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Abstract

We study a dynamic pricing problem for third-party platform service fees under
strategic, far-sighted customers. In each time period, the platform sets a service
fee based on historical data, observes the resulting transaction quantities, and
collects revenue. The platform also monitors equilibrium prices influenced by
both demand and supply. The objective is to maximize total revenue over a time
horizon T . Our problem incorporates three practical challenges: (a) initially,
the platform lacks knowledge of the demand side beforehand, necessitating a
balance between exploring (learning the demand curve) and exploiting (maximizing
revenue) simultaneously; (b) since only equilibrium prices and quantities are
observable, traditional Ordinary Least Squares (OLS) estimators would be biased
and inconsistent; (c) buyers are rational and strategic, seeking to maximize their
consumer surplus and potentially misrepresenting their preferences. To address
these challenges, we propose novel algorithmic solutions. Our approach involves:
(i) a carefully designed active randomness injection to balance exploration and
exploitation effectively; (ii) using non-i.i.d. actions as instrumental variables (IV)
to consistently estimate demand; (iii) a low-switching cost design that promotes
nearly truthful buyer behavior. We show an expected regret bound of Õ(

√
T ∧σ−2

S )
and demonstrate its optimality, up to logarithmic factors, with respect to both the
time horizon T and the randomness in supply σS . Despite its simplicity, our
model offers valuable insights into the use of actions as estimation instruments, the
benefits of low-switching pricing policies in mitigating strategic buyer behavior,
and the role of supply randomness in facilitating exploration which leads to a phase
transition of policy performance.

1 Introduction

A large number of transactions nowadays take place on third-party platforms, such as shopping
on Amazon, taking rides on Uber, and ordering takeout food on DoorDash [33, 39]. For these
platforms, deciding how to set the service fee is an important issue [35, 40, 49] that not only affects
the platform’s short-term revenue but also impacts long-term user retention. Therefore, understanding
buyers’ demand curve is of significant importance for platforms aiming to maximize their revenue.
Example 1.1. As an illustrative example, as a ride-hailing platform, Uber possesses information
on the supply side (drivers), specifically the number of drivers available on the road at any given
moment. Simultaneously, when buyers (passengers) request a ride, it matches drivers with passengers
and charges a certain fee. Uber charges a booking fee for each reservation. Over a certain time period,
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Uber’s booking fee remains approximately the same, as shown in Figure 1. However, over a longer
period of time, an exploratory dynamic pricing strategy can be beneficial to acquire more demand
information.

Meanwhile, consumers often refrain from taking rides when prices are high even if these prices are
within their willingness to pay, aiming at inducing Uber to reduce the price or offer them coupons
(which can be understood as a negative service fee) to reduce future purchase expenses. This
phenomenon is common in both the psychology [6] and the economics [27, 42] literature.

Figure 1: Uber. Above are two Uber rides from the same city in February 2024. The price of the two
rides differs by nearly double, yet the booking fee remains at $1.27 for both, suggesting that a fixed
booking fee mechanism might be employed in February. However, over a longer period of time, Uber
may switch to a dynamic pricing strategy.

For third-party platforms, pricing service fees can face three challenges:

1. Demand information needs to be learned. Typically platforms can observe the number and
quoted prices of sellers on the platform, i.e., the supply curve, but the preference of buyers,
or the demand curve, is not observable. At the same time, due to legal restrictions [58],
platforms in many cases cannot personalize pricing for different buyers but can only set a
uniform price for a group of buyers. Therefore, it is crucial to learn about the buyer group’s
willingness to pay.

2. Only equilibria can be observed. Regarding buyer information, platforms can only observe
the equilibrium price and quantity, say P e and Qe respectively, which depend on the service
fee set by the platform itself and the changing supply curve. Thus, due to changes in the
demand curve, (P e, Qe) may only reveal partial information about the demand curve and
thus can fail to recover the full demand curve. In the absence of randomness in the supply
curve, (P e, Qe) could even form an upward-sloping curve, far from the characteristics of a
demand curve.

