
Density-based User Representation using Gaussian
Process Regression for Multi-interest Personalized

Retrieval

Haolun Wu1,2∗ Ofer Meshi3 Masrour Zoghi3 Fernando Diaz3 Xue Liu1,2

Craig Boutilier3 Maryam Karimzadehgan3

1McGill University 2Mila - Quebec AI Institute 3Google Research
haolun.wu@mail.mcgill.ca, xueliu@cs.mcgill.ca, diazf@acm.org

{meshi,mzoghi,cboutilier,maryamk}@google.com

Abstract

Accurate modeling of the diverse and dynamic interests of users remains a sig-
nificant challenge in the design of personalized recommender systems. Existing
user modeling methods, like single-point and multi-point representations, have
limitations w.r.t. accuracy, diversity, and adaptability. To overcome these deficien-
cies, we introduce density-based user representations (DURs), a novel method that
leverages Gaussian process regression (GPR) for effective multi-interest recom-
mendation and retrieval. Our approach, GPR4DUR, exploits DURs to capture user
interest variability without manual tuning, incorporates uncertainty-awareness, and
scales well to large numbers of users. Experiments using real-world offline datasets
confirm the adaptability and efficiency of GPR4DUR, while online experiments
with simulated users demonstrate its ability to address the exploration-exploitation
trade-off by effectively utilizing model uncertainty.

1 Introduction

With the proliferation of online platforms, users have ready access to content, products and services
drawn from a vast corpus of candidates. Personalized recommender systems (RSs) play a vital role
in reducing information overload and helping users navigate this space. It is widely recognized
that users rarely have a single intent or interest when interacting with an RS [1, 2, 3]. To enhance
personalization, recent work focuses on discovering a user’s multiple interests and recommending
items that attempt to span their interests [3, 4, 5]. However, this is challenging for two reasons. First,
user interests are diverse and dynamic: diversity makes it hard to detect all interests, while their
dynamic nature renders determining which user interest is active at any given time quite difficult.
Second, it is hard to retrieve items related to niche interests due to the popularity bias [6].

User representation is a fundamental design choice in any RS. The most widely used strategy for
user modeling is the single-point user representation (SUR), which uses a single point in an item
embedding space to represent the user. The user’s affinity for an item is obtained using some distance
measure (e.g., inner product, cosine similarity) with the point representing the item. However,
SUR can limit the accuracy and diversity of item retrieval [7]; hence, most RSs generally use
high-dimensional embedding vectors (with high computation cost).

To address the limitations of SUR, MaxMF [1] adopts a multi-point user representation (MUR), where
each user is represented using K points in the embedding space, each reflecting a different “interest”.
MaxMF uses a constant, uniform K across all users (e.g., K = 4), which is somewhat ad hoc and

∗Work done while doing an internship at Google.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

52568 https://doi.org/10.52202/079017-1666

restrictive. Subsequent research uses other heuristics [3, 8, 9, 4, 10, 11] or clustering algorithms [5, 2]
to determine the number of interests per user. However, these all require the manual choice of K or a
specific clustering threshold, limiting the adaptability of MUR methods, since interests generally have
high variability across users. Moreover, uncertainty regarding a user’s interests is not well-modeled
by these methods, diminishing their ability to perform effective online exploration.

Figure 1: The t-SNE visualization of the predic-
tion score between a picked user to all items in
the MovieLens dataset. The score is computed as
the inner-product between the user embedding and
item embedding. The triangles (▲) indicate the
latest 20 items interacted by the user. We use Ma-
trix Factorization (MF) to obtain embeddings in
this toy example. As depicted, only density-based
method (bottom row) can well capture user inter-
ests with uncertainty.

To address limitations of SUR and MUR point-
based representations, we propose a user repre-
sentation that emphasizes (i) adaptability, adapt-
ing to different interest patterns; (ii) uncertainty-
awareness, modeling uncertainty in assessing
user interests; and (iii) efficiency, avoiding high-
dimensional embeddings. Specifically, we use
a density-based representation, where the user’s
preferences are encoded using a function over
the item embedding space. Under this rep-
resentation, the relevance score for user-item
pairs should be higher in regions of embedding
space where a user demonstrated more interest
in the corresponding items, and lower in regions
where users have shown limited interest. We
propose the density-based user representation
(DUR), a novel user modeling method which
exploits Gaussian process regression (GPR)
[12, 13], a well-studied Bayesian approach to
non-parametric regression using Gaussian pro-
cesses (GPs) to extrapolate from training to test
data. GPR has been applied across a wide range
of domains, though it has been under-explored
in user modeling. Given a sequence of user in-
teractions, GPR predicts the level of a user’s
interest in any item using its posterior estimates. This allows us to maintain a unique personalized
GP regressor for each user, effectively capturing their evolving preferences and assessing uncer-
tainty. Top-N item retrieval is performed using bandit algorithms, such as UCB [14] or Thompson
sampling [15], based on GPR posterior estimates.

To illustrate, consider Fig. 1, which shows the prediction score (i.e., the inner-product between user
and item embeddings) between a user and all movies from the MovieLens 1M dataset [16] (reduced
to 2D for visualization purposes). We examine 20 movies from the recent history of a particular user,
shown as triangles (▲). We see that these movies lie in several different regions of the embedding
space. However, when we fit either SUR or MUR (K = 4) models, they fail to capture the user’s
multiple interests and instead assign high scores only to movies from a single region (Fig. 1, top row).
By contrast, we see in Fig. 1 (bottom left) that GPR fits the data well, assigning high values to all
regions associated with the user’s recent watches (interests). Fig. 1 (bottom right) shows that our
approach can also capture uncertainty in our estimates of a user’s interests, assigning high uncertainty
to regions in embedding space with fewer samples.

Our approach has various desirable properties. First, it adapts to different interest patterns, since the
number of interests for any given user is not set manually, but determined by GPR, benefiting from
the non-parametric nature of GPs. Second, the Bayesian nature of GPs measures uncertainty with the
posterior standard deviation of each item. This supports the incorporation of bandit algorithms in the
recommendation and training loop to address the exploration-exploitation trade-off in online settings.
Finally, our method can effectively retrieve items spanning multiple user interests, including “niche”
interests, while using a lower-dimensional embedding relative to SUR and MUR.

To summarize, our work makes the following contributions:

• We develop GPR4DUR, a density-based user representation method, for personalized multi-
interest retrieval. It is the first use of GPR for user modeling in this setting.

• We propose new evaluation protocols and metrics for multi-interest retrieval that measure
the extent to which a model captures a user’s multiple interests.

2

52569https://doi.org/10.52202/079017-1666

• We conduct comprehensive experiments on real-world offline datasets showing the adapt-
ability and efficiency of GPR4DUR. Online experiments with simulated users show the
value of GPR4DUR’s uncertainty representation in balancing exploration and exploitation.

2 Related Work

Learning high-quality user representations is central to good RS performance. The single-point
user representation (SUR) is the dominant approach, where a user is captured by a single point in
some embedding space [17, 18], for example, as employed by classical [19, 20, 21] and neural [22]
collaborative filtering methods. While effective and widely used, SUR cannot reliably capture a user’s
multiple interests. To address this limitation, the multi-point user representation (MUR) [1] has been
proposed, where a user is represented by multiple points in embedding space, each corresponding to
a different “primary” interest. Selecting a suitable number of points K is critical in MUR. Existing
algorithms largely use heuristic methods, e.g., choosing a global constant K for all users [1, 8, 3,
9, 4, 10, 11]. Other methods personalize K by setting it to the logarithm of the number of items
with which a user has interacted [5]. More recently, Ward clustering of a user’s past items has been
proposed, with a user’s K determined by the number of such clusters [2]. This too requires manual
tuning of clustering thresholds.

At inference time MUR is similar to SUR, computing the inner-product of the user embedding(s) and
item embedding. Some methods compute K inner products, one per interest, and use the maximum
as the recommendation (and the predicted score for that item) [1]. Others first retrieve the top-N
items for each interest (N ×K items), then recommend the top-N items globally [3, 2]. None of
these methods capture model uncertainty w.r.t. a user’s interests, hence they lack the ability to balance
exploration and exploitation in online recommendation in a principled way [23].

Our density-based user representation, and our proposed GPR4DUR, differs from prior work w.r.t.
both problem formulation and methodology. Most prior MUR methods focus on next-item prediction
[3, 11], implicitly assuming a single-stage RS, where the trained model is the main recommendation
engine. However, many practical RSs consist of two stages: candidate selection (or retrieval)
followed by ranking [24, 25]. This naturally raises the question: are the selected candidates diverse
enough to cover a user’s interests or intents? This is especially relevant when a user’s dominant
interest at the time of recommendation is difficult to discern with high probability; hence, it is
important that the ranker have access to a diverse set of candidates that cover the user’s range of
potential currently active interests. In this paper, we focus on this retrieval task. As for methodology,
almost all prior work uses SUR or MUR point-based representations, [1, 2, 3, 5]—these fail to satisfy
all the desiderata outlined in Sec. 1. Instead, we propose DUR, a novel method satisfying these
criteria, and, to the best of our knowledge, the first to adopt GPR for user modeling in multi-interest
recommendation/retrieval. We frame our solution as a candidate generator to be used in the retrieval
phase of an RS. Other candidate generators with different objectives can be used in parallel to ours.

