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Abstract

A key challenge in lifelong reinforcement learning (RL) is the loss of plasticity,
where previous learning progress hinders an agent’s adaptation to new tasks. While
regularization and resetting can help, they require precise hyperparameter selection
at the outset and environment-dependent adjustments. Building on the principled
theory of online convex optimization, we present a parameter-free optimizer for
lifelong RL, called TRAC, which requires no tuning or prior knowledge about the
distribution shifts. Extensive experiments on Procgen, Atari, and Gym Control
environments show that TRAC works surprisingly well—mitigating loss of plastic-
ity and rapidly adapting to challenging distribution shifts—despite the underlying
optimization problem being nonconvex and nonstationary. Project website and
code is available here.

1 Introduction
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Figure 1: Severe loss of plasticity in Procgen
(Starpilot). There is a steady decline in reward
with each distribution shift.

Spot, the agile robot dog, has been learning to walk
confidently across soft, lush grass. But when Spot
moves from the grassy field to a gravel surface, the
small stones shift beneath her feet, causing her to
stumble. When Spot tries to walk across a sandy
beach or on ice, the challenges multiply, and her
once-steady walk becomes erratic. Spot wants to
adjust quickly to these new terrains, but the patterns
she learned on grass are not suited to gravel, sand,
or ice. Furthermore, she never knows when the
terrain will change again and how different it will
be, therefore must continually plan for the unknown
while avoiding reliance on outdated experiences.

Spot’s struggle exemplifies a well-known and ex-
tensively studied challenge in real-world decision
making: lifelong reinforcement learning (lifelong
RL) Abel et al. (2024); Nath et al. (2023); Mendez
et al. (2020); Xie & Finn (2022). In lifelong RL, the learning agent must continually acquire new
knowledge to adapt to the nonstationarity of the environment. At first glance, there appears to be
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an obvious solution: given a policy gradient oracle, the agent could just keep running gradient
descent nonstop. However, recent experiments have demonstrated an intriguing behavior called loss
of plasticity (Dohare et al., 2021; Lyle et al., 2022; Abbas et al., 2023; Sokar et al., 2023): despite
persistent gradient steps, such an agent can gradually lose its responsiveness to incoming observations.
There are even extreme cases of loss of plasticity (known as negative transfer or primacy bias), where
prior learning can significantly hamper the performance in new tasks (Nikishin et al., 2022; Ahn
et al., 2024); see Figure 1 for an example. All these suggest that the problem is more involved than
one might think.

From the optimization perspective, the above issues might be attributed to the lack of stability under
gradient descent. That is, the weights of the agent’s parameterized policy can drift far away from the
origin (or a good initialization), leading to a variety of undesirable behaviors.1 Fitting this narrative,
it has been shown that simply adding a L2 regularizer to the optimization objective (Kumar et al.,
2023) or periodically resetting the weights (Dohare et al., 2021; Asadi et al., 2024; Sokar et al., 2023;
Ahn et al., 2024) can help mitigate the problem. However, a particularly important limitation is
their use of hyperparameters, such as the magnitude of the regularizer and the resetting frequency2.
Good performance hinges on the suitable environment-dependent hyperparameter, but how can one
confidently choose that before interacting with the environment? The classical cross-validation
approach would violate the one-shot nature of lifelong RL (and online learning in general; see
Chapter 1 of Orabona, 2023), since it is impossible to experience the same environment multiple
times. This leads to the contributions of the present work.

Contribution The present work addresses the key challenges in lifelong RL using the principled
theory of Online Convex Optimization (OCO). Specifically, our contributions are two fold.

• Algorithm: TRAC Building on a series of results in OCO (Cutkosky & Orabona, 2018; Cutkosky,
2019; Cutkosky et al., 2023; Zhang et al., 2024b), we propose a (hyper)-parameter-free optimizer for
lifelong RL, called TRAC (AdapTive RegularizAtion in Continual environments). Intuitively, the
idea is a refinement of regularization: instead of manually selecting the magnitude of regularization
beforehand, TRAC chooses that in an online, data-dependent manner. From the perspective of
OCO theory, TRAC is insensitive to its own hyperparameter, which means that no hyperparameter
tuning is necessary in practice. Furthermore, as an optimization approach to lifelong RL, TRAC is
compatible with any policy parameterization method.

• Experiment Using Proximal Policy Optimization (PPO) (Schulman et al., 2017), we conduct
comprehensive experiments on the instantiation of TRAC called TRAC PPO. A diverse range of
lifelong RL environments are tested (based on Procgen, Atari, and Gym Control), with considerably
larger scale than prior works. In settings where existing approaches (Abbas et al., 2023; Kumar
et al., 2023; Nath et al., 2023) struggle, we find that TRAC PPO
– mitigates mild and extreme loss of plasticity;
– and rapidly adapts to new tasks when distribution shifts are introduced.
Such findings might be surprising: the theoretical advantage of TRAC is motivated by the convexity
in OCO, but lifelong RL is both nonconvex and nonstationary in terms of optimization.

Organization Section 2 surveys the basics of lifelong RL. Section 3 introduces our parameter-free
algorithm TRAC, and experiments are presented in Section 4. We defer the discussion of related
works and results to Section 5. Finally, Section 6 concludes the paper.

2 Lifelong RL

As a sequential decision making framework, reinforcement learning (RL) is commonly framed as
a Markov Decision Process (MDP) defined by the state space S, the action space A, the transition
dynamics P (st+1|st, at), and the reward function R(st, at, st+1). In the t-th round, starting from
a state st ∈ S, the learning agent needs to choose an action at ∈ A without knowing P and R.
Then, the environment samples a new state st+1 ∼ P (·|st, at), and the agent receives a reward

1Such as the inactivation of many neurons, due to the ReLU activation function (Abbas et al., 2023; Sokar
et al., 2023).

2Indeed, hyperparameter selection, in general, is a well-known problem in lifelong as well as continual
learning settings (De Lange et al., 2021).
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rt = R(st, at, st+1). There are standard MDP objectives driven by theoretical tractability, but from a
practical perspective, we measure the agent’s performance by its cumulative reward

∑T
t=1 rt.

The standard setting above concerns a stationary MDP. Motivated by the prevalence of distribution
shifts in practice, the present work studies a nonstationary variant called lifelong RL, where the
transition dynamics Pt and the reward function Rt can vary over time. Certainly, one should not
expect any meaningful “learning” against arbitrary unstructured nonstationarity. Therefore, we
implicitly assume Pt and Rt to be piecewise constant over time, and each piece is called a task –
just like our example of Spot in the introduction. The main challenge here is to transfer previous
learning progress to new tasks. This is reasonable when tasks are similar, but we also want to reduce
the degradation when tasks turn out to be very different.

