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Abstract

Large Vision-Language Models (LVLMs) have demonstrated remarkable capabili-
ties across a wide range of multimodal understanding tasks. Nevertheless, these
models are susceptible to adversarial examples. In real-world applications, existing
LVLM attackers generally rely on the detailed prior knowledge of the model to
generate effective perturbations. Moreover, these attacks are task-specific, leading
to significant costs for designing perturbation. Motivated by the research gap and
practical demands, in this paper, we make the first attempt to build a universal
attacker against real-world LVLMs, focusing on two critical aspects: (i) restricting
access to only the LVLM inputs and outputs. (ii) devising a universal adversarial
patch, which is task-agnostic and can deceive any LVLM-driven task when applied
to various inputs. Specifically, we start by initializing the location and the pattern
of the adversarial patch through random sampling, guided by the semantic distance
between their output and the target label. Subsequently, we maintain a consistent
patch location while refining the pattern to enhance semantic resemblance to the
target. In particular, our approach incorporates a diverse set of LVLM task inputs
as query samples to approximate the patch gradient, capitalizing on the importance
of distinct inputs. In this way, the optimized patch is universally adversarial against
different tasks and prompts, leveraging solely gradient estimates queried from
the model. Extensive experiments are conducted to verify the strong universal
adversarial capabilities of our proposed attack with prevalent LVLMs including
LLaVA, MiniGPT-4, Flamingo, and BLIP-2, spanning a spectrum of tasks, all
achieved without delving into the details of the model structures.

1 Introduction

Recently, Large Vision-Language Models (LVLMs) have achieved significant success and demon-
strated promising capabilities in various multimodal downstream tasks, such as text-to-image gener-
ation [1–6], visual question-answering [7–10], and etc. Benefiting from the strong comprehension
of large language models (LLMs) [11–13], LVLMs [14–16] on top of LLMs show superior perfor-
mances in solving complex vision-language tasks by utilizing appropriate human-instructed prompts.
However, with the exponential expansion of downstream applications in the real world, LVLMs can
be easily fooled by adversarial samples, posing crucial safety issues [17–23].

Existing LVLMs attackers [24–33] generally craft and add perturbations/triggers to benign image/text
inputs. By adversarially manipulating LVLMs to concentrate on specific perturbations or triggers,
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attackers can cause the models to generate erroneous or jailbreak results, thus presenting a risk to
security. Specifically, most of these attackers [25, 26, 28, 30–32] are simply deployed in the white-
box setting, where they have the full knowledge of LVLMs models including network structure and
parameter weights to back-propagate gradients for optimizing perturbations/triggers. To alleviate this
reliance on model details to a certain extent, some gray-box attackers [24, 27] solely require access
to the visual encoder of LVLMs and directly generate the perturbed visual representations to mislead
the latter reasoning process. There are also a few works [33, 29] claim that they have successfully
achieved more challenging black-box attacks, however, they still need the prior knowledge of
additional large models like CLIP [34–36] to serve as surrogate models, or even rely on the model
output scores/logits to generate perturbation gradients.
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Figure 1: Our attacker has no access to the model
details of the LVLM. Meanwhile, we design a universal
noise that is adversarial to multiple LVLM-driven tasks.

Although the above attackers demonstrate
significant performance against LVLMs, as
shown in Figure 1, we argue that they fail
to consider the essential characteristics of
attack practicality and universality among
various realistic downstream multimodal
tasks: (1) Existing white-, gray- and black-
box methods severely rely on the prior
model knowledge, making the attacks less
practical since most real-world LVLM ap-
plications will not disclose their model de-
tails with users. Under such circumstances,
the attackers can only query LVLMs to ob-
tain corresponding output results, making
it challenging to steer the adversarial per-
turbations in the correct optimization direc-
tion during the gradient estimation process.
(2) LVLMs demonstrate impressive versa-
tility in addressing diverse vision-language
tasks through varying prompts. However,
the current attackers targeting LVLMs can
only produce adversarial examples to deceive a particular task within a singular process. Consequently,
to compromise different downstream tasks, they must generate distinct adversarial perturbations,
which incur significant time and resource expenditure. Therefore, it is efficient and effective to
design a universal perturbation for all samples across different tasks. Upon applying this universal
perturbation to any input sample, regardless of the task, it has the capability to mislead the LVLM
into predicting a target label specified by the attacker.

To this end, in this paper, we make the first attempt to explore task-agnostic adversarial perturbations
and build a universal attacker against LVLMs in a challenging yet realistic setting, where the attackers
have no prior LVLMs’ knowledge. To make the perturbation universally adversarial to multiple
LVLM-driven tasks, we design a special patch-wise perturbation pattern by first initializing it on a
fixed location of various image inputs and then optimizing it against images of different multimodal
tasks. Since we can solely query the LVLM model, we propose a novel importance-aware gradient
approximation strategy to adaptively estimate and adjust the weights on gradient directions for
optimizing the patch with different additive noises. Hence, gradient directions from sampled noise
that can increase the semantic distance between their output and the target label are enlarged, while
other directions are reduced. Furthermore, we design a judge function to assess the LVLMs’ output for
achieving the targeted attack. In this manner, the proposed attack can generate a universal adversarial
patch to mislead the understanding process of the multi-task LVLMs by solely querying the model.

Our contributions can be summarized as follows: (1) To the best of our knowledge, we are the first
to investigate the vulnerability of real-world LVLMs in a practical but challenging setting, where
the attackers can only access the input and output of the LVLM. (2) To further break through the
bottleneck of existing task-specific LVLM attack design, we devise a universal adversarial patch
(task-agnostic) that can be pasted and then fool any inputs for any LVLM downstream task. (3) A
novel importance-aware gradient approximation strategy is also introduced to optimize the adversarial
patch by solely querying the LVLM model. (4) Extensive experiments are conducted to verify the
effectiveness of our attack approach on various LVLMs and tasks.
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2 Related Work

Large vision-language models. The breakthrough of Large Language Models (LLMs) in language-
oriented tasks [11, 37–43] and the emergence of GPT-4 [44, 45] motivate researchers to harness the
powerful capabilities of LLMs to assist in various tasks across multimodal scenarios, and further
lead to the new realm of Large Vision-Language Models (LVLMs) [46]. There have been different
strategies and models to bridge the gap between text and other modalities. Some works [9, 8] leverage
learnable queries to extract visual information and generate language using LLMs conditioned on the
visual features. Models including MiniGPT-4 [16], LLaVA [15] and PandaGPT [47] learn simple
projection layers to align the visual features from visual encoders with text embeddings for LLMs.
Also, parameter-efficient fine-tuning is adopted by introducing lightweight trainable adapters into
models [48–55]. Several benchmarks [56, 57] have verified that LVLMs show satisfying performance
on visual perception and comprehension.

Adversarial robustness of LVLMs. Despite achieving impressive performance, LVLMs still face
issues of adversarial robustness due to their architecture based on deep neural networks [58–64].
Multiple primary attack attempts have been conducted to study the robustness of LVLMs from
different aspects. Inspired by the adversarial vulnerability observed in vision tasks, most methods
[25, 26, 28, 30–32, 65–74] evaluates the adversarial robustness of LVLMs under white-box settings,
where they have the full knowledge of LVLMs models including network structure and weights. To
generate the adversarial examples, they simply add and optimize imperceptible perturbations/triggers
to benign image/text inputs via back-propagation. To reduce the reliance on model knowledge,
some gray-box attackers [24, 27] solely require access to the visual encoder of LVLMs and directly
generate the perturbed visual representations to fool the latter process. There are also a few works
[33, 29] conduct transfer-based attacks. These exploratory works demonstrate that LVLMs still face
stability and security issues under adversarial perturbations. However, existing attack methods only
consider popular open-source models, but do not study real-world LVLMs applications (i.e., users
can not access to any details of the model and can only query the model to obtain corresponding
output). Moreover, they are implemented as task-specific settings, and they have to generate different
adversarial perturbations for each downstream task of LVLMs, costing much time and resources.
Therefore, both the attack practicality in real-world setting and the attack universality across multiple
tasks/prompts make LVLMs more challenging to attack.