A related non-parametric recommendation approach is k-nearest-neighbors (kNN), where users
with similar preferences are identified (e.g., in user embedding space), and their ratings generate
recommendations (see, e.g., [26]). Our approach differs by not using user embeddings, but fitting a
GPR model directly to item embeddings (see Sec. 4.4), allowing for uncertainty in the user model.

3 Formulation and Preliminaries

In this section, we outline our notation and multi-interest retrieval problem formulation, and provide
some background on GPR, which lies at the core of our DUR method.

Notation. We consider a scenario where each item is associated with category information (e.g.,
genre for movies). Denote the set of all users, items, and categories by U , V , and C, respectively. For
each u ∈ U , whose interaction history has length lu, we partition the sequence of items Vu in u’s
history into two disjoint lists based on the interaction timestamp (which are monotonic increasing):
(i) the history set Vh

u = [vu,1, vu,2, ..., vu,ℓu] serves as the model input; and (ii) the holdout set
Vd
u = [vu,ℓu+1, vu,ℓu+2, ..., vu,lu] is used for evaluation. We define u’s interests C(Vu) to be the set

of categories associated with all items in u’s history. Our notation is summarized in Appendix A.1.

3

52570 https://doi.org/10.52202/079017-1666

Figure 2: The architecture of GPR4DUR: an example of a movie recommendation for a single user.

Problem Formulation. We formulate the multi-interest retrieval problem as follows: given Vh
u, we

aim to retrieve the top N items Ru (i.e., ∣Ru∣ = N) w.r.t. some matching metric connecting Ru and
Vd
u that measures personalized retrieval performance. We expect Ru to contain relevant items, and

given our focus on multi-interest retrieval, Ru should ideally cover all categories in C(Vd
u).

Our problem is related to sequential recommendation, where the input is a sequence of interacted
items sorted by the timestamp per user, and the goal is to predict the next item with which the user
will interact. However, here we focus on retrieving a set of items that cover a user’s diverse interests.
We defer the task of generating a precise recommendation list to a downstream ranking model.

GPR. The core of our model is Gaussian process regression (GPR). A Gaussian Process (GP) is a
non-parametric model for regression and classification. GPR models a distribution over functions,
providing not only function value estimates for any input, but also uncertainty quantification via
predictive variance, enhancing robust decision-making and optimization [27].

The key components of the GP are the mean function and the covariance (kernel) function, which
capture the prior assumptions about the function’s behavior and the relationships between input points,
respectively [13]. Let X = {x1, . . . ,xn} ∈ Rn×d be a set of input points and y = {y1, . . . , yn} ∈ Rn

be the corresponding output values. A GP is defined as: f ∼ GP(µ, k), where µ(x) is the mean and
k(x,x′) is the covariance function. The joint distribution of the observation and the output at a new
point is derived using a Gaussian distribution, as illustrated in Appendix A.1.

4 Methodology

We outline density-based user representation using GPR and its application to multi-interest retrieval.

4.1 GPR for Density-based User Representation

We use GPR to construct a novel density-based user representation (DUR) for multi-interest modeling
in RSs. Our key insight involves using GPR to learn a DUR, using a user’s interaction history, that
naturally embodies their diverse interest patterns. For any user u, let Vu = [vu,1,vu,2, ...,vu,lu] ∈
Rlu×d be the embeddings of all items in their history. This is derived from their interaction list Vu

and an item embedding matrix V (we describe how to obtain V in Sec. 4.4). Let ou = [ou,v∣v ∈

Vu] ∈ Rlu be the vector of u’s observed interactions with items in Vu. We employ a GP to model
u’s interests given the input points Vu and corresponding observations ou, gu ∼ GP(µu, ku), where,
gu, µu and ku are u’s personalized GP regressor, mean, and kernel function, respectively. The joint
distribution of observation ou and the predicted observation of a novel item v∗ is:

[ou

gu(v∗)]∼N([µu(Vu)
µu(v∗)] ,[

K(Vu,Vu)+σ
2
I k(Vu,v∗)

k(v∗,Vu) k(v∗,v∗)+σ
2
∗
]). (1)

For simplicity, we assume µu = 0 and a commom kernel function and variance across all users.
Assuming implicit feedback, we have ou = 1, i.e., u shows “interest” in all interacted items. Thus,

4

52571https://doi.org/10.52202/079017-1666

the posterior (prediction) gu(v) for any v ∈ V is:

gu(v)∣ou ∼ N (ḡu, cov(gu)), (2)

where the GP mean ḡu and variance cov(gu) are:

ḡu =k(v,Vu)[K(Vu,Vu) + σ
2
I]−1ou, (3)

cov(gu) =k(v,v)+σ
2
−k(v,Vu)[K(Vu,Vu)+σ

2
I]−1k(Vu,v)T. (4)

4.2 Retrieval List Generation

After obtaining a DUR gu for u ∈ U using GPR, we generate the retrieval list using the posterior
gu(v) over all unobserved items. The top N items with the highest values form our retrieval list. We
consider two methods for selection: (i) Thompson sampling (TS), a probabilistic method that selects
items based on posterior sampling [15] and (ii) Upper Confidence Bound (UCB), a deterministic
method that selects items based on their estimated rewards and uncertainties [14, 28]. The details for
the retrieval list generation is shown in Appendix A.2.

4.3 GPR Parameter Tuning

The free parameters in our model are the kernel function k and the standard deviation σ in Eq. 1. We
treat these as hyperparameters of GPR which are optimized using evaluation on a separate holdout
set. Specifically, to generate Ru for user u, we fit the GPR model not to the complete interaction
history Vu, but to the reduced history Vh

u, using the item embeddings and observed ratings. We assess
retrieval performance using specific metrics (see Sec. 5.3) on both Ru and the holdout set Vd

u . We
tune GPR parameters using these criteria (we detail the adjustable parameters in Sec. 5.2).

4.4 Item Embedding Pre-training

Following [2], we assume that item embeddings are fixed and precomputed: this ensures rapid
computation and real-time updates at serving time. For item embedding pre-training, we use
extreme multi-class classification [3, 29, 30]: given a training sample (ui, vj), we first compute
the likelihood of ui interacting with vj , i.e., p(vj∣ui) = exp(u⊺

ivj)/∑v′
∈V exp(u⊺

iv
′), where ui

and vj are embeddings of ui and vj . Our objective is to maximize the log-likelihood of a user
interacting with their items. Moreover, we want to ensure that item embeddings align with their
categories since categories explicitly indicate a user’s interests. We capture item-category information
by computing the likelihood that an item belongs to a category in a similar way: p(ck∣vj) =

exp(v⊺
jck)/∑c′∈C exp(v⊺

jc
′). The overall objective for pre-training combines the two negative

log-likelihoods using a scaling factor γ:

L=−∑
ui

∑
vj∈Vui

log p(vj∣ui)−γ∑
vj

∑
ck∈Cvj

log p(ck∣vj), (5)

where Vui
is the set of items that ui interacted with and Cvj

is the set of categories that vj belongs to.
The full item embedding matrix V is jointly learned and fixed after the pre-training phase. We do not
use user and category embeddings after pre-training; other schemes, such as using item co-occurrence
information to derive item embeddings without user or category embeddings, are possible. The full
architecture for GPR4DUR is depicted in Figure 2.

4.5 Computational Complexity

The complexity of GPR is O((ℓu)3), where ℓu is the number of training samples, due to covariance
matrix inversion (Eq. 3 and Eq. 4). This inversion is required only once and is manageable with a
few thousand examples. If the history length is too large, we either select a representative subset of
interactions or focus on the most recent interactions (we adopt this latter approach in our experiments).
Inference costs for each test point are O(ℓu) for mean and O((ℓu)2) for variance prediction, thus
linear in the number of test points ∣V∣. As shown in Appendix A.7, our method has reasonable
computational costs, slightly higher than strong baselines but with better performance on retrieval
and ranking, demonstrating its applicability in real-world scenarios. Our approach is best-suited

5

52572 https://doi.org/10.52202/079017-1666

Table 1: Result comparison on the retrieval task. For the same metric on each dataset, the best is bold
and the second best is underlined. We use four different symbols to indicate the different categories
of methods detailed in Sec. 5.4. Cases where our model significantly outperforms the best baseline,
with p ≤ 0.01 according to the paired t-test, are marked with *.

