a varying number of environment rollout threads.

training process within a single hardware accelerator. For QMIX on MPE, this allows us to complete
1024 individual training runs in 198.4 seconds, compared to 1 hour and 10 minutes for a single
training run with PyMARL, a speed up of 21,500x per agent. This analysis is repeated for IPPO in the
Appendix and we find a speedup of 12,500x. Figure Figure 5c demonstrates the speedup gained from
using SMAX with JaxMARL’s IPPO implementation compared to training on SMAC with PyMARL.
Across a varying number of environment rollout threads, JaxMARL gives a speedup of up to 31x.

5.3 Algorithm and Environment Correctness

In this section, we compare our environment and algorithm implementations with prior work and
demonstrate equivalence where applicable.

Overcooked The transition dynamics of our Overcooked implementation match those of the
Overcooked-AI implementation. We demonstrate this by training an IPPO policy on our implementa-
tion and evaluating the policy on both our implementation and the original at regular intervals. The
performance is similar across the implementations. Results can be found in the Appendix.

SMAX SMAX and SMAC are different environments, as they have different opponent policies
and dynamics. However, we demonstrate some similarity between them by comparing our IPPO and
MAPPO implementations against MAPPO results on SMAC, using the implementation from [58].
We show this figure, along with a more in-depth description of their differences, in the appendix.

7

50931 https://doi.org/10.52202/079017-1612

0 1 2
Timestep 1e6

150

100

50

Re
tu

rn

simple_spread_v3

IPPO
MAPPO
IQL
QMIX
VDN

(a) MPE Simple Spread

0 2 4
Timestep 1e7

0

500

1000

1500

Re
tu

rn

halfcheetah_6x1

IPPO

(b) MABrax

0.0 0.5 1.0
Timestep 1e10

0

5

10

15

20

25

Re
tu

rn

IPPO
MAPPO

(c) Hanabi

Figure 6: Training Curves for a range of JaxMARL environments. Performance is aggregated across
10 seeds and error bars show standard error.

We additionally present aggregate and detailed performance across SMAX in the Appendix. The
PPO-based IPPO and MAPPO perform better than the Q-Learning methods, with the centralised
information provided in the state helping MAPPO significantly outperform IPPO.

MPE Our MPE environment corresponds exactly to the PettingZoo implementation. We validate
this for each environment using a uniform-random policy on 1000 rollouts, ensuring all observations
and rewards are within a tolerance of 1×10−4 at each transition. We additionally compare the results
of our Q-Learning and PPO implementations with existing libraries, the results of which, along with
the performance of IQL on the remaining MPE environments, can be found in the Appendix. We
compare Q-Learning and PPO on Simple Spread in Figure 6a.

MABrax As Brax differs subtly from MuJoCo, MABrax does not correspond to MAMuJoCo but the
learning dynamics are qualitatively similar. Results therefore are not directly comparable across the
two environments. We report mean training return across 10 seeds for IPPO on halfcheetah_6x1
in Figure 6b. We additionally report the training curves for IPPO on ant_4x2, hopper_3x1,
walker2d_2x3 and humanoid_9|8 in the Appendix.

Hanabi Our implementation matches the Hanabi Learning Environment. To verify the environ-
ment’s accuracy, we obtained 10,000 action trajectories from the original C++ repository using
their pretrained models. We confirmed that processing these action trajectories with JaxMARL
produces the same states and returns as the C++ repository. In addition, we transferred the models
trained with Pytorch/C++ to Jax and verified they obtain similar scores in JaxMARL. Finally, as
shown in Figure 6c, our IPPO and MAPPO models attain scores 24.18± 0.04 and 23.95± 0.09
respectively, which are better than (for IPPO) or similar to (for MAPPO) the scores attained in [67].

6 Related Work

MARL Libraries and Algorithms Several open-source libraries exist for both MARL algorithms
and environments. The popular library PyMARL [53] provides PyTorch implementations of QMIX,
VDN and IQL and integrates easily with SMAC. E-PyMARL [48] extends this by adding the actor-
critic algorithms MADDPG [36], MAA2C [44], IA2C [44], and MAPPO, and supports SMAC,
Gym [8], Robot Warehouse [11], Level-Based Foraging [11], and MPE environments. Recently
released MARLLib [25] is instead based on the open-source RL library RLLib [35] and combines
a wide range of competitive, cooperative and mixed environments with a broad set of baseline
algorithms. Meanwhile, MALib [70] focuses on population-based MARL across a wide range of
environments. However, none of these frameworks feature hardware-accelerated environments and
thus lack the associated performance benefits.

Hardware-Accelerated and JAX-Based RL There has also been a recent proliferation of hardware-
accelerated and JAX-based RL environments. Isaac gym [42] provides a GPU-accelerated simulator
for a range of robotics platforms and CuLE [12] is a CUDA reimplementation of the Atari Learning

8

50932https://doi.org/10.52202/079017-1612

Environment [4]. Both of these environments are GPU-specific and cannot be extended to other
hardware accelerators. Madrona [56] is an extensible game-engine written in C++ that allows for
GPU acceleration and parallelisation across environments. However, it requires environment code
to be written in C++, limiting its accessibility. VMAS [5] provides a vectorized 2D physics engine
written in PyTorch and a set of challenging multi-robot scenarios, including those from the MPE
environment. For RL environments implemented in JAX, Jumanji [6] features mostly single-agent
environments with a strong focus on combinatorial problems. The authors also provide an actor-critic
baseline in addition to random actions. PGX [31] includes several board-game environments written
in JAX. Gymnax [32] provides JAX implementations of the BSuite [47], classic continuous control,
MinAtar [66] and other assorted environments. Gymnax’s sister-library, gymnax-baselines, provides
PPO and ES baselines. Further extensions to Gymnax [39] also include POPGym environments [45].
Brax [19] reimplements the MuJoCo simulator in JAX and also provides a PPO implementation as a
baseline. Jax-LOB [20] implements a vectorized limit order book as an RL environment that runs
on the accelerator. Perhaps the most similar to our work is Mava [50], which provides a MAPPO
baseline, as well as integration with the Robot Warehouse environment. None of these libraries
combine a range of JAX-based MARL environments with both value-based and actor-critic baselines.