3 Method

In this section, we will first introduce the fundamental preliminary, and then describe the baseline
approach for our universal attack and illustrate how we construct the universal adversarial patch by
solely querying the LVLM model, respectively. The overall pipeline is illustrated in Figure 2.

3.1 Preliminary

We define fθ(v; t) 7→ y as a pre-trained large vision-language model (LVLM), parameterized by θ.
Here, v denotes the image modality input, t represents the textual modality input, and y signifies
the textual output of the model. Specifically, for the general LVLM downstream tasks, v is a sample
from the image set V, while t is one of the textual prompt instances from a task prompts set T, such
as Visual Question Answering (VQA), Image Captioning, and Image Classification, etc.

Threat model. In this paper, we explore the scenario of attacking real-world LVLM models, where
we assume that the attacker has no knowledge of the victim model, including its parameters, training
procedure, original training data, etc. In particular, distinct from the approach utilized in white-
/gray-box attacks, we cannot access the model’s gradient information to train perturbations through
back-propagation. Moreover, unlike in black-box attacks, we are precluded from acquiring confidence
scores or logits derived from the model’s outputs. The attacker is limited to receiving only the text
output returned by the LVLM following a query as feedback. This setting aligns more closely with
the real-world practice of utilizing APIs to access LVLMs.

Attacker’s goal. The objective of the attacker is to devise a universal adversarial patch, represented
as ∆, that, by partially covering the original image v, generates an adversarial example v′. This
adversarial example, upon application to any input sample across diverse downstream tasks, is
designed to compel the LVLM to output a target label predetermined by the attacker. Thus, such a
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Figure 2: Overview of the proposed universal adversarial attack against real-world LVLM models.
To make the perturbation universally adversarial to multiple LVLM downstream tasks, we design
a special patch-wise perturbation pattern by first initializing it on a fixed location of various image
inputs and then optimizing it against images of different tasks. To update the adversarial patch by
solely querying the LVLM, we introduce a language-based judge model to evaluate the LVLM output
and design a novel importance-aware gradient approximation strategy to adaptively estimate gradients
and adjust weights on gradient directions for optimizing the perturbations on input samples.

patch needs to exhibit persistence and robustness when deployed on unseen inputs, and to induce
adversarial semantic alterations across different tasks for the same image, rendering the patch cross-
task cross-image applicable. In this paper, we focus on the challenging targeted attack, which implies
that the LVLM will produce an attacker-chosen textual output y′ given the adversarial image v′

and benign prompt t, formulated as fθ(v′, t) 7→ y′. To be specific, we denote the textual prompts
corresponding to different tasks for the input image v as tk ∈ Tk, where k distinguishes the tasks.
Our attack goal can thus be expressed as:

  f_{\theta }(\bm {v}',\bm {t}_k)\mapsto \bm {y}' \quad s.t. \quad \bm {v}'=(1-\bm {m})\odot \bm {v}+\bm {m}\odot \bm {\Delta }. \label {eq: attack goal} 
          (1)

Here, ⊙ denotes the Hadamard product. m denotes the patch mask being a 0-1 matrix matching the
shape of v. Specifically, the number and placement of 1 in m indicate the actual size of the noise and
the relative position of the patch ∆ on v.

3.2 Baseline Approach for Universal Adversarial Attack

Why do we need universal adversarial perturbation? Most existing attacks against LVLMs
generally optimize each adversarial sample based on a specific given origin input. In other words,
their optimized noise added to different adversarial samples relative to the origin sample varies.
Furthermore, the adversarial examples they optimize for are also task-specific, meaning they cannot
consistently have an adversarial impact on all downstream tasks. Therefore, we attempt to find that if
a universal perturbation (task-agnostic) could be found, adding it to different benign images would
consistently produce effective adversarial samples and impact all downstream tasks. This approach
would significantly reduce the time and resources while enhancing the robustness and generalizability
of real-world LVLM attacks. In this work, we define such perturbation as a universal adversarial
patch ∆, which can be overlaid at a fixed position on a clean image v. When combined with prompts
tk from different tasks, it consistently prompts the victim model fθ to output targeted text y′.

Universal adversarial objective with targeted label measurement. Unlike attacks on general
classification tasks, the outputs of LVLMs under different task prompts are not simply binary (true
or false), but rather entail semantically rich natural language descriptions. Therefore, to guide the
LVLMs outputting attackers’ desired target labels, we need to design a strategy to assess whether the
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output of the victim LVLM model after being attacked aligns with the attacker’s preset conditions, or
to measure the distance between y and y′. Inspired by the previous work [33], we construct a judge
function J based on a simple and lightweight pre-trained text encoder gϕ, which serves a role akin
to the regularization loss function. The encoder gϕ, parameterized by ϕ, transforms natural language
texts y and y′ into textual embeddings. Consequently, we can compute the cosine distance between
y and y′ in the high-dimensional semantic space mapped by gϕ, denoted as:

  \bm {\mathcal {J}}(\bm {y},\bm {y}')=1 - \cos (g_{\phi }(\bm {y}),g_{\phi }(\bm {y}')). \label {eq: judge model}    
 (2)

It is important to note that our attacker has no access to the parameters ϕ of gϕ, but only the embedding
information output by the encoder. Therefore, we can define the attacker’s adversarial objective for
one adversarial example across K downstream LVLM tasks as:

  \min \limits _{\bm \Delta }\frac {1}{K}\sum \limits _{k=1}^{K}\bm {\mathcal {J}}(\bm {y}_k,\bm {y}'). 










 (3)

Finally, by combining Equation 1 and 2, we obtain the universal adversarial objective for all tasks:

  \label {eq:all} \min \limits _{\bm \Delta }\frac {1}{|\mathbb {V}|K}\sum \limits _{i=1}^{|\mathbb {V}|}\sum \limits _{k=1}^{K}{1-\cos (g_{\phi }(f_{\theta }(\bm {v}'_i,\bm {t}_k)), g_{\phi }(\bm {y}'))}\quad s.t. \quad \bm {v'}_i=(1-\bm {m})\odot \bm {v}_i+\bm {m}\odot \bm {\Delta }. 














 

 
     (4)

3.3 Crafting and Optimizing Universal Adversarial Patch

Since we can not obtain the backpropagated gradient of Equation 4 to optimize the adversarial patch
∆ by solely querying the model, we introduce a novel gradient approximation strategy on LVLM
models to generate the universal adversarial patch in the following three steps.

Initializing patch location and noise pattern. Firstly, we need to determine a fixed location
of the universal adversarial patch on the visual input, which is crucial because noise in different
locations significantly impacts the vision encoder’s attention [75, 76]. However, in our challenging
practical attack setting, we cannot explicitly explore the areas of interest to the LVLM model using
gradient-based tools like Grad-Cam [77]. Therefore, we have to spend a portion of our query budget
to randomly decide the patch’s location and determine the best location of the patch based on the
model’s feedback. Specifically, denoting the size of the image input v as Sv ∈ Z+ and the size of
the adversarial patch as Sp ∈ Z+, we randomly select the x-/y-axis location, i.e. posx/posy, of the
patch relative to the image v from {0, 1, . . . , Sv − Sp}, obtaining the value of each element mij in
the mask matrix m as follows:

  m_{ij}=\begin {cases}1, & \text {if }\quad pos_{\text {y}}\le i \le pos_{\text {y}}+S_p \text \quad \text {and} \quad pos_{\text {x}}\le j \le pos_{\text {x}}+S_p \\ 0, & \text {otherwise}\end {cases}. 