Methods
Interest Coverage (IC@k) Interest Relevance (IR@k) Exp. Deviation (ED@k) Tail Exp. Improv. (TEI@k)
The higher the better ⇑ The higher the better ⇑ The lower the better ⇓ The higher the better ⇑
k=20 k=50 k=100 k=20 k=50 k=100 k=20 k=50 k=100 k=20 k=50 k=100

A
m

az
on

♣ Random 0.690 0.888∗ 0.961 0.251 0.428 0.558 0.513 0.483 0.472 -0.041 -0.041 -0.041
♣ MostPop 0.704 0.766 0.788 0.324 0.426 0.490 0.563 0.501 0.485 -0.045 -0.045 -0.045
♦ YoutubeDNN 0.672 0.810 0.878 0.432 0.550∗ 0.623 0.470∗ 0.439 0.423 -0.040 -0.041 -0.041
♦ GRU4Rec 0.676 0.810 0.884 0.415 0.524 0.602 0.485 0.452 0.438 -0.040 -0.040 -0.041
♦ BERT4Rec 0.683 0.815 0.892 0.416 0.534 0.613 0.512 0.479 0.472 -0.089 -0.092 -0.102
♦ gSASRec 0.672 0.823 0.899 0.418 0.535 0.618 0.506 0.472 0.469 -0.066 -0.069 -0.069
♠ MIND 0.650 0.787 0.861 0.390 0.503 0.575 0.509 0.477 0.461 -0.041 -0.041 -0.041
♠ ComiRec 0.656 0.785 0.861 0.399 0.510 0.595 0.492 0.453 0.432 -0.040 -0.040 -0.040∗

♠ CAMI 0.640 0.710 0.833 0.373 0.483 0.521 0.522 0.493 0.473 -0.071 -0.088 -0.080
♠ PIMI 0.705 0.821 0.897 0.415 0.535 0.622 0.497 0.462 0.441 -0.092 -0.091 -0.144
♠ REMI 0.717∗ 0.833 0.923 0.418 0.537 0.627∗ 0.494 0.456 0.435 -0.081 -0.082 -0.091
♥ GPR4DUR 0.739 0.895 0.956 0.429 0.560 0.643 0.458 0.423 0.412 -0.041 -0.039 -0.039

M
ov

ie
L

en
s

♣ Random 0.835 0.961 0.992 0.272 0.422 0.534 0.252 0.229 0.221 -0.185 -0.184 -0.183
♣ MostPop 0.914∗ 0.973∗ 0.986 0.498 0.655 0.727 0.261 0.223 0.217 -0.022 -0.013∗ -0.028∗

♦ YoutubeDNN 0.879 0.938 0.974 0.722 0.846 0.873 0.250 0.229 0.218 -0.017∗ -0.031 -0.051
♦ GRU4Rec 0.832 0.939 0.976 0.646 0.784 0.863 0.228 0.226 0.195 -0.070 -0.076 -0.084
♦ BERT4Rec 0.883 0.852 0.963 0.732 0.847∗ 0.883∗ 0.271 0.258 0.256 -0.072 -0.087 -0.103
♦ gSASRec 0.885 0.857 0.964 0.730∗ 0.843 0.879 0.276 0.261 0.260 -0.084 -0.092 -0.114
♠ MIND 0.869 0.951 0.981 0.653 0.786 0.863 0.245 0.223 0.212 -0.049 -0.058 -0.073
♠ ComiRec 0.844 0.946 0.981 0.635 0.776 0.859 0.227 0.203 0.192 -0.069 -0.074 -0.082
♠ CAMI 0.853 0.933 0.954 0.625 0.742 0.830 0.272 0.263 0.253 -0.082 -0.094 -0.101
♠ PIMI 0.856 0.929 0.943 0.662 0.762 0.859 0.264 0.237 0.221 -0.092 -0.105 -0.124
♠ REMI 0.861 0.930 0.947 0.718 0.792 0.868 0.270 0.252 0.230 -0.102 -0.113 -0.156
♥ GPR4DUR 0.929 0.974 0.973 0.825 0.862 0.891 0.252 0.222 0.201 -0.011 -0.007 -0.016

Ta
ob

ao

♣ Random 0.302 0.563 0.873∗ 0.232 0.416 0.527 0.493 0.425 0.333 -0.059 -0.049 -0.031
♣ MostPop 0.342 0.583∗ 0.863 0.362 0.439 0.643 0.512 0.437 0.343 -0.076 -0.050 -0.036
♦ YoutubeDNN 0.305 0.523 0.822 0.471 0.529 0.713 0.498 0.443 0.356 -0.054 -0.044 -0.030
♦ GRU4Rec 0.295 0.503 0.810 0.492 0.533 0.724 0.469 0.413 0.300 -0.053 -0.041 -0.030
♦ BERT4Rec 0.301 0.508 0.814 0.494 0.535 0.721 0.482 0.433 0.376 -0.062 -0.053 -0.040
♦ gSASRec 0.302 0.506 0.817 0.502 0.552 0.730 0.502 0.447 0.396 -0.082 -0.077 -0.064
♠ MIND 0.295 0.517 0.813 0.502 0.552 0.733 0.463 0.411 0.294 -0.052 -0.041 -0.029
♠ ComiRec 0.284 0.501 0.807 0.509 0.561 0.731 0.433 0.380 0.291 -0.051 -0.042 -0.030
♠ CAMI 0.296 0.522 0.814 0.518∗ 0.573∗ 0.734∗ 0.424 0.363 0.281∗ -0.052 -0.039 -0.027∗

♠ PIMI 0.343∗ 0.579 0.860 0.516 0.566 0.729 0.498 0.447 0.328 -0.089 -0.052 -0.035
♠ REMI 0.339 0.576 0.855 0.511 0.540 0.698 0.477 0.408 0.377 -0.077 -0.048 -0.030
♥ GPR4DUR 0.363 0.601 0.891 0.609 0.624 0.781 0.453 0.367 0.273 -0.050 -0.040 -0.023

to scenarios with millions or tens of millions of items, when retrieving hundreds for ranking, as
is common in real-world RSs (e.g., see [31]). Similarly, in music recommendation, it would be
especially useful for defining user interests over artists (a few millions at most per geographical
region/language) vs. individual songs. Previous work improves GPR efficiency using Toeplitz and
Kronecker structures, achieving O(ℓu) training and O(1) prediction complexity [32]. Other sublinear
approximations partition the item space to find candidates adaptively [33, 34]. While not our focus, it
would be straightforward to apply these well-studied methods to our setting.

Finally we note that we do not expect users’ interest collections to be highly dynamic; hence, they
will not require real-time updates. Our method is best-suited to use as a candidate generator, with the
model updated periodically to create a pool of potentially interesting items for users.

5 Offline Experiments

We next evaluate our GPR4DUR on three real-world datasets, and compare our DUR technique with
other state-of-the-art methods for multi-interest personalized retrieval.

5.1 Datasets

We use three widely studied datasets: Amazon [35], MovieLens [16], and Taobao [36]. Following
previous work [37, 38], we filter out items with fewer than 10 appearances and users with fewer than
25 interactions to ensure sufficient history for indicating multiple interests. Each interest corresponds
to a category: for Amazon, we use the single principal category of each item; for MovieLens, we use
18 movie genres (each movie can belong to multiple genres); for Taobao, we cluster items into 20

6

52573https://doi.org/10.52202/079017-1666

categories using Ward clustering on the pretrained item embeddings as in [2]. The same categories are
used during training and inference. Dataset statistics are shown in Table 6, and an ablation analysis
of various clustering algorithms and numbers of clusters is provided in Table 8 (See Appendix).

5.2 Experiment Setup

Most prior work on recommendation and retrieval evaluates model performance on generalization
to new items per user. Instead, similar to recent work [39, 3], we assess model performance on
the ability to generalize to new users. We split users into disjoint subsets: training users (U train),
validation users (Uval), and test users (U test) in a ratio of 8:1:1. The last 20% of each user’s interaction
sequence is treated as a holdout set for evaluation, and the first 80% as a history set for fitting the
GPR model. We cap history length to 60, 160, and 100 for the three datasets, aligning with their
average user interactions. For item embedding pre-training, we train the recommendation backbones
using the history set of all training users and tune parameters based on the performance on the holdout
set for validation users (details in Appendix A.3). Training is capped at 100,000 iterations with early
stopping if validation performance does not improve for 50 successive iterations. We tune GPR
hyperparameters by fitting the GP regressor to the history set of all training and validation users, then
using the holdout set to fine-tune parameters (kernel and standard deviation). Metrics are reported on
the holdout set for all test users (see Appendix A.5 for hyperparameter sensitivity).

5.3 Metrics

Metrics used in prior work on sequential recommendation are not well-suited to assess performance
in our multi-interest retrieval task, for several reasons: (i) Conventional metrics, such as precision
and recall, often employed in multi-interest research, do not adequately quantify whether an item list
reflects the full range of a user’s (multiple) interests. A model may primarily recommend items from
a narrow range of highly popular categories and still score high on these metrics while potentially
overlooking niche interests. (ii) Metrics like precision and recall are overly stringent, only recognizing
items in the recommendation list that appear in the holdout set. We argue that credit should also be
given if a similar, though not identical, item is recommended (e.g., Iron Man 1 instead of Iron Man 2).
This requires a soft version of these metrics. (iii) Multi-interest retrieval systems should expose users
to niche content to address their diverse interests. However, conventional metrics may neglect the
item perspective, potentially underserving users with specialized interests. Consequently, we propose
the use of the following four metrics that encompass the aforementioned factors.

