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Abstract

Achieving robust and precise pose estimation in dynamic scenes is a significant
research challenge in Visual Simultaneous Localization and Mapping (SLAM).
Recent advancements integrating Gaussian Splatting into SLAM systems have
proven effective in creating high-quality renderings using explicit 3D Gaussian
models, significantly improving environmental reconstruction fidelity. However,
these approaches depend on a static environment assumption and face challenges
in dynamic environments due to inconsistent observations of geometry and pho-
tometry. To address this problem, we propose DG-SLAM, the first robust dynamic
visual SLAM system grounded in 3D Gaussians, which provides precise camera
pose estimation alongside high-fidelity reconstructions. Specifically, we propose
effective strategies, including motion mask generation, adaptive Gaussian point
management, and a hybrid camera tracking algorithm to improve the accuracy and
robustness of pose estimation. Extensive experiments demonstrate that DG-SLAM
delivers state-of-the-art performance in camera pose estimation, map reconstruc-
tion, and novel-view synthesis in dynamic scenes, outperforming existing methods
meanwhile preserving real-time rendering ability.

1 Introduction

Visual simultaneous localization and mapping (SLAM), the task of reconstructing a 3D map within
an unknown environment while simultaneously estimating the camera pose, is recognized as a critical
component to achieving autonomous navigation in novel 3D environments for mobile robots [1].
It has been widely used in various forms in fields such as robotics, autonomous driving, and aug-
mented/virtual reality (AR/VR). However, the majority of previous research [2, 3, 4, 5, 6, 7, 8, 9, 10]
typically relies on the assumption of static environments, limiting the practical applicability of this
technology in daily life. Consequently, how to achieve accurate and robust pose estimation in dynamic
scenes remains an urgent problem to be addressed for mobile robots.

Recently, many researchers [6, 7, 8, 9, 10] have endeavored to replace the conventional explicit
representations used in visual SLAM, such as Signed Distance Function (SDF), voxel grids [11],
meshes [12], and surfel clouds [13], with the neural radiance field (NeRF) [14] approach for recon-
structing the neural implicit map. This novel map representation is more continuous, efficient, and
able to be optimized with differentiable rendering, which has the potential to benefit applications
like navigation and reconstruction. However, these methods exhibit two primary issues: the scene’s
bounds are required to be predefined to initialize the neural voxel grid; and the implicit representation
proves challenging for information fusion and editing. To address these problems, recent works

∗Yueming Xu and Haochen Jiang contribute equally to this work.
†Li Zhang (lizhangfd@fudan.edu.cn) is the corresponding author with School of Data Science, Fudan

University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

51577 https://doi.org/10.52202/079017-1633

https://github.com/fudan-zvg/DG-SLAM


like GS-SLAM [15], SplaTam [16], and Gaussian splatting SLAM [17] leverage the 3D-GS [18] to
explicit represent the scene’s map. This explicit geometric representation is also smooth, continuous,
and differentiable. Moreover, a substantial array of Gaussians can be rendered with high efficiency
through splatting rasterization techniques, achieving up to 300 frames per second (FPS) at a resolution
of 1080p. However, all these above-mentioned neural SLAM methods do not perform well in dynamic
scenes. The robustness of these systems significantly decreases, even leading to tracking failures,
when dynamic objects appear in the environment.

To tackle these problems, we propose a novel 3D Gaussian-based visual SLAM that can reliably
track camera motion in dynamic indoor environments. Due to the capability of 3D-GS to accomplish
high-quality rendering in real-time, the SLAM system more readily converges to a global optimum
during pose optimization, thereby achieving better and more stable pose optimization results. A
cornerstone of our approach to achieving robust pose estimation lies in the innovative motion mask
generation algorithm. This algorithm filters out sampled pixels situated within invalid zones, thereby
refining the estimation process. In addition to the constraint of depth residual, we employ a spatio-
temporal consistency strategy within an observation window to generate depth warp masks. By
incrementally fusing the depth warp mask and semantic mask, the motion mask will become more
precise to reflect the true motion state of objects. To improve the accuracy and stability of pose
estimation, we leverage DROID-SLAM [19] odometry (DROID-VO) to provide an initial pose
estimate and devise a coarse-to-fine optimization algorithm built upon the initially estimated camera
pose. This aims to minimize the disparity between pose estimation and the reconstructed map,
employing photorealistic alignment optimization through Gaussian Splatting. Moreover, this hybrid
pose optimization approach effectively ensures the accuracy and quality of the generated depth warp
mask, thereby facilitating better performance in the next camera tracking stage. To obtain high-quality
rendering results, we propose a novel adaptive Gaussian point addition and pruning method to keep
the geometry clean and enable accurate and robust camera tracking. Capitalizing on the factor graph
structure inherent in DROID-SLAM, our system is capable of executing dense Bundle Adjustment
(DBA) upon completion of tracking to eliminate accumulated errors.

