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Abstract

Large language models (LLMs) have demonstrated remarkable efficacy across
knowledge-intensive tasks. Nevertheless, their untapped potential in crop science
presents an opportunity for advancement. To narrow this gap, we introduce CROP3,
which includes a novel instruction tuning dataset specifically designed to enhance
LLMs’ professional capabilities in the crop science sector, along with a benchmark
that serves as a comprehensive evaluation of LLMs’ understanding of the domain
knowledge. The CROP dataset is curated through a task-oriented and LLM-human
integrated pipeline, comprising 210,038 single-turn and 1,871 multi-turn dialogues
related to crop science scenarios. The CROP benchmark includes 5,045 multiple-
choice questions covering three difficulty levels. Our experiments based on the
CROP benchmark demonstrate notable enhancements in crop science-related tasks
when LLMs are fine-tuned with the CROP dataset. To the best of our knowledge,
CROP dataset is the first-ever instruction tuning dataset in the crop science domain.
We anticipate that CROP will accelerate the adoption of LLMs in the domain of
crop science, ultimately contributing to global food production.

1 Introduction

Crop cultivation has posed a consistent and enduring challenge throughout human history. Never-
theless, the ability to guarantee an ample harvest remains uncertain due to various factors, such as
weather conditions, regional disparities, and the prevalence of pests and diseases [59, 64]. Without
prompt measures, these factors can result in reduced agricultural output, food shortages, and even
widespread hunger, particularly in underdeveloped nations [24]. Consequently, it is essential to
leverage technological advancements for grain practitioners to enhance production to combat hunger
and achieve global food security [25, 26].

Recently, the field of artificial intelligence and natural language processing (NLP) has witnessed
rapid advancements in large language models (LLMs) [7, 10, 8]. With instructions, LLMs can
generate contexts with professional knowledge regarding users’ enquires [34], leading to notable
achievements and practical applications in various sectors, including legal consulting [18, 23], clinical
management [58, 40], etc. In the realm of crop science, LLMs have been investigated in addressing
agricultural-related exam questions [55], rendering the opportunity to harness LLMs to improve grain
production. Despite the overall acceptable outcomes, LLMs struggle to perform well in specific crop
science scenarios, such as pest management [66]. In addition, the agriculture-related exam datasets
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C Liangyou 7 has been approved by multiple provinces including Hunan, Jiangxi, Hubei, Anhui, 
and Jiangsu, and has a wide range of ecological adaptability, which can be widely promoted 
and planted in the middle and lower reaches of the Yangtze River. The suitable planting areas 
include:
1. Hunan Province: As a late-season rice variety, it can be promoted in regions such as central, 
northern, and southern Hunan;
2. Jiangxi Province: Can be promoted in Ganzhou, Yichun, Nanchang, Ji’an, and other places;
3. Hubei Province: Can be promoted in areas such as the Jianghan Plain, Jingmen, and Xiaogan;
4. Anhui Province: Can be promoted in rice-growing regions such as southern Anhui;
5. Jiangsu Province: Can be promoted in the southern and central regions of Jiangsu; 
In short, the promotion and utilization prospects of C Liangyou 7 are broad.

What are the suitable planting areas for China’s rice “C Liangyou 7”?
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Base 
Model[The answer is Incorrect and Incomplete. 😐]

CROP 
Model

CROP Dataset
Rice (EN & ZH) Corn (EN & ZH)

[The answer is correct and complete! 😀]

Closed-book Q&A

Summary

NER

Open-book Q&A

Event Extraction

Multi-turn Q&A

Closed-book Q&A

Summary

NER

Open-book Q&A

Event Extraction

Multi-turn Q&A

[The question is professional. 🤔]

CROP Benchmark
High

Accuracy

CROP 
Dataset

Figure 1: Schematic overview of an intended use case. By fine-tuning a base LLM using the proposed
CROP dataset, we obtain a new version whose answer becomes more accurate and comprehensive,
which is validated by the proposed CROP benchmark objectively.

used for evaluation, including CCA [2], Embrapa [3], and Agri Exam [1], are not comprehensive
in terms of both quantity and locality. Consequently, LLMs are not ready to serve as practical crop
science assistants yet.

To harness the full potential of LLMs for crop science, we propose a suite called CROP, which
encompasses 1) an extensive instruction tuning dataset, designed to enhance the domain-specific
proficiency of LLMs in crop science. 2) a meticulously constructed benchmark, aimed at assessing
the performance of LLMs across a variety of domain-related tasks.

For the CROP dataset, we chose two primary crops, rice, and corn, as they are vital in maintaining
worldwide food safety [43, 29]. We collect 290 professional books and 62K research papers in
English (EN) and Chinese (ZH), covering six continents on Earth. These materials result in over
210K single-turn and multi-turn dialogues on various scenarios of crop science, such as crop variety
selection, resource management, pest control, etc. The CROP benchmark includes more than 5K
bilingual multiple choice questions (MCQs) in three difficulty levels, derived from over 2K extra
academic papers relevant to crop science research. As depicted in Figure 1, utilizing CROP dataset
enables LLMs to produce more professional responses to the queries of crop practitioners.

Our core contributions can be summarized as follows:
An instruction tuning dataset on crop science. We construct a pioneering, domain-specific in-
structional tuning dataset tailored for crop science. CROP dataset provides a rich, context-specific
resource for training LLMs, leading to more accurate and relevant responses for crop farming issues.
A benchmark on crop science. We develop a new benchmark to evaluate LLMs’ performance
in crop-related tasks. CROP benchmark exceeds prior benchmarks in both quantity and regional
coverage, facilitating a more thorough evaluation of LLMs’ proficiency in crop science.
Comprehensive experiments and analysis. Through extensive experiments, we observe an av-
erage accuracy improvement of 29% in selected LLMs after fine-tuning with the CROP dataset,
demonstrating the effectiveness of our proposed dataset.

2 Dataset Collection

For the CROP dataset, we intend to propose a highly automated data generation pipeline targeting
knowledge-intensive scenarios in crop farming practices. A knowledge-intensive scenario is defined
as a situation or process that necessitates a substantial amount of specialized knowledge, expertise,
and comprehension [42]. Managing microclimates in protected cultivation or understanding pest life
cycles for crop protection exemplify such cases in crop science. Dataset generation is LLM-centric
with concentrated human intervention incorporated at crucial junctures. If not otherwise indicated, the
LLM utilized in this paper is fixed to be GPT-4 [7]. The whole data generation process, as depicted
in Figure 3, is a series of transformations that converts raw digital documents to the final dialogue
collection. We create a universal mechanism for dialogue task design and develop separate pipelines
for the generation of single-turn and multi-turn dialogues.
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Figure 3: Schematic overview of the dialogue collection procedure. Raw data is first converted to
TXT or XLS format using text extraction tools. We then prompt an LLM to either directly generate
Q&As from unstructured data or design templates that further transform structured data into dialogue
format. After additional filtering steps with both human and LLM involved, we get the CROP dataset.
Solid lines represent input/output, and dashed lines indicate operation.

2.1 Data Source

We strive to ensure that our raw data originates from a wide range of sources, covering most
knowledge-intensive application scenarios in the crop science domain. The raw data in the unstruc-
tured format, encompasses research papers, professional books, and corporate reports. In addition,
we include human-generated structured raw data, which describes various information about different
types of cereals. More details are shown in Section 3.2.

2.2 Task Design

We present a framework that synthesizes the expertise of researchers and domain specialists to
enhance the task design process. For single-turn dialogues, task types can be either general or
domain-specific, with each type compromising specified tasks. For multi-turn dialogues, tasks are
defined through a consecutive process that first identifies recommended scenarios and subsequently
determines concrete tasks. Tasks in both single-turn and multiple-turn dialogues are designed with an
emphasis on practical applicability. Task composition is shown in Figure 2. An in-depth explanation
of the task design procedure is shown in Appendix J.1, with examples and mathematical formulations.
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2.3 Single-turn Q&A

The raw data comes in a variety of structured and unstructured formats. For unstructured raw data,
as shown in Figure 3, we choose appropriate text extraction tools for the conversion of document
format as the initial step. The information extracted, saved in TXT format, was further refined,
ensuring the preservation of specialized knowledge and standardization of the text format. LLM is
then utilized to construct single-turn dialogues for a broad spectrum of tasks, using the cleaned texts
and task-dependent prompts. For structured raw data, we employ templates generated by the LLM to
convert information stored in XLS files into the dialogue format.