               


 (5)

Then, for each random location, we combine it with a random noise pattern, allowing us to find the
optimal combination of location and pattern. Generally, we randomly sample noise from a uniform
distribution U(−ε, ε) to construct the initial patch ∆init, ensuring the constraint ∥∆init∥∞ ≤ ε. Next,
we calculate its distance from the target text y′ using Equation 2 and select the combination with the
smallest distance as the initial state for the subsequent iterative optimization of the noise pattern.

Importance-aware gradient approximation. Based on the initialized adversarial patch, we then
investigate how to estimate its gradient direction for perturbing it into a targeted-chosen label by solely
querying the LVLM model. The Monte Carlo estimation [78] offers a general strategy to approximate
the gradient’s direction on traditional single-task models. It employs a series of random slight noises
on the previously obtained adversarial perturbation and scrutinizes whether these noises induce
alterations in the prediction, the average of these noise directions serves as the ultimate direction for
further mutating the perturbation. However, such a design is not efficient for the complicated LVLMs
as there is a larger yet complex search space in LVLM models and not all gradient directions may
point towards optimal direction and some of them may have opposite directions. Therefore, most
gradient directions are canceled out with each other and the attack result can hardly be improved
(verified by our experimental variant “w/o importance"). To address this issue, we propose to assign
and adjust the optimization weights for different noise samples based on the importance-aware degree
to which these sampled noises lead to the attacker-chosen output of the LVLM model.

Specifically, we employ a normalized uniform distribution u · exp(u − 1),u ∼ U(−1, 1) to add
slight noise δ on the patch ∆ for perturbation. We utilize T times iteration to optimize this patch
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with these noises iteratively. In particular, at the t-th step, we initially establish an indicator function
σt to assess whether the noise δt is capable of influencing the LVLM’s prediction:

  \sigma _t=\text {sgn}(\frac {1}{K}\sum \limits _{k=1}^{K}\cos (g_{\phi }(f_{\theta }(\bm {v}'_i,\bm {t}_k)), g_{\phi }(\bm {y}'))-\tau )\quad s.t. \quad \bm {v}' = (1-\bm {m})\odot \bm {v} + \bm {m}\odot (\bm {\Delta } + \bm {\delta }_t). \label {eq: indicator function}  









 

       (6)

Here, the sgn(·) function denotes the sign function, while τ serves as a threshold to gauge the impact
of δt. Denoting avg(σt) − avg(σt−1) as ∆σt, we lift the importance of noise directions [79] that
may lead to attacker-chosen output while diminishing the influence of others by:

  w_t = \left \{\begin {array}{ll} \exp (\Delta \sigma _t)/\gamma , & \text {if}\quad \Delta \sigma _t > 0\quad \text {and} \quad \text {avg}(\sigma _t) = 1 \\ \exp (\Delta \sigma _t), & \text {if}\quad \Delta \sigma _t > 0\quad \text {and}\quad \text {avg}(\sigma _t) \neq 1 \\ \ln (\Delta \sigma _t+3), & \text {otherwise} \end {array}\right ., \label {eq: importance weight} 


       
       
  

 (7)

where wt is the importance-aware weight. The directional improvement ∆σt signifies the disparity
between the current decision value and the prior, which can be as small as −2(= −1 − 1). The
parameter γ serves to diminish the significance when the direction from attacker-chosen output
samples threatens to overshadow input from other samples. The selection of value 3 aims to prevent
ln(∆σt + 3) from yielding a value smaller than 0.

Updating patch by querying the LVLM. At last, based on the above importance weight, the gradient
direction for each sample can be estimated by the weighted average of additive noises. To ascertain
the estimated gradient vector ∇δt

, we employ the Monte Carlo method as:

  \nabla _{\bm {\delta }_t} = \left \{\begin {array}{ll} \text {avg}(\sigma _t) \cdot \text {avg}(\bm {\delta }_t), & \text {if} \quad \text {avg}(\sigma _t) = 1 \quad \text {or} \quad \text {avg}(\sigma _t) = -1 \\ \text {avg}((\sigma _t - \text {avg}(\sigma _t))\cdot \bm {\delta }_t), & \text {otherwise} \end {array}\right ., 


         
       (8)

where the first condition handles the case where all the noises lead to attacker-chosen label or not.
If certain perturbations alone precipitate the target prediction, we deduct the mean decision value
from each individual decision and multiply the results by their corresponding noises under the second
condition. This method ensures that the weights assigned to various noises remain reasonably aligned
with the average, reflecting the quality of the present perturbation. Subsequently, we update the patch
pattern ∆ with the noise δt along the direction of ∇δt

, employing weights that are aware of their
importance as follows:

  \bm {\Delta } = \bm {\Delta } + w_t \frac {\nabla _{\bm {\delta }_t}}{\|\nabla _{\bm {\delta }_t}\|_2}.  





 (9)

By iteratively optimizing the perturbations on the patch pattern over T iterations using the aforemen-
tioned weighted gradient estimation, we can obtain the universal adversarial patch on LVLMs.

4 Experiments

4.1 Implementation details

LVLMs & Datasets. In this paper, following existing LVLM attack methods [24–28, 31–33], we
conduct experiments on the same open-source LVLM models including LLaVA-1.5 [15], MiniGPT-4
[16], Flamingo [9], and BLIP-2 [8] for fair comparison. To accurately evaluate the attack methodolo-
gies, we conduct experiments on three sources: MS-COCO [80], VQAv2 [81], and DALLE-3 [2]. We
also follow the existing works to construct these three datasets. Specifically, we employ images from
the test sets of the MS-COCO and VQAv2 to construct two multimodal datasets. We also use captions
from the MS-COCO validation set as prompts to generate corresponding images with DALLE-3 to
form another dataset. For the text input data, we follow the prompts used in previous work [31] to
build our text dataset, with detailed data presented in the appendix.

Basic setups. We employ Sentence-BERT [82] as the text encoder (judge model) to measure the
LVLM’s textual output with the adversarial target. The discussion regarding different text encoders
is presented in Section 4.3. We select three widely used image-to-text tasks to evaluate our attack
method, i.e., Image Classification, Image Captioning, and VQA. Discussions on various patch sizes
are conducted in Section 4.3, with a size of 64 chosen as the final decision. During the gradient
approximation, we allow 70k queries number in total. The general target label in our almost all
experiments is set to text “Unknown”; Various other target labels are also experimented with in
Section 4.2. In Equation 6, we use τ = 0.55 to determine the direction of gradient predictions for
each slight noise δ. In Equation 7, we select γ = 5. We impose ε = 16/255 as the constraint for
∆init. All experiments are conducted on a single NVIDIA H100 Tensor Core GPU.
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Table 1: Attack performance on different LVLM models across different datasets. We report the
semantic similarity scores between the LVLM’s output and the attackers’ chosen label “Unknown".
“w/o importance” denotes our full model without using importance weights in gradient approximation.