In summary, our contributions are summarized as follows: (i) To the best of our knowledge, this
is the first robust dynamic Gaussian splatting SLAM with hybrid pose optimization, capable of
achieving both real-time rendering and high-fidelity reconstruction performance. (ii) To mitigate
the impact of dynamic objects during pose estimation, we propose an advanced motion mask
generation strategy that integrates spatio-temporal consistent depth masks with semantic priors,
thereby significantly enhancing the precision of motion object segmentation. (iii) We design a hybrid
camera tracking strategy utilizing the coarse-to-fine pose optimization algorithm to improve the
consistency and accuracy between the estimated pose and the reconstructed map. (iv) To better
manage and expand the Gaussian map, we propose an adaptive Gaussian point addition and pruning
strategy. It ensures geometric integrity and facilitates accurate camera tracking. (v) Extensive
evaluations on two challenging dynamic datasets and one common static dataset demonstrate the
state-of-the-art performance of our proposed SLAM system, particularly in real-world scenarios.

2 Related work

Visual SLAM with dynamic objects filter. Dynamic object filtering is pivotal for reconstructing
static scenes and bolstering the robustness of pose estimation. Existing approaches fall into two main
categories: the first relies on re-sampling and residual optimization strategies to remove outliers,
as seen in works such as ORB-SLAM2 [2], ORB-SLAM3 [3], and Refusion [5]. These methods,
however, are generally limited to addressing small-scale motions and often falter in the face of
extensive, continuous object movements. The second group employs the additional prior knowledge,
for example, semantic segmentation or object detection prior [20, 21, 22, 23, 24, 25, 26], to remove
the dynamic objects. However, all these methods often exhibit a domain gap when applied in real-
world environments, leading to the introduction of prediction errors. More recently, deep neural
networks have been employed to build end-to-end visual odometry, which performs better in specific
environments such as DROID-SLAM [19], DytanVO [27], and DeFlowSLAM [28]. However,
these methods still require a substantial amount of training data and are unable to reconstruct the
high-fidelity static map.

RGB-D SLAM with neural implicit representation. Neural implicit scene representations, also
known as neural fields [29], have attracted considerable attention in the field of RGB-D SLAM for
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Figure 1: Overview of DG-SLAM. Given a series of RGB-D frames, we reconstruct the static
high-fidelity 3D Gaussian map and optimize the camera pose represented with lie algebra ξi.

their impressive expressiveness and low memory footprint. Initial studies, including iMap [6] and
DI-Fusion [30], explored the utilization of a single MLP and a feature grid to encode scene geometries
within a latent space. However, they both share a critical issue: the problem of network forgetting,
which is catastrophic for long-term localization and mapping. In response to this limitation, NICE-
SLAM [7] introduces a hierarchical feature grid approach to enhance scene representation fidelity and
implements a localized feature updating strategy to address the issue of network forgetting. While
these advancements contribute to improved accuracy, they necessitate greater memory consumption
and may impact the system’s ability to operate in real-time. More recently, existing methods like
Vox-Fusion [10], Co-SLAM [8], and ESLAM [9] explore sparse encoding or tri-plane representation
strategy to improve the quality of scene reconstruction and the system’s execution efficiency. Point-
SLAM [31] draws inspiration from the concept of Point-NeRF [32], utilizing neural points to
encode spatial geometry and color features. It employs an explicit method to represent spatial maps,
effectively improving the accuracy of localization and mapping. All these methods have demonstrated
impressive results based on the strong assumptions of static scene conditions. The robustness of
these systems significantly decreases when dynamic objects appear in the environment. Recently,
Rodyn-SLAM [33] proposed utilizing optical flow and semantic segmentation prior to filter out
dynamic objects, and employing a neural rendering method as the frontend. However, this approach
is computationally intensive and limits the maximum accuracy achievable in pose estimation.