For unstructured data, the prompt for the LLM, regardless of tasks, comprises four components:
Role Description, Reference Text, Guidelines, and Example Dialogue. This structure adheres to the
“Persona-Task-Context-Format” rule as suggested by “Prompting Guide 101” [30]. Role Description
employs role-play prompting [36], a widely used approach for enhancing prompt effectiveness. We
further refine the method by making the assigned role context-adaptive. Reference Text contains
the context depending upon which Q&A pairs are generated. Guidelines consist of detailed, task-
dependent restrictions. In addition, we incorporate XML tags and a one-shot demonstration example,
applying techniques from “Anthropic User Guides” [11]. We anticipate all generated pairs to exhibit
deterministic bias and be strictly constrained in patterns. Examples of prompt-generation pairs are
shown in Appendix J.2.

2.4 Multi-turn Q&A

In CAMEL [38], a framework for conversation generation for tasks in the problem-solving scenario
is proposed. Considering the practice-oriented nature of our intended use cases, we propose a
domain-adapted version, as depicted in Figure 4. Domain experts first suggest common application
scenarios. For each scenario, an LLM then generates several tasks and assigns a role pair, consisting
of an assistant role and a user role, for each task. Dialogues are then generated in a multi-agent
setting where the assistant role and the user role are assigned to a user agent and an assistant agent
correspondingly to complete a designated task. The prompts for both agents (LLMs) are shown in
Appendix J.3. Given the knowledge-intensive nature of covered tasks, we use Retrieval-Augmented
Generation (RAG) to enhance the performance of both agents [69].

Given the role pair and task, an assistant agent A and a user agent U engage in a dialogue to
collaboratively achieve a goal. The user poses queries, and the assistant is expected to provide
responses that address these queries. We denote the query from the user at time t as qt and the
response from the assistant as rt. The collection of dialogue messages up to time t can be represented
as dt = {(q0, r0), · · · , (qt, rt)}.
Specifically, the first query q0 is sampled from a probability distribution over queries Q0, given a
context cθ that RAG retrieved based on task θ:

Q0 ∼ PU (q0|cθ) (1)

At the time step t+ 1, U takes the historical dialogue message set dt and an RAG-retrieved context
cdt

to provide a new query qt+1, sampled from a probability distribution over queries Qt+1:

Qt+1 ∼ PU (qt+1|dt, cdt
) (2)

The new query Qt+1, along with the dialogue set dt and RAG-retrieved context cdt∪{qt+1}, is then
passed to A, who responds with a message rt+1, sampled from a probability distribution over
responses Rt+1:

Rt+1 ∼ PA(rt+1|dt, qt+1, cdt∪{qt+1}). (3)

After obtaining the response rt+1 to the query qt+1, the dialogue set is updated:

dt+1 = dt ∪ {(qt+1, rt+1)}. (4)

The above formulation models a dynamic and interactive dialogue that evolves over time. While this
novel framework introduces RAG-retrieved content to refine generations to be context-dependent, this
additional content can be highly customized depending on specific use cases. This new mechanism
enhances interpretability, providing fresh insights for building a more predictable and controllable
generation system.

4
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Figure 4: Schematic overview of the multi-turn dialogue dataset collection procedure. An LLM
creates tasks under the guidance of domain experts and assigns roles to two agents. Using task-
dependent prompts from researchers, the LLM generates dialogues with RAG. Additional filtering
steps are then conducted. Solid lines represent input/output, while dashed lines indicate operation.

2.5 Filtering

To ensure the quality of generated Q&A pairs, we conduct two stages of evaluation and filtering, with
both LLMs and human domain experts involved.

In the first stage, an LLM functions as a grader, quantifying the quality of each generated pair based
on pre-defined metrics. For single-turn Q&A, we focus on correctness, professionalism, and richness.
For multi-turn Q&A, we prioritize coherence, consistency, and specificity. For each task, let P be
the set of all generated Q&A pairs, with |P | = N . We first create two permutations D1 and D2 of
P , each containing N pairs in a random order. Each permutation Di is further split into groups of 4
pairs in order:

Di = {Gi1, Gi2, . . . , Gim},m =

⌈
N

4

⌉
. (5)

For each group Gij , an LLM ranks the pairs based on the quality metrics and retains the top two,
resulting in Topij = SelectTop2(Gij). Let R1 and R2 be the sets of retained pairs after ranking in
D1 and D2 respectively. The final set of selected pairs R are those retained in both permutations:

R1 =

m⋃
j=1

Top1j , R2 =

m⋃
j=1

Top2j , R = R1 ∩R2. (6)

The second stage of evaluation and filtering involves only human experts, further enhancing the
quality of the dataset. More details are shown in Appendix F.

3 Dataset Analysis

Our CROP dataset focuses on rice and corn, comprising single-turn and multi-turn dialogues.

3.1 Basic Statistics

The single-turn dialogues comprise 210,038 high-quality samples, while the multi-turn dialogues
include 1,871 high-quality samples. Each task within the multi-turn dialogues possesses a minimum
of 80 samples, showcasing the dataset’s superiority. In terms of grain species, the CROP dataset
contains 140,056 dialogue samples for rice and 69,482 for corn. For more detailed compositions,
please refer to Appendix Tables 4 and 5.

3.2 Diversity

We demonstrate that our dataset is diverse in terms of:

5
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Data Source. The data source distribution is diverse for both rice and corn. For the rice part, we use
40,078 research papers from the Web of Science [6], 186 professional books 4, 645 crop enterprise
reports, and human-generated structural data of 5,990 rice species, containing their characteristic
information such as rice blast grade and suitable cultivation area. For the corn part, we use 22,056
research papers, 104 professional books, and 1,841 crop enterprise reports.

Geographic Diversity. In our dataset, the sources and cultivation areas of different types of grains
originate from various regions of the world. For example, we record Japan if an article introduces
a certain grain that was first cultivated in Japan; we record China if an article discusses whether a
particular region in China is suitable for grain cultivation. For rice and corn, our data involves 33
and 43 countries across six continents respectively. All geographical regions involved are shown in
Appendix Table 6 and 7.

Content Length. We conduct a statistical analysis of the content length measured by token counts
(using the official GPT-4 tokenizer) regarding grain species, languages, and tasks in the single-turn
dialogue dataset. The results are illustrated in Appendix Table 8. Of all the tasks, closed-book Q&A
(CQA) has the shortest average length at 128 tokens, while the summary task has the longest average
length at 446 tokens. The average lengths of rice and corn samples show no significant variation.
As for language perspective, the Chinese samples are considerably longer, approximately twice the
length of the English samples. In the multi-turn dialogue dataset, most samples are of 4 rounds (85%),
with a small portion (15%) of 3 or 5 rounds, shown in Appendix Figure 8.

Content Distribution. We focus on the content distribution of the domain Q&A set (including
closed-book and open-book Q&A) which mainly consists of professional knowledge and then found
that it encompasses a diverse range of topics. For Chinese Q&A samples, topics cover maize (corn)
breeding, hybrid rice, growth characteristics, etc. For English Q&A samples, topics include selection,
resistance, maize (corn), etc. More details are provided in Appendix Figure 9 and 10, which illustrate
the information cartography of the Chinese and English Q&A samples respectively.

4 Benchmark

To quantitatively evaluate the performance of both commercial LLMs and cutting-edge open-source
LLMs fine-tuned with the CROP dataset, we present the CROP benchmark. To avoid disputes arising
from subjective questions, our benchmark consists of only MCQs, with a label of difficulty level
(easy, moderate, difficult) assigned to each.

4.1 Data Source

Additionally, we select 4,018 literature articles in both Chinese and English, on rice and corn for the
generation of benchmarks, distinct from the literature used to construct the CROP dataset. To ensure
the data source quality, all literature articles are downloaded from the Web of Science [6].

4.2 Pipeline Design

Q&A pairs, utilized for benchmarking objectives, are not generated in the same manner as CROP
dataset that employs a task-oriented pipeline. We abstain from incorporating directives from re-
searchers and domain experts, or from defining specific tasks beforehand, instead allowing the model
to independently determine the actual format and content of the Q&A pair. By imposing fewer
constraints, we intend to furnish a benchmark that facilitates a comprehensive evaluation of an LLM’s
capabilities for domain-knowledge tasks, thereby benefiting the broader community.