LVLM Model Attack Method ImageClassification ImageCaption VQA Overall

Dataset: MS-COCO

LLaVA
Clean image 0.385 0.479 0.436 0.433

w/o importance 0.703 0.679 0.711 0.698
Full attack 0.850 0.812 0.828 0.830

MiniGPT-4
Clean image 0.438 0.451 0.463 0.450

w/o importance 0.713 0.670 0.719 0.701
Full attack 0.847 0.826 0.851 0.841

Flamingo
Clean image 0.475 0.468 0.492 0.478

w/o importance 0.705 0.693 0.727 0.709
Full attack 0.862 0.803 0.839 0.835

BLIP-2
Clean image 0.409 0.436 0.447 0.431

w/o importance 0.724 0.682 0.716 0.707
Full attack 0.810 0.787 0.845 0.814

Dataset: DALLE-3

LLaVA
Clean image 0.407 0.453 0.517 0.459

w/o importance 0.644 0.692 0.751 0.696
Full attack 0.824 0.806 0.879 0.837

MiniGPT-4
Clean image 0.396 0.441 0.497 0.445

w/o importance 0.682 0.738 0.714 0.711
Full attack 0.810 0.843 0.862 0.838

Flamingo
Clean image 0.431 0.464 0.485 0.460

w/o importance 0.719 0.746 0.742 0.735
Full attack 0.823 0.871 0.838 0.844

BLIP-2
Clean image 0.368 0.425 0.466 0.419

w/o importance 0.673 0.759 0.733 0.721
Full attack 0.795 0.837 0.840 0.824

Dataset: VQAv2

LLaVA
Clean image 0.458 0.446 0.482 0.462

w/o importance 0.730 0.678 0.714 0.707
Full attack 0.826 0.792 0.869 0.829

MiniGPT-4
Clean image 0.397 0.448 0.505 0.450

w/o importance 0.699 0.753 0.774 0.742
Full attack 0.837 0.878 0.881 0.865

Flamingo
Clean image 0.423 0.467 0.486 0.459

w/o importance 0.705 0.734 0.783 0.741
Full attack 0.832 0.840 0.877 0.850

BLIP-2
Clean image 0.414 0.459 0.470 0.448

w/o importance 0.688 0.725 0.752 0.722
Full attack 0.803 0.831 0.875 0.836

4.2 Main Results

Main performances. We conduct a comprehensive evaluation on four LVLM models across three
datasets in Table 1. The performance is evaluated by the semantic similarity between the LVLM’s
output and the target text. Here, we select the target text “Unknown” to avoid the inclusion of
high-frequency responses. All the performance is evaluated on a single universal patch pasted on the
whole test set. In addition to reporting the similarity scores on clean images and our attacked ones,
we also report our attack variant “w/o importance", which removes the importance-aware weights
during the gradient approximation and equally treats all gradient directions. From this table, we can
find that our attack consistently achieves the best performance on all models and datasets.
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Table 2: Attack performance on LLaVA model and DALLE-3 dataset with different target labels.
Adversarial Target Attack Method ImageClassification ImageCaption VQA Overall

“Unknown" w/o importance 0.644 0.692 0.751 0.696
Full attack 0.824 0.806 0.879 0.837

“I cannot answer" w/o importance 0.627 0.688 0.723 0.679
Full attack 0.816 0.835 0.862 0.844

“I am sorry" w/o importance 0.648 0.674 0.735 0.686
Full attack 0.845 0.813 0.868 0.842

“I hate people" w/o importance 0.593 0.639 0.664 0.632
Full attack 0.682 0.710 0.756 0.716

Table 3: Comparison with existing LVLM attack: MF-Attack [33]. For a fair comparison, experiments
are conducted on the same ImageNet-1k dataset [83] in the VQA task.

Method Attack Type LLaVA BLIP-2 MiniGPT-4 Average

MF-Attack [33] transfer-based black-box attack 0.590 0.681 0.668 0.646
Ours universal and practical attack 0.734 0.756 0.692 0.727

Table 4: Comparison with existing LVLM attack: CroPA [31]. For a fair comparison, we follow
CroPA to evaluate the same ASR metric on the same OpenFlamingo model and MS-COCO dataset.

Method Attack Type ImageClassification ImageCaption VQA Overall

CroPA [31] white-box attack 0.70 0.34 0.92 0.65
Ours universal and practical attack 0.73 0.51 0.84 0.69

Figure 3: Analysis on the attack “Universality" on LLaVa model and DALLE-3 dataset.

To demonstrate that the effectiveness of the proposed attack is not constrained to the specific case of
the target text “Unknown”, we extend our evaluation to various other target texts. The experiment
includes a selection of text with varied length and usage frequency as shown in Table 2. We can
observe that our attack performs the best overall and in each individual task under different target
text, though the output similarity differs for different targets. The sentence “I cannot answer" is a
reasonable generation result of LVLMs to indicate the uncertainty of the response, which performs
better than the less commonly used “I hate people".

Compare to other LVLM attacks. Since existing LVLM attack methods are deployed in different
settings, for fair comparison, we separately compare our method with each of them in the same
setting. As in Table 3, according to the reported performance on MF-Attack [33] in its paper, we
compare the same output similarity performance on the same LLaVA, BLIP-2, MiniGPT-4 models in
VQA task. We can find that our attack is more effective as we directly approximate the gradients in
the victim black-box model. As in Table 4, according to the reported performance on CroPA [31] in
its paper, we re-judge our output with the same ASR metric and compare performance on the same
OpenFlamingo [84] model on MS-COCO dataset. CroPA can only attack white-box cross-prompt of
the same task, instead, our attack can attack black-box cross-task inputs with better results.

Analysis on universality. The main difference between our attack and existing LVLM attacks is that
we only need to generate a single universal adversarial patch for all inputs while they need to generate
different adversarial perturbations for different input samples. To investigate our universality, we
implement two variants for comparison: “w/o. universal baseline" removes our universality design
and follows previous works individually to optimize perturbation for each sample; “w/. universal
baseline" denotes our approach. We evaluate the averaged attack performance of their generated
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Clean Input “Unknown” “I cannot answer” “I am sorry” “I hate people”

Figure 4: Visualization results on the targeted universal adversarial attack.

(a) Ablation on Judge Model (b) Ablation on ε

Figure 5: Ablation on different judge models and ε, tested on LLaVa model and DALLE-3 dataset.

Table 5: Ablation study on the patch size on LLaVA model and DALLE-3 dataset.

Patch Size ImageClassification ImageCaption VQA Overall

Sp = 32 0.734 0.720 0.778 0.744
Sp = 48 0.793 0.775 0.842 0.803
Sp = 64 0.824 0.806 0.879 0.837

single adversarial patch pasted on all images of the whole test set during the attack optimization. As
shown in Figure 3, the universality on the single perturbation of “w/o. universal baseline" is very
poor, demonstrating the effectiveness of our universality design. More analyses are in Appendix B.4.

Visualization results. We provide the visualizations of the targeted universal attack in Figure 4. Each
adversarial patch can achieve a universal targeted attack. More visualizations are in Appendix B.8.

4.3 Ablation

We conduct ablation studies on the LLaVA model and DALLE-3 to investigate our attack in depth.

Ablation on different judge model. As shown in Figure 5(a), we conduct ablations on different
text encoders (judge model) to measure and constrain the semantics of LVLM’s output. We find that
Sentence-BERT achieves the best performance.

Ablation on patch size Sp. As shown in Table 5, we conduct the ablations on different patch sizes. It
shows that size 64× 64 is enough to achieve good attack performance.

Ablation on different ε. Figure 5(b) computes the distances of different ε according to Equation 2,
where ε = 16/255 is adequate to attain satisfactory results.

9

52135 https://doi.org/10.52202/079017-1652



Table 6: Attack performance on LLaVA model and DALLE-3 dataset against RandomRotation.