Interest-wise Coverage (IC) This metric is similar to subtopic-recall [40], which directly measures
whether the model can comprehensively retrieve all user interests reflected in the holdout set. The
higher the value of this metric the better:

IC@k =
1

∣U test∣ ∑
u∈U test

∣C(Vd
u) ∩ C(R1∶k

u)∣
∣C(Vd

u)∣
. (6)

Interest-wise Relevance (IR) To further measure the relevance of retrieved items, we introduce a
“soft” recall metric, calculating the maximum cosine similarity between items in the retrieval list and
the holdout set within the same category. The motivation for IR is that the success of a retrieval or
recommendation list often depends on how satisfying the most relevant item is:

IR@k =
1

∣U test∣ ∑
u∈U test

∑
c∈C(Vd

u)
max

vi∈Vd
u,vj∈R1∶k

u

S(vi, vj)

∣C(Vd
u)∣

, s.t. C(vi) = C(vj) = c, (7)

where S(vi, vj) is the cosine similarity between item vi and vj . To obtain ground-truth similarities
between items, and to mitigate the influence of the chosen pre-trained model, we pretrain the item
embeddings using YoutubeDNN [41] with a higher dimension size (d = 256) to compute a uniform
Si,j for any backbone. A higher value of this metric is better.

Exposure Deviation (ED) In addition to measuring performance from the user side, we also
measure from the item side to test whether exposure of different categories in the retrieval list is
close to that in the holdout set. We treat each occurrence of an item category as one unit of exposure,

7

52574 https://doi.org/10.52202/079017-1666

and compute the normalized exposure vectors ϵ∗u, ϵ
1∶k
u ∈ R∣C∣ for u’s holdout set and retrieval list,

respectively. Lower values of this metric are better.

ED@k =
1

∣U test∣ ∑
u∈U test

∣∣ϵ∗u − ϵ
1∶k
u ∣∣22, s.t., ϵ∗u,c =

∑v∈Vd
u
1c∈C(v)

∑v∈Vd
u
∣C(v)∣ , ϵ

1∶k
u,c =

∑v∈R1∶k
u
1c∈C(v)

∑v∈R1∶k
u

∣C(v)∣ . (8)

Tail Exposure Improvement (TEI) With respect to category exposure, it is crucial to ensure
that niche interests are not under-exposed. To evaluate this, we select a subset of the least popular
categories and measure their exposure improvement in the retrieval list versus that in the holdout set.
A higher value indicates better performance, and a positive value indicates improvement:

TEI@k =
1

∣U test∣ ∑
u∈U test

∑
c∈Ctail

(ϵ1∶ku,c − ϵ
∗
u,c)1ϵ∗u,c>0. (9)

Here, Ctail refers to the set of niche categories (i.e., the last 50% long-tail categories), denoting those
niche interests. 1ϵ∗u,c>0 indicates that we only compute the improvement for categories that appear in
the user’s holdout set, reflecting their true interests.

5.4 Methods Studied

Table 2: Result comparison on the ranking task mea-
sured at top-50 across all methods on three datasets.

Amazon MovieLens Taobao
Recall nDCG Recall nDCG Recall nDCG

♣ Random 0.836 0.848 0.685 0.716 0.838 0.866
♣ MostPop 0.867 0.867 0.710 0.741 0.868 0.896
♦ YoutubeDNN 0.875 0.888 0.715 0.748 0.875 0.904
♦ GRU4Rec 0.873 0.886 0.714 0.746 0.873 0.902
♦ BERT4Rec 0.881 0.892 0.723 0.758 0.883 0.914
♦ gSASRec 0.880 0.894 0.725 0.760 0.884 0.915
♠ MIND 0.842 0.885 0.713 0.745 0.872 0.901
♠ ComiRec 0.887 0.900 0.731 0.757 0.886 0.915
♠ CAMI 0.892 0.905 0.725 0.761 0.891 0.920
♠ PIMI 0.891 0.899 0.724 0.757 0.886 0.911
♠ REMI 0.900 0.902 0.728 0.760 0.889 0.916
♥ GPR4DUR 0.908 0.922 0.730 0.768 0.906 0.936

We study the following 12 methods from four
categories. (i) Heuristic ♣: Random recom-
mends random items, MostPop recommends
the most popular items. (ii) SUR Methods ♦:
YoutubeDNN [41] is a successful deep learn-
ing model for industrial recommendation plat-
forms. GRU4Rec [30] is the first work to use
recurrent neural networks for recommenda-
tion. BERT4Rec [42] adopts the self-attention
mechanism. gSASRec [43] is an improvement
over SASRec that deploys an increased num-
ber of negative samples and a novel loss func-
tion. (iii) MUR Methods♠: MIND [5] designs
a multi-interest extractor layer based on the capsule routing. ComiRec [3] captures multiple interests
from user behavior sequences with a controller for balancing diversity. CAMI [11] uses a category-
aware multi-interest model to encode users as multiple preference embeddings. PIMI [44] models
the user representation by considering both the periodicity and interactivity in the item sequence.
REMI [45] consists of an interest-aware hard negative mining strategy and a routing regularization
method. (iv) DUR Method (Ours) ♥: GPR4DUR uses GPR as a density-based user representation
tool for capturing users’ diverse interests with uncertainty 2.

Overall Performance Our overall performance comparison addresses two central research ques-
tions (RQs): whether our proposed method offers superior retrieval performance for users with
multiple interests (RQ1); and whether it induces appropriate item-sided exposure w.r.t. both popular
and niche interests (RQ2).

Performance on the retrieval task. To assess RQ1, we evaluate the effectiveness of the retrieval
phase. As shown in Table 1, GPR4DUR outperforms almost all baselines across datasets w.r.t. Interest
Coverage (IC@k) and Interest Relevance (IR@k), demonstrating high degrees of retrieval coverage
and relevance. Specifically, on the Amazon dataset, GPR4DUR achieves the highest performance
in 4 out of 6 interest metrics, in MovieLens it leads in 5 out of 6 metrics, and in Taobao, it excels
across all 6 interest metrics. This shows that GPR4DUR covers a wide range of user interests while
simultaneously maintaining high relevance. To assess the statistical significance of our model’s
performance compared to the best baseline, we performed a paired t-test, which evaluates whether
the means of two paired samples differ significantly, ensuring that the observed improvements are not
due to random variation.

2The implementation can be found at https://github.com/haolun-wu/GPR4DUR/.

8

52575https://doi.org/10.52202/079017-1666

https://github.com/haolun-wu/GPR4DUR/

Figure 3: Methods comparison across different
user groups on MovieLens. Best viewed in color.

Figure 4: Robustness comparison across different
dimension sizes on Amazon. Best viewed in color.

For RQ2, our objective is to ascertain whether
item exposure is suitably balanced. We mea-
sure this using the Exposure Deviation (ED@k)
and Tail Exposure Improvement (TEI@k) met-
rics. Lower values of ED@k suggest more sat-
isfying category exposure, while higher values
of TEI@k are indicative of enhanced exposure
in the long tail item categories. GPR4DUR is
highly effective on these metrics, consistently
performing well across all datasets in most cases,
and validating its ability to provide an optimal
level of category exposure. Notably, GPR4DUR
achieves the best results in 8 of 9 TEI@k met-
rics, indicating its superior ability to generate
exposure to niche categories/interests. We point
out, however, that all TEI@k values are nega-
tive, which suggests that none of the methods
we tested improve exposure for niche categories
relative to the exposure in the user holdout sets.
This is explained by the well-known popularity
bias inherent in most recommendation methods,
and suggests that further work is required on di-
versification strategies to mitigate such effects.

Performance on the ranking task. While our
primary emphasis is on the retrieval phase, we
also present model comparisons for the rank-
ing task. As illustrated in Table 2, GPR4DUR
demonstrates competitive performance on the traditional relevance metrics relative to the baseline
models. This further validates the strength of our proposed method.

Performance across User Groups (RQ3) We conduct a fine-grained analysis of GPR4DUR
performance on users grouped into quantiles, g1 (lowest) through g5 (highest), based on the number
of interaction or number of interests; results are provided in Fig. 3. Due to space constraints, we
show results only for IR@20 and TEI@20 on MovieLens, and only plot the best SUR and MUR
strategies; DUR denotes our GPR4DUR method. We see that GPR4DUR consistently outperforms
the baselines w.r.t. relevance and exposure metrics. This improvement is more pronounced as the
number of user interactions (resp., interests) increases. Interestingly, while no model enhances overall
exposure of niche interests (see Table 1), GPR4DUR improves niche interest exposure considerably
for users with large numbers of interactions (resp., interests); i.e., TEI@20 is positive for g4 and
g5. These observations confirm the effectiveness of GPR4DUR in capturing a user’s multiple
interests—especially for those with non-trivial histories—and its potential to maintain fair exposure
w.r.t. items.