Using the same pre-processing method as the dataset, we convert the initial PDF files into TXT
format and feed them into GPT-4 to generate Q&A pairs. Specifically, our prompts are tailored to
closed-book MCQ generation because we prioritize a model’s knowledge retrieval capability. The
prompt for generating the benchmark dataset is provided in Appendix J.4, The content of Q&A pairs
is related to the knowledge of crop science. Specifically, to ensure the fairness and quality of the

4Professional books, crop enterprise reports, and human-generated structural data are provided by Yazhouwan
National Laboratory and China Agricultural University.

6

52675https://doi.org/10.52202/079017-1669



Figure 5: Benchmark pipeline overview. We prompt an LLM to generate MCQs from TXT files.
After additional filtering steps with both human and LLM involved, we get the CROP benchmark,
comprising three difficulty levels.

benchmark, we impose restrictions on their generation, including equal lengths and a certain level
of differentiation in content. From a corpus of over 2,000 articles, we extract over 6,000 MCQs.
To ensure the quality of MCQs, we conduct manual screening and select 5,045 MCQs as the final
benchmark, which are subsequently categorized according to difficulty levels.

4.3 Difficulty Specification

Table 1: Proportion of Difficulty.

Level Count Proportion

Easy 1,613 31.97%
Moderate 2,754 53.72%
Difficult 722 14.31%

We classify the 5,045 questions in the benchmark into three
difficulty levels: easy, moderate, and difficult, using GPT-4
and GPT-3.5. Easy questions are those both models answered
correctly, moderate questions are those answered correctly
only by GPT-4, and difficult questions are those answered
incorrectly by GPT-4. The statistics are shown in Table 1.

4.4 Topic Distribution

We conduct a statistical analysis of the content distribution in the CROP benchmark. For corn-
related MCQs, the most frequently occurring topics are corn variety, biological characteristics, and
genetics of corn. For rice-related MCQs, the most frequently occurring topics are hybrid rice, rice
characteristics, and pests and diseases. We represent the main topics of our benchmark in Appendix
Figure 11, which almost cover topics that are currently of concern to experts in the crop science
domain. This illustrates the practical value of the CROP benchmark.

4.5 Benchmark Comparison

We compare our benchmark with other evaluation benchmarks in the crop science domain. CROP
benchmark consists of 5045 Chinese and English MCQs and covers 22 countries across six continents,
surpassing existing agriculture-related question databases[1, 2, 3] in terms of language types, size,
and geographic coverage. Details are presented in Appendix I.2.

5 Experiments

We employ the CROP benchmark to evaluate the performance of currently accessible LLMs and
conduct a comprehensive analysis.

5.1 Model Selection

The LLMs we benchmarked can be divided into two groups: 1) Commercial LLMs: this group
comprises GPT-3.5 [15], GPT-4 [7], Claude-3 [10], and Qwen [12], all accessible via their API service.
2) Open-source LLMs: this group contains LLaMA3-8B [8], Qwen1.5-7B [12], and InternLM2-
7B [16], as well as their fine-tuned versions on CROP dataset. We provide training details of
open-source LLMs in Appendix K.

7
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Table 2: Performance of selected LLMs on the CROP benchmark. We indicate the accuracy changes
of the fine-tuned LLMs compared to the base models in blue, where the accuracy has generally
improved when the CROP dataset is used in fine-tuning.

Model Access Size Overall ↑ Difficulty

Easy ↑ Moderate ↑ Difficult ↑
Commercial LLMs

GPT-41 API N/A 0.856 1.0002 1.0002 0.0002

GPT-3.51 API N/A 0.328 1.0002 0.0002 0.061
Claude-31 API N/A 0.900 0.982 0.968 0.458

Qwen1 API N/A 0.866 0.987 0.945 0.301

Open-source LLMs
LLaMA3-Base Weights 8B 0.348 0.443 0.341 0.161

+CQIA Weights 8B 0.643 (+0.295) 0.791 (+0.348) 0.651 (+0.310) 0.281 (+0.120)
+CROP Weights 8B 0.752 (+0.404) 0.866 (+0.432) 0.772 (+0.431 0.378 (+0.217)

+CQIA+CROP Weights 8B 0.754 (+0.406) 0.918 (+0.475) 0.779 (+0.438) 0.295 (+0.134)
Qwen1.5-Base Weights 7B 0.646 0.799 0.646 0.302

+CQIA Weights 7B 0.688 (+0.042) 0.880 (+0.081) 0.689 (+0.043) 0.258 (-0.044)
+CROP Weights 7B 0.676 (+0.030) 0.849 (+0.050) 0.688 (+0.042) 0.202 (-0.100)

+CQIA+CROP Weights 7B 0.709 (+0.063) 0.910 (+0.111) 0.704 (+0.058) 0.227 (-0.075)
InternLM2-Base Weights 7B 0.368 0.445 0.381 0.148

+CQIA Weights 7B 0.723 (+0.355) 0.861 (+0.416) 0.750 (+0.369) 0.317 (+0.169)
+CROP Weights 7B 0.748 (+0.380) 0.945 (+0.500) 0.761 (+0.380) 0.212 (+0.064)

+CQIA+CROP Weights 7B 0.768 (+0.400) 0.939 (+0.494) 0.794 (+0.413) 0.285 (+0.137)
1 GPT-4 API is “gpt-4-turbo-2024-04-09”. GPT-3.5 API is “gpt-3.5-turbo-0125”.

Claude-3 API is “claude-3-opus-20240229”. Qwen API is “qwen-max”.
2 The accuracy of 0.000 and 1.000 is explained in Section 4.3.

5.2 Evaluation Protocol

We assess model performance on CROP benchmark using accuracy. Owing to our adoption of text
generation for eliciting responses from various LLMs, we annotate answer options accompanying
each question with Roman numerals (I, II, III, IV) when designing prompts. To match the generated
responses with the answer options, regular expressions are utilized to identify and extract the Roman
numerals. In cases where this approach fails to accurately decipher the response, we resort to manual
inspection by domain experts, thereby ensuring accurate calculation of accuracy.

5.3 Performance Comparison

Table 2 showcases the performance of selected LLMs on the CROP benchmark. It examines whether
commercial LLMs possess professional knowledge in crop science and if the capabilities of open-
source LLMs can be enhanced when fine-tuned with the CROP dataset. For commercial models,
Claude-3 achieves the highest overall accuracy (0.900), while GPT-3.5 lags behind (0.328). Even
though GPT-4, Claude-3, and Qwen show acceptable general performance, they struggle with
difficult tasks, demonstrating the rationality of difficulty level division and the efficacy of the CROP
benchmark. In the open-source category, we choose CQIA [5] as a general-task instruction tuning
dataset to enhance the limited instruction-following capability of the base models [68]. Building
on this, we employ the CROP dataset for additional training to confirm that it can enhance an
LLM’s performance in responding to crop science-related queries. The findings indicate that when
further fine-tuned with the CROP dataset, there is an average improvement of 9.2%. Moreover, we
can observe that in most cases, the improvements brought by CROP are relatively more compared
with CQIA. The comprehensive results underscore the efficacy of CROP dataset in fostering the
professional capabilities of LLMs.

5.4 Analysis on Training Epochs

To evaluate the performance of fine-tuned LLMs under different training epochs, we conduct an
experiment in terms of training epochs, with the results summarized in Table 3. Different open-source
LLMs show distinct convergence tendencies. For instance, LLaMA3 reaches optimal performance
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Table 3: Performance of LLMs trained under different epochs. The highest value for each model on
different tasks is bolded. Variation denotes the accuracy difference between Chinese and English.
More experiments on training epochs when the model is fine-tuned only on the CROP dataset are
elaborated in Appendix 14.