Defense Method Attack Method ImageClassification ImageCaption VQA Overall

No Defense w/o importance 0.644 0.692 0.751 0.696
Full attack 0.824 0.806 0.879 0.837

RandomRotation w/o importance 0.602 0.663 0.718 0.661
Full attack 0.786 0.760 0.814 0.787

Table 7: Attack performance against black-box defense strategies.

ASR against Defense Defense 1 [85] Defense 2 [88] Defense 3 [86] Defense 4 [87]

Our attack 92% 86% 79% 75%

Table 8: The complexity of a single attack process. The experiment is conducted on a single NVIDIA
H100 SXM (80GB) GPU.

Process Stage Average GPU Hours Average GPU Memory Usage

Train

Patch Initialization 1.3h 33.4GB
Gradient Approximation - -

Iterative Update 3.5h 68.1GB
Total 4.9h 57.5GB

Evaluation Total 0.4h 26.8GB

4.4 Robustness to Defense Strategy

We further investigate the robustness of our proposed attack method. As shown in Table 6, we first
report the attack performance on the LLaVA model and DALLE-3 dataset against the traditional
RandomRotation defense strategy. It validates the robustness of our proposed attack. As shown
in Table 7, we also evaluate the robustness of our adversarial patch with four popular defense
methods. Specifically, PatchCleanser [85] is a state-of-the-art certifiable defense against adversarial
patches. It uses double masking to certify the prediction. [86, 87] are query-based defenses, which
are specifically designed for detecting malicious queries by black-box attacks. [88] is the general
black-box defense method. Overall, it indicates that our attack is robust to the potential defenses.

4.5 Complexity Analysis

For a single attack process, the complexity was recorded in Table 8. The attack’s query budget
was set to 70,000, with the dataset being DALLE-3 and the victim LVLM as LLaVA, with other
hyperparameters consistent with those in subsection 4.1. The primary GPU computational and
memory overheads occur during the querying stage against the victim LVLM when training a
universal patch. This involves adding slight noise to all attack samples during each iterative update
of the patch to explore their impacts, and this stage also constitutes the major consumption of the
query budget. The gradient approximation stage primarily takes place on the CPU, involves a much
smaller computational load, and thus does not consume GPU power or memory, and is therefore
not recorded in the table. Note that, our attack is much more efficient than existing LVLM attacks,
since our universal adversarial patch can be pasted on any image of any task to achieve attack while
existing LVLM attacks need to generate individual perturbation for each input sample.

5 Conclusion

In this paper, we propose to attack the real-world large vision-language models (LVLMs) in a
practical but challenging setting, where the attacker can solely query the LVLM model. To make the
perturbation universally adversarial to multiple LVLM-driven tasks, we design a universal adversarial
patch with specific locations to perturb the visual inputs. By solely querying the model to estimate the
gradient direction for optimizing the adversarial patch pattern, we develop a novel importance-aware
gradient approximation strategy to adaptively estimate and adjust the weights on gradient directions
for optimizing different samples. Experiments show the effectiveness of the proposed attack method.
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A More Implementation Details

About datasets. We follow previous works to utilize the same dataset setting for fair comparisons.
Each dataset consists of both images and prompts. As for MS-COCO [80], its images are collected
from the validation dataset of MS-COCO datasets [80]. The prompts for VQA consist of questions
both agnostic and specific to the image content. The image-specific questions derive from the VQAv2
[81]. We craft prompts for the questions agnostic to image content, image classification, and image
captioning with diverse lengths and semantics. The VQAv2 dataset [81] comprises naturally sourced
images paired with manually annotated questions and answers. The DALLE-3 [2] dataset employs a
generative method, using random textual descriptions extracted from MS-COCO captions as prompts
for image generation powered by GPT-4. Additionally, it includes randomly generated QA pairs
based on the images. By default, our experiments are targeted attacks with the target text set to
“Unknown" to avoid the inclusion of high-frequency responses in vision-language tasks.

Evaluation metric. In the real-world pratical setting, we can only obtain the output text of the LVLM
model. Directly utilizing strict word-to-word constraints between the output and the adversarial target
does not work, since it is hard to not only estimate the potential gradient direction but also generate
exactly matched text without any prior knowledge. Therefore, inspired by previous work [33], we
design a soft constraint via semantic similarity computed by a textual encoder, and calculate the
similarity between the generated response and the targeted text for evaluation.

B Additional Experiments

B.1 Investigation on the Transferability across different Datasets and LVLMs

Since our proposed attack is able to generate universal adversarial perturbations for any input of
any task, it is important to investigate the transferability of the generated universal adversarial patch.
We report the transfer-attack performance in Table 9, where we analyze the transferability across
different datasets and different LVLM models. As for the transferability across different datasets, we
generate the universal patch against the LLaVA model on a specific dataset, then paste this patch on
the test set of the other two datasets and feed them into the LLaVA model for evaluation. As for the
transferability across different LVLM models, we generate the universal patch against a specific model
on the DALLE-3 dataset, and then test the patch on the other three LVLM models for evaluation.
We can find that our proposed attack can achieve a high-quality performance, demonstrating the
effectiveness of our universality design. Moreover, the transfer-attack performance across datasets
is worse than across LVLM models, we think the reason is due to the distribution gaps of images
between different datasets.

B.2 Ablation on the Task Number during the Model Querying

During the model querying, our attack method randomly samples three prompts individually from the
three tasks for gradient optimization. Therefore, we investigate the importance of this task number
and how it contributes to the final universality. Note that, for each task, we still utilize multiple
images to implement image-level universal attack. As shown in Table 10, all performances are the
averaged values and are evaluated on the whole test set across all tasks. We can find that the diversity
of tasks is important to the final universality, more tasks can provide more complex distributions for
learning to attack, leading to better attack generalization-ability.

B.3 Ablation on the Image Number during the Patch Generation

During the patch generation, our attack method drives the patch against an image pool by randomly
sampling three prompts individually from the three tasks for each of the images for estimating
gradients. Therefore, we investigate the importance of this image number and how it contributes to
the final universality. Note that, for each image, we still utilize three tasks’ prompts to implement
task-level universal attack. As shown in Table 11, all performances are the averaged values and
are evaluated on the whole test set across all tasks. We can find that the diversity of images is
important to the final universality. We set the image number as 500 in our all experiments based on
the consideration of memory and time cost. Of course, a larger image number than 500 can bring
further improvement.
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Table 9: Investigation on the Transferability across different Datasets and LVLMs.

From Transfer to ImageClassification ImageCaption VQA Overall

Transferability across Different Datasets (on LLaVA)

MS-COCO
MS-COCO 0.850 0.812 0.828 0.830
DALLE-3 0.628 0.604 0.641 0.624
VQAv2 0.597 0.563 0.602 0.587

DALLE-3
MS-COCO 0.649 0.617 0.635 0.634
DALLE-3 0.824 0.806 0.879 0.836
VQAv2 0.676 0.648 0.659 0.661

VQAv2
MS-COCO 0.702 0.669 0.737 0.703
DALLE-3 0.691 0.675 0.724 0.697
VQAv2 0.826 0.792 0.869 0.829

Transferability across Different LVLM Models (on DALLE-3)

LLaVA

LLaVA 0.824 0.806 0.879 0.836
MiniGPT-4 0.684 0.642 0.715 0.680
Flamingo 0.718 0.695 0.740 0.718
BLIP-2 0.692 0.719 0.736 0.716

MiniGPT-4

LLaVA 0.703 0.728 0.754 0.728
MiniGPT-4 0.810 0.843 0.862 0.838
Flamingo 0.679 0.704 0.731 0.705
BLIP-2 0.696 0.730 0.747 0.724

Flamingo

LLaVA 0.685 0.729 0.710 0.708
MiniGPT-4 0.721 0.757 0.733 0.737
Flamingo 0.824 0.870 0.838 0.844
BLIP-2 0.703 0.731 0.742 0.725

BLIP-2

LLaVA 0.647 0.678 0.695 0.673
MiniGPT-4 0.682 0.748 0.735 0.722
Flamingo 0.679 0.726 0.724 0.710
BLIP-2 0.795 0.837 0.840 0.824

Table 10: Ablation on the task number during the model querying, tested on the LLaVA model and
DALLE-3 dataset.