Robustness to Dimension Size (RQ4) We underscored the importance of efficiency for a good
user representation in Sec. 1. To shed light on this, we examine the IC@20 and IR@20 performance
of various methods on Amazon. As shown in Fig. 4, GPR4DUR is effective w.r.t. interest coverage
even when operating with low-dimensional embeddings (i.e., d = 8 and d = 4). By contrast, the
performance of the SUR and MUR methods degrades as the dimensionality decreases. GPR4DUR
consistently outperforms other methods w.r.t. interest relevance across all dimensionalities examined.
We note that lower dimensions facilitate higher interest relevance due to increased cosine similarity
(Eq. 7), explaining the inverse correlation between IR@20 and dimension size in Figure 4 (right).

6 Online Simulation

To demonstrate the efficacy of GPR4DUR in capturing uncertainty in user interests and support
exploration, we conduct an online simulation in a synthetic setting, using a specific model of stochastic
user behavior to generate responses to recommendations.

9

52576 https://doi.org/10.52202/079017-1666

Data Preparation. We assume ∣C∣ = 10 interest clusters, each represented by a d-dim (d = 32)
multivariate Gaussian. We randomly select a (user-specific) subset of these interests as the ground-
truth interest set for each user. We set ∣U∣ = 1000 and ∣V∣ = 3000, with 300 items in each interest
cluster. Each item belongs to a single cluster and its embedding is sampled from the corresponding
interest distribution. Each user is modeled by a multi-modal Gaussian, a weighted sum of the
corresponding ground-truth interest distributions. To simulate a sequence of item interactions Vu (i.e.,
user history), we follow [46], first running a Markov Chain using a predefined user interest transition
matrix to obtain the user’s interest interactions for S = 10 steps. We do not consider the cold-start
problem in this experiment, so we simply recommend one item from each generated cluster to form
the user history (i.e., ∣Vu∣ = S). The observation ou over items in Vu is set to 1 if the item belongs
to a ground-truth cluster, and -1 otherwise.

GPR Fit and Prediction. After obtaining item embeddings V, user history Vu, and user observations
ou, we use GPR4DUR to learn a DUR for each user, using the methods described in Sec. 4.

User History and Observation Update. Using a predetermined user browsing model, clicked and
skipped items are generated and appended to the user interaction history (and the corresponding
user observation is likewise updated, 1 for clicked, -1 for skipped). This process continues until a
maximum iteration of T = 10 is reached. In this online setting, we adopt the dependent click model
(DCM) of user browsing behavior, widely used in web search and recommendation [47, 48]. In the
DCM, users begin by inspecting the top-ranked item, progressing down the list, engaging with items
of interest and deciding to continue or terminate after each viewed item.

Table 3: Comparison between different policies in online set-
ting. The reported values are the interest coverage averaged
across all users on all cumulative recommended items up to
each iteration. The highest value per column is bold.

Policy t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Random 0.29 0.49 0.64 0.74 0.82 0.87 0.91 0.91 0.92 0.93
Greedy 0.71 0.88 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.92

UCB (β=1) 0.71 0.89 0.91 0.91 0.92 0.92 0.92 0.93 0.94 0.95
UCB (β=5) 0.72 0.88 0.90 0.90 0.91 0.91 0.92 0.92 0.93 0.94
Thompson 0.29 0.50 0.65 0.75 0.82 0.89 0.91 0.92 0.95 0.98

Experiment Results. We compare
different recommendation policies by
assessing various metrics at each it-
eration; due to space limitations, we
report results only for interest cover-
age, see Table 3. Specifically, we com-
pute a “cumulative” version of interest
coverage by reporting the interest cov-
erage averaged across all users on all
previously recommended items prior
to the current iteration. Our goal is to test whether policies that use uncertainty models outperform
those that do not, specifically, whether such policies can exploit the inherent uncertainty representation
of user interests offered by GPR4DUR.

We assume each policy recommends the top-10 items to each user at each iteration. Table 3 shows that
methods using uncertainty (the bottom three rows) fairly reliably outperform those that do not (the
top two rows, with Greedy being UCB with β = 0, where β is the scaling factor of the variance term
in UCB). The observation confirms the benefit of using GPR4DUR to explicitly model uncertainty in
a recommender’s estimates of a user’s interests and to use this to drive exploration.

7 Conclusion and Discussion

In this paper, we introduced a density-based user representation model, GPR4DUR, marking the
first application of Gaussian process regression for user modeling in multi-interest retrieval. This
innovative approach inherently captures dynamic user interests, provides uncertainty-awareness, and
proves to be more dimension-efficient than traditional point-based methods. We also establish a
new evaluation protocol, developing new metrics specifically tailored to multi-interest retrieval tasks,
filling a gap in the current evaluation landscape. Offline experiments validate the adaptability and
efficiency of GPR4DUR, and demonstrate significant benefits relative to existing state-of-the-art
models. Online simulations further highlight GPR4DUR’s ability to drive user interest exploration by
recommendation algorithms that can effectively leverage model uncertainty. The future work and
broader impacts of this study are discussed in Appendix A.9 and Appendix A.10, respectively.

References
[1] Jason Weston, Ron J. Weiss, and Hector Yee. Nonlinear latent factorization by embedding

multiple user interests. In Seventh ACM Conference on Recommender Systems, RecSys ’13,

10

52577https://doi.org/10.52202/079017-1666

Hong Kong, China, October 12-16, 2013, pages 65–68. ACM, 2013.

[2] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure
Leskovec. Pinnersage: Multi-modal user embedding framework for recommendations at
pinterest. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 2311–2320. ACM, 2020.

[3] Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang. Controllable
multi-interest framework for recommendation. In KDD ’20: The 26th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020,
pages 2942–2951. ACM, 2020.

[4] Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia Yang, and
Xia Hu. Sparse-interest network for sequential recommendation. In WSDM ’21, The Fourteenth
ACM International Conference on Web Search and Data Mining, Virtual Event, Israel, March
8-12, 2021, pages 598–606. ACM, 2021.

[5] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang, Guoliang Kang,
Qiwei Chen, Wei Li, and Dik Lun Lee. Multi-interest network with dynamic routing for
recommendation at tmall. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019,
pages 2615–2623. ACM, 2019.

[6] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and
debias in recommender system: A survey and future directions. CoRR, abs/2010.03240, 2020.

[7] Xiliang Zhang, Jin Liu, Siwei Chang, Peizhu Gong, Zhongdai Wu, and Bing Han. Mirn: A multi-
interest retrieval network with sequence-to-interest em routing. PLOS ONE, 18(2):e0281275,
2023.

[8] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
graph collaborative filtering. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July
25-30, 2020, pages 1001–1010. ACM, 2020.

[9] Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, and Ming Zhang. Disenhan:
Disentangled heterogeneous graph attention network for recommendation. In CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, pages 1605–1614. ACM, 2020.

[10] Gaode Chen, Xinghua Zhang, Yanyan Zhao, Cong Xue, and Ji Xiang. Exploring periodicity
and interactivity in multi-interest framework for sequential recommendation. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, pages 1426–1433. ijcai.org, 2021.

[11] Jiongnan Liu, Zhicheng Dou, Qiannan Zhu, and Ji-Rong Wen. A category-aware multi-interest
model for personalized product search. In WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, pages 360–368. ACM, 2022.

[12] Carl Edward Rasmussen. Gaussian Processes in Machine Learning, pages 63–71. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[13] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[14] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn.
Res., 3:397–422, mar 2003.

[15] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial
on thompson sampling. Found. Trends Mach. Learn., 11(1):1–96, jul 2018.

[16] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. 5(4),
2015.

11

52578 https://doi.org/10.52202/079017-1666

[17] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems
Handbook, pages 1–35. Springer US, Boston, MA, 2011.

[18] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
bayesian personalized ranking from implicit feedback. In UAI 2009, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21,
2009, pages 452–461. AUAI Press, 2009.

[19] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Ying Li, Bing Liu, and Sunita Sarawagi, editors, Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas,
Nevada, USA, August 24-27, 2008, pages 426–434. ACM, 2008.

[20] Steffen Rendle. Factorization machines. In Geoffrey I. Webb, Bing Liu, Chengqi Zhang,
Dimitrios Gunopulos, and Xindong Wu, editors, ICDM 2010, The 10th IEEE International
Conference on Data Mining, Sydney, Australia, 14-17 December 2010, pages 995–1000. IEEE
Computer Society, 2010.

[21] Rui Chen, Qingyi Hua, Yan-shuo Chang, Bo Wang, Lei Zhang, and Xiangjie Kong. A survey
of collaborative filtering-based recommender systems: From traditional methods to hybrid
methods based on social networks. IEEE Access, 6:64301–64320, 2018.

[22] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy
Gabrilovich, editors, Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 173–182. ACM, 2017.

[23] Minmin Chen. Exploration in recommender systems. In RecSys ’21: Fifteenth ACM Conference
on Recommender Systems, Amsterdam, The Netherlands, 27 September 2021 - 1 October 2021,
pages 551–553. ACM, 2021.

[24] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM conference on recommender systems, pages 191–198,
2016.

[25] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles
Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending 3+ billion items to
200+ million users in real-time. In Proceedings of the 2018 world wide web conference, pages
1775–1784, 2018.

[26] Miha Grcar. User profiling: Collaborative filtering. In Proceedings of SIKDD 2004 at Multicon-
ference IS, pages 75–78, 2004.