Model Epoch Size Overall ↑ Difficulty Language

Easy ↑ Moderate ↑ Difficult ↑ Chinese ↑ English ↑ Variation ↓
LLaMA3-Base N/A 8B 0.348 0.443 0.341 0.161 0.327 0.369 4.2%
+CQIA+CROP 1 8B 0.738 0.903 0.758 0.292 0.719 0.757 3.8%
+CQIA+CROP 2 8B 0.742 0.902 0.772 0.271 0.729 0.755 2.6%
+CQIA+CROP 4 8B 0.754 0.918 0.779 0.295 0.738 0.770 3.2%

Qwen1.5-Base N/A 7B 0.646 0.799 0.646 0.302 0.667 0.624 4.3%
+CQIA+CROP 1 7B 0.702 0.910 0.717 0.183 0.725 0.680 4.5%
+CQIA+CROP 2 7B 0.670 0.875 0.677 0.181 0.690 0.649 4.1%
+CQIA+CROP 4 7B 0.709 0.910 0.704 0.227 0.717 0.686 3.1%

InternLM2-Base N/A 7B 0.368 0.445 0.381 0.148 0.409 0.327 8.2%
+CQIA+CROP 1 7B 0.764 0.942 0.787 0.276 0.770 0.757 3.3%
+CQIA+CROP 2 7B 0.809 0.909 0.855 0.414 0.811 0.807 0.4%
+CQIA+CROP 4 7B 0.768 0.939 0.794 0.285 0.770 0.766 0.4%

following four epochs, whereas InternLM2 attains peak performance after just two epochs of training.
Contrarily, the convergence trend of Qwen1.5 appears to be relatively unstable, and its performance
enhancement (6.3%) is marginal compared to its base version. More experiments on training epochs
when the model is fine-tuned only on the CROP dataset are elaborated in Appendix 14.

5.5 Analysis on Languages

Given that our benchmark includes both Chinese and English, the performance of LLMs on questions
in these two languages has been reported in Table 3. After four epochs of training with the CROP
dataset, models did not exhibit a remarkable language bias, as variations of accuracy across various
languages fall within the range of 0.4% to 3.2%. These results underscore the robustness of the model
in multilingual contexts, ensuring its applicability in diverse linguistic scenarios.

6 Limitations

The construction of the CROP dataset faces several limitations. For raw data, its collection focuses
primarily on a selected number of crop species, specifically corn and rice. Other prevalent crop
families, such as wheat, tuber crops, and beans, were rarely included. The format of the source data
is text-only. While this choice ensures compatibility with the GPT-4 API, the omission of data in
other modalities may limit the richness of the dataset. Crop science is a dynamically evolving field.
New findings and research studies should be integrated to keep the dataset up-to-date. In terms of
the data construction pipeline, extraction tools used during data collection introduce errors, while
efforts to enhance their performance are still ongoing. LLMs, when generating Q&A pairs, may
exhibit biases due to their training data. Task design influenced by researchers and domain experts
can also introduce bias towards certain question types. In the experiment aspect, rigorous empirical
investigations are necessitated to ascertain the efficacy of the suggested dataset in fine-tuning LLMs
with other parameter magnitudes (70B, 110B). Detailed discussion is shown in Appendix D.

7 Conclusion

In this paper, we propose the CROP dataset to improve the professional capabilities of LLMs in the
crop science domain. Additionally, to compensate for the absence of an open-source benchmark for
evaluating models’ expertise in this domain, we introduce the CROP benchmark, which comprises
MCQs for objective assessment. We hope that the proposed dataset and benchmark can foster AI
research in crop science, facilitate knowledge transfer for agricultural practitioners, enhance crop
yields, and contribute to solving hunger issues.
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A Data and Code Availability

A.1 Code

The code for prompting and training is available at https://github.com/open-sciencelab/
Crop.

A.2 Data

The CROP dataset is available at https://drive.google.com/drive/folders/11be8-Gd3h_
VntRhmiIdhwopiAS8fh5Y7?usp=sharing.

The CROP benchmark is available at https://drive.google.com/drive/folders/
11be8-Gd3h_VntRhmiIdhwopiAS8fh5Y7?usp=sharing.

A.3 Result

The test results of API models (GPT-3.5, GPT-4, Claude-3-Opus, Qwen-max) are available at
https://github.com/open-sciencelab/Crop.

B Dataset Documentation

We adhere to the established dataset schemas as delineated in [28], with the objective of furnishing
comprehensive information about our dataset to the prospective dataset consumers.

B.1 Motivation

For what purpose was the dataset created? The impetus for the development of the dataset is to
augment the proficiency of Large Language Models in knowledge-intensive application scenarios,
specifically within the realm of crop science. Existing datasets exhibit limitations in adequately
encapsulating these knowledge-intensive areas or may not present the information in a manner that is
readily interpretable by LLMs. By curating this novel dataset, we can facilitate the training of LLMs
to comprehend and respond more effectively to queries in these areas. This could culminate in more
precise and informative responses, thereby enhancing decision-making processes in crop science.
Moreover, the dataset can serve as an invaluable resource for researchers and practitioners in the
field, offering a rich repository of information and insights. It also holds the potential to propel the
advancement of AI applications in agriculture, fostering more sustainable and efficient crop farming
practices.

Who created the dataset (for example, which team, research group) and on behalf of which
entity (for example, company, institution, organization)? Researchers in the Shanghai AI
Laboratory created the dataset.

Who funded the creation of the dataset? Shanghai AI Laboratory, Yazhouwan National Labora-
tory, China Agricultural University.

B.2 Composition

What do the instances that comprise the dataset represent (for example, documents, photos,
people, countries)? Each instance is the question-answer pair.

How many instances are there in total (of each type, if appropriate)? See Table 4 and Table 5.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? Our dataset is composed of question-answer pairs about rice and
corn. This contains a subset of crops. We have applied manual filtering to find related content.

What data does each instance consist of? Each question-answer pair in our dataset consists of a
question and an answer, where reference material is provided for open-book questions.
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Is there a label or target associated with each instance? We group each instance into a specific
task.

Is any information missing from individual instances? N/A.

Are relationships between individual instances made explicit (for example, users’ movie ratings,
social network links)? The relationship between individual instances can be determined by the
defined task.

Are there recommended data splits (for example, training, development/validation, testing)?
In this paper, we propose a dataset as well as a benchmark, thus there is no need to fix a recommended
data split.

Are there any errors, sources of noise, or redundancies in the dataset? Yes, there are. See
Table 4.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (for
example, websites, tweets, other datasets)? The dataset is self-contained for the tasks described
in the paper.

Does the dataset contain data that might be considered confidential (for example, data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the content
of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

Does the dataset identify any subpopulations (for example, by age, gender)? No.

Is it possible to identify individuals (that is, one or more natural persons), either directly or
indirectly (that is, in combination with other data) from the dataset? No.

Does the dataset contain data that might be considered sensitive in any way (for example, data
that reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? See Appendix
C.

B.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable
(for example, raw text, movie ratings), reported by subjects (for example, survey responses),
or indirectly inferred/ derived from other data (for example, part-of-speech tags, model-based
guesses for age or language)? See Section 3.2.

What mechanisms or procedures were used to collect the data (for example, hardware appara
tuses or sensors, manual human curation, software programs, software APIs)? See Section 2
and 4.

If the dataset is a sample from a larger set, what was the sampling strategy (for example,
deterministic, probabilistic with specific sampling probabilities)? N/A.

Who was involved in the data collection process (for example, students, crowdworkers, con
tractors) and how were they compensated (for example, how much were crowdworkers paid)?
The authors and their institutes were involved in the data collection process.

Over what timeframe was the data collected? The data collection was conducted from January
2024 to May 2024.
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Were any ethical review processes conducted (for example, by an institutional review board)?
N/A.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (for example, websites)? See Section 3.2.

Were the individuals in question notified about the data collection? N/A.

Did the individuals in question consent to the collection and use of their data? N/A.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? N/A.

Has an analysis of the potential impact of the dataset and its use on data subjects (for example,
a data protection impact analysis) been conducted? See Appendix C.

B.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (for example, discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? Yes. See Section 2.3 and Section 2.4.

Was the “raw” data saved in addition to the preprocessed/cleaned/ labeled data (for example,
to support unanticipated future uses)? Yes.

Is the software that was used to preprocess/clean/label the data available? Not yet available.

B.5 Uses

Has the dataset been used for any tasks already? No.

Is there a repository that links to any or all papers or systems that use the dataset? See
Appendix A.

What (other) tasks could the dataset be used for? The dataset can also be used to pre-train
an LLM for professional knowledge acquisition or fine-tune a multi-modal model for instruction
following.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

Are there tasks for which the dataset should not be used? See Appendix C.

B.6 Distribution

Will the dataset be distributed to third parties outside of the entity (for example, company,
institution, organization) on behalf of which the dataset was created? Yes.