3D Gaussian splatting SLAM methods. Compared to the aforementioned NeRF-based SLAM
methods, 3D Gaussian splatting (3D-GS) [18] has garnered widespread interest among researchers
due to its advantages in high-fidelity and real-time rendering. Unlike previous implicit map represen-
tation methods, 3D-GS explicitly models scene maps by independent Gaussian spheres, naturally
endowing it with geometric structure property. Some researchers [17, 15, 34, 16, 35] are exploring
the replacement of implicit representations (NeRF) with 3D-GS in the mapping thread. However,
these methods are currently constrained by the assumption of static environments, rendering them
ineffective in dynamic scenes. It significantly restricts the practical application of Gaussian SLAM
systems in real-life scenarios. Under the premise of ensuring high-fidelity reconstruction and real-
time rendering, our system is designed to improve the accuracy and robustness of pose estimation
under dynamic environments.

3 Approach

Given a sequence of RGB-D frames {Ii, Di}Ni=1, It ∈ R3, Dt ∈ R, our method (Fig. 1) aims to
simultaneously recover camera poses {ξi}Ni=1, ξt ∈ SE(3) and reconstruct the static 3D scene map
represented by 3D Gaussian sphere in dynamic environments. Similar to most modern SLAM
systems [36, 37], our system comprises two distinct processes: the tracking process as the frontend
and the mapping process as the backend.
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3.1 3D Gaussian map representation

To obtain real-time rendering and high-fidelity reconstruction mapping, we represent the scene as a
set of 3d Gaussian ellipsoid G, which simultaneously possesses geometric and appearance properties.

G = {Gi : (µi,Σi, αi,hi)
∣∣∀Gi ∈ G} (1)

Each 3D Gaussian ellipsoid Gi is composed of its center position µi ∈ R3, covariance matrix
Σi ∈ R3×3, opacity αi ∈ R, and spherical harmonics coefficients hi ∈ R16.

Color and depth splatting rendering. To obtain the rendering image of color and depth, we project
the 3D Gaussian (µw,Σw) in world coordinate to 2D Gaussian (µI ,ΣI) on the image plane:

µI = π (T c
w · µw) , ΣI = JRΣwR

TJT , (2)

where R is the viewing transformation and J is the Jacobian of the affine approximation of the
projective transformation. Following the alpha blending method in 3DGS [18], we accumulate the
splatting Gaussian ellipsoid along the observation image pixel at the current estimation pose ξi to
render the color and depth as:

Ĉ =
∑

i∈G cifi(µI ,ΣI)
∏i−1

j=1 (1− fj(µI ,ΣI)) , D̂ =
∑

i∈G difi(µI ,ΣI)
∏i−1

j=1 (1− fj(µI ,ΣI)) , (3)

where fi(·) is the Gaussian distribution function weighted by opacity αi. ci represents the color of
the projected Gaussian point computed by learnable spherical harmonics coefficients hi. Similarly,
di denotes the depth of Gaussian point Gi, obtained by projecting to z-axis in the camera coordinate.

Accumulated opacity. We use accumulated opacity Ô to represent the rendering reliability for each
pixel and judge whether the Gaussian map is well-optimized.

Ô =
∑

i∈G fi(µI ,ΣI)
∏i−1

j=1 (1− fj(µI ,ΣI)) , (4)

3.2 Motion mask generation

For each input keyframe, we select its associated keyframe set D within a sliding window. To reduce
the computation and improve the accuracy of generating motion mask, we employ the depth warping
operation solely on keyframes. To ensure the overlap between adjacent keyframes is not too small, we
employ optical-flow distance to determine keyframe insertion. In regions with more intense motion,
our goal is to insert as many keyframes as possible.

For the pixel p in keyframe i, we reproject it onto keyframe j as follows:

pi→j = fwarp (ξji,pi, Di(pi)) = KTji

(
K−1Di(pi)p

homo
i

)
, (5)

where K and Tji represent the intrinsic matrix and the transformation matrix between frame i and
frame j, respectively. phomo

i = (u, v, 1) is the homogeneous coordinate of pi.

Given any associate keyframes Di, Dj ∈ D, we utilize warp function fwarp to compute the residual
of reprojection depth value. By setting a suitable threshold eth, we derive the depth warp mask M̂wd

j,i
corresponding to dynamic objects as:

M̂wd
j,i :

{⋂
pi∈Di

1(Dj(pi→j)−Di(pi) < eth)⊗ Im×n

}
(6)

where Im×n represents a matrix of the same size as the image, filled with ones. The ⊗ operation
signifies that for each element in the matrix Im×n, we assess whether its warp depth meets a specified
threshold and subsequently modify the corresponding value at that position. As illustrated in Fig. 1,
to derive a more precise warp mask, we consider the spatial coherence of object motion within a
sliding window of length N and combine the multiple observation warp masks. Unlike ReFusion [5],
our method can mitigate the potential impact of observation noise from a single warp mask. When
object motion becomes significant, we only mask the foreground pixels where the depth residual
is positive to avoid a large portion of pixels being masked as dynamic regions. Subsequently, we
integrate the warp mask and semantic mask to derive the final motion mask M̂j as:

M̂j = M̂wd
j,i ∩ M̂wd

j,i−1 ∩ M̂wd
j,i−2 · · · ∩ M̂wd

j,i−N ∪ M̂sg
j , (7)

Thanks to our innovative approach to generating motion masks, the omission of dynamic objects by
semantic priors can be effectively compensated. Furthermore, by leveraging a spatial consistency
strategy, the inaccuracy of edge region recognition during depth warping can be significantly reduced.
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3.3 Coarse-to-fine camera tracking.