[27] Christopher Williams and Carl Rasmussen. Gaussian processes for regression. In D. Touretzky,
M.C. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing Systems,
volume 8. MIT Press, 1995.

[28] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., 47(2–3):235–256, may 2002.

[29] Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In IEEE
International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018,
pages 197–206. IEEE Computer Society, 2018.

[30] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[31] Minmin Chen, Bo Chang, Can Xu, and Ed H. Chi. User response models to improve a reinforce
recommender system. In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, WSDM ’21, 2021.

12

52579https://doi.org/10.52202/079017-1666

[32] Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on massively scalable
gaussian processes. CoRR, abs/1511.01870, 2015.

[33] Yirong Shen, Matthias Seeger, and Andrew Ng. Fast gaussian process regression using kd-trees.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing
Systems, 2005.

[34] Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization,
2018.

[35] Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In WWW, pages 507–517. ACM, 2016.

[36] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning
tree-based deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 1079–1088. ACM, 2018.

[37] Jiacheng Li, Yujie Wang, and Julian J. McAuley. Time interval aware self-attention for sequential
recommendation. In James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang, editors,
WSDM ’20: The Thirteenth ACM International Conference on Web Search and Data Mining,
Houston, TX, USA, February 3-7, 2020, pages 322–330. ACM, 2020.

[38] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collabo-
rative filtering. In SIGIR, pages 165–174. ACM, 2019.

[39] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoen-
coders for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 689–698. ACM, 2018.

[40] ChengXiang Zhai, William W. Cohen, and John D. Lafferty. Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. In SIGIR, pages 10–17. ACM, 2003.

[41] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommen-
dations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA,
USA, September 15-19, 2016, pages 191–198. ACM, 2016.

[42] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on information and knowledge management,
pages 1441–1450, 2019.

[43] Aleksandr Vladimirovich Petrov and Craig Macdonald. gsasrec: Reducing overconfidence in
sequential recommendation trained with negative sampling. In Proceedings of the 17th ACM
Conference on Recommender Systems, pages 116–128, 2023.

[44] Gaode Chen, Xinghua Zhang, Yanyan Zhao, Cong Xue, and Ji Xiang. Exploring periodicity
and interactivity in multi-interest framework for sequential recommendation. IJCAI, 2021.

[45] Yueqi Xie, Jingqi Gao, Peilin Zhou, Qichen Ye, Yining Hua, Jae Boum Kim, Fangzhao Wu,
and Sunghun Kim. Rethinking multi-interest learning for candidate matching in recommender
systems. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 283–293,
2023.

[46] Nikhil Mehta, Anima Singh, Xinyang Yi, Sagar Jain, Lichan Hong, and Ed Chi. Density
weighting for multi-interest personalized recommendation. In arxiv eprint: arxiv 2308.01563,
2023.

[47] Junyu Cao, Wei Sun, Zuo jun Max Shen, and Markus Ettl. Fatigue-aware bandits for dependent
click models. ArXiv, abs/2008.09733, 2020.

[48] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click Models for Web Search. Morgan
& Claypool, 2015.

13

52580 https://doi.org/10.52202/079017-1666

[49] Hui Shi, Yupeng Gu, Yitong Zhou, Bo Zhao, Sicun Gao, and Jishen Zhao. Everyone’s preference
changes differently: A weighted multi-interest model for retrieval. In International Conference
on Machine Learning, pages 31228–31242. PMLR, 2023.

[50] Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58(301):236–244, 1963.

[51] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564. Springer US, Boston, MA, 2010.

[52] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[53] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method
for very large databases. ACM sigmod record, 25(2):103–114, 1996.

[54] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoen-
coders for collaborative filtering. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas,
and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 689–698. ACM, 2018.

[55] Zihao Li, Aixin Sun, and Chenliang Li. Diffurec: A diffusion model for sequential recommen-
dation. ACM Transactions on Information Systems, 42(3):1–28, 2023.

[56] Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and Xiangnan He.
Generate what you prefer: Reshaping sequential recommendation via guided diffusion. In
Advances in Neural Information Processing Systems, 2023.

[57] Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Jose Hernández-lobato. Collaborative
gaussian processes for preference learning. Advances in neural information processing systems,
25, 2012.

14

52581https://doi.org/10.52202/079017-1666

A Appendix

A.1 Notations and Preliminaries

A.1.1 Notations

Table 4: Description of Notation.

Notation Description

U ,V, C The set of all users, items, and (item) categories.
U,V,C Full embedding matrix of users, items, and categories.

Vu The user u’s interaction history.
Vh
u,V

d
u The history set and holdout set partitioned from Vu.

ou The observed rating scores of u on items in Vu.
tu,v The time step when u interacted with v.
lu The length of Vu.
ℓu The length of user history for model input.
Vu Item embeddings for items in Vu.
Ru The list of retrieved items to u.
C(⋅) The set of categories of all items in the input sequence.

A.1.2 Preliminaries on Gaussian Process Regression

Let X = {x1, . . . ,xn} ∈ Rn×d be a set of input points and y = {y1, . . . , yn} ∈ Rn be the
corresponding output values. A GP is defined as:

f ∼ GP(µ, k), (10)

where µ(x) is the mean function and k(x,x′) is the covariance function (kernel). Given a new point
x∗, the joint distribution of the observed outputs and the output at the new point is given by:

[y
f(x∗)] ∼ N ([µ(X)

µ(x∗)] , [
K(X,X) + σ

2
I k(X,x∗)

k(x∗,X) k(x∗,x∗) + σ
2
∗
]) , (11)

where µ(X) is the vector of mean values for the observed data points, K(X,X) is the covariance
matrix for the observed data points, k(X,x∗) is the vector of covariances between the observed data
points and the new input point, and σ

2 and σ
2
∗ are the noise variances. Without prior observations, µ

is generally set as 0.

The conditional distribution of f(x∗) given the observed data is:

f(x∗)∣y ∼ N (f̄∗, cov(f∗)), (12)

with the predictive mean and covariance given by:

f̄∗ = µ(x∗) + k(x∗,X)[K(X,X) + σ
2
I]−1(y − µ), (13)

cov(f∗)=k(x∗,x∗)+σ
2
∗−k(x∗,X)[K(X,X)+σ

2
I]−1k(X,x∗)T . (14)

Fig. 5 presents a visual illustration of GPR. The true underlying function is depicted in red, which
is the function we aim to approximate through GPR. The observations, depicted as black crosses,
represent known data points. As expected with GPR, where data points are observed, the uncertainty
(represented by the shaded region) is minimal, signifying high confidence in predictions at those
locations. On the other hand, in areas without observations, the uncertainty increases, reflecting less
confidence in the model’s predictions. The two dashed lines represent samples from the GP posterior.
Around observed points, these sampled functions adhere closely to the actual data, representing the
power and flexibility of GPR in modeling intricate patterns based on sparse data.

A.2 Details for Retrieval List Generation

After obtaining a DUR gu for u ∈ U using GPR, we generate the retrieval list using the posterior
gu(v) over all unobserved items. The top-N items with the highest values are selected as our retrieval
list. We consider two methods for estimating these values.

15

52582 https://doi.org/10.52202/079017-1666

Figure 5: Illustration of Gaussian Process Regression in 1D. The true function is shown in red,
observations are marked with black crosses, and the dashed lines represent two samples from the GP
posterior. The dash-dot line represents the posterior mean, while the shaded region indicates the 95%
confidence interval, showcasing the uncertainty associated with the GP predictions.

The first is Thompson sampling (TS), a probabilistic method that selects items based on posterior
sampling [15]. For each item v in a set, we generate a sample from the posterior gu(v), and rank the
items using their sampled values. A key advantage of TS is its ability to balance the trade-off between
exploration and exploitation, improving the diversity of the recommendation list. The sampling and
selection process is:

su,v ∼ gu(v), ∀v ∉ Iu, (15)
Ru = Top-N(su,v), (16)

where su,v is the value for item v from user u’s sampled function, and Ru is the final list of retrieved
items for user u.

The second method is Upper Confidence Bound (UCB), a deterministic method that selects items
based on their estimated rewards and uncertainties [14, 28]. For each item v, we compute its upper
confidence bound by adding the mean and a confidence interval derived from the variance of the
posterior gu(v); items are ranked using these upper bounds. Unlike TS, UCB tends to aggressively
promote items with a high degree of posterior uncertainty, giving a different flavor of diversity in the
recommendation list. The selection process is:

bu,v = ḡu(v) + β ⋅
√

var[gu(v)], ∀v ∉ Iu, (17)
Ru = Top-N(bu,v), (18)

where bu,v is the upper confidence bound for v w.r.t. u’s posterior, and β is a hyper-parameter that
adjusts the exploration-exploitation trade-off. Ru is the final retrieval list.

A.3 Pretraining Strategies

Necessity of Pretraining Item Embeddings with Auxiliary Loss on Categories. Without augment-
ing the pre-training loss with categorical information as in Eq. 5, the resulting pre-trained embeddings
do not respect category consistency. To illustrate this, we compare pre-trained embeddings with and
without categorical information (on MovieLens) and show the results in Fig. 6.