3. Buyers may exhibit strategic behavior. When buyers interact with the platform over an
extended period, they may present a false demand curve to the platform, hoping to gain
more benefits in future purchases, as shown in Example 1.1. The strategic behavior of
buyers increases the difficulty for the platform to accurately estimate demand, and at the
same time, causes the service fee to deviate from its optimal value, resulting in revenue
loss. Pessimistically, Amin et al. [2] demonstrated that when the buyer possesses patience
comparable to that of the seller, no learning algorithm can achieve sub-linear regret (cf.
Appendix F.6).

In this paper, we address the above challenges by establishing the first set of theories for pricing
service fees on third-party platforms. We summarize our contributions in the following.

• To the best of our knowledge, we are the first to attempt applying non-i.i.d. actions as
instrumental variables in the problem of online pricing. In the traditional econometric
framework [67], researchers often seek external instrumental variables to estimate the
demand curve. However, this method has significant limitations because good instrumental
variables are hard to find. We demonstrate that even when actions are not independent and
identically distributed (i.i.d.) random variables, or even possess strong correlations with
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one another, they still lead to excellent estimate of the demand curve. In Theorems 3.1, 3.2
and 4.3, we show our algorithms’ optimal regret bounds.

• We discover that the randomness in supply can effectively assist us in learning the demand
curve. This counterintuitive fact reveals why, in Theorem 3.2, we can achieve a regret of
Õ(1), but in the case where there is no noise in supply, in Theorem 3.1, we can only expect
a regret of Õ(

√
T ). We explain in Section 4 via lower bound results (Theorem 4.1 and 4.2)

that these orders of magnitude differences are fundamental and unavoidable. Additionally,
we detailed the phase transition points of regret bounds regarding supply randomness.
• We investigate robust pricing in the absence of prior knowledge of the buyer’s discount rate.

Our AaI and AAaI algorithms don’t require the input of a discount rate to initiate, but can
instead universally motivate buyers whose time has value to nearly truthfully report the
demand curve. Specifically, our algorithm is also applicable in scenarios where the discount
rate varies. The robustness of our algorithm is benign both in theory and applications.

1.1 Related Work

This work is closely related to instruments in machine learning [4, 5, 12, 56, 73, 47, 24, 69, 23],
pricing with strategic buyers [55, 2, 29, 37, 1, 38], and demand learning under uncertainty [14, 26,
46, 21, 7, 48, 20, 50, 28]. Due to space constraints, additional references are provided in Appendix A
for readers’ reference. Detailed discussion of the relation and comparison between our work and
previous work is also presented in Appendix A.

Notations. For any positive integer n, we let [n] denote the set {1, ..., n} and n1 : n2 represent
{n1, ..., n2−1}. We useN (µ, σ2) to represent a Gaussian random variable with mean µ and variance
σ2. Moreover, we use O(·) when ignoring constant terms while Õ(·) when ignoring constants and
logarithmic terms. Similarly, we have Ω(·), Ω̃(·), Θ(·) and Θ̃(·).

2 Model and Assumptions

We consider an online dynamic pricing problem faced by a platform interacting with a representative
buyer for T rounds. The platform aims to maximize its revenue against the rational and strategic
buyer by dynamically adjusting the service fees.

Information structure of platform pricing. In each round t, multiple sellers pose different portfolios
on the platform and thus form the cumulative supply curve, denoted by PSt = PSt(Q) as a function
of Q. For example, Uber can observe in real-time how many different types of drivers are available
on the platform, such as UberX, UberXL, Black SUV, etc. Similarly, Ticketmaster knows how many
tickets are still available in each area. Then, the platform sets a service fee at ∈ R≥0. Here we
assume the sellers are not strategic: as the platform formulates the fee-charging plan after observing
PSt(Q), there is no issue concerning trustfulness for sellers. In each round t, the representative buyer
may receive a private signal, such as a shock on income, and form a time-dependent demand curve,
denoted by PDt = PDt(Q). However, the buyer may behave as if her demand is P ′

Dt rather than
PDt because of her forward-looking strategic behavior, elaborating below. Together with service fee
at, the platform observes an equilibrium price and equilibrium quantity in the market, denoted by
(P e

t , Q
e
t ), satisfying

P e
t := PSt(Q

e
t ) + at = P ′

Dt(Q
e
t ). (1)

Then, the platform receives revenue Πt = at ·Qe
t (PSt, P

′
Dt, at) in this round. As a result, across the

time horizon of T , the platform has a cumulative revenue:
∑T

t=1 at ·Qe
t (PSt, P

′
Dt, at). As a concrete

setting, we study the case when both the supply and demand curves have linear forms following
canonical literature of both demand learning [19, 61, 44, 74] and instrumental variable models [56].
Assumption 2.1. Assume that the supply curve in round t has the form of

PSt(Q) = α0 + α1Q+ ϵSt

and the demand curve is
PDt(Q) = β0 + β1Q+ ϵDt.