The constant speed motion model struggles to infer a reasonable initial optimized pose value in
dynamic scenes. An inaccurate initial pose will lead to optimization getting trapped in local optima
more easily and can affect the generation quality of the depth warp mask. To achieve more precise
pose estimation in dynamic environments, we utilize the visual odometry (VO) component from
DROID-SLAM [19] as the coarse pose estimation results in camera tracking. We also conduct a
dense bundle adjustment in every interaction for a set of keyframes to optimize the corresponding
pose G and depth d:

E(G,d) =
∑

(i,j)∈ϵ

∥∥p∗
ij −ΠC

(
Gij ◦Π−1

C (pi,di)
)∥∥2

Σij ·M̂j
, (8)

where Σij = diag (wij), wij represents the confidence weights. Gij denotes the relative trans-
formation between the poses Gi and Gj . pi means a grid of pixel coordinates. Moreover, p∗

ij is
corrected correspondence as predicted by updated optical flow estimation. To overcome the influence
of dynamic objects on bundle adjustment, we introduce suppression through the motion mask M̂j

applied to the weighted covariance matrix. Consequently, the weighted confidence associated with
dynamic objects is reduced to zero.

To further improve the accuracy of pose estimation and minimize inconsistencies between the
estimated pose and the reconstructed map, we implement fine camera tracking by leveraging Gaussian
splatting, based on the initial obtained pose. Due to obstructions by dynamic objects and the
inadequate optimization of Gaussian points in the map, the rendered image may exhibit blurring or
black floaters. Therefore, we employ the accumulated opacity, as outlined in 4, to denote the pixel
rendering reliability. The reliable mask Ôi for camera tracking is generated as follows:

Ôi :
{⋂

[µj ,vj ]∈Ii
1(Ô[µj , vj ] > τtrack)⊗ Im×n

}
, (9)

where µj , vj represents the pixel location. When the accumulated opacity at the pixel exceeds a given
threshold τtrack, we consider the Gaussian point associated with that pixel to be well-optimized.
Consequently, using the rendered image at these pixels for pose estimation is deemed reliable. The
overall loss function is finally formulated as the following minimization:

ξ∗i = argmin
ξi

λ1
1

M

M∑
i=1

∥∥∥(Ĉ(G, ξi)− C
)
· M̂i · Ôi

∥∥∥2
2
+ λ2

1

Nd

∑
p∈Nd

∥∥∥(D̂(G, ξi)−D
)
· M̂i · Ôi

∥∥∥2
2
. (10)

Where ξi denotes the camera pose requiring optimization. C and D denote the ground truth color
and depth map, respectively. M represents the number of sampled pixels in the current image. Note
that only pixels with valid depth value Nd are considered in optimization.

This hybrid pose optimization approach effectively ensures the accuracy and quality of the warp
mask, thereby facilitating better performance in the next camera tracking stage. In short, this hybrid
pose optimization strategy enables us to achieve more precise and robust pose estimation whether in
dynamic or static environments.

3.4 SLAM system

Map initialization. For the first frame, we do not conduct the tracking step and the camera pose is
set to the identity matrix. To better initialization, we reduce the gradient-based dynamic radius to half
so that can add more Gaussian points. For pixels located outside the motion mask, we sample and
reproject them to the world coordinates. We initialize the Gaussian point color and center position µi

with the RGB value and reprojection coordinate of the pixel, respectively. The opacity αi is set as 0.1
and the scale vector Si is initialized based on the mean distance of the three nearest neighbor points.
The rotation matrix Ri is initialized as the identity matrix.