7 Conclusion

Hardware acceleration offers important opportunities for MARL research by lowering computational
barriers, increasing the speed at which ideas can be iterated, and allowing for more thorough evalua-
tion. We present JaxMARL, an open-source library of popular MARL environments and baseline
algorithms implemented in JAX. We combine ease of use with hardware accelerator enabled efficiency
to give significant speed-ups compared to traditional CPU-based implementations. Furthermore, by
bringing together a wide range of MARL environments under one codebase, we have the potential to
help alleviate issues with MARL’s evaluation standards. We hope that JaxMARL will help advance
MARL by enabling researchers to conduct research with thorough, fast, and effective evaluations.

Limitations and Future Work. While our work provides significant advancements, several limi-
tations remain. First, we observe that the speedups are less pronounced for off-policy, value-based
methods. Additionally, there are inherent challenges with end-to-end JAX implementations, such
as the difficulty in efficiently handling environments with a variable number of agents or those with
massive observation sizes. Furthermore, our MARL environments largely re-implement or draw
inspiration from existing environment suites, meaning they do not yet push the boundaries of MARL
capabilities. Developing novel MARL environments that push the boundaries of current capabilities
could provide new and challenging benchmarks for the community.

9

50933 https://doi.org/10.52202/079017-1612

8 Acknowledgements

This work received funding from the EPSRC Programme Grant “From Sensing to Collaboration”
(EP/V000748/1). MG was partially founded by the FPI-UPC Santander Scholarship FPI-UPC_93. JF
is partially funded by the UKI grant EP/Y028481/1 (originally selected for funding by the ERC). JF
is also supported by the JPMC Research Award and the Amazon Research Award.

References
[1] John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yi-

ran Mao, Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona
Comanescu, et al. Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304–29320, 2021.

[3] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi
challenge: A new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

[5] Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized
multi-agent simulator for collective robot learning. The 16th International Symposium on
Distributed Autonomous Robotic Systems, 2022.

[6] Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma
Mahjoub, Matthew Macfarlane, Andries P. Smit, Nathan Grinsztajn, Raphaël Boige, Cemlyn N.
Waters, Mohamed A. Mimouni, Ulrich A. Mbou Sob, Ruan de Kock, Siddarth Singh, Daniel
Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of
scalable reinforcement learning environments in jax. In ICLR, 2024.

[7] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[9] Rodrigo Canaan, Xianbo Gao, Julian Togelius, Andy Nealen, and Stefan Menzel. Generating
and adapting to diverse ad-hoc partners in hanabi. IEEE Transactions on Games, 2022.

[10] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

[11] Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[12] Steven Dalton and iuri frosio. Accelerating reinforcement learning through gpu atari emulation.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 19773–19782. Curran Associates,
Inc., 2020.

[13] Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry.
Gymnasium robotics, 2023.

10

50934https://doi.org/10.52202/079017-1612

[14] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip
H. S. Torr, Mingfei Sun, and Shimon Whiteson. Is Independent Learning All You Need in the
StarCraft Multi-Agent Challenge?, November 2020. arXiv:2011.09533 [cs].

[15] Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj
Mahajan, Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for
cooperative multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

[16] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[17] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 122–130,
2018.

[18] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr,
Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent
reinforcement learning. In International conference on machine learning, pages 1146–1155.
PMLR, 2017.

[19] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation, 2021.

[20] Sascha Yves Frey, Kang Li, Peer Nagy, Silvia Sapora, Christopher Lu, Stefan Zohren, Jakob
Foerster, and Anisoara Calinescu. Jax-lob: A gpu-accelerated limit order book simulator to
unlock large scale reinforcement learning for trading. In Proceedings of the Fourth ACM
International Conference on AI in Finance, ICAIF ’23, page 583–591, New York, NY, USA,
2023. Association for Computing Machinery.

[21] Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and
Arnu Pretorius. Towards a standardised performance evaluation protocol for cooperative marl.
Advances in Neural Information Processing Systems, 35:5510–5521, 2022.

[22] Richard Zou Horace He. functorch: Jax-like composable function transforms for pytorch.
https://github.com/pytorch/functorch, 2021.

[23] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pages 4399–4410. PMLR,
2020.

[24] Hengyuan Hu, Samuel Sokota, David Wu, Anton Bakhtin, Andrei Lupu, Brandon Cui, and
Jakob Foerster. Self-explaining deviations for coordination. Advances in Neural Information
Processing Systems, 35:38400–38410, 2022.

[25] Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang, Zhihui Li,
Xiaojun Chang, and Yaodong Yang. Marllib: A scalable and efficient multi-agent reinforcement
learning library. Journal of Machine Learning Research, 2023.

[26] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[27] Roberto Ierusalimschy. Programming in lua. Roberto Ierusalimschy, 2006.

[28] Matthew Thomas Jackson, Chris Lu, Louis Kirsch, Robert Tjarko Lange, Shimon Whiteson,
and Jakob Nicolaus Foerster. Discovering temporally-aware reinforcement learning algorithms.
In International Conference on Learning Representations, volume 12, 2024.

11

50935 https://doi.org/10.52202/079017-1612

https://github.com/pytorch/functorch

[29] Akbir Khan, Timon Willi, Newton Kwan, Andrea Tacchetti, Chris Lu, Edward Grefenstette,
Tim Rocktäschel, and Jakob Foerster. Scaling opponent shaping to high dimensional games.
In Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’24, page 1001–1010, Richland, SC, 2024. International Foundation for
Autonomous Agents and Multiagent Systems.

[30] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research,
76:201–264, 2023.

[31] Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita,
and Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning.
In Advances in Neural Information Processing Systems, volume 36, pages 45716–45743, 2023.

[32] Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.