Task Number Attack Method ImageClassification ImageCaption VQA Overall

1 w/o importance 0.592 0.620 0.698 0.637
Full attack 0.736 0.703 0.761 0.733

2 w/o importance 0.619 0.658 0.724 0.667
Full attack 0.785 0.747 0.820 0.784

3 w/o importance 0.644 0.692 0.751 0.696
Full attack 0.824 0.806 0.879 0.837

B.4 More Analysis on Universality

The main difference between our attack and existing LVLM attacks is that we only need to generate
a single universal adversarial patch for all inputs while they need to generate different adversarial
perturbations for different input samples of different tasks. To investigate our universality, we
implement two variants for comparison: “w/o. universal baseline" removes our universality design
and follows previous works individually to optimize perturbation for each sample; “w/. universal
baseline" denotes our approach. We evaluate the averaged adversarial performance of their generated
single perturbation patch pasted on all images of the whole test set. As shown in Figure 6, the
universality of the single perturbation of “w/o. universal baseline" is very poor, it only performs well
on a specific task as its perturbation is optimized through a task-specific and image-specific attack
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Table 11: Ablation on the image number during the patch generation, tested on the LLaVA model
and DALLE-3 dataset.

Image Number Attack Method ImageClassification ImageCaption VQA Overall

100 w/o importance 0.587 0.628 0.685 0.633
Full attack 0.754 0.719 0.793 0.756

300 w/o importance 0.620 0.665 0.732 0.672
Full attack 0.801 0.763 0.846 0.803

500 w/o importance 0.644 0.692 0.751 0.696
Full attack 0.824 0.806 0.879 0.837

Specific to ImageClassification Specific to ImageCaption Specific to VQA

LLaVA

MiniGPT-4

Flamingo

BLIP-2

Figure 6: Evaluation on the Universality tested on DALLE-3 dataset. “w/o. Universality Baseline"
only optimizes a single image of a specific task in a single attack process.

process. Therefore, it also has poor performance on its task-specific task as it can not successfully
attack other unseen image samples. Since our “w/. universal baseline" is optimized through a
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Clean Input “Unknown” “I cannot answer” “I am sorry” “I hate people”

Figure 7: Visualization results on the targeted universal adversarial attack.

task-agnostic and image-agnostic attack process, our single adversarial perturbation can be universal
adversarial to multiple samples across all tasks, achieving better attack performance.
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Table 12: Attack performance on LLaVA model and DALLE-3 dataset when target labels are set to
harmful instructions.

Adversarial Target Attack Method ImageClassification ImageCaption VQA Overall

“Suicide" w/o importance 0.594 0.628 0.654 0.625
Full attack 0.712 0.694 0.747 0.718

“Kidnap" w/o importance 0.615 0.647 0.692 0.651
Full attack 0.748 0.770 0.804 0.774

“Bomb" w/o importance 0.583 0.639 0.716 0.646
Full attack 0.739 0.752 0.761 0.750

“Angry" w/o importance 0.638 0.682 0.733 0.684
Full attack 0.805 0.827 0.854 0.829

Table 13: Attack performance of our Full Attack on LLaVA model and DALLE-3 dataset when target
labels are set to long and special target texts.

Adversarial Target ImageClassification ImageCaption VQA Overall

"I am sorry, there is no object 0.837 0.814 0.865 0.839you mentioned, so I cannot answer"

"A beautiful bird with a black 0.819 0.842 0.848 0.836and white color in snow"

"I want to destroy the whole 0.776 0.801 0.784 0.787world together"

"A photo of a cat" 0.862 0.841 0.854 0.852

"The view from the top of a hill 0.828 0.843 0.810 0.827overlooking the mountains"

B.5 Experiments on More Targeted Labels

As shown in Table 12, we provide the attack performance on more targeted labels that are set to
harmful instructions. Due to the LVLMs’ self-constraints, our attack achieves relatively lower attack
performance on the harmful targets than on the general targets mentioned in the main paper.

We also provide the attack performance of our Full Attack on LLaVA model and DALLE-3 dataset
when target labels are set to long and special target texts. As shown in Table 13, our attack can also
achieve significant attack performance on long target text, demonstrating the scalability of our attack.

B.6 More Performance Comparison with Other LVLM Attackers

Since existing LVLM attackers are implemented in different settings with different models/datasets,
we have already provided detailed comparisons in Tables 3 and 4 of the paper. Note that, existing
methods are non-universal attacks and require prior LVLM knowledge to generate different perturba-
tions for different images. In contrast, our attack solely accesses to the LVLM input/output and can
generate a single noised patch to fool all images/prompts, while achieving better attack performance.
To provide a more comprehensive comparison, we also re-implement these attacks into our utilized
datasets/models/metrics as shown in Table 14, it shows that our attack is still more adversarial. We
think the reason is that our universal patch explicitly learns the general adversarial patterns against
LVLMs and effectively estimates gradients solely using positive directions.

B.7 Discussion on Adversarial Patch and Adversarial Perturbation

In this paper, we focus on designing universal adversarial patch for attacking real-world LVLMs.
Although some existing attackers attempt to design global perturbations being added on the whole
original images, these perturbations are hard to be trained as universal ones and deployed in real-world
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Table 14: Performance comparison with different LVLM attacks on different LVLM models across
different datasets.

LVLM Model Attack Method MS-COCO (Overall) DALLE-3 (Overall) VQAv2 (Overall)

LLaVA
MF-Attack [33] 0.626 0.634 0.647

CroPA [31] 0.778 0.796 0.782
Ours 0.830 0.837 0.829

MiniGPT-4
MF-Attack [33] 0.643 0.618 0.635

CroPA [31] 0.803 0.780 0.819
Ours 0.841 0.838 0.865

Flamingo
MF-Attack [33] 0.671 0.654 0.662

CroPA [31] 0.796 0.825 0.814
Ours 0.835 0.844 0.850

BLIP-2
MF-Attack [33] 0.639 0.658 0.670

CroPA [31] 0.783 0.799 0.811
Ours 0.814 0.824 0.836

scenarios. Instead, our adversarial patch has more potential to be scanned and pasted on realistic
objects in daily life for perturbing, achieving a physical attack. We will leave this in future research.

B.8 More Visualizations

We provide more visualization results in Figure 7. The first column is the clean images, and the latter
four columns are the perturbed images targeted on a specific attacker’s chosen output. We can find
that our attack method can achieve good attack performance on these images, and the adversarial
patch can achieve the same adversarial target when it is pasted on different images. Different targeted
patches have different locations and noise patterns.

In addition to the visualizations of adversarial patches targeted on general/common sentence texts, we
also design specific text labels for different tasks, and show their corresponding adversarial patches
in Figure 8. It demonstrates that our attack algorithm is very flexible and can generate universal
adversarial patches according to different attackers’ chosen text labels. That is, any text is possible,
and its corresponding universal adversarial patch can be successfully generated by our attack.