Map optimization. To optimize the scene Gaussian representation, we render depth and color in
independent view as seen Eq. 3, comparing with the ground truth map:

Lrgb =
1
M

∑M
i=1

∥∥∥(Ĉ − C
)
· M̂i

∥∥∥2
2
, Ldepth = 1

Nd

∑
p∈Nd

∥∥∥(D̂ −D
)
· M̂i

∥∥∥2
2
, (11)

In contrast to existing methods, we introduce the motion mask M̂i to remove sampled pixels within
the dynamic region effectively. The final Gaussian map optimization is performed by minimizing the
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Figure 2: Qualitative results of the motion mask generation. By fusing the semantic mask and
depth warp mask, the final mask will be more precise.

geometric depth loss and photometric color loss :

Lmapping = λ1Lrgb + λ2Lssim + λ3Ldepth, (12)

where Lssim denotes the structural similarity loss between two images. Moreover, λ1, λ2, λ3 are
weight factors for balance in the optimization process.

Adapative Gaussian point adding strategy. To guarantee the superior scene representation capability
of 3D Gaussian, we also employ dynamic Gaussian point density, which is inspired by Point-
SLAM [31]. The insertion radius is determined based on color gradient, allowing for a denser
allocation of points in areas with high texture while minimizing point addition in regions of low
texture. This method efficiently manages memory consumption by adapting the point density
according to the textural complexity of the scene.

To ensure the points we add are both necessary and effective, we adopt a two-stage adaptive point-add
strategy. For new viewpoints without previous observation, we initially perform uniform sampling
across the entire image to ensure that new observed areas can be covered by Gaussian points.
Moreover, if the accumulated opacity Ô, calculated by Eq. 4, falls below the threshold oth, or the
depth residual between the rendered pixels and the ground truth depth is excessively large, we then
add 3D Gaussian points based on these under-fitting pixels. At last, these new Gaussian points will
be initialized based on the point density.

Map point deleting strategy. Given that the added 3D Gaussian points have not been subjected
to geometric consistency verification and may exhibit unreasonable representation values during
optimization, this could lead to the generation of a low-quality dense map or the introduction of
numerous artifacts in the rendering image. we implement the pruning operation as part of the Gaussian
map optimization. To ensure the points we delete are both reasonable and accurate, we also adopt
a two-stage point delete strategy. For all Gaussian points observed from the current viewpoint, we
delete points based on three criteria: the opacity value, the maximum scale, and the ratio between the
ellipsoid’s major and minor axes, described as follow:

αi < τα or max(S) > τs1 or max(S)
min(S) > τs2. (13)

Moreover, due to potential inaccuracies along the edges of the current motion mask, adding these
points could result in artifacts within the scene map. Thus, we project these points on keyframes in a
small sliding window to recheck whether they can be observed by these keyframes. If the number of
observations of a point is too low, we consider its addition to be insufficiently robust, and therefore, it
will be removed from the current Gaussian map.

4 Experiments

Datasets. Our methodology is evaluated using three publicly available challenging datasets: TUM
RGB-D dataset [38], BONN RGB-D Dynamic dataset [5] and ScanNet [39]. These three datasets
contain both challenging dynamic scenes and real static scenes. This selection facilitates a com-
prehensive assessment of our approach under varied conditions, demonstrating its applicability and
robustness in real-world indoor environments.
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Figure 3: Visual comparison of the rendering image on the TUM and BONN datasets. Our results
are more complete and accurate without the dynamic object floaters.

ball ball2 ps_trk ps_trk2 mv_box2 Avg.

NICE-SLAM[7]
Acc.[cm]↓ X 24.30 43.11 74.92 17.56 39.97
Comp.[cm]↓ X 16.65 117.95 172.20 18.19 81.25
Comp. Ratio[≤ 5cm%]↑ X 29.68 15.89 13.96 32.18 22.93

Co-SLAM[8]
Acc.[cm]↓ 10.61 14.49 26.46 26.00 12.73 18.06
Comp.[cm]↓ 10.65 40.23 124.86 118.35 10.22 60.86
Comp. Ratio[≤ 5cm%]↑ 34.10 3.21 2.05 2.90 39.10 16.27

ESLAM[9]
Acc.[cm]↓ 17.17 26.82 59.18 89.22 12.32 40.94
Comp.[cm]↓ 9.11 13.58 145.78 186.65 10.03 73.03
Comp. Ratio[≤ 5cm%]↑ 47.44 47.94 20.53 17.33 41.41 34.93

DG-SLAM(Ours)
Acc.[cm]↓ 7.00 5.80 9.14 11.78 6.56 8.06
Comp.[cm]↓ 9.80 8.05 17.99 20.10 7.61 15.46
Comp. Ratio[≤ 5cm%]↑ 49.46 52.41 34.62 32.81 49.02 43.67

Table 1: Reconstruction results on several dynamic scene sequences in the BONN dataset.
Instances of tracking failures are denoted by “X". The most superior outcomes within the domain of
RGB-D SLAMs are highlighted in bold for emphasis.