[33] Niklas Lauffer, Ameesh Shah, Micah Carroll, Michael D Dennis, and Stuart Russell. Who
needs to know? minimal knowledge for optimal coordination. In International Conference on
Machine Learning, pages 18599–18613. PMLR, 2023.

[34] Joel Z. Leibo, Edgar A. Duéñez-Guzmán, Alexander Vezhnevets, John P. Agapiou, Peter
Sunehag, Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel.
Scalable evaluation of multi-agent reinforcement learning with melting pot. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 6187–6199. PMLR, 2021.

[35] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International conference on machine learning, pages 3053–3062. PMLR, 2018.

[36] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Neural Information Processing
Systems (NIPS), 2017.

[37] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[38] Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob
Foerster. Discovered policy optimisation. Advances in Neural Information Processing Systems,
35:16455–16468, 2022.

[39] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh,
and Feryal Behbahani. Structured state space models for in-context reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

[40] Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. Adversarial cheap talk.
In International Conference on Machine Learning, pages 22917–22941. PMLR, 2023.

[41] Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster. Model-free
opponent shaping. In International Conference on Machine Learning, pages 14398–14411.
PMLR, 2022.

[42] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac
gym: High performance gpu-based physics simulation for robot learning, 2021.

[43] Adam Michalski, Filippos Christianos, and Stefano V Albrecht. Smaclite: A lightweight
environment for multi-agent reinforcement learning. arXiv preprint arXiv:2305.05566, 2023.

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

12

50936https://doi.org/10.52202/079017-1612

[45] Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POP-
Gym: Benchmarking partially observable reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

[46] Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Viacheslav Sinii, Artem Agarkov, and
Sergey Kolesnikov. XLand-minigrid: Scalable meta-reinforcement learning environments in
JAX. In Intrinsically-Motivated and Open-Ended Learning Workshop, NeurIPS2023, 2023.

[47] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy,
Richard Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning.
In International Conference on Learning Representations, 2020.

[48] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS),
2021.

[49] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

[50] Arnu Pretorius, Kale ab Tessera, Andries P. Smit, Kevin Eloff, Claude Formanek, St John
Grimbly, Siphelele Danisa, Lawrence Francis, Jonathan Shock, Herman Kamper, Willie Brink,
Herman Engelbrecht, Alexandre Laterre, and Karim Beguir. Mava: A research framework for
distributed multi-agent reinforcement learning. arXiv preprint arXiv:2107.01460, 2021.

[51] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

[52] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International conference on machine learning, pages 4295–4304.
PMLR, 2018.

[53] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

[54] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[56] Brennan Shacklett, Luc Guy Rosenzweig, Zhiqiang Xie, Bidipta Sarkar, Andrew Szot, Erik
Wijmans, Vladlen Koltun, Dhruv Batra, and Kayvon Fatahalian. An extensible, data-oriented
architecture for high-performance, many-world simulation. ACM Trans. Graph., 42(4), 2023.

[57] Glenn H Snyder. " prisoner’s dilemma" and" chicken" models in international politics. Interna-
tional Studies Quarterly, 15(1):66–103, 1971.

[58] Mingfei Sun, Sam Devlin, Jacob Beck, Katja Hofmann, and Shimon Whiteson. Trust region
bounds for decentralized ppo under non-stationarity. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, pages 5–13, 2023.

[59] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
(AAMAS 2018), volume 3, pages 2085–2087, 2018.

13

50937 https://doi.org/10.52202/079017-1612

[60] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement
learning. PloS one, 12(4):e0172395, 2017.

[61] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:15032–15043, 2021.

[62] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[63] Edan Toledo, Laurence Midgley, Donal Byrne, Callum Rhys Tilbury, Matthew Macfarlane,
Cyprien Courtot, and Alexandre Laterre. Flashbax: Streamlining experience replay buffers for
reinforcement learning with jax, 2023.

[64] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[65] Timon Willi, Alistair Letcher, Johannes Treutlein, and Jakob N. Foerster. COLA: consistent
learning with opponent-learning awareness. In International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 23804–23831, 2022.

[66] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

[67] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

[68] Qizhen Zhang, Chris Lu, Animesh Garg, and Jakob Foerster. Centralized model and exploration
policy for multi-agent rl. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 1500–1508, 2022.

[69] Stephen Zhao, Chris Lu, Roger B Grosse, and Jakob Foerster. Proximal learning with opponent-
learning awareness. Advances in Neural Information Processing Systems, 35:26324–26336,
2022.

[70] Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen, Runzhe Wu, Ying Wen, Yaodong Yang,
Yong Yu, Jun Wang, and Weinan Zhang. Malib: A parallel framework for population-based
multi-agent reinforcement learning. Journal of Machine Learning Research, 24(150):1–12,
2023.

14

50938https://doi.org/10.52202/079017-1612

Appendix

We structure the appendix as follows. Appendix A provides further background on SMAC, Ap-
pendix B describes the environments included within JaxMARL, and Appendix C sets out JaxMARL’s
API. Appendix D explores JaxMARL’s Value-Based MARL methods, including relevant implemen-
tation details. Appendix E reports our speed comparisons while Appendix F details training and
correctness results not included in the main text. Our hyperparameter values are listed in Appendix G.

A Further Background on SMAC

StarCraft is a popular environment for testing RL algorithms. It typically features a centralised
controller issuing commands to balance micromanagement, the low-level control of individual units,
and macromanagement, the high level plans for economy and resource management.

SMAC [53], instead, focuses on decentralised unit micromanagement across a range of scenarios
divided into three broad categories: symmetric, where each side has the same units, asymmetric,
where the enemy team has more units, and micro-trick, which are scenarios designed specifically to
feature a particular StarCraft micromanagement strategy. SMACv2 [15] demonstrates that open-loop
policies can be effective on SMAC and adds additional randomly generated scenarios to rectify
SMAC’s lack of stochasticity. However, both of these environments rely on running the full game of
StarCraft II, which severely increases their CPU and memory requirements. SMAClite [43] attempts
to alleviate this computational burden by recreating the SMAC environment primarily in NumPy, with
some core components written in C++. While this is much more lightweight than SMAC, it cannot
be run on a GPU and therefore cannot be parallelised effectively with typical academic hardware,
which commonly has very few CPU cores compared to industry clusters.