We observe that, without categorical constraints, the learned embeddings do not align with the
categories. There are still overlap between categories (genres) since each movie may belong to
multiple genres. Hence, incorporating an auxiliary training loss based on item categories is essential
for interest-coverage analysis based on the embeddings.

Sensitivity to Different Pretraining Strategies. In this work, we use pretrained embeddings for
our multi-interest user representation. To ensure a fair comparison, we use the same pretrained
embeddings in all other models we compared. To test the impact of the embeddings on performance,
we add experiments with other pretraining settings. Specifically, we obtain embeddings using matrix
factorization (MF) and using YoutubeDNN with varying history lengths. We use the Amazon dataset
as an example and measure performance at top-50. The observation is similar on the other two
datasets. Other experiment settings are the same as presented in the paper. We use the learned

16

52583https://doi.org/10.52202/079017-1666

Figure 6: The t-SNE plot for pretrained item embeddings on the MovieLens dataset with and without
using auxiliary loss on category information.

Table 5: Performance comparison of different pretraining settings on various metrics. ⇑ indicates the
higher the better; ⇓ indicates the lower the better.

Pretraining setting Retrieval Task Ranking Task
IC@50 ⇑ IR@50 ⇑ ED@50 ⇓ TEI@50 ⇑ Recall@50 ⇑ nDCG@50 ⇑

MF ComiRec 0.684 0.417 0.523 -0.124 0.865 0.851
GPR4DUR 0.887 0.527 0.501 -0.052 0.882 0.871

YoutubeDNN ComiRec 0.709 0.460 0.502 -0.071 0.878 0.870
(max user history=20) GPR4DUR 0.893 0.552 0.426 -0.056 0.892 0.913

YoutubeDNN ComiRec 0.710 0.463 0.493 -0.040 0.887 0.900
(max user history=50) GPR4DUR 0.895 0.560 0.423 -0.039 0.908 0.922

YoutubeDNN ComiRec 0.711 0.465 0.490 -0.039 0.890 0.901
(max user history=100) GPR4DUR 0.896 0.562 0.423 -0.037 0.910 0.925

embeddings with both ComiRec (one of the strongest baselines) and our GPR4DUR. The results,
shown in Table 5, demonstrate that embeddings from YoutubeDNN outperform those from MF
and that longer history leads to better performance. These results highlight the effectiveness and
robustness of our proposed method across different pretraining settings.

A.4 Dataset Statistics

The statistics of the three datasets, Amazon [35], MovieLens [16], and Taobao3, is shown in Table 6.
We report the number of users, number of items, number of total interactions, and density of the three
datasets, respectively.

A.5 Hyperparameter Settings and Sensitivity Analysis for GPR Parameter Tuning

In short, we constantly use the radial basis function (RBF) kernel on different datasets due to its
superior performance, where σ is unique for each dataset.

The kernel function, k, is tuned from the cosine similarity kernel and the RBF kernel. For the RBF
kernel, the standard deviation σ is tuned from {1e−2, 1e−1, 1, 10, 100}. For each dataset, we report
one metric on the retrieval task and one metric on the ranking task, both evaluated at the top-50. The
trend on other metrics is similar.

As shown in Table 7, we observe that the RBF kernel outperforms the cosine similarity kernel across
various datasets and metrics because it better captures non-linear relationships and offers flexibility
by mapping inputs into an infinite-dimensional space. Additionally, the σ parameter in the RBF
kernel influences model performance—a larger σ yields smoother functions for better generalization
over distances, while a smaller σ detects finer data variations. Dataset-specific optimal σ values
correlate with data sparsity. MovieLens’s high density demands a smaller σ to avoid overfitting due

3https://tianchi.aliyun.com/dataset/649?lang=en-us

17

52584 https://doi.org/10.52202/079017-1666

https://tianchi.aliyun.com/dataset/649?lang=en-us

Table 6: The statistics of datasets.
User # Item # Interac. Density

Amazon 6,223 32,830 4M 0.18%
MovieLens 123,002 12,532 20M 1.27%
Taobao 756,892 570,350 70M 0.01%

Table 7: Hyperparameter Settings and Sensitivity Analysis for GPR Parameter Tuning.

GPR Parameters Amazon MovieLens Taobao
IC@50 ⇑ Recall@50 ⇑ IC@50 ⇑ Recall@50 ⇑ IC@50 ⇑ Recall@50 ⇑

Cosine 0.809 0.874 0.940 0.710 0.518 0.870
RBF (σ = 1e

−2) 0.822 0.877 0.963 0.727 0.536 0.872
RBF (σ = 1e

−1) 0.883 0.892 0.974 0.730 0.587 0.885
RBF (σ = 1) 0.895 0.908 0.957 0.725 0.591 0.887
RBF (σ = 10) 0.887 0.889 0.954 0.723 0.601 0.906
RBF (σ = 100) 0.890 0.890 0.954 0.721 0.592 0.899

to capturing detailed variations. In contrast, Taobao’s low density necessitates a larger σ for greater
generalization, with Amazon’s intermediate sparsity requiring a moderate σ for optimal performance.

A.6 Ablation Analysis on Different Clustering Options

In this section, we provide the ablation analysis on using various clustering algorithms and different
number of clusters on the Taobao dataset. Following paper [49], we have selected four distinct
clustering algorithms for our comparative analysis: (i) Ward [50]: This hierarchical clustering
technique focuses on minimizing the variance within each cluster, effectively reducing the overall
sum of squared distances across all clusters. (ii) K-Means [51]: An iterative clustering algorithm that
aims to minimize the sum of squared distances from each data point to the centroid of its assigned
cluster, thereby reducing in-cluster variance. (iii) Spectral Clustering [52]: This method performs
clustering based on the eigenvectors of the normalized Laplacian, which is computed from the
affinity matrix, facilitating the division based on the graph’s inherent structure. (iv) BIRCH [53]: A
hierarchical clustering approach that efficiently processes large datasets by incrementally constructing
a Clustering Feature Tree, which groups data points based on their proximity and other features.

A notable deviation from paper [49] is in our handling of categories (interests) for training and
inference phases; we maintain consistency in categories across both phases, in contrast to their
separate categorization. We further refine our analysis by tuning the number of clusters from 10, 20,
and 50.

Result and analysis. The results presented in the Table 8 indicate a nuanced understanding of the
impact of clustering algorithms and the number of clusters on retrieval and ranking tasks in infor-
mation retrieval systems. Across the board, the differences among the clustering algorithms—Ward,
K-Means, Spectral, and BIRCH—are relatively small, suggesting that the choice of clustering algo-
rithm might not be as critical as the configuration of the number of clusters within these algorithms
for the tasks at hand.

Notably, as the number of clusters increases from 10 to 20 and then to 50, there is a general trend of
improvement in performance metrics. This improvement could be attributed to the algorithms’ ability
to capture more fine-grained user interests through a larger number of clusters, thereby enhancing
both retrieval accuracy and ranking precision.

However, the marginal differences observed between the configurations of 20 and 50 clusters across
all metrics indicate diminishing returns on further increasing the number of clusters beyond 20. This
observation suggests that while increasing the number of clusters to 20 contributes to significant
improvements, escalating to 50 clusters does not yield proportionally higher gains. Consequently, this
study opts for a configuration of 20 clusters as the optimal balance between performance improvement
and computational efficiency. The relatively stable standard deviations across different configurations

18

52585https://doi.org/10.52202/079017-1666

Table 8: Result comparison on Taobao dataset using different cluster options. The Interest Coverage
(IC) metric is omitted from this report as its value is significantly influenced by the chosen number of
clusters, rendering it less relevant for comparative purposes. All reported metrics are evaluated at the
top-50. ⇑ indicates the higher the better; ⇓ indicates the lower the better.

Num of
clusters

Retrieval Task Ranking Task
IR@50 ⇑ ED@50 ⇓ TEI@50 ⇑ Recall@50 ⇑ nDCG@50 ⇑

Ward
10 0.602 ± 0.012 0.385 ± 0.011 -0.055 ± 0.001 0.892 ± 0.013 0.920 ± 0.012
20 0.624 ± 0.011 0.367 ± 0.011 -0.040 ± 0.001 0.906 ± 0.012 0.936 ± 0.011
50 0.625 ± 0.011 0.365 ± 0.011 -0.041 ± 0.001 0.906 ± 0.012 0.938 ± 0.011

K-Means
10 0.590 ± 0.013 0.392 ± 0.011 -0.060 ± 0.001 0.885 ± 0.013 0.912 ± 0.012
20 0.615 ± 0.012 0.370 ± 0.011 -0.045 ± 0.001 0.900 ± 0.012 0.928 ± 0.012
50 0.620 ± 0.011 0.368 ± 0.011 -0.046 ± 0.001 0.904 ± 0.012 0.930 ± 0.011

Spectral
10 0.605 ± 0.012 0.382 ± 0.011 -0.053 ± 0.001 0.895 ± 0.013 0.923 ± 0.012
20 0.625 ± 0.011 0.366 ± 0.011 -0.039 ± 0.001 0.908 ± 0.012 0.937 ± 0.011
50 0.624 ± 0.011 0.364 ± 0.011 -0.039 ± 0.001 0.909 ± 0.011 0.936 ± 0.012

BIRCH
10 0.580 ± 0.013 0.395 ± 0.012 -0.065 ± 0.002 0.880 ± 0.014 0.910 ± 0.013
20 0.610 ± 0.012 0.372 ± 0.011 -0.050 ± 0.001 0.899 ± 0.012 0.926 ± 0.012
50 0.610 ± 0.011 0.370 ± 0.011 -0.051 ± 0.001 0.902 ± 0.012 0.928 ± 0.011

Table 9: Latency and performance comparison across models on the Taobao dataset, which contains
570K items. Training and inference latencies are measured in millisecond (ms). Standard deviation is
shown in parentheses. We see that the cost of inference is on par with other methods.