How will the dataset be distributed (for example, tarball on website, API, GitHub)? See
Appendix A.

When will the dataset be distributed? The dataset is already available at https://drive.
google.com/drive/folders/11be8-Gd3h_VntRhmiIdhwopiAS8fh5Y7?usp=sharing.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? See Appendix A. Except for third-party works, the
extent to which they are attributed to the authors is distributed under a specific license that can be
found under the dataset repository.

19

52688 https://doi.org/10.52202/079017-1669

https://drive.google.com/drive/folders/11be8-Gd3h_VntRhmiIdhwopiAS8fh5Y7?usp=sharing
https://drive.google.com/drive/folders/11be8-Gd3h_VntRhmiIdhwopiAS8fh5Y7?usp=sharing


Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? The third-party data is not for commercial use and is otherwise subject to the terms and
conditions of the organization.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

B.7 Maintenance

Who will be supporting/hosting/maintaining the dataset? The authors will be.

How can the owner/curator/manager of the dataset be contacted (for example, email address)?
By email address.

Is there an erratum? No.

Will the dataset be updated (for example, to correct labeling errors, add new instances, delete
instances)? It is conceivable that modifications could be made to the dataset within the codebase,
either for the rectification of inaccuracies or for the addition or removal of instances, contingent upon
specific requests.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (for example, were the individuals in question told that their data would be
retained for a fixed period of time and then deleted)? N/A.

Will older versions of the dataset continue to be supported/hosted/maintained? It depends on
the nature of the dataset update. We may notify the dataset consumers via a website or codebase.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes. One can use the proposed pipeline to generate new data. But any additional
work should be considered as a distinct contribution, independent of our original work.

C Ethics Statement

In alignment with the NeurIPS Code of Ethics 5, we offer the following statement on the data-related
concerns and potential societal impacts of our research.

C.1 Data-related Concerns

Privacy. Our dataset comprises text from research articles, professional books, crop enterprise
reports, and structural data. Since enterprise reports may contain sensitive information, we clean the
original data before generating Q&A pairs to ensure privacy.

Consent. Our dataset includes information such as corporate disclosures, and we recognize that the
information is intended to be publicly available.

Deprecated Datasets. Not applicable. We do not use any deprecated datasets.

Copyright and Fair Use. Because the dataset in this paper is original, the authors bear all responsi-
bility in case of violation of rights and confirm that our dataset is open-sourced under the CC BY NC
4.0 license.

5https://neurips.cc/public/EthicsGuidelines
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Representative Evaluation Practice. Our dataset primarily considers two types of crops: rice and
corn. In Appendix G, Table 4 and 5 list the main types and tasks included. Consequently, we have
successfully constructed comprehensive domain-focused and general question-answer pairs for rice
and corn. However, we must acknowledge that our dataset faces several limitations. Users should be
aware of the content discussed in D.

Labor Compensation. Regarding the ethical concern about fair compensation for domain experts
and laborers, we would like to clarify that these individuals volunteered to contribute to the project.
Their motivation stems from a desire to support the open-source community and raise awareness
about the crop science domain. As such, there is no specific price for single-turn or multi-turn
dialogues. We created the first version of the CROP suite, and view this as a starting point. We aim
to engage the academic community in future iterations of CROP and are grateful for the efforts of
involved domain experts and laborers who have contributed thus far.

C.2 Potential Social Impacts

Safety. Our technology cannot be used to harm individuals.

Security. The starting point of our dataset is to provide guidance for current crop science techniques.
However, some of the knowledge is derived from historical experience. To avoid security problems
such as blindly referencing this information and potentially impacting agricultural production, users
of our dataset should consider it comprehensively.

Discrimination. Not applicable. Our dataset is targeted at crop science.

Surveillance. Not applicable. Our dataset is targeted at crops rather than individuals.

Deception & Harassment. We believe there is a low likelihood that this dataset could be used to
facilitate deceptive interactions.

Environment. As a dataset intended for application in agricultural production, our starting point
is to utilize limited land resources to increase food yield and address hunger issues. Despite our
careful efforts in creating the dataset, such as extensive manual screening of the data, there may still
be misleading information present. This misleading information could impact crop science, such
as inappropriate levels of pesticide use, thereby causing environmental burdens. We sincerely hope
that our dataset will have a predominantly positive impact, which requires researchers to consider it
thoroughly when using this dataset.

Human Rights. Not applicable. Our dataset is targeted at crops.

Bias and fairness. We performed extensive manual screening during the creation of our dataset,
therefore the likelihood of biases related to specific races, genders, etc., is very low.

D Limitations

D.1 Raw Data

The comprehensiveness of the raw data is somewhat limited, given that the discussion is confined to a
select number of crop species. Corn and rice are considered representative examples, notwithstanding
the existence of other prevalent crop families such as wheat, tuber crops, and beans, which were
rarely incorporated in the raw data collection. Even within the context of corn and rice, the raw data
may exhibit a bias towards specific varieties or geographical regions. For instance, research papers in
Chinese predominantly focus on varieties of corn or rice cultivated in mainland China.

In terms of the format of the source data, text was the sole modality considered during the collection
of raw data, with no inclusion of images, audio, or videos. One of the primary motivations for this
approach was to ensure compatibility with the GPT-4 API in the dataset generation pipeline. However,
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images or charts omitted from research papers could potentially provide additional context for the
formulation of Question-Answer pairs if included.

Crop science is a dynamically evolving field, and as such, we do not intend for this initial collection
of raw data to remain aligned with the most current information. While the most recent research study
within the raw data was published in 2022, new findings can be integrated to augment the dataset,
with the entire data generation pipeline readily available.

D.2 Dataset Construction Pipeline

We acknowledge that the origin of errors can be traced back to the selected extraction tools, prompting
substantial efforts towards enhancing the quality of the dataset. As one of the meticulously chosen
information extraction tools, despite being effective in recognizing texts within documents, [46]
demonstrated sub-optimal performance when dealing with all forms of charts. Other presented
extraction tools also exhibited varying degrees of information loss.

With a reference context given, an LLM could manifest certain biases when generating Q&A pairs.
The model might interpret the context in a biased manner based on its training data, namely the
generation bias. For instance, if the model has been trained on data that frequently associates certain
practices with specific crop varieties, it might overgeneralize these associations in the generated Q&A
pairs. In some cases, the LLM may not fully consider the provided context when generating Q&A
pairs, leading to answers that might be inconsistent with the context.

Tasks are defined with guidance from researchers and domain experts. This can lead to a bias towards
certain types of tasks that involve individuals deemed important. Due to our task design settings, we
also do not expect an LLM fine-tuned using the proposed dataset to perform significantly better in
any task regarding scopes other than Information Access.

D.3 Benchmark and Evaluation

Recent advancements in the field of LLMs predominantly feature models with around 70 billion or 110
billion parameters. The selection of these specific parameter sizes represents a strategic equilibrium
between enhancing model performance and efficiently allocating computational resources. Further
empirical investigations are necessitated to ascertain the efficacy of the suggested dataset in the
fine-tuning of LLMs with these parameter dimensions.

E Related Work

E.1 AI for Agriculture

The integration of Artificial Intelligence (AI) into various sectors has led to transformative advance-
ments in recent years, with agriculture being no exception [9]. As a labor-intensive field, agriculture
must adapt to the growing population and the escalating demands for crop production, making
automation an essential advancement [33]. AI stands to contribute by alleviating the burden of
labor-intensive tasks and enhancing both the yield and quality of agricultural products, thereby
ensuring a stable global food supply [54, 63].

On the one hand, the advanced robotic technologies incorporated with AI, are playing a vital role
in tackling the labor-intensive issue while ensuring the crop-producing process [44, 22]. Robotics,
such as wheeled vehicles [41] equipped with RGB cameras and laser sensors, by utilizing AI-
Vision algorithms, are adept at land preparation before planting [4, 35], sowing [31, 56], plant
treatment [52, 27], and crop harvesting [13]. In addition, the implementation of Unmanned Aerial
Vehicles (UAVs) [19, 61] and Internet of Things (IoTs) [51] can build a three-dimensional monitoring
system for crop cultivation, thus promising significant reduction in cost and increase in the yield [60].