B Further Details on Environments

B.1 SMAX

The StarCraft Multi-Agent Challenge (SMAC) is a popular benchmark but has a number of shortcom-
ings. First, as noted and addressed in SMACv2, SMAC is not particularly stochastic. This means
that non-trivial win-rates are possible on many SMAC maps by conditioning a policy only on the
timestep and agent ID. Additionally, SMAC relies on StarCraft II as a simulator. While this allows
SMAC to use the wide range of units, objects and terrain available in StarCraft II, running an entire
instance of StarCraft II is slow and memory intensive. StarCraft II runs on the CPU and therefore
SMAC’s parallelisation is severely limited with typical academic compute.

Using the StarCraft II game engine also constrains environment design. For example, StarCraft II
groups units into three races and does not allow units of different races on the same team, limiting the
variety of scenarios that can be generated. Secondly, SMAC does not support a competitive self-play
setting without significant engineering work. The purpose of SMAX is to address these limitations. It
provides access to a simplified SMAC-like, hardware-accelerated, customisable environment that
supports self-play and custom unit types. SMAX models units as discs in a continuous 2D space. As
listed in Table 4, we include all SMAC(v1) scenarios alongside three inspired by SMAC(v2).

Observations in SMAX are structured similarly to SMAC. Each agent observes the health, previous
action, position, weapon cooldown and unit type of all allies and enemies in its sight range. Like
SMACv2[15], we use the sight and attack ranges as prescribed by StarCraft II rather than the fixed
values used in SMAC.

SMAX and SMAC have different returns. SMAC’s reward function, like SMAX’s, is split into two
parts: one part for depleting enemy health, and another for winning the episode. However, in SMAC,
the part which rewards depleting enemy health scales with the number of agents. This is most clearly
demonstrated in 27m_vs_30m, where a random policy gets a return of around 10 out of a maximum of
20 because almost all the reward is for depleting enemy health or killing agents, rather than winning
the episode. In SMAX, however, 50% of the total return is always for depleting enemy health, and
50% for winning.

15

50939 https://doi.org/10.52202/079017-1612

At the start, AI always heads for a
fixed point

Once there, AI does nothing if not attacked

(a) SMAC heuristic AI operation

SMACv2 heuristic AI agents always know
enemy's positions, meaning they unfairly

condition on global information

sight
range

t

t+1

SMACv2 heuristic AI attacks the globally
nearest enemy, meaning the enemy flip-flops
between moving enemies at different timesteps

(b) SMACv2 heuristic AI operation

Figure 7: As shown in Figure 7a, SMAC heuristic AI is decentralised, but does not generalise to new
start positions. SMACv2 heuristic AI solves the problem of not being able to locate enemies on the
map, but does so via conditioning on the global state, which means that some scenarios might be
unwinnable. Additionally, the SMACv2 heuristic AI targets the closest enemy, which can lead to
flip-flopping between targets. This is shown in Figure 7b

SMAX enemy units will
pursue running enemies
within their sight range

SMAX enemy units will keep
firing at a unit they have

shot at before

By always passing through
the centre of the map,

SMAX AI can find enemies while
being decentralised

Figure 8: Explanation of the operation of the SMAX heuristic AI.

SMAX also features a different, and more sophisticated, heuristic AI. The heuristic in SMAC simply
moves to a fixed location, attacking any enemies it encounters along the way, and the heuristic in
SMACv2 globally pursues the nearest agent. Thus the SMAC AI often does not aggressively pursue
enemies that run away, and cannot generalise to the SMACv2 start positions, whereas the SMACv2
heuristic AI conditions on global information and is exploitable because of its tendency to flip-flop
between two similarly close enemies. SMAC’s heuristic AI must be coded in the map editor, which
does not provide a simple coding interface. Figure 7 demonstrates these limitations.

In contrast, SMAX features a decentralised heuristic AI that can effectively find enemies without
requiring the global information of the SMACv2 heuristic. This guarantees that in principle a 50%
win rate is always achievable by copying the decentralised heuristic policy exactly. This means any
win-rate below 50% represents a concrete failure to learn. Some of the capabilities of the SMAX
heuristic AI are illustrated in the Figure below.

Unlike StarCraft II, where all actions happen in a randomised order in the game loop, some actions in
SMAX are simultaneous, meaning draws are possible. In this case both teams get 0 reward.

Like SMAC, each environment step in SMAX consists of eight individual time ticks. SMAX uses
a discrete action space, consisting of movement in the four cardinal directions, a stop action, and a
shoot action per enemy.

SMAX makes three notable simplifications of the StarCraft II dynamics to reduce complexity. First,
zerg units do not regenerate health. This health regeneration is slow at 0.38 health per second, and so
likely has little impact on the game. Protoss units also do not have shields. Shields only recharge after
10 seconds out of combat, and therefore are unlikely to recharge during a single micromanagement

16

50940https://doi.org/10.52202/079017-1612

task. Protoss units have additional health to compensate for their lost shields. Finally, the available
unit types are reduced compared to SMAC. SMAX has no medivac, colossus or baneling units.
Each of these unit types has special mechanics that were left out for the sake of simplicity. For the
SMACv2 scenarios, the start positions are generated as in SMACv2, with the small difference that
the ‘surrounded’ start positions now treat allies and enemies identically, rather than always spawning
allies in the middle of the map. This symmetry guarantees that a 50% win rate is always achievable.

Collisions are handled by moving agents to their desired location first and then pushing them out
from one another.

Table 4: SMAX scenarios. The first section corresponds to SMAC scenarios, while the second
corresponds to SMACv2.