Lifelong RL as online optimization Deep RL approaches, including PPO (Schulman et al., 2017)
and others, crucially utilize the idea of policy parameterization. Specifically, a policy refers to the
distribution of the agent’s action at (conditioned on the historical observations), and we use θt ∈ Rd

to denote the parameterizing weight vector. After sampling at and receiving new observations, the
agent could define a loss function Jt(θ) that characterizes the “hypothetical performance” of each
weight θ ∈ Rd. Then, by computing the policy gradient gt = ∇Jt(θt), one could apply a first order
optimization algorithm3 OPT to obtain the updated weight, θt+1 = OPT(θt, gt).

For the rest of this paper, we will work with such an abstraction. The feedback of the environment is
treated as a policy gradient oracle G, which maps the time t and the current weight θt into a policy
gradient gt = G(t, θt). Our goal is to design an optimizer OPT well suited for lifelong RL.

Lifelong vs. Continual In the RL literature, the use of “lifelong” and “continual” varies significantly
across studies, which may lead to confusion. Abel et al. (2024) characterized continual reinforcement
learning (CRL) as a never-ending learning process. However, much of the literature cited under CRL,
such as (Abbas et al., 2023; Ahn et al., 2024), primarily focuses on the problem of backward transfer
(avoiding catastrophic forgetting). Various policy-based architectures, such as those proposed by
Rolnick et al. (2019); Schwarz et al. (2018); Nath et al. (2023), focus on tackling this issue. Conversely,
the present work addresses the problem of forward transfer, which refers to the rapid adaptation to
new tasks. Because of this we use “lifelong” rather than “continual” in our exposition, similar to
(Thrun, 1996; Abel et al., 2018b; Julian et al., 2020).

3 Method
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Figure 2: Visualization of TRAC’s key idea.

Inspired by (Cutkosky et al., 2023), we study lifelong
RL by exploiting its connection to Online Convex
Optimization (OCO; Zinkevich, 2003). The latter
is a classical theoretical problem in online learn-
ing, and much effort has been devoted to design-
ing parameter-free algorithms that require minimum
tuning or prior knowledge (Streeter & Mcmahan,
2012; McMahan & Orabona, 2014; Orabona & Pál,
2016; Foster et al., 2017; Cutkosky & Orabona, 2018;
Mhammedi & Koolen, 2020; Chen et al., 2021; Jacob-
sen & Cutkosky, 2022). The surprising observation
of Cutkosky et al. (2023) is that several algorithmic
ideas closely tied to the convexity of OCO can actu-
ally improve the nonconvex deep learning training,
suggesting certain notions of “near convexity” on its
loss landscape. We find that lifelong RL (which is both nonconvex and nonstationary in terms of
optimization) exhibits a similar behavior, therefore a particularly strong algorithm (named TRAC)
can be obtained from principled results in parameter-free OCO. Let us start from the background.

Basics of (parameter-free) OCO As a standalone theoretical topic, OCO concerns a sequential
optimization problem where the convex loss function lt can vary arbitrarily over time. In the t-th

3Formally, a dynamical system that given its state θt and input gt outputs the new state OPT(θt, gt).

3
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iteration, the optimization algorithm picks an iterate xt and then observes a gradient gt = ∇lt(xt).
Motivated by the pursuit of “convergence” in optimization, the standard objective is to guarantee low
(i.e., sublinear in T ) static regret, defined as

RegretT (l1:T , u) :=

T∑
t=1

lt(xt)−
T∑

t=1

lt(u),

where T is the total number of rounds, and u is a comparator that the algorithm does not know
beforehand. In other words, the goal is to make RegretT (l1:T , u) small for all possible loss sequence
l1:T and comparator u. Note that for nonstationary OCO problems analogous to lifelong RL, it is
better to consider a different objective called the discounted regret. Algorithms there mostly follow
the same principle as in the stationary setting, just wrapped by loss rescaling (Zhang et al., 2024a).

For minimizing static regret, classical minimax algorithms like gradient descent (Zinkevich, 2003)
would assume a small uncertainty set U at the beginning. Then, by setting the hyperparameter (such
as the learning rate) according to U , it is possible to guarantee sublinear worst case regret,

max
(l1:T ,u)∈U

RegretT (l1:T , u) = o(T ). (1)

In contrast, parameter-free algorithms use very different strategies4 to bound RegretT (l1:T , u) directly
(without taking the maximum) by a function of both l1:T and u. The resulting bound is more refined
than Eq.(1) (Orabona, 2023, Chapter 9), and crucially, since there is no need to pick an uncertainty
set U , much less hyperparameter tuning is needed. This is where its name comes from.

TRAC for Lifelong RL: In lifelong RL, a key issue is the excessive drifting of weights θt, which
can detrimentally affect adapting to new tasks. To address this, TRAC enforces proximity to a
well-chosen reference point θref , providing a principled solution derived from a decade of research in
parameter-free OCO. Unlike traditional methods such as L2 regularization or resetting, TRAC avoids
hyperparameter tuning, utilizing the properties of OCO to maintain weight stability and manage the
drift effectively.

The core of TRAC, similar to other parameter-free optimizers, incorporates three techniques:

• Direction-Magnitude Decomposition: Inspired by Cutkosky & Orabona (2018), this
technique employs a carefully designed one-dimensional algorithm, the "parameter-free
tuner," atop a base optimizer. This setup acts as a data-dependent regularizer, controlling
the extent to which the iterates deviate from their initialization, thereby minimizing loss
of plasticity, which is crucial given the high plasticity at the initial policy parameterization
(Abbas et al., 2023).

• Erfi Potential Function: Building on the previous concept, the tuner utilizes the Erfi poten-
tial function, as developed by Zhang et al. (2024a). This function is crafted to effectively
balance the distance of the iterates from both the origin and the empirical optimum. It
manages the update magnitude by focusing on the gradient projection along the direction
θt − θref .

• Additive Aggregation: The tuner above necessitates discounting. Thus, we employ Additive
Aggregation by Cutkosky (2019). This approach enables the combination of multiple
parameter-free OCO algorithms, each with different discount factors, to approximate the
performance of the best-performing algorithm. Importantly, it facilitates the automatic
selection of the optimal discount factor during training.