Metrics. For the evaluation of pose estimation, we utilize the Root Mean Square Error (RMSE) and
Standard Deviation (STD) of Absolute Trajectory Error (ATE) [38]. Prior to assessment, the estimated
trajectory is aligned with the ground truth trajectory via Horn’s Procrustes method. [40], ensuring
a coherent basis for evaluation. To evaluate the reconstruction quality of static maps in dynamic
scenes, we employ three metrics(i) Accuracy (cm), (ii) Completion (cm), and (iii) Completion Ratio
(percentage of points within a 5cm threshold), following NICE-SLAM [7]. Since the BONN dataset
provides only the ground truth point cloud, we randomly sampled 200,000 points from the GT point
cloud and the reconstructed mesh surface to calculate these metrics.

Implementation details. We run our DG-SLAM on an RTX 3090 Ti GPU at 2 FPS on BONN
datasets, which takes roughly 9GB of memory. We set the loss weight λ1 = 0.9 , λ2 = 0.2 and
λ3 = 0.1 to train our model. The number of iterations for the tracking and mapping processes
has been set to 20 and 40, respectively. For the Gaussian points deleting, we set τα = 0.005,
τS1 = 0.4 and τS2 = 36 to avoid the generation of abnormal Gaussian points. What’s more, we
utilize Oneformer [41] to generate prior semantic segmentation. For the depth wrap mask, we set the
window size to 4 and the depth threshold to 0.6. We also adopt the keyframe selection strategy from
DROID-VO [19] based on optical flow.
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Method f3/w_r f3/w_x f3/w_s f3/s_x f2/d_p f3/l_o Avg.

ORB-SLAM3 [3] 68.7 28.1 2.0 1.0 1.5 1.0 17.1
ReFusion [5] - 9.9 1.7 4.0 - - 5.2
Co-fusion [42] - 69.6 55.1 2.7 - - 42.5
MID-fusion [43] - 6.8 2.3 6.2 - - 5.1
EM-fusion [44] - 6.6 1.4 3.7 - - 3.9

iMAP*[6] 139.5 111.5 137.3 23.6 119.0 5.8 89.5
NICE-SLAM[7] X 113.8 88.2 7.9 X 6.9 54.2
Vox-Fusion[10] X 146.6 109.9 3.8 X 26.1 71.6
Co-SLAM[8] 52.1 51.8 49.5 6.0 7.6 2.4 28.3
ESLAM[9] 90.4 45.7 93.6 7.6 X 2.5 48.0
Rodyn-SLAM[33] 7.8 8.3 1.7 5.1 5.6 2.8 5.3

SplaTAM[16] 100.4 218.3 115.2 1.7 5.4 5.1 74.4
GS-SLAM[17] 33.5 37.7 8.4 2.7 8.6 1.8 15.5

DROID-VO[19] 10.0 1.7 0.7 1.1 3.7 2.3 3.3
DG-SLAM(Ours) 4.3 1.6 0.6 1.0 3.2 2.3 2.2

Table 2: Camera tracking results on several dynamic scene sequences in the TUM dataset. “∗"
denotes the version reproduced by NICE-SLAM. “X" and “-" denote the tracking failures and absence
of mention, respectively. The metric is Absolute Trajectory Error (ATE) and the unit is [cm].

Method ball ball2 ps_tk ps_tk2 ball_tk mv_box2 Avg.

ORB-SLAM3 [3] 5.8 17.7 70.7 77.9 3.1 3.5 29.8
ReFusion [5] 17.5 25.4 28.9 46.3 30.2 17.9 27.7

iMAP*[6] 14.9 67.0 28.3 52.8 24.8 28.3 36.1
NICE-SLAM[7] X 66.8 54.9 45.3 21.2 31.9 44.1
Vox-Fusion[10] 65.7 82.1 128.6 162.2 43.9 47.5 88.4
Co-SLAM[8] 28.8 20.6 61.0 59.1 38.3 70.0 46.3
ESLAM[9] 22.6 36.2 48.0 51.4 12.4 17.7 31.4
Rodyn-SLAM[33] 7.9 11.5 14.5 13.8 13.3 12.6 12.3

SplaTAM[16] 35.5 36.1 149.7 91.2 12.5 19.0 57.4
GS-SLAM[17] 37.5 26.8 46.8 50.4 31.9 4.8 33.1

DROID-VO[19] 5.4 4.6 21.4 46.0 8.9 5.9 15.4
DG-SLAM(Ours) 3.7 4.1 4.5 6.9 10.0 3.5 5.5

Table 3: Camera tracking results on several dynamic scene sequences in the BONN dataset. “∗"
denotes the version reproduced by NICE-SLAM. “X" denotes the tracking failures. The metric is
ATE and the unit is [cm].