The independent noise terms ϵSt and ϵDt follow normal distributions, N (0, σ2
S) and N (0, σ2

D),
respectively.
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To avoid nuisance from market feasibility, we assume that β0 > α0 ≥ 0, α1 ≥ 0 > β1, and that all
equilibrium prices and quantities are positive and bounded. We note from Equation (1) that if Qe

t
is negative, then optimal Qe

t shall be truncated as 0. For simplicity of analysis, we will not make
truncation throughout the paper. This shall not influence the validity of our analysis and results.

Utility-maximizing buyer. We assume the representative buyer fully knows the learning policy used
by the platform to set service fees [37]. Note that the buyer is only aware of the policy beforehand.
If the policy involves randomization, the buyer knows in advance the policy but not the realization
of the policy. In fact, previous behavior-based pricing literature [41, 64, 10, 11] has suggested that
committing to a pricing strategy can help the platform earn more revenue.

In each time period t, the buyer receives a surplus, say surplust(PSt, PDt, P
e
t , Q

e
t , at), which depends

on the supply curve, demand curve, equilibrium price, equilibrium quantity, and the service fee.
For brevity, we will write Surt as an abbreviation of surplust(PSt, PDt, P

e
t , Q

e
t , at). We utilize the

Ramsey model [62], which originates from the economic literature, to calculate the surplus. More
rigorously, we employ Assumption 2.2. We postpone the discussion of the economic intuition behind
Assumption 2.2 and its implications for calculating the surplus to Appendix B for interested readers.

Assumption 2.2. We assume a private market where all sellers are civilian-run enterprises.

The representative buyer has a discount rate γ ∈ [0, 1). When γ = 0, the buyer is myopic and only
considers her surplus in the current round t. She truthfully purchases the optimal quantity of items
she needs. That is, her realized demand curve P ′

Dt coincides with PDt. However, when γ ∈ (0, 1),
i.e., the buyer is far-sighted [8, 72], she may choose to misreport her demand curve P ′

Dt ̸= PDt in
exchange for increasing long-term expected cumulative utility: E[

∑T
s=t γ

s−tSurs], where again Surs
is the surplus gained at time s. The expectation is taken over the randomness for all time s > t: supply
randomness ϵSs, demand randomness ϵDs, and potential randomness from the platform pricing policy.
Here, we use the general economic term “misreport” to represent that the equilibrium price and
quantity are not aligned with the buyer’s true demand. They can be either larger or smaller. Note that
the buyer won’t show her demand curve PDt(Q) to the platform at all, and all the information the
platform can learn is through observing equilibrium prices and quantities. Thus, it is important for
the platform to design a careful service charging mechanism to motivate a truthful disclosure of the
demand curve from the buyer.

Performance metric. With the help of the revelation principle [63], there is an incentive-compatible-
direct mechanism for pricing to achieve the highest revenue. So, we can define optimal service fee
from Equation (1) by

a∗t = argmax
at≥0

E[at ·Qe
t (PSt, PDt, at)].

The expectation is taken over PDt since the platform needs to set at before the realization of PDt.
Define the suboptimality at time t as

SubOptt(at) = E[a∗t ·Qe
t (PSt, PDt, a

∗
t )− at ·Qe

t (PSt, P
′
Dt, at)].

Our evaluation metric is then the revenue regret against a clairvoyant policy attained over the whole
T rounds, namely,

Regret(T ) =
T∑

t=1

SubOptt(at).

Remarks on the model. We would like to provide some further remarks on the model as follows.