These three components crucially work together to guarantee good regret bounds in the convex setting
and are the minimum requirement for any reasonable parameter-free optimizer.

Without going deep into the theory, here is an overview of the important ideas (also see Figure 2 for a
visualization).

• First, TRAC is a meta-algorithm that operates on top of a “default” optimizer BASE. It can simply be
gradient descent with a constant learning rate, or ADAM (Kingma & Ba, 2014) as in our experiments.
Applying BASE alone would be equivalent to enforcing the scaling parameter St+1 ≡ 1 in TRAC,
but this would suffer from the drifting of θBase

t+1 (and thus, the weight θt+1).

4The key difference with gradient descent is the use of intricate (non-L2) regularizers. See (Fang et al., 2022;
Jacobsen & Cutkosky, 2022) for a theoretical justification of their importance.

4
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Algorithm 1 TRAC: Parameter-free Adaption for Continual Environments.
1: Input: A policy gradient oracle G; a first order optimization algorithm BASE; a reference point

θref ∈ Rd; n discount factors β1, . . . , βn ∈ (0, 1] (default: 0.9, 0.99, . . . , 0.999999).
2: Initialize: Create n copies of Algorithm 2, denoted as A1, . . . ,An. For each j ∈ [1 : n], Aj

uses the discount factor βj . Initialize the algorithm BASE at θref . Let θ1 = θref .
3: for t = 1, 2, . . . do
4: Obtain the t-th policy gradient gt = G(t, θt) ∈ Rd.
5: Send gt to BASE as its t-th input, and get its output θBase

t+1 ∈ Rd.
6: For all j ∈ [1 : n], send ⟨gt, θt − θref⟩ to Aj as its t-th input, and get its output st+1,j ∈ R.
7: Define the scaling parameter St+1 =

∑n
j=1 st+1,j .

8: Update the weight of the policy,

θt+1 = θref +
(
θBase
t+1 − θref

)
St+1.

9: end for

Algorithm 2 1D Discounted Tuner of TRAC.
1: Input: Discount factor β ∈ (0, 1]; small value ε > 0 (default: 10−8).
2: Initialize: The running variance v0 = 0; the running (negative) sum σ0 = 0.
3: for t = 1, 2, . . . do
4: Obtain the t-th input ht.
5: Let vt = β2vt−1 + h2

t , and σt = βσt−1 − ht.
6: Select the t-th output

st+1 =
ε

erfi(1/
√
2)

erfi

(
σt√

2vt + ε

)
,

where erfi is the imaginary error function queried from standard software packages.
7: end for

• To fix this issue, TRAC uses the tuner (Algorithm 2) to select the scaling parameter St+1, making
it data-dependent. Typically St+1 is within [0, 1] (see Figure 17 to 19), therefore essentially,
we define the updated weight θt+1 as a convex combination of the BASE’s weight θBase

t and the
reference point θref ,

θt+1 = St+1 · θBase
t+1 + (1− St+1)θref .

This brings the weight closer to θref , which is known to be “safe” (i.e., not overfitting any particular
lifelong RL task), although possibly conservative.

• To inject the right amount of conservatism without hyperparameter tuning, the tuner (Algorithm 2)
applies an unusual decision rule based on the erfi function. Theoretically, this is known to be
optimal in an idealized variant of OCO (Zhang et al., 2022, 2024b), but removing the idealized
assumptions requires a tiny bit of extra conservatism, which is challenging (and not necessarily
practical). Focusing on the lifelong RL problem that considerably deviates from OCO, we simply
apply the erfi decision rule as is. This is loosely motivated by deep learning training dynamics, e.g.,
(Cohen et al., 2020; Ahn et al., 2023; Andriushchenko et al., 2023), where an aggressive optimizer
is often observed to be better.

• Finally, the tuner requires a discount factor β. This crucially controls the strength of regularization
(elaborated next), but also introduces a hyperparameter tuning problem. Following (Cutkosky,
2019), we aggregate tuners with different β (on a log-scaled grid) by simply summing up their
outputs. This is justified by the adaptivity of the tuner itself: in OCO, if we add a parameter-free
algorithm A1 to any other algorithm A2 that already works well, then A1 can automatically identify
this and “tune down” its aggressiveness, such that A1 +A2 still performs as well as A2.

Connection to regularization Despite its nested structure, TRAC can actually be seen as a
parameter-free refinement of L2 regularization (Kumar et al., 2023). To concretely explain this
intuition, let us consider the following two optimization dynamics.

5
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• First, suppose we run gradient descent with learning rate η, on the policy gradient sequence {gt}
with the L2 regularizer λ

2 ∥θ − θref∥2. Quantitatively, it means that starting from the t-th weight θt,

θt+1 = θt − η [gt + λ (θt − θref)] , =⇒ θt+1 − θref = (1− λη) (θt − θref)− ηgt. (2)

That is, the updated weight θt+1 is determined by a (1 − λη)-discounting with respect to the
reference point θref , followed by a gradient step −ηgt.

• Alternatively, consider applying the following simplification of TRAC on the same policy gradient
sequence {gt}: (i) BASE is still gradient descent with learning rate η; (ii) there is just one discount
factor β; and (iii) the one-dimensional tuner (Algorithm 2) is replaced by the β-discounted gradient
descent with learning rate α, i.e., St+1 = βSt − αht. In this case, we have

θt+1 − θref = St+1

(
θBase
t+1 − θref

)
= (βSt − αht)

(
θBase
t − θref − ηgt

)
=

(
β − αS−1

t ht

)
(θt − θref)− ηSt+1gt. (mildly assuming St ̸= 0)

Notice that St is a β-discounted sum of αh1, . . . , αht−1, thus in the typical situation of β ≈ 1 one
might expect αht ≪ |St|. Then, the resulting update of θt+1 is similar to Eq.(2), with quantitative
changes on the “effective discounting” 1− λη → β, and the “effective learning rate” η → ηSt+1.

The main message here is that under a simplified setting, TRAC is almost equivalent to L2 regulariza-
tion. The latter requires choosing the hyperparameters λ and η, and similarly, the above simplified
TRAC requires choosing β and η. Going beyond this simplification, the actual TRAC removes the
tuning of β using aggregation, and the tuning of η using the erfi decision rule.