C Prompts for Different Tasks

Prompts for VQA. Any cutlery items visible in the image? Any bicycles visible in this image? Any
boats visible in the image? Any bottles present in the image? Are curtains noticeable in the image?
Are flags present in the image? Are flowers present in the image? Are fruits present in the image?
Are glasses discernible in the image? Are hills visible in the image? Are plates discernible in the
image? Are shoes visible in this image? Are there any insects in the image? Are there any ladders
in the image? Are there any man-made structures in the image? Are there any signs or markings
in the image? Are there any street signs in the image? Are there balloons in the image? Are there
bridges in the image? Are there musical notes in the image? Are there people sitting in the image?
Are there skyscrapers in the image? Are there toys in the image? Are toys present in this image?
Are umbrellas discernible in the image? Are windows visible in the image? Can birds be seen in this
image? Can stars be seen in this image? Can we find any bags in this image? Can you find a crowd
in the image? Can you find a hat in the image? Can you find any musical instruments in this image?
Can you identify a clock in this image? Can you identify a computer in this image? Can you see a
beach in the image? Can you see a bus in the image? Can you see a mailbox in the image? Can you
see a mountain in the image? Can you see a staircase in the image? Can you see a stove or oven in the
image? Can you see a sunset in the image? Can you see any cups or mugs in the image? Can you see
any jewelry in the image? Can you see shadows in the image? Can you see the sky in the image? Can
you spot a candle in this image? Can you spot a farm in this image? Can you spot a pair of shoes in
the image? Can you spot a rug or carpet in the image? Can you spot any dogs in the image? Can you
spot any snow in the image? Do you notice a bicycle in the image? Does a ball feature in this image?
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Describe the main theme 
of this image in one word.

Cat.

Identify the primary 
theme of this image in 

one word.

Cat.

LLaVA: Image Classification

Determine the main 
category for this image.

Cat.

Offer a one-word 
identifier for this picture.

Cat.

In one sentence, 
summarize the activity in 

this image.

Cows are eating grass.

In a few words, state 
what this image 

represents.

Cows are eating grass.

LLaVA: Image Captioning

Convey the main theme 
of this picture succinctly.

Cows are eating grass.

Convey the content of 
this photograph in a 

single phrase.

Cows are eating grass.

Can birds be seen in this 
image?

There is no object you 
mentioned.

How many dishes or food 
items are visible on a 

table setting?

There is no object you 
mentioned.

LLaVA: Visual Question Answering

Can you spot any dogs in 
the image?

There is no object you 
mentioned.

Does the image show any 
airplanes?

There is no object you 
mentioned.

Figure 8: Visualization results on specific designed targeted text labels.

Does a bridge appear in the image? Does a cat appear in the image? Does a fence appear in the
image? Does a fire feature in this image? Does a mirror feature in this image? Does a table feature in
this image? Does it appear to be nighttime in the image? Does it look like an outdoor image? Does it
seem to be countryside in the image? Does the image appear to be a cartoon or comic strip? Does the
image contain any books? Does the image contain any electronic devices? Does the image depict a
road? Does the image display a river? Does the image display any towers? Does the image feature
any art pieces? Does the image have a lamp? Does the image have any pillows? Does the image have
any vehicles? Does the image have furniture? Does the image primarily display natural elements?
Does the image seem like it was taken during the day? Does the image seem to be taken indoors?
Does the image show any airplanes? Does the image show any benches? Does the image show any
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landscapes? Does the image show any movement? Does the image show any sculptures? Does the
image show any signs? Does the image show food? Does the image showcase a building? How many
animals are present in the image? How many bikes are present in the image? How many birds are
visible in the image? How many buildings can be identified in the image? How many cars can be
seen in the image? How many doors can you spot in the image? How many flowers can be identified
in the image? How many trees feature in the image? Is a chair noticeable in the image? Is a computer
visible in the image? Is a forest noticeable in the image? Is a painting visible in the image? Is a path
or trail visible in the image? Is a phone discernible in the image? Is a train noticeable in the image? Is
sand visible in the image? Is the image displaying any clouds? Is the image set in a city environment?
Is there a plant in the image? Is there a source of light visible in the image? Is there a television
displayed in the image? Is there grass in the image? Is there text in the image? Is water visible in the
image, like a sea, lake, or river? How many people are captured in the image? How many windows
can you count in the image? How many animals, other than birds, are present? How many statues or
monuments stand prominently in the scene? How many streetlights are visible? How many items of
clothing can you identify? How many shoes can be seen in the image? How many clouds appear in
the sky? How many pathways or trails are evident? How many bridges can you spot? How many
boats are present, if it’s a waterscape? How many pieces of fruit can you identify? How many hats are
being worn by people? How many different textures can you discern? How many signs or billboards
are visible? How many musical instruments can be seen? How many flags are present in the image?
How many mountains or hills can you identify? How many books are visible, if any? How many
bodies of water, like ponds or pools, are in the scene? How many shadows can you spot? How many
handheld devices, like phones, are present? How many pieces of jewelry can be identified? How
many reflections, perhaps in mirrors or water, are evident? How many pieces of artwork or sculptures
can you see? How many staircases or steps are in the image? How many archways or tunnels can be
counted? How many tools or equipment are visible? How many modes of transportation, other than
cars and bikes, can you spot? How many lamp posts or light sources are there? How many plants,
other than trees and flowers, feature in the scene? How many fences or barriers can be seen? How
many chairs or seating arrangements can you identify? How many different patterns or motifs are
evident in clothing or objects? How many dishes or food items are visible on a table setting? How
many glasses or mugs can you spot? How many pets or domestic animals are in the scene? How many
electronic gadgets can be counted? Where is the brightest point in the image? Where are the darkest
areas located? Where can one find leading lines directing the viewer’s eyes? Where is the visual
center of gravity in the image? Where are the primary and secondary subjects positioned? Where
do the most vibrant colors appear? Where is the most contrasting part of the image located? Where
does the image place emphasis through scale or size? Where do the textures in the image change or
transition? Where does the image break traditional compositional rules? Where do you see repetition
or patterns emerging? Where does the image exhibit depth or layers? Where are the boundary lines
or borders in the image? Where do different elements in the image intersect or overlap? Where does
the image hint at motion or movement? Where are the calm or restful areas of the image? Where
does the image become abstract or less defined? Where do you see reflections, be it in water, glass, or
other surfaces? Where does the image provide contextual clues about its setting? Where are the most
detailed parts of the image? Where do you see shadows, and how do they impact the composition?
Where can you identify different geometric shapes? Where does the image appear to have been
cropped or framed intentionally? Where do you see harmony or unity among the elements? Where
are there disruptions or interruptions in patterns? What is the spacing between objects or subjects in
the image? What foreground, mid-ground, and background elements can be differentiated? What
type of energy or vibe does the image exude? What might be the sound environment based on the
image’s content? What abstract ideas or concepts does the image seem to touch upon? What is the
relationship between the main subjects in the image? What items in the image could be considered
rare or unique? What is the gradient or transition of colors like in the image? What might be the
smell or aroma based on the image’s content? What type of textures can be felt if one could touch the
image’s content? What boundaries or limits are depicted in the image? What is the socioeconomic
context implied by the image? What might be the immediate aftermath of the scene in the image?
What seems to be the main source of tension or harmony in the image? What might be the narrative
or backstory of the main subject? What elements of the image give it its primary visual weight?
Would you describe the image as bright or dark? Would you describe the image as colorful or dull?