On the other hand, advanced AI can enhance crop cultivation in a data-driven approach, achieving the
goals of precision agriculture [53, 39]. The combination of sensor data from equipment, along with
remote sensing technologies like satellites and drones, soil and weather data, and other available data
sources, can generate a dataset abundant in contextual information [47]. Consequently, processes
such as irrigation, fertilization, and pest control in crop cultivation can be refined through the timely
predictions provided by sophisticated AI methods [14, 62].
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The introduction of LLMs has provided crop science researchers and agricultural practitioners with
new opportunities to enhance production [50, 37]. The robust ability of LLMs to generate and acquire
domain-specific knowledge has been a significant factor in this potential [17]. While researchers
have explored the use of LLMs in answering agriculture-related exams [55], their performance in
certain crop cultivation scenarios, such as pest management, has been less than satisfactory [66].
Moreover, there remains a considerable gap between the ability to answer exam questions and the
application of this knowledge in real-world situations. To bridge the gap and thoroughly assess
LLMs in supporting the crop science field, we introduce CROP. CROP comprises an instruction
tuning dataset that equips LLMs with the necessary skills to aid tasks in crop production, along
with a carefully designed benchmark to evaluate the extent to which LLMs fulfill the demands of
real-world agricultural applications. We anticipate that CROP will serve the research community and
also provide practical benefits to industry practitioners.

E.2 LLM-based Multi-turn Dialogue Generation

In recent research, several LLM-based approaches have emerged for constructing multi-turn dialogues.
[21] tried to prompt LLMs to generate full multi-turn dialogues based on the ‘ChatSEED’, which
were sampled from the very first utterances of real-world human dialogues. [57] first trained
a question-asking model and then collected multi-turn conversations by utilizing it to iteratively
chat with ChatGPT. [45] also used a two-stage approach, where instructional strategies were first
extracted from real human-machine dialogues and then applied to produce new instructions. While
these approaches collectively contribute to advancing LLM-based multi-turn dialogue systems, they
are either restricted in terms of context dependency or less likely to be transformed into an end-to-end
system.

F Dataset Collection Detail

We provide more details of the experts’ evaluation. The evaluation work of human experts on
single-turn and multi-turn dialogues is based on the same metrics designed for the LLM grader. A
total of 115 participants were involved, including 14 domestic rice breeding experts, 49 graduate
students in breeding-related fields, and 52 undergraduate students (junior year and above). For single-
turn dialogues, experts focus on correctness, professionalism, and richness, while for multi-turn
dialogues, experts focus on coherence, consistency, and specificity. After the first stage of filtering
work, the generated contents include around 220k single-turn dialogues and 2k multi-turn dialogues.
Our human experts clean the generated contents based on the mentioned rules, deleting around 5%
low-quality samples of single-turn dialogues and 7% low-quality samples of multi-turn dialogues.
After the filtering by human experts, we have 210,038 samples of single-turn dialogues and 1871
samples of multi-turn dialogues.

G Dataset Analysis Detail

G.1 Basic Statistics

Table 4 and 5 show the composition of single-turn dialogues and multi-turn dialogues, respectively.

G.2 Diversity

Data source. Figure 6 and 7 show the data source distribution of rice and corn, respectively.

Figure 6: Distribution of rice-related data source. Counts include both Chinese and English.

23

52692 https://doi.org/10.52202/079017-1669



Figure 7: Distribution of corn-related data source. Counts include both Chinese and English.

Table 4: Composition of single-turn dialogues. Please note that despite our data-cleaning efforts, the
final CROP dataset inevitably contains a small amount of data (<0.5%) from other grains like wheat.
As this portion does not dominantly influence the fine-tuning results, it is included in the final CROP
dataset. We have listed it explicitly in the table to avoid any misleading counts.

Cereal Type Task Abbr. English Q&A Chinese Q&A Total

Rice

Domain Closed-book Q&A CQA 42,951 83,396 126,347
Open-book Q&A OQA 2,430 2,037 4,467

General
Event Extraction EE 1,891 1,030

9,742Named Entity Recognition NER 2,003 1,604
Summary Summary 1,586 1,628

Corn

Domain Closed-book Q&A CQA 25,259 27,667 52,926
Open-book Q&A OQA 3,202 3,047 6,249

General
Event Extraction EE 2,245 1,322

10,307Named Entity Recognition NER 2,008 1,316
Summary Summary 1,559 1,857

Others* — <1000

Overall — 85,134 124,904 210,038

Table 5: Composition of multi-turn dialogues. Blue denotes counts of 3-turn dialogues, green denotes
counts of 4-turn dialogues, and yellow denotes counts of 5-turn dialogues.

Cereal Scenario Task English Q&A Chinese Q&A Total

Rice

Problem Solving
Pest Control 14+71 8+37 130

Nutrient Supplementation 19+93 2+ 90+ 1 205
Disease Containment 19+ 60 4+ 39 122

Personalized Recommendation Crop Variety Selection 12+ 53 9+ 9 83
Resource Management 4+ 110+ 1 5+ 50 170

Knowledge Interpretation Research Interpretation 3+ 125+ 1 8+ 85 222

Corn

Problem Solving
Pest Control 20+ 84 7+ 77 188

Nutrient Supplementation 24+ 56 8+ 30 118
Disease Containment 21+ 64 2+ 19+ 1 107

Personalized Recommendation Crop Variety Selection 19+ 75 46+ 47 187
Resource Management 8+ 94 1+ 69 172

Knowledge Interpretation Research Interpretation 5+ 94+1 6+ 61 167

Overall — 1,150 721 1,871
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Geographic Diversity. Table 6 and 7 show the geographic diversity of rice and corn data, respec-
tively.

Table 6: Geographic diversity of rice dataset. Note that we only include countries with more than 5
occurrences in all samples.

Continent Country

Asia Bangladesh, China, India, Indonesia, Japan, Laos, Nepal, North Korea,
Philippines, South Korea, Thailand, Vietnam

Europe France, Germany, Hungary, Italy, Russia, Spain

North America Cuba, Guatemala, Mexico, United States

South America Argentina, Brazil, Colombia, Guyana

Africa Egypt, Guinea, Kenya, Madagascar, Mali, Tanzania

Oceania Australia

Table 7: Geographic diversity of corn dataset. Note that we only include countries with more than 5
occurrences in all samples.

Continent Country

Asia Bangladesh, China, India, Indonesia, Japan, Laos, Nepal,
Philippines, South Korea, Thailand

Europe France, Germany, Greece, Hungary, Italy, Malta, Poland, Romania,
Russia, Serbia, Spain, United Kingdom

North America Canada, Cuba, Guatemala, Mexico, United States

South America Argentina, Brazil, Colombia, Guyana, Peru

Africa Congo, Egypt, Guinea, Kenya, Madagascar, South Africa, Tanzania,
Zambia, Zimbabwe

Oceania Australia, New Zealand

Content Length. Table 8 shows the statistics of content length measured by token counts of single-
turn dialogue datasets. We use the official GPT-4 tokenizer provided by OpenAI. Figure 8 shows the
statistics of the number of rounds in multi-turn dialogues.

Content Distribution. Figure 9 and 10 show the information cartography of the Chinese and
English Q&A instructions, respectively.

H Template for Structural Data

Inspired by [67], we use the template technique to transform structured data into a dialogue format
suitable for fine-tuning LLMs. There are 5 templates in different styles provided for two properties,
presented in Table 9 and 10. We translate the original Chinese template into English as we are
provided with the structured data in Chinese for a better illustration. By inserting the name of a rice
variety into “[Rice Species]” and providing answers in simple declarative sentences, complete Q&A
pairs can be obtained.

I Benchmark Analysis Detail

I.1 Topic Distribution

Figure 11 shows the topic distribution of the CROP benchmark.
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Table 8: Statistics of token counts of single-turn dialogues.
Cereal Language Task Max Q token Max A token Avg Q token Avg A token

Rice

EN

CQA 45 179 18.79 62.11

OQA 262 114 89.54 44.47

EE 586 148 98.57 46.22

NER 386 106 108.97 21.99

Summary 1480 194 203.06 99.20

ZH

CQA 191 1779 27.38 123.55

OQA 1100 425 235.89 105.36

EE 770 192 209.33 80.08

NER 1135 215 277.74 57.00

Summary 2059 713 384.01 175.40

Corn

EN

CQA 56 203 22.36 86.68

OQA 377 203 91.76 43.94

EE 785 123 105.42 48.88

NER 329 184 108.26 22.01

Summary 2183 189 213.53 96.62

ZH

CQA 138 500 31.47 139.91

OQA 1213 443 255.94 103.23

EE 921 170 206.33 74.94

NER 3194 570 362.09 53.94

Summary 3188 314 440.65 172.26

(a) Chinese Q&A. (b) English Q&A.