On the hyperparameters Although TRAC is called “parameter-free”, it still needs the β-grid, the
constant ε and the algorithm BASE as inputs. The idea is that TRAC is particularly insensitive to such
choices, as supported by the OCO theory. As the result, the generic default values recommended
by Cutkosky et al. (2023) are sufficient in practice. We note that those are proposed for training
supervised deep learning models, thus should be agnostic to the lifelong RL applications we consider.

4 Experiment

Does TRAC experience the common pitfalls of loss of plasticity? Does it rapidly adapt to distribution
shifts? To answer these questions, we test TRAC in empirical RL benchmarks such as vision-based
games and physics-based control environments in lifelong settings (Figure 3). Specifically, we instan-
tiate PPO with two different optimizers: ADAM with constant learning rate for baseline comparison,
and TRAC for our proposed method (with exactly the same ADAM as the input BASE). We also test
ADAM PPO with concatenated ReLU activations (CReLU; Shang et al., 2016), previously shown to
mitigate loss of plasticity in certain deep RL settings (Abbas et al., 2023). Our numerical results are
summarized in Table 1. Across every lifelong RL setting, we observe substantial improvements in
the cumulative episode reward by using TRAC PPO compared to ADAM PPO or CReLU. Below are
the details, with more in the Appendix.

Obs += 

[noise]

Obs += 

[noise]

Obs += 

[noise]

TRAC
Base

Atari

S

TRAC
BaseS

TRAC
BaseS

TRAC
BaseS

TRAC
BaseS

TRAC
BaseS

Procgen Control

Figure 3: Experimental setup for lifelong RL.

Procgen We first evaluate on OpenAI Procgen, a suite of 16 procedurally generated game envi-
ronments (Cobbe et al., 2020). We introduce distribution shifts by sampling a new procedurally
generated level of the current game every 2 million time steps, treating each level as a distinct task.
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Figure 4: Reward in the lifelong Procgen environments for StarPilot, Dodgeball, Fruitbot, and Chaser.
There is a steady loss of plasticity in agents using ADAM PPO and CReLU, characterized by their
inability to maintain performance through succesive Procgen levels. In contrast, TRAC avoids this
loss of plasticity, quickly achieving high performance with each new task.

We evaluate game environments including StarPilot, Dodgeball, Fruitbot, and Chaser. In all of these
environments, we observe in Figure 4 that both ADAM PPO and CReLU encounter a continually
degrading loss of plasticity as these distribution shifts are introduced. In contrast, TRAC PPO avoids
this loss of plasticity, which contributes to its rapid reward increase when adapting to new levels.
In the cumulative reward across all the Procgen levels, TRAC PPO reveals normalized average
improvements of 3,212.42% and 120.88% over ADAM PPO and CReLU respectively (see Table
1). For later levels, in all games, TRAC PPO’s reward does not decline as sharply as the baselines,
potentially indicating positive transfer of skills from one level to the next.

One key advantage of TRAC is that it functions as an optimizer, making it orthogonal to various
policy methods such as PPO, as well as other baselines like Online EWC (Schwarz et al., 2018),
IMPALA (Espeholt et al., 2018), Modulating Masks (Nath et al., 2023), and CLEAR (Rolnick et al.,
2019). In Appendix C, we evaluate these methods using both TRAC and ADAM on the Procgen setup.
We find that in every environment, TRAC improves the performance of these algorithms.

Atari The Arcade Learning Environment (ALE) Atari 2600 benchmark is a collection of classic
arcade games designed to assess reinforcement learning agents’ performance across a range of diverse
gaming scenarios (Bellemare et al., 2013). We introduce distribution shifts by switching to a new
Atari game every 4 million timesteps, where each game switch introduces a new task. This benchmark
is more challenging compared to OpenAI Procgen: it requires the agent to handle distribution shifts
in both the input (state) and the target (reward).

In this experiment, we assessed two online settings distinguished by games with action spaces of 6
and 9. From Figure 5, both ADAM PPO and CReLU sometimes failed to learn in certain games. In
contrast, TRAC PPO shows a substantial increase in reward over different games compared to the
baselines. For example, during the first 12 million steps (3 games) in Atari 6, TRAC PPO not only
achieves a significantly higher mean reward but also demonstrates rapid reward increase. Over both
experiment settings, TRAC PPO shows an average normalized improvement of 329.73% over ADAM
PPO and 68.71% over CReLU (Table 1). In rare instances, such as the last 2 million steps of Atari
6, CReLU performs comparably to TRAC PPO. This observation aligns with findings from (Abbas
et al., 2023), which noted that CReLU tends to avoid plasticity loss in continual Atari setups.
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Figure 5: Reward in the lifelong Atari environments, across games with action spaces of 6 and 9.
TRAC PPO rapidly adapts to new tasks, in contrast to the ADAM PPO and CReLU which struggle to
achieve high reward, indicating mild loss of plasticity.
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Figure 6: Reward performance across CartPole, Acrobot, and LunarLander Gym Control tasks.
Both ADAM PPO and CReLU experience extreme plasticity loss, failing to recover after the initial
distribution shift. Conversely, TRAC PPO successfully avoids such plasticity loss, rapidly adapting
when facing extreme distribution shifts.

Gym Control We use the CartPole-v1 and Acrobot-v1 environments from the Gym Classic Control
suite, along with LunarLander-v2 from Box2d Control. To introduce distribution shifts, Mendez et al.
(2020) periodically alters the environment dynamics. Although such distribution shifts pose only
mild challenges for robust methods like PPO with ADAM (Appendix D). We instead implement a
more challenging form of distribution shift. Every 200 steps we perturb each observation dimension
with random noise within a range of ±2, treating each perturbation phase as a distinct task.

Table 1: Cumulative sum of mean episode reward for TRAC PPO, ADAM PPO, and CReLU on
Procgen, Atari, and Gym Control environments. Rewards are scaled by 105; higher is better.

Environment ADAM PPO CReLU TRAC PPO (Ours)
Starpilot 3.4 3.6 12.5
Dodgeball 1.9 2.3 5.2
Chaser 1.4 1.7 2.2
Fruitbot 0.1 1.0 1.8
CartPole 5.1 1.2 39.6
Acrobot −14.3 −13.9 −12.9
LunarLander −21.7 −19.4 −8.6
Atari 6 3.1 4.8 10.5
Atari 9 3.9 17.0 20.2

Here (Figure 6), we notice a peculiar behavior after introducing the first distribution shift in both
ADAM PPO and CReLU: policy collapse. We describe this as an extreme form of loss of plasticity.
Surprisingly, TRAC PPO remains resistant to these extreme distribution shifts. As we see in the
Acrobot experiment, TRAC PPO shows minimal to no policy damage after the first few distribution
shifts, whereas ADAM PPO and CReLU are unable to recover a policy at all. We investigate if TRAC’s
behavior here indicates positive transfer in Appendix A. Across the three Gym Control environments,
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TRAC PPO shows an average normalized improvement of 204.18% over ADAM PPO and 1044.24%
over CReLU (Table 1).