1. Platform is patient while buyer’s discount rate is γ ∈ [0, 1). In practice, platforms are usually
less time-sensitive compared with individuals, for instance, in a sponsored search auction, where
the platform usually auctions off large numbers of ad slots each time while buyers usually urgently
need advertisement and value future rewards less. On the other hand, the platform is not especially
concerned with slight decreases in immediate rewards and maybe more on user stickiness. Readers
can refer to Drutsa [30], Golrezaei et al. [37] for more information on different time values for
different market forces. Additionally, from a theoretical standpoint, achieving sub-linear regret is
impossible when the buyer discount rate is one [2]. Therefore, our paper focuses on strategic buyers
whose discount rates fall within the [0, 1) range, accommodating both real-world scenarios and
theoretical constraints.
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2. On and beyond the linear model. In this paper, we focus on linear models. In practical scenarios,
particularly when considering a localized segment of the market to avoid eliciting competitive
reactions, there often emerges a pattern of linearity (which also serves as the cornerstone for the
application of the so-called “Delta method” [45]). Further, Besbes and Zeevi [15] also suggests that
in certain circumstances, misspecification stemmed from assuming a linear model is less detrimental
than anticipated. We note that although we explicitly assume the linearity of the demand curve
and the supply curve in the model, it should not be difficult to extend to some variations of non-
linear models (e.g. log-log, semi-log model in hedonic pricing [66] and logistic model in click
prediction [51]) like Ban and Keskin [13] with some extra assumption on non-linear factors, by
utilizing the generalized method of moments (GMM). Our technique also has the potential to work in
high-dimensional cases and even non-parametric Reproducing Kernel Hilbert Space (RKHS). Despite
such extensions, we will adopt the linear model throughout this work for brevity and clarity. We leave
further generalizations for future work.

3 Regret Upper Bounds: Actions as Instruments

In this section, we present our main algorithm AaI (Action-as-Instruments) and demonstrate its
theoretical guarantees. We assume that T and σS ≥ 0 are both known (σD need not be known a
priori). This assumption will be further relaxed in the next section.

Algorithm 1 AaI Algorithm.
Input: T .
Initialization: D ← ∅, A ← ∅ and t← 0.
for episode m = 1, 2, · · · do

Estimate unknown parameters: (β̂0, β̂1)← IV(D,A) (Algorithm 4 in Appendix C.1).
Form estimate for the demand curve P̂D = β̂0 + β̂1Q.
Initialize datasets D ← ∅ and A ← ∅.
for τ = t+ 1 to t+ 2m do

Observe the supply curve PSt = αt + α1Q.
Select the action at ← Act(PSt, P̂D) using Algorithm 2.
Observe equilibrium ot = (P e

t , Q
e
t ).

Update D ← D ∪ ot and A ← A∪ at.
end for
Update round index: t← t+ 2m.

end for

Algorithm 2 Act Algorithm.
Input: PS and PD.
Calculate â∗ ← argmaxa≥0 a · Q̂e(a), where Q̂e(a) is decided by PS(Q̂

e) + a = P̂D(Q̂e).
Generate an independent noise term ϵ ∼ N (0, 1√

size(A)+1
)

Set service fee a← â∗ + ϵ · 1{σS = 0}.
Output: a.

We now elaborate on the design of AaI and how it overcomes the main challenges mentioned in
Section 1. We first demonstrate the design of our low-switching regime. In Algorithm 1, to deal
with the far-sighted buyer, we update our policy when t is a power of 2. The intuition behind the
low-switching cost update is that since the buyer has a discount rate strictly lower than 1, long-run
benefits will be hard to compensate for short-run loss. Under a low-switching regime, the gap between
the buyer’s behavior P ′

D and the true demand curve PD becomes small. In the existing literature,
Ai et al. [1] utilizes explicit “buffer” periods against far-sighted buyers while other works such as
Golrezaei et al. [37, 38] use implicit methods to motivate truthfulness. In Algorithm 1, we adopt
an implicit way to punish untruthful behavior so that we don’t need information about the buyer’s
discount rate, thus enhancing the robustness and universality of our algorithm. We note that the
use of low-switching cost algorithms may not be necessary when facing a myopic buyer, though
indispensable for a far-sighted buyer [34, 71].

5

53529 https://doi.org/10.52202/079017-1695



Second, the proof of Theorem 3.1 and 3.2 relies on solving the challenge that the platform can only
observe equilibrium prices and quantities. The novel approach we take here is to utilize the service
fee price as an instrumental variable (reflected in Algorithm 4). Despite the fact that the service
fees as actions are correlated, we prove they provide valid estimates of the true coefficients (β0, β1),
which is rigorously shown in Lemma 3.1 (in the lemma only β1 is analyzed; a similar result also
holds for β0).