4.1 Evaluation of generating motion mask

We evaluated our method on the balloon and move_no_box2 sequences of the BONN dataset to
show the qualitative results of the generated motion mask. In these two sequences, in addition to the
typical motion of pedestrians, there are movements of atypical objects accompanying the human,
such as balloons and boxes. It might be missed if we rely solely on the semantic prior. As shown in
Fig. 2, our generated methods notably improve the precision of motion mask segmentation, effectively
reducing the inconsistencies along edge regions and detecting the true dynamic objects.

4.2 Evaluation of mapping performance

To more effectively showcase the performance of our system in dynamic environments, we evaluate
the reconstruction results from both qualitative and quantitative perspectives. Given dynamic scene
datasets seldom offer static GT mesh or point cloud, we utilize the BONN dataset for our quantitative
analytical experiments. We compare our DG-SLAM method against current state-of-the-art neural-
based SLAM methods, all of which are available as open-source projects.
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As shown in Tab. 1, our method significantly surpasses contemporary approaches in terms of accuracy,
completion, and completion ratio metrics, achieving state-of-the-art performance. Meanwhile,
the reconstructed static map can be rendered with high fidelity, as shown in Fig. 3. This also
indirectly demonstrates that our methods can generate a more accurate static map compared with
other mainstream SLAM systems.

4.3 Evaluation of tracking performance

To comprehensively assess the tracking performance of our DG-SLAM approach, we conduct
comparative analyses within highly dynamic, slightly dynamic, and static environments. The compar-
ison methods encompass classical SLAM methods such as ORB-SLAM3 [3], ReFusion [5],MID-
fusion [43], and EM-fusion [44], and widely recognized NeRF-based SLAM systems such as
NICE-SLAM [7], iMap [6], Vox-Fusion [10], ESLAM [9], Co-SLAM [8]. We also incorporate a
comparison with the newly proposed dynamic neural RGB-D SLAM system, Rodyn-SLAM [33]. Fur-
thermore, our evaluation extends to the latest advancements in 3D Gaussian-based SLAM, including
SplaTAM [16] and GS-SLAM [17].

Dynamic scenes. As shown in Tab. 2, we report the results on three highly dynamic sequences, two
slightly dynamic sequences, and one static sequence from the TUM RGB-D dataset. Our system
exhibits exceptional tracking performance, attributed to the implementation of the map point deleting
strategy and the powerful coarse-to-fine camera tracking algorithm. Furthermore, the tracking ca-
pabilities of our system have also been rigorously evaluated on the intricate and demanding BONN
RGB-D dataset, with outcomes presented in Tab. 3. In dynamic scenarios characterized by height-
ened complexity and challenge, our method has consistently demonstrated superior performance,
underscoring its effectiveness and reliability in real-world navigation applications. Meanwhile, we
also showcased the number of iterations of the tracking and mapping process, taking TUM as an
example, as shown in Tab. 5. Compared to other methods, our method achieved superior results while
maintaining competitive iterations and efficiency.

Static scenes. To better illustrate the robustness of our system, we also evaluate our methods with
existing SLAM on common real-world static sequences from ScanNet [39]. As shown in Tab. 4,
our DG-SLAM still achieves competitive performance within static scenes with fewer tracking and
mapping iterations, despite our method being designed for dynamic scenes. Notably, the motion
mask will become irrelevant in static scenes. Thus, it can sufficiently demonstrate the effectiveness
of our proposed hybrid camera tracking strategy and adaptive Gaussian point management strategy.

Method 00 59 106 169 181 207 Avg.

NICE-SLAM [7] 12.0 14.0 7.9 10.9 13.4 6.2 10.7
Co-SLAM [8] 7.1 11.1 9.4 5.9 11.8 7.1 8.8
Point-SLAM [31] 10.2 7.8 8.7 22.2 14.8 9.5 12.2
SplaTAM [16] 12.8 10.1 17.7 12.1 11.1 7.5 11.9
GS-SLAM [17] 13.6 7.6 8.1 13.7 34.6 12.5 15.1
DG-SLAM(Ours) 7.9 11.5 8.0 8.3 7.3 8.2 8.6

Table 4: Camera tracking results on ScanNet. The
metric is ATE and the unit is [cm].