5 Discussion

Related work Combating loss of plasticity has been studied extensively in lifelong RL. A typical
challenge for existing solutions is the tuning of their hyperparameters, which requires prior knowledge
on the nature of the distribution shift, e.g., (Asadi et al., 2024; Nath et al., 2023; Nikishin et al., 2024;
Sokar et al., 2023; Mesbahi et al., 2024). An architectural modification called CReLU is studied
in (Abbas et al., 2023), but our experiments suggest that its benefit might be specific to the Atari
setup. Besides, Abel et al. (2018a,b) presented a theoretical analysis of skill transfer in lifelong RL,
based on value iteration. Moreover, related contributions in nonstationary RL, where reward and state
transition functions also change unpredictably, are limited to theoretical sequential decision-making
settings with a focus on establishing complexity bounds (Roy et al., 2019; Cheung et al., 2020; Wei
& Luo, 2021; Mao et al., 2020).

Our algorithm TRAC builds on a long line of works on parameter-free OCO (see Section 3). To
our knowledge, the only existing work applying parameter-free OCO to RL is (Jacobsen & Chan,
2021), which focuses on estimating the value function (i.e., policy evaluation). Our scope is different,
focusing on empirical RL in lifelong problems by exploring the key connection between parameter-
free OCO and regularization.

Particularly, we are inspired by the MECHANIC algorithm from (Cutkosky et al., 2023), which goes
beyond the traditional convex setting of parameter-free OCO to handle stationary deep learning
optimization tasks. Lifelong reinforcement learning, however, introduces a layer of complexity with
its inherent nonstationarity. Furthermore, compared to MECHANIC, TRAC improves the scale tuner
there (which is based on the coin-betting framework; Orabona & Pál, 2016) by the erfi algorithm that
enjoys a better OCO performance guarantee. As an ablation study, we empirically compare TRAC and
MECHANIC in the Appendix G (Table 3). We find that TRAC is slightly better, but both algorithms can
mitigate the loss of plasticity, suggesting the effectiveness of the general “parameter-free” principle
in lifelong RL.

TRAC encourages positive transfer In our experiments, we observe that TRAC’s reward decline
due to distribution shifts is less severe than that of baseline methods. These results may suggest
TRAC facilitates positive transfer between related tasks. To investigate this further, we compared
TRAC to a privileged weight-resetting approach, where the network’s parameters are reset for each
new task, in the Gym Control environments (see Appendix A). Our results show that TRAC maintains
higher rewards during tasks than privileged weight-resetting and avoids declining to the same low
reward levels as privileged weight-resetting at the start of a new task (Figure 8).

On the choice of θref In general, the reference point θref should be good or “safe” for TRAC to
perform effectively. One might presume that achieving this requires “warmstarting”, or pre-training
using the underlying BASE optimizer. While our experiments validate that such warmstarting is
indeed beneficial (Appendix B), our main experiments show that even a random initialization of the
policy’s weight serves as a good enough θref, even when tasks are similar (Figure 4).

This observation aligns with discussions by Lyle et al. (2023), Sokar et al. (2023), and Abbas et al.
(2023), who suggested that persistent gradient steps away from a random initialization can deactivate
ReLU activations, leading to activation collapse and loss of plasticity in neural networks. Our results
also support Kumar et al. (2023)’s argument that maintaining some weights close to their initial
values not only prevents dead ReLU units but also allows quick adaptation to new distribution shifts.

Tuning L2 regularization The success of TRAC suggests that an adaptive form of regularization—
anchoring to the reference point θref—may suffice to counteract both mild and extreme forms of loss
of plasticity. From this angle, we further elaborate the limitation of the L2 regularization approach
considered in (Kumar et al., 2023). It requires selecting a regularization strength parameter λ
through cross-validation, which is incompatible with the one-shot nature of lifelong learning settings.
Furthermore, it is nontrivial to select the search grid: for example, we tried the λ-grid suggested by
(Kumar et al., 2023), and there is no effective λ value within the grid for the lifelong RL environments
we consider. All the values are too small.
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Figure 7: For each Gym Control environment and the initial ten tasks, we identified the best λ, which
is the regularization strength that maximizes reward for each task’s specific distribution shift. We also
determined the best overall (well-tuned) λ for each environment. The results demonstrate that each
environment and each task’s distribution shift is sensitive to different λ and that TRAC PPO performs
competitively with each environment’s well-tuned λ.

Continuing this reasoning, we conduct a hyperparameter search for λ, over various larger values
[0.2, 0.8, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. Given the expense of such experiments, only the
more sample-efficient control environments are considered. We discover that each environment
and task responds uniquely to these regularization strengths (see bar plot of λ values in Figure 7).
This highlights the challenges of tuning λ in a lifelong learning context, where adjusting for each
environment, let alone each distribution shift, would require extensive pre-experimental analysis.

In contrast, TRAC offers a parameter-free solution that adapts dynamically with the data in an online
manner. The scaling output of TRAC adjusts autonomously to the ongoing conditions, consistently
competing with well-tuned λ values in the various environments, as demonstrated in the reward plots
for CartPole, Acrobot, and LunarLander (Figure 7).

TRAC compared to other plasticity methods Both layer normalization and plasticity injection
Nikishin et al. (2024); Lyle et al. (2023) have been shown to combat plasticity loss. For instance,
Appendix E Figure 15 demonstrates that both layer normalization and plasticity injection are effective
at reducing plasticity loss when applied to the CartPole environment using ADAM as a baseline
optimizer. We implemented plasticity injection following the methodology laid out by Nikishin
et al. (2024), where plasticity is injected at the start of every distribution shift. While this approach
does help in reducing the decline in performance due to plasticity loss, our results indicate that it
is consistently outperformed by TRAC across all three control environments—CartPole, Acrobot,
and LunarLander. Moreover, while layer normalization improves ADAM’s performance, it too is
outperformed by TRAC across the same control settings (Figure 15). Notably, combining layer
normalization with TRAC resulted in the best performance gains.