Figure 8: Statistics on the number of rounds in multi-turn dialogues. Both for Chinese Q&A and
English Q&A, the majority is 4-turn dialogues.
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Figure 9: Chinese Q&A Instructions Cartography. We use the Chinese Q&A including the closed-
book domain Q&A and open-book domain Q&A for generating the information cartography, where
multiple diverse topics are revealed. Chinese topics and corresponding translations are presented and
the map was generated using Nomic Atlas.

Table 9: 5 Templates in different styles for the rice property “Rice Blast Grade”. We translate the
original Chinese template into English.

Style Template

Simple Inquiry “What is the Rice Blast Grade for [Rice Species]?”

Detailed Request “Could you please provide the Rice Blast Grade for [Rice Species],
including any relevant details on lesion coverage and severity?”

Expert Opinion “As an expert, what Rice Blast Grade would you give to [Rice Species]
based on the severity and spread of the lesions?”

Historical Data “Based on historical agricultural data, which Rice Blast Grade was assessed
on [Rice Species]?”

Comprehensive “Based on the current conditions and symptoms observed, what would be
Evaluation the appropriate Rice Blast Grade for [Rice Species]?”

27

52696 https://doi.org/10.52202/079017-1669



Figure 10: English Q&A Instructions Cartography. We use the English Q&A including the closed-
book domain Q&A and open-book domain Q&A for generating the information cartography, where
multiple diverse topics are revealed. The map was generated using Nomic Atlas.

Table 10: 5 Templates in different styles for the rice property “Suitable Cultivation Area”. We
translate the original Chinese template into English.

Style Template

Simple Inquiry “Which area is suitable for [Rice Species]’s cultivation?”

Detailed Request “Could you provide detailed information on the regions that are most suitable
for planting [Rice Species], considering soil quality and climate conditions?”

Expert Opinion “As an agricultural expert, which areas would you recommend for
planting [Rice Species]?”

Historical Data “Based on historical agricultural data, which areas have consistently proven
to be suitable for [Rice Species]’s cultivation?”

Comprehensive “Please provide a comprehensive evaluation of the best areas for planting
Evaluation [Rice Species], considering factors such as soil, climate, and water resources.”
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Figure 11: Topic distribution of benchmark. We list the keywords in the CROP benchmark for a
deeper insight. Darker colors indicate a higher frequency of occurrence, while lighter colors indicate
a lower frequency of occurrence.

I.2 Benchmark Comparison

Table 11: Geographic diversity of benchmark. Note that we only record countries with more than 3
occurrences in benchmark samples.

Continent Country

Asia Bangladesh, China, India, Indonesia, Japan, Nepal, North Korea,
South Korea, Thailand, Vietnam

Europe Germany, Italy, Russia, Spain

North America Cuba, Mexico, United States

South America Brazil

Africa Madagascar, Mali, South Africa

Oceania Australia

Table 11 shows the geographic diversity of the CROP benchmark. The statistical rules we adopted are
the same as those applied to the CROP dataset (See 3.2), except the occurrence threshold was adjusted
more than 3 times. There are 22 countries across six continents included in the CROP benchmark.

Table 12 compares the CROP benchmark against other agriculture-related question databases across
four dimensions: language, format, dataset size, and region. CROP benchmark includes questions
in two major world languages, English and Chinese, unlike other benchmarks limited to a single
language. In terms of volume and geographic coverage, CROP benchmark significantly outperforms
the other three benchmarks, offering roughly triple the number of questions found in AgriExams and
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Table 12: Benchmark Comparison. CROP benchmark surpasses existing datasets in terms of quantity
and locality.

Dataset Language Format Size Region

Certified Crop Advisor
(CCA) Exam1 English MCQs 312 United States

EMBRAPA2 Portuguese Test-based Inquires 1,000 Brazil

AgriExams3 English MCQs 1,723 India

CROP (Ours) English & Chinese MCQs 5,045 22 Countries
1 https://www.certifiedcropadviser.org/become-certified/
certifications/.

2 https://mais500p500r.sct.embrapa.br/view/index.php. For EMBRAPA, we
count the number of test-based inquiries related to rice and corn.

3 https://www.agriexam.com/agriculture-previous-year-question-paper.

spanning 22 countries. Clearly, CROP benchmark is equipped to provide a more extensive evaluation
of LLMs.

J Tasks and Prompts

J.1 Dual-guided Task Design

We propose a prior-based, dual guidance enhanced framework that integrates insights from both
researchers and domain experts into the task design workflow. Ultrachat [20] proposed three scopes
of dialogue data: Information Access, Information Creation, and Information Transformation, to
model human-AI interactions. While the scope dimension poses a certain level of restriction on the
task design, additional variables are required to define a complete task partitioning criterion.

We consider domain D and raw data R as two dimensions which, together with scope S, help
determine a task sample space. The prior is thus defined as follows:

Kprior = (d, s, r), d ∈ D, s ∈ S, r ∈ R, (7)

where we consider d being the crop science domain, s being either the Information Access scope or
the Information Transformation scope, and r being the data source.

For single-turn dialogues, we delineated two categories of tasks under the guidance of researchers and
domain experts. Question-answer pairs in the domain-focused category belong to what is generally
called “knowledge Q&A”. An LLM fine-tuned using this portion of the single-turn dialogues is
expected to provide highly specialized and well-formatted responses to domain knowledge queries.
The general category aims to adapt general language modeling tasks to the crop science domain.
Each task within this category is domain-adapted, thereby further enhancing the capabilities of an
equipped LLM.

A task and its setting are determined separately. Within the task sample space defined by a prior
triplet (d, s, r), subdivided tasks T of a category are determined based on researcher guidance GR

and expert guidance GE :
T ∼ PST (t|GR, GE ,Kprior) (8)

A specific setting τ , is chosen from a set of possible settings τt for a given task t, which is influenced
by additional expert guidance G′

E :
τt ∼ PST (τ |t, G′

E) (9)

Consider NER as a task t within the open-book category, additional expert guidance G′
E specifies

entity categories to be geographic location, disease, pest, and crop variety as a task setting τ . We
intend to enhance the capability of an LLM in recognizing selected entity types in crop science.
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As discussed, tasks for multi-turn dialogues are also defined in a two-step manner, with recommended
scenarios first and tasks afterward. The work of determining concrete tasks is assigned to an LLM
with contextual prompts from raw data.

Within the task sample space defined by a prior triplet (d, s, r), the set of scenarios S is determined
based on only expert guidance GR:

S ∼ PMT (s|GE ,Kprior) (10)

Tasks Ts of a chosen scenario s is generated using an LLM L:

Ts ∼ PMT
L (t|s) (11)

Consider pest control as a task t within the problem-solving scenario s. The LLM recognizes it as
one of what should be included in a multi-turn setting as it is frequently discussed in the raw data.

The proposed framework is designed with high adaptability. The triplet of the three prior variables
can be adjusted to cater to specific use cases, providing a flexible and customizable approach to task
design.

J.2 Single-turn Q&A

The single-turn Q&A includes five tasks:

Closed-book Q&A. The content of closed-book Q&A is professional knowledge, where there are
no external reference materials provided in the question. Our Q&A pairs cover the following aspects:
stress resistance, pests and diseases, cultivation techniques, breeding, characteristics, suitable planting
areas, etc.

Open-book Q&A. The content of open-book Q&A is also professional knowledge, where there
are external reference materials provided in the question. The considering aspects of the open-book
Q&A are the same as closed-book Q&A.

Summary Q&A. Give a professional summary for a portion of the provided article.

Named Entity Recognition. Understand and extract specific entity information from the provided
article. The entity information is emphasized on the geographic location, diseases and pests, and crop
variety.

Event Extraction. Identify the event triggers and extract relevant arguments associated with these
events from the provided article. The event categories restricted by the task are (1) no event, (2) pest
impact, (3) new variety release or breeding, (4) climate or weather event, (5) planting or production
trial, (6) policy release, (7) yield record, and (8) variety mutation.