Lemma 3.1. Let β̂1t be the estimated slope after round t. Then, under Assumptions 2.1 and 2.2, with
high probability, it holds that

|β̂1t − β1| ≲ O(
√
log log T

t
1
4

+
1

(1− γ)
√
t
) for all t ∈ [T ] when σS = 0,

and

|β̂1t − β1| ≲ O(
√
log log T

σS

√
t

+
1

σ2
S(1− γ)t

) for all t ∈ [T ] when σS > 0.

Now let’s discuss the magnitude of the artificially added noise (see Algorithm 2) — which serves as
an exploration step to learn demand information. Combined with our previous discussion, we will
present our main theorems in this section. We differentiate between two cases: σS = 0 and σS > 0.

3.1 σS = 0: Õ(
√
T ) Regret

We first consider the case when there is no supply randomness. At the beginning of each episode m,
we add a O(1) noise to the service fee. Then, we decay the magnitude of noise variance at an inverse
square root rate. There are two key points when implementing the algorithm.

First, there is a trade-off between utilizing early data and recent data — the more data we use, the
better estimate we will have, but the early data may have bad data-generating processes which may
cause extra nuisances. Therefore, we choose only to use data from the last episode, whose length
is roughly half of all available data and we reset the magnitude of noise as long as we start a new
episode to ensure sufficient exploration.

Second, there is a trade-off between adding larger and smaller randomness — the more randomness
we add to the service fee, the more accurate estimate we will obtain, whereas higher noise leads to
larger revenue loss. In our design, in episode m, the variance level of noise added is designed to be
O( 1√

2m
) on average where 2m is the length of the episode. It decays at a relatively slow rate, aiming

at exploration without losing much exploitation. We note that a special case of σS = 0 is when
the supply curve coincides with the Q-axis (PSt(Q) = 0) and the buyer has no strategic behavior
(γ = 0). This degenerates to the standard dynamic pricing problem [44] where a Õ(

√
T ) regret holds.

The following theorem shows that with the additional features in our model (equilibrium observation,
strategic behavior), an Õ(

√
T ) regret bound still holds.

Theorem 3.1 (σS = 0). Under Assumptions 2.1 and 2.2, for any fixed failure probability ι ∈ (0, 1),
with probability at least 1 − ι, Algorithm 1 achieves at most O(

√
T log( log T

ι ) + log T
(1−γ)2 ) regret

against any buyer whose discount rate γ ∈ [0, 1) when supply doesn’t have noise, i.e. σ2
S = 0. Here,

O(·) hides only absolute constants.

3.2 σS > 0: Noise Helps Learning

We then consider the case when there is supply randomness. In contrast to Section 3.1, here no
random noise is injected into the empirical optimal action â∗ (see Algorithm 2). The following
theorem shows that noise helps learning — an Õ(1) regret is obtainable.

Theorem 3.2 (σS > 0). Under Assumptions 2.1 and 2.2, for any fixed failure probability ι ∈ (0, 1),

with probability at least 1 − ι, Algorithm 1 achieves at most O( log T log( log T
ι )

σ2
S

+ log T
σ2
S(1−γ)

) regret
against any buyer whose discount rate γ ∈ [0, 1). Here, O(·) hides only absolute constants.

The regret upper bound in Theorem 3.2 contains two parts. The first O(log T ) term is the main regret
incurred by learning the demand curve — which illustrates how noise helps learning. Although the

6
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platform can only observe equilibrium prices and quantities, the extra randomness in the supply curve
automatically generates exploration and pushes the empirical optimal action â∗ from Algorithm 2 to
vibrate around some intrinsic number. As a result, the estimation of β generates a fast convergence
rate of O(1/

√
t) (see Lemma 3.1) even if no active exploration is presented. As a comparison, in

Section 3.1 when the supply curve is deterministic, the problem becomes “degenerate” to some extent.
The equilibrium prices on the supplier side and equilibrium quantities lie on one line (the fixed supply
curve) in the 2-dimensional space, which forces us to do active exploration that leads to a O(

√
T )

regret.