Near convexity of lifelong RL Our results demonstrate the rapid adaptation of TRAC, in lifelong
RL problems with complicated function approximation. From the perspective of optimization, the
latter requires tackling both nonconvexity and nonstationarity, which is typically regarded intractable
in theory. Perhaps surprisingly, when approaching this complex problem using the theoretical insights
from OCO, we observe compelling results. This suggests a certain “hidden convexity” in this problem,
which could be an exciting direction for both theoretical and empirical research (e.g., policy gradient
methods provably converge to global optimizers in linear quadratic control (Hu et al., 2023)).

Limitations While TRAC offers robust adaptability in nonstationary environments, it can exhibit
suboptimal performance at the outset. In the early stages of deployment, TRAC might underperform
compared to the baseline optimizer. We address this by proposing a warmstarting solution detailed in
Appendix B, which helps increase the initial performance gap.

6 Conclusion

In this work, we introduced TRAC, a parameter-free optimizer for lifelong RL that leverages the
principles of OCO. Our approach dynamically refines regularization in a data-dependent manner,
eliminating the need for hyperparameter tuning. Through extensive experimentation in Procgen,
Atari, and Gym Control environments, we demonstrated that TRAC effectively mitigates loss of
plasticity and rapidly adapts to new distribution shifts, where baseline methods fail. TRAC’s success
leads to a compelling takeaway: empirical lifelong RL scenarios may exhibit more convex properties
than previously appreciated, and might inherently benefit from parameter-free OCO approaches.
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Appendix

A TRAC Encourages Positive Transfer

To explore whether TRAC encourages positive transfer, we introduce a privileged weight-reset
baseline. This baseline is "privileged" in the sense that it knows when a distribution shift is introduced
and resets the parameters to a random initialization at the start of each new task. We applied this
baseline to three Gym control tasks: CartPole-v1, Acrobot-v1, and LunarLander-v2, and compared it
to TRAC PPO and ADAM PPO, as shown in Figure 8.

We observe that the privileged weight-reset baseline exhibits spikes in reward at the beginning of
each new task. Surprisingly, TRAC maintains even higher rewards than the privileged weight-reset
baseline, even at its peak learning phases. Additionally, TRAC’s reward does not decline to the reward
seen at the start of new tasks with privileged weight-resetting (TRAC does not have to "start over"
with each task), suggesting that TRAC successfully transfers skills positively between tasks.
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Figure 8: Reward comparison of TRAC PPO, ADAM PPO, and privileged weight-resetting on
Cartpole-v1, Acrobot-v1, and LunarLander-v2. TRAC PPO encourages positive transfer between
tasks.

B Warmstarting

In our theoretical framework, we hypothesize that a robust parameter initialization, denoted as θref ,
could enhance the performance of our models, suggesting that empirical implementations might
benefit from initializing parameters using a base optimizer such as ADAM prior to deploying TRAC.
Contrary to this assumption, our experimental results detailed in Section 4 reveal that warmstarting is
not essential for TRAC’s success. Below, we examine the performance of ADAM PPO and TRAC
PPO when warmstarted.

Both TRAC PPO and ADAM PPO were warmstarted using ADAM for the initial 150,000 steps in
all games for the Atari and Procgen environments, and for the first 30 steps in the Gym Control
experiments. As seen in Figure 9, in games like Starpilot, Fruitbot, and Dodgeball, TRAC PPO
surpasses ADAM PPO in the first level/task of the online setup, with its performance closely matching
that of ADAM PPO in Chaser. Importantly, TRAC PPO continues to avoid the loss of plasticity
encountered by ADAM PPO, even when both are warmstarted. This makes sense since all of the
distributions share some foundational game dynamics; the initial learning phases likely explore these
dynamics, so leveraging a good parameter initialization to regularize in this early region can be
beneficial for TRAC—we observe that forward transfer occurs somewhat in later level distribution
shifts as the reward does not drop back to zero where it initially started from.

Our findings indicate that warmstarting does not confer a significant advantage in the Atari games.
This makes sense because a parameter initialization that is good in one game setting is likely a
random parameterization for another setting, which is equivalent to the setup without warmstarting
where TRAC regularizes towards a random parameter initialization. In the Gym Control experiments
although warmstarted TRAC PPO manages to avoid the extreme plasticity loss and policy collapse
seen in warmstarted ADAM PPO, it does not perform as well as non-warmstarted TRAC PPO.
This result underscores that the efficacy of warmstarting is environment-specific and highlights the
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challenge in predicting when ADAM PPO may achieve a parameter initialization that is advantageous
for TRAC PPO to regularize towards.

From an overall perspective, warmstarting TRAC PPO in every setting still shows substantial im-
provement over ADAM PPO (Table 2).
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Figure 9: Reward in the lifelong Procgen environments for StarPilot, Dodgeball, Fruitbot, and Chaser
with warmstarted TRAC PPO and warmstarted ADAM PPO. Inital performance of TRAC PPO is
improved with warmstarting and continues to avoid loss of plasticity.
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Figure 10: Reward in the lifelong Atari environments with warmstarted TRAC PPO and warmstarted
ADAM PPO. No significant benefit is found by warmstarting TRAC PPO compared to not warmstarting
it.

C Other RL Baselines

While PPO is a widely used policy gradient method in reinforcement learning, it is not the only
approach applicable to lifelong RL. Other continual RL methods, such as IMPALA (Espeholt et al.,
2018), Online EWC (Schwarz et al., 2018), CLEAR (Rolnick et al., 2019), and Modulating Masks
(Nath et al., 2023), are designed to address challenges like catastrophic forgetting in dynamic,
nonstationary environments. We incorporated these algorithm implementations adapted from the
code from Nath et al. (2023) into our experiments to offer a more comprehensive evaluation. These
methods vary in their mechanisms for maintaining task performance over time but may still suffer
from plasticity loss in later stages of training.
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Figure 11: Reward in the lifelong Gym Control environments for CartPole-v1, Acrobot-v1, and
LunarLander-v2 with warmstarted TRAC PPO and warmstarted ADAM PPO. TRAC PPO still avoids
loss of plasticity and policy collapse.

Table 2: Cumulative sum of mean episode reward over all distributions for ADAM PPO warmstarted
and TRAC PPO warmstarted on Procgen, Atari, and Gym Control environments. Rewards are scaled
by 105; higher is better.