YoutubeDNN GRU4Rec BERT4Rec gSASRec MIND ComiRec CAMI PIMI REMI GPR4DUR (Ours)

Train
(std)

153.08
(1.93)

262.28
(1.20)

926.36
(82.39)

492.10
(25.63)

552.37
(15.50)

575.51
(67.32)

602.38
(84.31)

611.36
(73.02)

732.16
(32.97)

932.00
(16.27)

Inference
(std)

1.03
(0.76)

1.44
(0.81)

49.28
(21.47)

20.05
(42.07)

18.62
(52.25)

18.89
(54.57)

38.24
(43.18)

40.57
(39.65)

49.27
(56.33)

63.67
(26.38)

IR@50 0.529 0.533 0.557 0.552 0.552 0.561 0.573 0.566 0.540 0.624
Recall@50 0.875 0.873 0.883 0.884 0.872 0.886 0.891 0.886 0.889 0.906

further support the robustness of our findings, emphasizing the consistency of the performance
improvements achieved with an increased number of clusters up to a certain point.

A.7 Latency and Performance Comparison

We show the efficiency comparison (with the performance comparison) across models in Table 9.
For a fair comparison, we run all experiments on a single NVIDIA A100 GPU with TensorFlow
framework (version 1.12) without any further optimization on the computation. We choose the
Taobao dataset and set the batch as 1.

Result and analysis. In examining the efficiency of various recommendation models, notable
differences in training and inference times highlight the diverse computational demands across these
models. Models like YoutubeDNN and GRU4Rec present a more efficient profile, offering lower
latency during both training and inference phases, while perform the worst on the retrieval and
ranking tasks. The variability in model efficiency, as seen in the standard deviations of training and
inference times, indicates a potential fluctuation in latency that could impact real-world deployment.
Our proposed model, GPR4DUR, stands out with its superior performance on the retrieval task
(e.g., measured by interest-wise relevance, IR@50) and the ranking task (e.g., measured by recall,
Recall@50). This suggests that for applications valuing enhanced retrieval and ranking accuracy,
the trade-off of increased latency is acceptable. Additionally, GPR4DUR exhibits a low standard
deviation in its timing metrics. This consistency in processing times is advantageous for online
deployment. It offers a predictable performance, which is crucial for developers when balancing
between model efficiency and effectiveness.

Conclusively, GPR4DUR, along with the other baseline models evaluated, meets the latency require-
ments for online application without the need for additional computational and serving optimizations.
While GPR4DUR exhibits a higher time cost relative to some baselines, its performance improvement
offers a compelling advantage.

19

52586 https://doi.org/10.52202/079017-1666

Table 10: Result comparison between GPR4DUR and generative recommendation methods that also
consider uncertainty. Here we use the Amazon dataset as an example to report the results and we
confirm the observation is similar on the other two datasets. ⇑ indicates the higher the better; ⇓
indicates the lower the better.

Model Retrieval Task Ranking Task
IC@50 ⇑ IR@50 ⇑ ED@50 ⇓ TEI@50 ⇑ Recall@50 ⇑ nDCG@50 ⇑

VAECF 0.783 0.482 0.546 -0.082 0.909 0.913
DiffuRec 0.834 0.540 0.442 -0.057 0.892 0.916
DREAM 0.812 0.521 0.460 -0.091 0.889 0.917
GPR4DUR 0.895 0.560 0.423 -0.039 0.908 0.922

A.8 Comparison with Generative Recommendation Methods

We note that some generative recommendation methods also consider user uncertainty, making
them potential candidates for comparison with our method. These methods include VAECF [54],
which assumes a distribution over user/item representations, and more recently diffusion-based
recommendation models, DiffuRec [55] and DREAM [56]. We do not compare them in the main
paper due to (i) different design purpose: these methods are not designed for multi-interest retrieval,
which is the focus of this work, and (ii) different model family: VAECF is a parametric model while
our model is non-parametric, and diffusion-based methods require an entirely different training
procedure and sampling strategies.

To still satisfy this curiosity, we present a comparison between GPR4DUR and the generative
recommendation methods on the Amazon dataset for both the retrieval task and ranking task. As
shown in Table 10, the results still confirm the effectiveness of our model.

A.9 Limitations and Future Work

In Sec. 4.5, we discussed methods to reduce the time complexity of traditional Gaussian Process
Regression (GPR). Despite these efforts, the training and inference times presented in Table 9 remain
slightly higher than those of recent state-of-the-art methods. Further improving the efficiency of our
approach would be an intriguing area for future research.

Moreover, the integration of collaborative Gaussian processes offers a promising avenue. Currently,
our model focuses primarily on personalization, using other users only for tuning GPR hyperparame-
ters. We hypothesize that leveraging collaborative learning techniques, such as those described in
[57], could significantly enhance the performance and effectiveness of our method.

A.10 Broader Impacts

The application of Gaussian Process Regression (GPR) for user modeling in recommendation systems
has both positive and negative societal impacts. Below, we outline these impacts in detail.

Positive Societal Impacts. Our approach, GPR4DUR, aims to significantly enhance the personal-
ization and efficiency of recommender systems. By effectively capturing the diverse and dynamic
interests of users, GPR4DUR can improve user satisfaction and engagement across various online
platforms. This could lead to more tailored content delivery, helping users find relevant and interest-
ing content more quickly and reducing information overload. Furthermore, the uncertainty-aware
nature of our method allows for better exploration-exploitation balance, potentially uncovering niche
interests and underrepresented content that users might find valuable. This can promote diversity and
inclusivity in content consumption, providing a wider range of options to users.

Negative Societal Impacts. Despite these positive aspects, there are potential negative societal
impacts associated with the deployment of our method. One major concern is the potential for
reinforcing existing biases in recommendation systems. If the training data reflects societal biases,
GPR4DUR might inadvertently perpetuate these biases, leading to unfair treatment of certain user
groups. Additionally, the improved personalization capabilities might increase the risk of creating
filter bubbles, where users are only exposed to content that reinforces their existing preferences,
limiting their exposure to diverse viewpoints.

20

52587https://doi.org/10.52202/079017-1666

Another potential issue is privacy. As GPR4DUR leverages detailed user interaction histories to
model preferences, there is a risk of sensitive information being inferred or misused. Ensuring robust
data protection and adhering to privacy standards is crucial to mitigate this risk.

Mitigation Strategies. To address these potential negative impacts, several mitigation strategies
can be employed. Firstly, implementing fairness-aware algorithms that explicitly account for and
mitigate biases during model training can help ensure equitable recommendations across different
user groups. Secondly, incorporating mechanisms to introduce serendipity in recommendations can
counteract filter bubble effects, exposing users to a broader range of content. Lastly, adhering to strict
data privacy regulations and employing advanced anonymization techniques can safeguard user data
and privacy.

Overall, while GPR4DUR has the potential to significantly improve user modeling and personalization
in recommender systems, careful consideration and implementation of mitigation strategies are
essential to address its broader societal impacts.

21

52588 https://doi.org/10.52202/079017-1666

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The key experiments are summarized in the abstract. The principal contribu-
tions are clearly stated in the end of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this study are discussed in Appendix A.9.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22

52589https://doi.org/10.52202/079017-1666

Justification: This study does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code of this study is available at https://github.com/haolun-wu/GPR4DUR/.
All implementation details are provided in Sec. 5.2, Appendix A.3, and Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

52590 https://doi.org/10.52202/079017-1666

https://github.com/haolun-wu/GPR4DUR/

Answer: [Yes]

Justification: The code of this study is released at https://github.com/haolun-wu/GPR4DUR/.
We provide a detailed README to describe how to reproduce the main results of this study.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All implementation details are provided in Sec. 5.2, Appendix A.3, and
Appendix A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As elaborated in Table 1 and also in the main text, our model has a statistical
significance for p ≤ 0.01 compared to the strongest baselines (labelled with *) based on the
paired t-test.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

52591https://doi.org/10.52202/079017-1666

https://github.com/haolun-wu/GPR4DUR/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the information of computational resources and execution time in
Appendix A.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this study are discussed in Appendix A.10.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

52592 https://doi.org/10.52202/079017-1666

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This study poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited all benchmarks used in this study.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

26

52593https://doi.org/10.52202/079017-1666

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This study does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

52594 https://doi.org/10.52202/079017-1666