Iterations tracking mapping

NICE-SLAM [7] 200 60
Co-SLAM [8] 20 30
ESLAM [9] 200 60
Point-SLAM [31] 200 150
SplaTAM [16] 200 30
GS-SLAM [17] 100 81
DG-SLAM(Ours) 20 40

Table 5: Running iterations on TUM.

4.4 Ablation study

To evaluate the efficacy of the proposed algorithm in our system, we conducted ablation studies
across seven representative sequences from the BONN dataset. Given that the semantic priors within
the TUM dataset have covered major motion categories (humans) while motion categories in BONN
contained undefined dynamic objects such as balloons and boxes, thus we opted to perform ablation
studies on the BONN dataset. We calculated the average ATE and STD metrics to illustrate the impact
of various components on the overall system performance. As the results presented in Tab. 6, the
findings affirm the effectiveness of all proposed methods in improving camera tracking capabilities.
Specifically, the strategies for adding and pruning points are equally crucial, significantly impacting
the quality of the Gaussian map reconstruction and, in turn, affecting the tracking performance.
The depth warp operation effectively removes floaters from multiple viewpoints, thereby noticeably
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enhancing the quality of the rendered images. One of the main contributions comes from the hybrid
camera tracking strategy, which indirectly underscores the importance of eliminating inconsistencies
between pose estimation and map reconstruction.

4.5 Time consumption analysis

As shown in Tab. 7, we report time consumption (per frame) of the tracking and mapping without
computing semantic segmentation. These results were achieved through an identical experimental
setup that involved conducting 20 iterations for tracking and 40 iterations for mapping, all processed
on an RTX 3090Ti GPU. Benefiting from the rapid execution speed of Droid-VO and fast rendering
of 3D Gaussian Splatting, our method exhibits a leading edge in terms of time consumption during
the tracking process. Although our approach does not match the mapping speed of Co-SLAM, it
achieves high-quality mapping and high-fidelity rendering with a competitive mapping running time.
We also evaluate the inference time of our used semantic segmentation network, which required
163ms for every frame. It should be noted that our approach does not focus on the specific semantic
segmentation network used, but rather on the fusion method itself.

ATE[cm]↓ STD[cm]↓

w/o Add 6.63 3.08
w/o Prune 6.89 3.16
w/o Dep. Warp 6.40 3.22
w/o Seg 15.27 7.47
w/o Fine Tracking 7.36 3.62
DG-SLAM(Ours) 5.51 2.79

Table 6: Ablation study on BONN dataset.

Tracking Mapping Avg. Running
[ms]↓ [ms]↓ [ms] ↓

NICE-SLAM [7] 3186.2 1705.1 4892.3
ESLAM [9] 2045.9 1641.4 3688.5
Point-SLAM [31] 2279.5 1544.4 3823.9
Co-SLAM [8] 101.4 140.1 241.6
DG-SLAM(Ours) 89.2 549.3 645.9

Table 7: Run-time comparison on TUM f3/w_s.

5 Conclusion

In this paper, we have presented DG-SLAM, a robust dynamic Gaussian splatting SLAM with hybrid
pose optimization under dynamic environments. Via motion mask filter strategy and coarse-to-fine
camera tracking algorithm, our system significantly advances the accuracy and robustness of pose
estimation within dynamic scenes. The proposed adaptive 3D Gaussians adding and pruning strategy
effectively improves the quality of reconstructed maps and rendering images. We demonstrate its
effectiveness in achieving state-of-the-art results in camera pose estimation, scene reconstruction,
and novel-view synthesis in dynamic environments. While the tracking and reconstruction of large-
scale scenes is currently the biggest limitation of our system, we believe it will be addressed by a
more flexible loop-closure optimization algorithm in future work. Moreover, the accuracy of pose
estimation of our system is still influenced by the segmentation precision of the semantic prior.
Therefore, efficiently perceiving moving objects within the dynamic scenes remains an unresolved
issue that warrants further exploration.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the contribution and scope of the paper in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of the work in the conclusion part.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the theoretical assumption and proof of this paper in the
method part.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the information needed to reproduce the main experi-
mental results of the paper in the experiment part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have not released the code of this paper in the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details of this paper in the experiment
part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported appropriate information about the statistical significance of
the experiments in the experiment part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources of this
method in the experiment part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conducted research under the NeurIPS Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of this paper in the introduction and
method parts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has not released data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets used in the paper are properly licensed. Our paper cites the
original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets, including data and models. We also did
not publish or submit the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research topic of this paper is robotic SLAM, not involving crowdsourcing
nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research topic of this paper is robotic SLAM, not involving crowdsourcing
nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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