Environment ADAM PPO TRAC PPO (Ours)
Starpilot 3.0 10.2
Dodgeball 1.2 2.5
Chaser 1.3 1.6
Fruitbot −0.4 0.6
CartPole 4.6 22.8
Acrobot −142.9 −114.5
LunarLander −190.7 −97.3
Atari6 16.7 72.2
Atari9 34.6 80.6

Mitigating plasticity loss across policy methods: Figure 12 demonstrates the performance of
various continual RL methods when paired with ADAM and TRAC optimizers. The results indicate
that when using ADAM, methods like IMPALA, Online EWC, CLEAR, and Modulating Masks
exhibit a noticeable decline in performance over time due to plasticity loss, particularly in later levels
of the Procgen environments. In contrast, pairing these methods with TRAC instead of ADAM leads
to significant improvements, mitigating plasticity loss and enhancing reward performance across
subsequent distribution shifts.

To quantify these improvements, Figures 13, 12 present the average normalized rewards over five
seeds and 120M timesteps for each method across four different Procgen environments: Starpilot,
Dodgeball, Chaser, and Fruitbot. Across all environments, methods that use TRAC outperform their
Adam-based counterparts, consistently maintaining higher rewards over time.

On average, across the Procgen environments, TRAC led to performance improvements over ADAM
by the following margins: 21.83% for IMPALA, 15.86% for Online EWC, 14.41% for CLEAR, and
10.14% for Modulating Masks.

General Applicability of TRAC: It is important to highlight that TRAC is orthogonal to the learning
or policy algorithms themselves. It can be seamlessly integrated into various reinforcement learning
architectures by simply replacing their optimizer (e.g., ADAM or RMSPROP). Our results demon-
strate that TRAC enhances performance across different algorithms and environments, consistently
outperforming ADAM in mitigating plasticity loss.

D Gravity Based Distribution Shifts

One method to introduce distribution changes in reinforcement learning environments is by altering
the dynamics Mendez et al. (2020), such as adjusting the gravity in the CartPole environment. In this
set of experiments, we manipulate the gravity by a magnitude of ten, randomly adding noise for one
distribution shift, and then inversely, dividing by ten and adding random noise for the next shift. This
process continues throughout the experiment.
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Figure 12: Performance comparison between Adam-based and TRAC-based continual RL methods
(IMPALA, Online EWC, CLEAR, Modulating Masks) in Starpilot. While ADAM suffers from
plasticity loss in later levels, TRAC effectively mitigates this and maintains better performance over
distribution shifts. For clarity, standard deviation fills are omitted here but included in the bar plot.
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Figure 13: Average normalized rewards over five seeds and 120M timesteps for Dodeball, Chaser, and
Fruitbot. Each method (IMPALA, Online EWC, CLEAR, and Modulating Masks) is evaluated using
both Adam and TRAC. TRAC consistently outperforms ADAM across all methods and environments,
with improvements ranging from 10% to 21%.

Our observations suggest that ADAM PPO is robust to such dynamics-based distribution shifts, as
shown in Figure 14. This indicates that while ADAM PPO implicitly models the dynamics of the
environment well—where changes in dynamics minimally impact performance—it struggles more
with adapting to out-of-distribution observations such as seen in the main experiments (Figure 6) and
in the warmstarting experiments (Figure 11).

E LayerNorm, Plasticity Injection, and Weight Decay

To evaluate TRAC alongside other methods that aim to mitigate plasticity loss, we compare it against
LayerNorm (Lyle et al., 2023), Plasticity Injection (Nikishin et al., 2024), and tuning weight decay
(Lyle et al., 2024).

As discussed in Section 5, we confirm that both layer normalization and plasticity injection (applied
at the start of every distribution shift) (Nikishin et al., 2024; Lyle et al., 2023) are effective in reducing
plasticity loss (Figure 15). While these methods help slow the decline in performance due to plasticity
loss, TRAC consistently outperforms them across the three Gym Control environments. Importantly,
because TRAC is an optimizer, it can be combined with layer normalization, and doing so resulted in
the best performance gains in our Control setups.
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Figure 14: Mean Episode Reward for ADAM PPO on CartPole-v1 with varying gravity. ADAM PPO
demonstrates robust policy recovery across most gravity-based distribution shifts.

Tuning weight decay: In addition to LayerNorm and Plasticity Injection, we also evaluated the
effects of tuning weight decay using PyTorch’s AdamW optimizer. We conducted a hyperparameter
sweep across three control environments with 15 seeds for each of the following weight decay values:
0.0001, 0.001, 0.01, 0.1, 1.0, 5.0, 10.0, 15.0, and 50.0. Figure 16 presents the average normalized
reward for each weight decay value over 15 seeds and 3000 timesteps, compared to TRAC.

The results indicate that while tuning weight decay with Adam does provide some benefit, these values
consistently underperform in comparison to TRAC across all three control environments. Figure 16
plots the performance of the best-performing weight decay value with Adam over 10 distribution
shifts in the control environments. We observe that weight decay values are highly sensitive to the
specific environment and the nature of the distribution shift.

Interestingly, in our initial experiments, we set the weight decay to zero, yet TRAC still outperformed
Adam with various weight decay values. This suggests that while weight decay can mitigate plasticity
loss to some extent, it does not match the overall effectiveness of TRAC.
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Figure 15: Performance comparison of plasticity loss mitigation techniques across Gym Control
environments. Both layer normalization and plasticity injection reduce plasticity loss when applied
with ADAM. TRAC outperforms both layer norm ADAM and plasticity injection ADAM, with the
combination of layer norm and TRAC achieving the highest performance.

F Scaling-Value Convergence

As discussed in the algorithm section (see Section 3), TRAC operates as a meta-algorithm on
top of a standard optimizer, denoted as BASE. The crucial component of TRAC involves the
dynamic adjustment of the scaling parameter St+1, managed by the tuner algorithm (Algorithm 2).
This parameter is data-dependent and typically ranges between [0, 1]. The weight update θt+1

is consequently defined as a convex combination of the current optimizer’s weight θBASE
t and a

predetermined reference point θref.

This section presents the convergence behavior of the scaling parameter St+1 across different
environments, analyzed through the mean values over multiple seeds.
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Figure 16: Effect of weight decay on performance in the three Gym Control environments. Bar plots
show the average normalized rewards over 25 seeds for different weight decay values using ADAM
across 3000 timesteps, compared to TRAC with no weight decay.
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Figure 17: Convergence of the scaling parameter St+1 in the Procgen environments.