We formulate the task-oriented prompts to query the LLM for the Q&A pairs and present several
examples of produced Q&A pairs in this section, where the corresponding arrangements are shown
in Table 13. We divided our prompt into four parts: role description, reference text, guidelines, and
example dialogue.

Table 13: The arrangement of templates and examples for single-turn Q&A.
EN ZH

Task Location Task Location

Closed-book Q&A Figure 12 Closed-book Q&A Figure 13
Summary Q&A Figure 14 Summary Q&A Figure 15

Named Entity Recognition Figure 16 Named Entity Recognition Figure 17
Event Extraction Figure 18 Event Extraction Figure 19
Open-book Q&A Figure 20 Open-book Q&A Figure 21
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Figure 12: Prompt and few examples for English Closed-book Q&A.
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Figure 13: Prompt and few examples for Chinese Closed-book Q&A.
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Figure 14: Prompt and few examples for English Summary Q&A.
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Figure 15: Prompt and few examples for Chinese Summary Q&A.
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Figure 16: Prompt and few examples for English Named Entity Recognition Q&A.
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Figure 17: Prompt and few examples for Chinese Named Entity Recognition Q&A.
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Figure 18: Prompt and few examples for English Event Extraction.
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Figure 19: Prompt and few examples for Chinese Event Extraction.
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Figure 20: Prompt and few examples for English Open-book Q&A.
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Figure 21: Prompt and few examples for Chinese Open-book Q&A.
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J.3 Multi-turn Q&A

We design a multi-agent setting for the generation of multi-turn Q&As, where an assistant agent
and a user agent are defined with different roles. Meanwhile, for each type of crop, we define
six tasks under three scenarios (problem-solving, personalized recommendation, and knowledge
interpretation). Thus, prompts are determined by the role of the agent and specific tasks. Since our
proposed multi-turn Q&A prompts are task-dependent, we only present the prompt of the pest control
task as an example, illustrated in Figure 22 and 23, with both an English version and a Chinese
version.

Problem Solving—Pest Control. The dialogue involves identifying and providing solutions for pest
problems in crops based on the farmer’s descriptions and queries. The following aspects of the pest
infestation scenarios are considered: infestation identification, infestation control, post-infestation
recovery, etc. The example is shown in Figure 24.

Problem Solving—Nutrient Supplementation. The dialogue involves identifying and providing
solutions for nutrient deficiency problems in crops based on the farmer’s descriptions and queries.
The following aspects of the nutrient deficiency scenarios are considered: deficiency analysis, soil
testing, nutrient balancing, etc. The example is shown in Figure 25.

Problem Solving—Disease Containment. The dialogue involves identifying and providing solu-
tions for disease problems in crops based on the farmer’s descriptions and queries. The following
aspects of the disease outbreak scenarios are considered: disease identification, emergency treatment,
post-outbreak recovery, etc. The example is shown in Figure 26.

Personalized Recommendation—Crop Variety Selection. The dialogue involves recommending
crop varieties that are best suited to the farmer’s specific conditions (such as soil types, climate, and
disease resistance needs) and goals (such as yield, and quality). The following aspects of the crop
variety selection scenarios are considered: pest and disease resistance, tolerance to abiotic stresses,
nutrient requirement analysis, etc. The example is shown in Figure 27.

Personalized Recommendation—Resource Management. The dialogue offers tailored advice on
efficient resource management, which might include the optimal use of water, fertilizers, and labor, to
maximize crop yield and profitability while minimizing environmental impact. The following aspects
of the resource management scenarios are considered: precision agriculture, sustainable practices,
climate-resilient practices, etc. The example is shown in Figure 28.

Knowledge Interpretation—Research Interpretation. The dialogue should offer a clear interpre-
tation of the specific research findings to help the farmer stay updated with discoveries in the crop
science domain, regardless of when the research was conducted. The following research interpretation
scenarios are considered: understanding the research methods, interpreting the results, discussing the
implications, etc. The example is shown in Figure 29.

J.4 Benchmark

Multiple-choice Q&As are extracted from the data source using prompts shown in Figure 30 and 31,
with both English and Chinese versions.

K Training Details

Our fine-tuning work was performed based on the LLaMA-Factory framework [70]. To mitigate
the risk of overfitting during the tuning process[65, 15], we augmented our training data with the
COIG-CQIA dataset[5]. We used the LoRA[32] method to train all three models, with rank set to 8,
alpha set to 16, and learning rate set to 5e-5. Additionally, we deployed Deepspeed ZeRO-2[49, 48]
to improve memory efficiency and set the total train batch size to 320, and epoch to 4.

All fine-tuning was performed with 16 NVIDIA A100-40G GPUs. During inference, we set a
maximum input length to 4096 tokens, and an output length to 1024 tokens for weights-access
models. For API-access models, we set the temperature to 0, and the top p to 1.
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Figure 22: English Prompt for multi-turn Q&A. We take the pest control task as an example to show
our multi-agent system prompts.
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Figure 23: Chinese Prompt for multi-turn Q&A. We take the pest control task as an example to show
our multi-agent system prompts.
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Figure 24: The example for the pest control task of problem-solving scenario.
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Figure 25: The example for the nutrient supplementation task of problem-solving scenario.
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Figure 26: The example for the disease containment task of problem-solving scenario.
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Figure 27: The example for the crop variety selection task of personalized recommendation scenario.
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Figure 28: The example for the resource management task of personalized scenario.
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Figure 29: The example for the research interpretation task of knowledge interpretation scenario.
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Figure 30: Prompt and few examples for English Multi-Choice Q&A.
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Figure 31: Prompt and few examples for Chinese Multi-Choice Q&A.
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Table 14: Performance of LLMs trained under different epochs. The highest value for each model on
different tasks is bolded. Variation denotes the accuracy difference between Chinese and English.

Model Epoch Size Overall ↑ Difficulty

Easy ↑ Moderate ↑ Difficult ↑
LLaMA3-Base N/A 8B 0.348 0.443 0.341 0.161

+CROP 1 8B 0.745 0.847 0.771 0.375
+CROP 2 8B 0.741 0.852 0.760 0.380
+CROP 4 8B 0.752 0.866 0.772 0.378

+CQIA+CROP 1 8B 0.738 0.903 0.758 0.292
+CQIA+CROP 2 8B 0.742 0.902 0.772 0.271
+CQIA+CROP 4 8B 0.754 0.918 0.779 0.295

Qwen1.5-Base N/A 7B 0.646 0.799 0.646 0.302
+CROP 1 7B 0.710 0.898 0.724 0.197
+CROP 2 7B 0.636 0.804 0.645 0.189
+CROP 4 7B 0.676 0.849 0.688 0.202

+CQIA+CROP 1 7B 0.702 0.910 0.717 0.183
+CQIA+CROP 2 7B 0.670 0.875 0.677 0.181
+CQIA+CROP 4 7B 0.709 0.910 0.704 0.227

InternLM2-Base N/A 7B 0.368 0.445 0.381 0.148
+CROP 1 7B 0.666 0.841 0.651 0.294
+CROP 2 7B 0.622 0.818 0.600 0.230
+CROP 4 7B 0.748 0.945 0.761 0.212

+CQIA+CROP 1 7B 0.764 0.942 0.787 0.276
+CQIA+CROP 2 7B 0.809 0.909 0.855 0.414
+CQIA+CROP 4 7B 0.768 0.939 0.794 0.285

L More Experiments

To explore how much improvement is credited to CROP, we conduct additional experiments on Table
3, shown in Table 14. We show the performance trend of the model with the increase in the number of
iterations when trained on our CROP dataset. It can be observed that in most cases, CROP dominates
the performance. However, exceptions occur in some epochs, where the reasons are analyzed:

• Continual Pretraining Phase: All base versions of open-source models in the experiments
are only fine-tuned using CROP and CQIA without undergoing continual pretraining. Yet
continual pretraining is crucial for language models to effectively learn and retain domain-
specific knowledge. Instruction fine-tuning primarily focuses on improving the model’s
ability to follow instructions rather than acquiring new knowledge.

• Benchmark Specificity: While the CROP dataset is designed for the crop science domain,
the CROP benchmark might not fully capture the nuanced improvements brought by the
CROP dataset given the significant gap in the amount of raw data. The improvements might
be more pronounced in real-world applications or other evaluation metrics to be included in
future versions of the benchmark.
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