Scenario Ally Units Enemy Units Start Positions

2s3z 2 stalkers and 3 zealots 2 stalkers and 3 zealots Fixed
3s5z 3 stalkers and 5 zealots 3 stalkers and 5 zealots Fixed

5m_vs_6m 5 marines 6 marines Fixed
10m_vs_11m 10 marines 11 marines Fixed
27m_vs_30m 27 marines 30 marines Fixed

3s5z_vs_3s6z 3 stalkers and 5 zealots 3 stalkers and 6 zealots Fixed
3s_vs_5z 3 stalkers 5 zealots Fixed
6h_vs_8z 6 hydralisks 8 zealots Fixed

smacv2_5_units 5 uniformly randomly chosen 5 uniformly randomly chosen SMACv2-style
smacv2_10_units 10 uniformly randomly chosen 10 uniformly randomly chosen SMACv2-style
smacv2_20_units 20 uniformly randomly chosen 20 uniformly randomly chosen SMACv2-style

B.2 Spatial-Temporal Representations of Matrix Games (STORM)

This environment features directional agents within an 8x8 grid world with a restricted field of view.
For a visual description, see Figure 9. Agents cannot move backwards or share the same location.
Collisions are resolved by either giving priority to the stationary agent or randomly if both are moving.
Agents collect two unique resources: cooperate and defect coins. Once an agent picks up any coin,
the agent’s colour shifts, indicating its readiness to interact. The agents can then release an interact
beam directly ahead; when this beam intersects with another ready agent, both are rewarded based
on the specific matrix game payoff matrix. The agents’ coin collections determine their strategies.
For instance, if an agent has 1 cooperate coin and 3 defect coins, there is a 25% likelihood of the
agent choosing to cooperate. After an interaction, the two agents involved are frozen for five steps,
revealing their coin collections to surrounding agents. After five steps, they respawn in a new location,
with their coin count set back to zero. Once an episode concludes, the coin placements are shuffled.
This grid-based approach to matrix games can be adapted for n-player versions. While STORM is
inspired by MeltingPot 2.0, there are noteworthy differences:

• Meltingpot uses pixel-based observations while we allow for direct grid access.

• Meltingpot’s grid size is typically 23x15, while ours is 8x8.

• Meltingpot features walls within its layout, ours does not.

• Our environment introduces stochasticity by shuffling the coin placements, which remain
static in Meltingpot.

• Our agents begin with an empty coin inventory, making it easier for them to adopt pure
cooperate or defect tactics, unlike in Meltingpot where they start with one of each coin.

• MeltingPot is implemented in Lua [27] where as ours is a vectorized implementation in
JAX.

We deem the coin shuffling especially crucial because even large environments representing POMDPs,
such as SMAC, can be solved without the need for memory if they lack sufficient randomness [15].

17

50941 https://doi.org/10.52202/079017-1612

Figure 9: Annotated Image of IPDiTM renders, demonstrating the objects within the game

B.3 Coin Game

Coin Game is a two-player grid-world environment which emulates social dilemmas such as the
iterated prisoner’s dilemma [57]. Used as a benchmark for the general-sum setting, it expands on
simpler social dilemmas by adding a high-dimensional state. Two players, ‘red’ and ‘blue’ move in
a grid world and are each awarded 1 point for collecting any coin. However, ‘red’ loses 2 points if
‘blue’ collects a red coin and vice versa. Thus, if both agents ignore colour when collecting coins
their expected reward is 0.

Two agents, ‘red’ and ‘blue’, move in a wrap-around grid and collect red and blue coloured coins.
When an agent collects any coin, the agent receives a reward of 1. However, when ‘red’ collects a
blue coin, ‘blue’ receives a reward of −2 and vice versa. Once a coin is collected, a new coin of
the same colour appears at a random location within the grid. If a coin is collected by both agents
simultaneously, the coin is duplicated and both agents collect it. Episodes are of a set length.

B.4 Switch Riddle

Originally used to illustrate the Differentiable Inter-Agent Learning algorithm [16], Switch Riddle is
a simple cooperative communication environment that we include as a debugging tool. n prisoners
held by a warden can secure their release by collectively ensuring that each has passed through a
room with a light bulb and a switch. Each day, a prisoner is chosen at random to enter this room.
They have three choices: do nothing, signal to the next prisoner by toggling the light, or inform
the warden they think all prisoners have been in the room. The game ends when a prisoner informs
the warden or the maximum time steps are reached. The rewards are +1 if the prisoner informs the
warden, and all prisoners have been in the room, -1 if the prisoner informs the warden before all
prisoners have taken their turn, and 0 otherwise, including when the maximum time steps are reached.
We benchmark using the implementation from [68].

B.5 Hanabi

Hanabi is a fully cooperative partially observable multiplayer card game, where players can observe
other players’ cards but not their own. To win, the team must play a series of cards in a specific order
while sharing only a limited amount of information between players. As reasoning about the beliefs
and intentions of other agents is central to performance, it is a common benchmark for ZSC and
ad-hoc teamplay research. Our implementation is inspired by the Hanabi Learning Environment [3]
and includes custom configurations for varying game settings, such as the number of colours/ranks,
number of players, and number of hint tokens. Compared to the Hanabi Learning Environment,
which is written in C++ and split over dozens of files, our implementation is a single easy-to-read
Python file, which simplifies interfacing with the library and running experiments.

18

50942https://doi.org/10.52202/079017-1612

1 import jax
2 from jaxmarl import make
3
4 key = jax.random.PRNGKey (0)
5 key , key_reset , key_act , key_step = jax.random.split(key , 4)
6
7 # Initialise and reset the environment.
8 env = make(’MPE_simple_world_comm_v3 ’)
9 obs , state = env.reset(key_reset)

10
11 # Sample random actions.
12 key_act = jax.random.split(key_act , env.num_agents)
13 actions = {agent: env.action_space(agent). sample(key_act[i]) \
14 for i, agent in enumerate(env.agents)}
15
16 # Perform the step transition.
17 obs , state , reward , done , infos = env.step(key_step , state , actions)

Figure 10: An example of JaxMARL’s API, which is flexible and easy-to-use.