The convergence of the scaling parameter St+1 observed across the Procgen and Gym Control envi-
ronments, as depicted in Figures 17 and 19, reflects a good scaling value that effectively determines
the strength of regularization towards the initialization points, yielding robust empirical outcomes in
lifelong RL settings. Interestingly, in Procgen environments, this converged scaling value exhibits
consistency across various games, typically hovering between 0.02 and 0.03, as shown in Figure 17.
In contrast, in the Gym Control environments, the scaling values are lower, ranging between 0.005
and 0.01, as illustrated in Figure 19.

G Comparison to MECHANIC

In our analysis, we extend the examination to other OCO-based optimizers within the lifelong RL
setup. Table 3 presents a comparative assessment of TRAC PPO and MECHANIC PPO (Cutkosky
et al., 2023) for the lifelong Gym Control tasks (with 300 seed runs). The p-values were calculated
using two-sample t-tests to test the hypothesis that the means between TRAC and MECHANIC are
the same (Null Hypothesis, H0) against the alternative hypothesis that they are different (Alternative
Hypothesis, H1). The results indicate that while MECHANIC effectively mitigates plasticity loss and
adapts quickly to new distribution shifts, it slightly underperforms in comparison to TRAC.
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Figure 18: Evolution of the scaling parameter St+1 in the Atari environments. Here we don’t see a
meaningful convergence of St+1.
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Figure 19: Convergence of the scaling parameter St+1 in the Gym Control environments.

H Experimental Setup

Procgen and Atari Vision backbone For both the Atari and Procgen experiments, the Impala
architecture was used as the vision backbone. The Impala model had 3 Impala blocks, each containing
a convolutional layer followed by 2 residual blocks. The output of this is flattened and connected to a
fully connected layer. The impala model parameters are initialized using Xavier uniform initialization.

Policy and Value Networks Across all experiments—including Gym Control, Atari, and Proc-
gen—the policy and value functions are implemented using a multi-layer perceptron (MLP) architec-
ture. This architecture processes the input features into action probabilities and state value estimates.
The MLP comprises several fully connected layers activated by ReLU. The output from the final
layer uses a softmax activation.

TRAC TRAC, for all experiments, was implemented using the same experiment-specific baseline
architectures and baseline optimizer. For the Procgen and Atari experiments, the base ADAM
optimizer was configured as the same as baseline, with a learning rate of 0.001, and for the Gym
Control experiments, a learning rate of 0.01 was used. Both learning rates were tested for all
experiments and found to have negligible differences in performance outcomes. Other than the
learning rate, we use the default ADAM parameters, including weight decay and betas, followed by
the specifications outlined in the PyTorch Documentation.5

The setup for TRAC included β values for adaptive gradient adjustments: 0.9, 0.99, 0.999, 0.9999,
0.99999, and 0.999999. Both St and ε were initially set to (1 × 10−8). Modifications were made
to a PyTorch error function library, which accepts complex inputs to accommodate the necessary
computations for the imaginary error function. This library can be found at Torch Erf GitHub.6

Distribution Shifts In the Atari experiments, game environments were switched every 4 million
steps. The sequence for games with an action space of 6 included “BasicMath”, “Qbert”, “SpaceIn-
vaders”, “UpNDown”, “Galaxian”, “Bowling”, “Demonattack”, “NameThisGame”, while games with
an action space of 9 included “LostLuggage”, “VideoPinball”, “BeamRider”, “Asterix”, “Enduro”,
“CrazyClimber”, “MsPacman”, “Koolaid”.

5https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
6https://github.com/redsnic/torch_erf
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Table 3: Performance comparison between TRAC and MECHANIC across three Gym Control envi-
ronments. The mean, standard error, and p-values reflect the performance over multiple runs, with
bolded values highlighting TRAC’s superior results.

Task Method Mean Std Error p-value
LunarLander-v2 TRAC 0.6018 0.0036 0.0000

Mechanic 0.5755 0.0027
CartPole-v1 TRAC 0.3518 0.0244 0.0021

Mechanic 0.3008 0.0230
Acrobot-v1 TRAC 0.7044 0.0221 0.0000

Mechanic 0.6396 0.0239

Table 4: PPO Parameters for Atari, Procgen, and Gym Control Experiments

Parameter Atari Procgen Control
Steps per update 2,000 1,000 800 (2 episodes with 400 steps)
Batch size 250 125 32
Epochs per update 3 3 5
Epsilon clip for PPO 0.2 0.2 0.2
Value coefficient 0.5 0.5 0.5
Entropy coefficient 0.01 0.01 0.01
Base Optimizer ADAM (LR: 0.001) ADAM (LR: 0.001) ADAM (LR: 0.01)
Architecture Impala + MLP Impala + MLP MLP

For Procgen experiments, individual game levels were sampled using a seed value as the start_level
parameter, which was incremented sequentially to generate new levels. Each new environment was
introduced every 2 million steps.

In the Gym Control experiments, each observation dimension was randomly perturbed by a value
ranging from 0 to 2. This perturbation was constant for 200 timesteps, after which a new perturbation
was applied, effectively switching the environmental conditions every 200 steps.

Statistical Significance The Procgen and Atari experiments were conducted with 8 seeds/runs,
while the Gym Control experiments utilized 25 seeds/runs (with the exception of the Mechanic
experiments in Table 3 which utilized 300 seeds). The exception was in the L2 initialization
experiments, which used 15 seeds/runs per regularization strength. In Figures 4, 5, 6, 7, 9, 10, 11,
15, 12, 14, the plotted lines represent the mean of all of the mean episode rewards from the different
seeds/runs, and the shaded error bands indicate the standard deviation of all of the mean episode
rewards from the different seeds/runs.

Compute Resources For the Procgen and Atari experiments, each was allocated a single A100
GPU, typically running for 3-4 days to complete. The Gym Control experiments were conducted
using dual-core CPUs, generally concluding within a few hours. In both scenarios, an allocation of
8GB of RAM was sufficient to meet the computational demands.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As said in our abstract, we offer a parameter-free optimizer that performs well
in empirical lifelong RL environments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitations paragraph in our discussion section (5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not provide a novel theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include a comprehensive experimental setup section in our Appendix (H).
We also provide a code submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide a python jupyter notebook in our supplementary material to walk
through how to setup and reproduce the results for the computationally less expensive
experiments (which have a similar setup to the computationally expensive experiments).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full experimental details can be found in H and in the code submission in
our supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our reward plots include standard deviation error bars around the curves. We
detail this in the experimental setup section of our Appendix (H).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer:[Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every manner.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: Not applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: We dot use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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