Prompts for Image Captioning. Elaborate on the elements present in this image. In one sentence,
summarize the activity in this image. Relate the main components of this picture in words. What
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narrative unfolds in this image? Break down the main subjects of this photo. Give an account of
the main scene in this image. In a few words, state what this image represents. Describe the setting
or location captured in this photograph. Provide an overview of the subjects or objects seen in this
picture. Identify the primary focus or point of interest in this image. What would be the perfect title
for this image? How would you introduce this image in a presentation? Present a quick rundown
of the image’s main subject. What’s the key event or subject captured in this photograph? Relate
the actions or events taking place in this image. Convey the content of this photograph in a single
phrase. Offer a succinct description of this picture. Give a concise overview of this image. Translate
the contents of this picture into a sentence. Describe the characters or subjects seen in this image.
Capture the activities happening in this image with words. How would you introduce this image to an
audience? State the primary events or subjects in this picture. What are the main elements in this
photograph? Provide an interpretation of this image’s main event or subject. How would you title
this image for an art gallery? What scenario or setting is depicted in this image? Concisely state the
main actions occurring in this image. Offer a short summary of this photograph’s contents. How
would you annotate this image in an album? If you were to describe this image on the radio, how
would you do it? In your own words, narrate the main event in this image. What are the notable
features of this image? Break down the story this image is trying to tell. Describe the environment
or backdrop in this photograph. How would you label this image in a catalog? Convey the main
theme of this picture succinctly. Characterize the primary event or action in this image. Provide a
concise depiction of this photo’s content. Write a brief overview of what’s taking place in this image.
Illustrate the main theme of this image with words. How would you describe this image in a gallery
exhibit? Highlight the central subjects or actions in this image. Offer a brief narrative of the events in
this photograph. Translate the activities in this image into a brief sentence. Give a quick rundown
of the primary subjects in this image. Provide a quick summary of the scene captured in this photo.
How would you explain this image to a child? What are the dominant subjects or objects in this
photograph? Summarize the main events or actions in this image. Describe the context or setting of
this image briefly. Offer a short description of the subjects present in this image. Detail the main
scenario or setting seen in this picture. Describe the main activities or events unfolding in this image.
Provide a concise explanation of the content in this image. If this image were in a textbook, how
would it be captioned? Provide a summary of the primary focus of this image. State the narrative
or story portrayed in this picture. How would you introduce this image in a documentary? Detail
the subjects or events captured in this image. Offer a brief account of the scenario depicted in this
photograph. State the main elements present in this image concisely. Describe the actions or events
happening in this picture. Provide a snapshot description of this image’s content. How would you
briefly describe this image’s main subject or event? Describe the content of this image. What’s
happening in this image? Provide a brief caption for this image. Tell a story about this image in one
sentence. If this image could speak, what would it say? Summarize the scenario depicted in this
image. What is the central theme or event shown in the picture? Create a headline for this image.
Explain the scene captured in this image. If this were a postcard, what message would it convey?
Narrate the visual elements present in this image. Give a short title to this image. How would you
describe this image to someone who can’t see it? Detail the primary action or subject in the photo.
If this image were the cover of a book, what would its title be? Translate the emotion or event of
this image into words. Compose a one-liner describing this image’s content. Imagine this image in a
magazine. What caption would go with it? Capture the essence of this image in a brief description.
Narrate the visual story displayed in this photograph.

Prompts for Image Classification. Identify the primary theme of this image in one word. How
would you label this image with a single descriptor? Determine the main category for this image.
Offer a one-word identifier for this picture. If this image were a file on your computer, what would its
name be? Tag this image with its most relevant keyword. Provide the primary classification for this
photograph. How would you succinctly categorize this image? Offer the primary descriptor for the
content of this image. If this image were a product, what label would you place on its box? Choose a
single word that encapsulates the image’s content. How would you classify this image in a database?
In one word, describe the essence of this image. Provide the most fitting category for this image.
What is the principal subject of this image? If this image were in a store, which aisle would it belong
to? Provide a singular term that characterizes this picture. How would you caption this image in a
photo contest? Select a label that fits the main theme of this image. Offer the most appropriate tag
for this image. Which keyword best summarizes this image? How would you title this image in an
exhibition? Provide a succinct identifier for the image’s content. Choose a word that best groups
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this image with others like it. If this image were in a museum, how would it be labeled? Assign a
central theme to this image in one word. Tag this photograph with its primary descriptor. What is the
overriding theme of this picture? Provide a classification term for this image. How would you sort
this image in a collection? Identify the main subject of this image concisely. If this image were a
magazine cover, what would its title be? What term would you use to catalog this image? Classify
this picture with a singular term. If this image were a chapter in a book, what would its title be?
Select the most fitting classification for this image. Define the essence of this image in one word.
How would you label this image for easy retrieval? Determine the core theme of this photograph. In
a word, encapsulate the main subject of this image. If this image were an art piece, how would it be
labeled in a gallery? Provide the most concise descriptor for this picture. How would you name this
image in a photo archive? Choose a word that defines the image’s main content. What would be the
header for this image in a catalog? Classify the primary essence of this picture. What label would
best fit this image in a slideshow? Determine the dominant category for this photograph. Offer the
core descriptor for this image. If this image were in a textbook, how would it be labeled in the index?
Select the keyword that best defines this image’s theme. Provide a classification label for this image.
If this image were a song title, what would it be? Identify the main genre of this picture. Assign the
most apt category to this image. Describe the overarching theme of this image in one word. What
descriptor would you use for this image in a portfolio? Summarize the image’s content with a single
identifier. Imagine you’re explaining this image to someone over the phone. Please describe the
image in one word? Perform the image classification task on this image. Give the label in one word.
Imagine a child is trying to identify the image. What might they excitedly point to and name? If
this image were turned into a jigsaw puzzle, what would the box label say to describe the picture
inside? Classify the content of this image. If you were to label this image, what label would you
give? What category best describes this image? Describe the central subject of this image in a single
word. Provide a classification for the object depicted in this image. If this image were in a photo
album, what would its label be? Categorize the content of the image. If you were to sort this image
into a category, which one would it be? What keyword would you associate with this image? Assign
a relevant classification to this image. If this image were in a gallery, under which section would
it belong? Describe the main theme of this image in one word. Under which category would this
image be cataloged in a library? What classification tag fits this image the best? Provide a one-word
description of this image’s content. If you were to archive this image, what descriptor would you use?

D Limitations and Broader Impacts

Limitations. One potential limitation of the proposed method is the time cost. Since we need to
iteratively query the LVLM model to estimate the gradient for optimizing the adversarial patch, more
time and resources are needed. Besides, our work assumes that input images are fed directly into the
LVLM models. However, in the future, vision-language models are more likely to be deployed in
complex scenarios such as controlling robots or automatic driving, in which case input images may
be obtained from the interaction with physical environments and captured in real-time by cameras.
Performing adversarial attacks in such complicated cases would be one of the future directions for
evaluating the security of vision-language models.

Broader impacts. While the primary goal of our research is to evaluate and improve the attacker’s
universality and practicality against large vision-language models, it is possible that the developed
attacking strategies could be misused to evade practically deployed systems and cause potential
negative societal impacts. Specifically, our threat model assumes real-world access and targeted
responses, which involves manipulating existing APIs such as GPT-4 (with visual inputs) and/or
Midjourney on purpose, thereby increasing the risk if these vision-language APIs are implemented as
plugins in other products.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we make the first attempt to investigate and improve the attacker’s
universality and practicality against LVLMs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the potential limitations in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We have no theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided them with the implementation details. We will also release
our codes upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the codes upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All of them are carefully illustrated in implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed them in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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