B.6 Overcooked

Inspired by the popular videogame of the same name, Overcooked is commonly used for assessing
fully cooperative and fully observable Human-AI task performance. The aim is to quickly prepare
and deliver soup, which involves putting three onions in a pot, cooking the soup, and serving it
into bowls. Two agents, or cooks, must coordinate to effectively divide the tasks to maximise their
common reward signal. Our implementation mimics the original from Overcooked-AI [10], including
all five original layouts and a simple method for creating additional ones. For a discussion on the
limitations of the Overcooked-AI environment, see [33].

B.7 Multi-Agent Particle Environments (MPE)

The multi-agent particle environments feature a 2D world with simple physics where particle agents
can move, communicate, and interact with fixed landmarks. Each specific environment varies
the format of the world and the agents’ abilities, creating a diverse set of tasks that include both
competitive and cooperative settings. We implement all the MPE scenarios featured in the PettingZoo
library and the transitions of our implementation map exactly to theirs. We additionally include a
fully cooperative predator-prey variant of simple tag, presented in [49]. The code is structured to
allow for straightforward extensions, enabling further tasks to be added.

B.8 Multi-Agent Brax (MABrax)

MABrax is a derivative of Multi-Agent MuJoCo [49], an extension of the MuJoCo Gym envi-
ronment [62] that is commonly used for benchmarking continuous multi-agent robotic control.
Our implementation utilises Brax[19] as the underlying physics engine and includes five of Multi-
Agent MuJoCo’s multi-agent factorisation tasks, where each agent controls a subset of the joints
and only observes the local state. The included tasks, illustrated in Figure 1, are: ant_4x2,
halfcheetah_6x1, hopper_3x1, humanoid_9|8, and walker2d_2x3. The task descriptions mir-
ror those from Gymnasium-Robotics [13].

C JaxMARL’s API

The interface of JaxMARL is inspired by PettingZoo [61] and Gymnax. We designed it to be a
simple and easy-to-use interface for a wide-range of MARL problems. An example of instantiating
an environment from JaxMARL’s registry and executing one transition is presented in Figure 10. As
JAX’s JIT compilation requires pure functions, our step method has two additional inputs compared
to PettingZoo’s. The state object stores the environment’s internal state and is updated with each
call to step, before being passed to subsequent calls. Meanwhile, key_step is a pseudo-random
key, consumed by JAX functions that require stochasticity. This key is separated from the internal
state for clarity.

Similar to PettingZoo, the remaining inputs and outputs are dictionaries keyed by agent names,
allowing for differing action and observation spaces. However, as JAX’s JIT compilation requires
arrays to have static shapes, the total number of agents in an environment cannot vary during an

19

50943 https://doi.org/10.52202/079017-1612

episode. Thus, we do not use PettingZoo’s agent iterator. Instead, the maximum number of agents
is set upon environment instantiation and any agents that terminate before the end of an episode
pass dummy actions thereafter. As asynchronous termination is possible, we signal the end of an
episode using a special "__all__" key within done. The same dummy action approach is taken for
environments where agents act asynchronously (e.g. turn-based games).

To ensure clarity and reproducibility, we keep strict registration of environments with suffixed version
numbers, for example “MPE Simple Spread V3”. Whenever JaxMARL environments correspond to
existing CPU-based implementations, the version numbers match.

D Value-Based MARL Methods and Implementation details

Key features of our framework include parameter sharing, a recurrent neural network (RNN) for
agents, an epsilon-greedy exploration strategy with linear decay, a uniform experience replay buffer,
and the incorporation of Double Deep Q-Learning (DDQN) [64] techniques to enhance training
stability. We stored the replay buffer in GPU memory using Flashbax [63].

Unlike PyMARL, we use the Adam optimizer as the default optimization algorithm. Below is an
introduction to common value-based MARL methods.

IQL (Independent Q-Learners) is a straightforward adaptation of Deep Q-Learning to multi-agent
scenarios. It features multiple Q-Learner agents that operate independently, optimizing their individual
returns. This approach follows a decentralized learning and decentralized execution pipeline.

VDN (Value Decomposition Networks) extends Q-Learning to multi-agent scenarios with a
centralized-learning-decentralized-execution framework. Individual agents approximate their own
action’s Q-Value, which is then summed during training to compute a jointed Qtot for the global
state-action pair. Back-propagation of the global DDQN loss in respect to a global team reward
optimizes the factorization of the jointed Q-Value.

QMIX improves upon VDN by relaxing the full factorization requirement. It ensures that a global
argmax operation on the total Q-Value (Qtot) is equivalent to individual argmax operations on
each agent’s Q-Value. This is achieved using a feed-forward neural network as the mixing network,
which combines agent network outputs to produce Qtot values. The global DDQN loss is computed
using a single shared reward function and is back-propagated through the mixer network to the
agents’ parameters. Hypernetworks generate the mixing network’s weights and biases, ensuring non-
negativity using an absolute activation function. These hypernetworks are two-layered multi-layer
perceptrons with ReLU non-linearity.

Issues found when using Q-Learning in an end-to-end GPU setting. As discussed in the paper’s
results section, PPO demonstrates a clear advantage over Q-Learning for our benchmarked envi-
ronments, both in agent performance and training runtime. The speed differential is caused by the
optimal sampling/replay ratio for Q-Learning methods becoming rapidly unbalanced as the number
of parallel environments increases, which requires us to use fewer parallel environments than we use
with PPO. PPO also has a major advantage over Q-Learning in that it does not use a replay buffer,
which can occupy a significant amount of GPU memory. Secondly, our experiments empirically
showed PPO to be more stable during training.

A possible workaround is to increase the replay ratio by performing multiple update steps per training
episode, which nevertheless affects computational efficiency. A better solution is to implement a
distributed framework, separating the learning and sampling process, which is also out-of-scope for
this work.

E Speed Comparison

The runs reported in Figures 3 and 5(c) were all run on the same system featuring two NVIDIA
GeForce RTX 4090s (although only one was used for training), an Intel(R) Xeon(R) Silver 4316
CPU (20 cores with 40 threads), and 132 GB of RAM. We report the average environment steps per
second over the entire RL training process, which for JaxMARL includes any compilation time. For
Table 3, all results were collected on a single NVIDIA A100 GPU and AMD EPYC 7763 64-core
processor. Environments were rolled out for 1000 sequential steps.

20

50944https://doi.org/10.52202/079017-1612

101 102 103

Time (Seconds)

0

200

400

600

800

1000

No
. I

nd
ep

en
de

nt
 Tr

ai
ni

ng
 R

un
s

(a) MPE Simple Spread

103 104 105

Time (Seconds)

0

100

200

300

400

500

No
. I

nd
ep

en
de

nt
 Tr

ai
ni

ng
 R

un
s

(b) SMAX 2s3z

Figure 11: Time taken to train a varying number of seeds in parallel on the same device for JaxMARL
IPPO (in blue) compared to the time taken to train one seed with MARLLIB (shown as the red dashed
line)

In Figure 11 we repeat the analysis, reported in the main paper for QMIX, of JaxMARL’s ability to
train multiple seeds in parallel for IPPO. Training this way allows training agents many thousands of
times faster, with a 12500x speed up in the MPE simple spread environment.

F Training & Correctness Results

F.1 Overcooked

We train IPPO, VDN and IQL agents in Overcooked and present their aggregate performance in
Figure 12a. IPPO performs better than the Q-Learning methods in inter-quartile mean and mean,
in line with our more general findings. During training, we use the same shaped reward as stated
in the original Overooked paper [10], which is added to the score of the game with a factor that is
decayed from 1 to 0 during the first half of training. We don’t train MAPPO and QMIX for this task
because, in Overcooked, agents can observe the entire state of the map. Therefore, there is no partial
observability that can be improved through centralized training. We demonstrate correspondence by
training an IPPO policy with JaxMARL on our implementation and evaluating the policy over 10
rollouts for both our Overcooked implementation and the original. Results are shown in Figure 14
with the similarity in performance demonstrating their equivalence.

0.6 0.7 0.8 0.9
ippo

iql
vdn

Overcooked IQM

0.64 0.72 0.80

Overcooked Mean

Normalized Score
(a) Overcooked aggregate performance

0.25 0.50 0.75
ippo

mappo
iql

qmix
vdn

SMAX Win Rate IQM

0.2 0.4 0.6 0.8

SMAX Win Rate Mean

Normalized Score

(b) SMAX aggregate performance

Figure 12: Aggregate performance in Overcooked and SMAX for a range of algorithms. Performance
is aggregated across 10 seeds and error bars represent 95% bootstrapped confidence intervals as
recommended in [2].

F.2 MABrax

The performance of IPPO on ant_4x2, humanoid_9|8, hopper_3x1 and walker2d_2x3 is re-
ported in Figure 15, with hyperparameters reported in Table 7.

F.3 MPE

Performance of Q-Learning baselines in all the MPE scenarios are reported in Figure 17 and Figure 18.
The upper row represents cooperative scenarios, with results for all our Q-learning baselines reported.

21

50945 https://doi.org/10.52202/079017-1612

0 2 4
Timestep 1e6

0

50

100

150

200

250

Te
st

 R
et

ur
n

Overcooked-AI
JaxMARL

Figure 13: Evaluation performance throughout training of an IPPO policy trained with JaxMARL on
our Overcooked Cramped Room scenario implementation and the original [10]. The similarity in
performance demonstrates correspondence.

0 5
Timestep 1e6

0

100

200

Ep
iso

de
 R

et
ur

ns

cramped_room

0 5
Timestep 1e6

0

200

400

asymm_advantages

0 5
Timestep 1e6

0

100

200

300
coord_ring

IPPO IQL VDN

0 5
Timestep 1e6

0

100

200

forced_coord

0 5
Timestep 1e6

0

100

200

counter_circuit

Figure 14: Evaluation of all algorithms in Overcooked scenarios. These scores are obtained after our
own hypeparameter tuning, which held to better performances than the using original hyperparameters
from Overcooked paper.

The bottom row refers to competitive scenarios, and results for IQL are divided by agent types.
Hyperparameters are given in Table 8.

F.4 SMAX

The performance of different algorithms in SMAX versus MAPPO in SMAC is shown in Figure 19.
Hyperparameters for IPPO and the Q-learning methods are given in Table 6 and Table 8 respectively.
Some maps are significantly more difficult in SMAX, such as 10m_vs_11m, whereas some are much
easier such as 3s_vs_5z.

F.5 Hanabi

The performances of our implementation of IPPO are JaxMARL’s Hanabi for 2-3 players are reported
in Table 5, together with the results provided for IPPO in the original Hanabi environment reported
by [67].

Players Metric IPPO [67] IPPO (JaxMARL)
2 Avg. 24.00 23.95

Best 24.19 24.12
3 Avg. 23.25 23.83

Best 23.87 24.16
Table 5: Best and Average evaluation scores of the original IPPO implementation [67] and IPPO in
JaxMARL’s Hanabi.

22

50946https://doi.org/10.52202/079017-1612

0 2 4
Timestep 1e7

500

0

500

1000

1500

2000

Re
tu

rn

ant_4x2

0 2 4
Timestep 1e7

200

250

300

350

400

humanoid_9|8

0 2 4
Timestep 1e7

0

200

400

600

800

1000

1200

hopper_3x1

0 2 4
Timestep 1e7

100

200

300

400

500

walker2d_2x3

Figure 15: Performance of IPPO on MABrax Tasks

0 1 2
Timestep 1e6

175

150

125

100

75

50

25

Te
st

 R
et

ur
ns

Simple Spread V3

0 1
Timestep 1e6

0

20

40

60

80

100

120
Simple Tag V4

0 1 2
Timestep 1e6

300

250

200

150

100

50

0
Simple Speaker Listener V4

JaxMARL IQL
JaxMARL QMIX

JaxMARL VDN
PyMARL IQL

PyMARL QMIX
PyMARL VDN

Figure 16: Comparison of the performances of Q-Learning baselines in PyMARL and JaxMARL
in two cooperative scenarios of MPE (Spread and Speaker Listener) and one competitive scenario
(Simple Tag). For Simple Tag, we pre-trained a prey in JaxMARL and then trained agents to compete
with it in both PyMARL and JaxMARL. Despite the small differences in the obtained returns in the
two frameworks, the algorithms show similar learning dynamics, and the final ordering is preserved,
validating our environment and algorithm implementations.

0.0 0.5 1.0 1.5 2.0
Timestep 1e6

50

40

30

20

10

Re
tu

rn

MPE_simple_v3

IQL QMIX VDN

0.0 0.5 1.0 1.5 2.0
Timestep 1e6

150

125

100

75

50

25
MPE_simple_spread_v3

0.0 0.5 1.0 1.5 2.0
Timestep 1e6

70

60

50

40

30

20
MPE_simple_reference_v3

0.0 0.5 1.0 1.5 2.0
Timestep 1e6

120

100

80

60

40

20
MPE_simple_speaker_listener_v4

Figure 17: Evaluation of performances of QLearning in all the MPE cooperative scenarios.

0 1 2
Timestep 1e6

150

100

50

0

50

Re
tu

rn

MPE_simple_adversary_v3

0 1 2
Timestep 1e6

200

0

200

MPE_simple_tag_v3

0 1 2
Timestep 1e6

100

80

60

40

20

0

MPE_simple_push_v3

0 1 2
Timestep 1e6

1500

1000

500

0

500

MPE_simple_world_comm_v3

agent adversary leadadversary

Figure 18: Evaluation of performances of IQL in all the MPE competetive scenarios. All the
competetive agents are trained independently together. "Agent" and "Adversary" are teams, not single
agents.

23

50947 https://doi.org/10.52202/079017-1612

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2s3z

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_5z

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6 3s5z_vs_3s6z

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.1

0.2

0.3

0.4

0.5

W
in

 R
at

e

5m_vs_6m

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

1.0
3s5z

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

1.0
6h_vs_8z

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e

smacv2_5_units

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

0.8

1.0
10m_vs_11m

IPPO MAPPO IQL QMIX VDN SMAC MAPPO

0.00 0.25 0.50 0.75 1.00
Timestep 1e7

0.0

0.2

0.4

0.6

smacv2_10_units

Figure 19: Comparison of IPPO, MAPPO, IQL, QMIX, VDN in SMAX with MAPPO in SMAC.

24

50948https://doi.org/10.52202/079017-1612

G Hyperparameters

Table 6: IPPO hyperparameters for MPE, SMAX, Hanabi and Overcooked.
Parameter MPE SMAX Hanabi Overcooked

PPO
training timesteps 1× 106 1× 107 1× 1010 5× 106

parallel environments 16 64 1024 64
rollout steps 128 128 128 256
Adam learning rate 5× 10−4 4× 10−3 5× 10−4 5× 10−4

Anneal learning rate True True True True
Update epochs 5 2 4 4
Minibatches per epoch 2 2 4 16
γ 0.99 0.99 0.99 0.99
λGAE 1.0 0.95 0.95 0.95
Clip range 0.3 0.2 0.2 0.2
Entropy coefficient 0.01 0.0 0.01 0.01
Value loss coefficient 1.0 0.5 0.5 0.5
Maximum gradient norm 0.5 0.5 0.5 0.5
Activation tanh relu relu relu
Feed-forward network
Number of layers 2 - 2 2
Fully-connected width 64 - 512 64
Recurrent network
Hidden width 128 128 128 -
Number of full-connected layers 2 2 2 -
Fully-connected width 128 128 128 -

Table 7: IPPO hyperparameters for MABrax settings.
Parameter Ant HalfCheetah Walker

PPO
training timesteps 1× 108

parallel environments 64
rollout steps 300
Adam learning rate 1× 10−3 6× 10−4 7× 10−3

Anneal learning rate True
Update Epochs 4
Minibatches per epoch 4
γ 0.99
λGAE 1.0
Clip range 0.2
Entropy coefficient 2× 10−6 4.5× 10−3 1× 10−3

Value loss coefficient 4.5 0.14 1.9
Maximum gradient norm 0.5
Activation tanh
Feed-forward network
Number of layers 2
Fully-connected width 64

25

50949 https://doi.org/10.52202/079017-1612

Table 8: Q-Learning hyperparameters for MPE, SMAX and Overcooked
Parameter MPE SMAX Overcooked

Q-Learning
training timesteps 2× 106 1× 107 1× 105

parallel environments 8 16 32
rollout steps 26 128 1
Adam learning rate 1× 10−3 5× 10−5 7.5× 10−5

Anneal learning rate True False True
Buffer size 5× 103 5× 103 1× 105

Buffer batch size 32 32 128
ϵ start 1.0 1.0 1.0
ϵ finish 0.05 0.05 0.05
ϵ decay 0.1 0.1 0.2
Hidden size 64 512 64
Maximum gradient norm 25 10 1
τ 1.0 1.0 1.0
Update epochs 1 8 4
Learning starts at timestep 1× 104 1× 104 1× 103

γ 0.9 0.99 0.99
QMIX specific
Mixed embedding width 32 64 -
Mixer hypernet width 128 256 -
Mixer initial scale 1× 10−3 1× 10−3 -

26

50950https://doi.org/10.52202/079017-1612

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the final paragraph on

Limitations
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do

not anticipate negative societal impacts of our work
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See our
repository https://github.com/FLAIROx/JaxMARL/tree/main

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See our Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

27

50951 https://doi.org/10.52202/079017-1612

https://github.com/FLAIROx/JaxMARL/tree/main