The second term is the extra regret due to the strategic behavior of the buyer. Golrezaei et al.
[37] achieves an extra O( log2 T

log2(1/γ)
) regret in repeated auction pricing when the discount rate is

approaching one. Since log(1/γ) ≤ 2(1 − γ) for γ ∈ [0, 1), we obtain better results in both the
order of log T and order of 1

1−γ . We note that since the implementation of Algorithm 1 doesn’t
depend on the buyer’s discount rate γ, it can achieve O(log T log log T ) regret even if the discount
rates are changing in different rounds — as long as the discount rate γt has a uniform upper bound γ̄
and γ̄ < 1, which is widely observed in the real-world market, especially online advertising [31],
Algorithm 1 remains good permanence.

From Theorems 3.1 and 3.2, we know the key to achieve Õ(1) regret is the internal randomness of
the supply curve. Therefore, we have the following corollary.
Corollary 3.2. If the platform needs to set a uniform service fee in multi-markets, such as Order
Processing Fee on Ticketmaster [17], the demand curve goes to

P⃗Dt = β⃗0 + β⃗1 ⊗ Q⃗+ ϵ⃗Dt,

where ⊗ is the Kronecker product of two matrices. Then, as long as in one market, the corresponding
supply has internal randomness, Algorithm 1 can achieve Õ(1) regret by utilizing at as an instrument
for all markets. Otherwise, it will suffer Õ(

√
T ) regret.

4 Regret Lower Bounds: Phase Transition

In this section, we present results on regret lower bounds. We will focus on the case when γ = 0
and investigate how the regret intrinsically scales as a function of T as well as σS . We will show
that there exhibits a phase transition phenomenon with respect to T and an inverse square law with
respect to σS . We first present a result when there is no supply randomness.
Theorem 4.1. Given any time horizon T , when the supply doesn’t have noise, the worst-case expected
regret is lower bounded by Ω(

√
T ). In Ω(·) we are hiding a constant term irrelevant with σS and T .

Next, we provide a lower bound when σS can take any general positive number.
Theorem 4.2. Given any time horizon T and the supply noise level σS , the worst-case expected
regret is lower bounded by

Ω

(√
T ∧ log T

σ2
S(1 + log+(1/σS))

)
,

where log+(·) = max{0, log(·)}. In Ω(·) we are hiding a constant term irrelevant with σS and T .

The proof of Theorem 4.1 depends on constructing two hard-to-differentiate instances such that
the demand curves deviate with each other while the supply curves remain the same. The proof of
Theorem 4.2 relies on the multivariate Van Trees inequality [36, 44]. An important step in both of the
proof is when considering the magnitude of demand noise σD, it should be dependent on α1 and β1.
The reason is that if the noise magnitude is irrelevant with the slope parameters, the standard deviation
of equilibrium prices and quantities observed by the platform can provide additional information on
the true parameters — this will make it possible for a policy to learn more quickly by “cheating”.
Only when the noise magnitude posits a delicate dependence on the true parameters, the equilibrium
prices/quantities exhibit constant deviation across all instances without information leakage.

Now we give some remarks for the theorems. Theorem 4.1 states that the regret order in Theorem 3.1
is tight. It also implicitly provides some intuition for our choice of the magnitude of the artificially
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introduced noise in our algorithm design. The total variance of noise we add is proportional to
√
T —

this shall be the largest noise magnitude we shall use for sufficient exploration to match the Ω(
√
T )

lower bound.

Theorem 4.2 shows that if σS > 0 is a constant irrelevant with T , then our regret upper bound in
Theorem 3.2 is tight up to a log T factor. Moreover, Theorem 4.2 gives a valid lower bound if σS is
entangled with T . To be precise, if σ2

S ≲ O(1/
√
T ), then the best we can hope is an Õ(

√
T ) regret.

Only when σ2
S ≳ ω(1/

√
T ) can we expect a regret bound better than Õ(

√
T ).

Readers may immediately notice that there is a gap between our regret upper bounds (see Theorem 3.2)
and the regret lower bound (see Theorem 4.2) when σ2

S ≲ O(1/
√
T ). It raises the following question

whether we can achieve the same regret upper bounds without knowing σS in advance. The answer is
YES! We have the following theorem.

Theorem 4.3. Under Assumptions 2.1 and 2.2, there exists an algorithm, e.g., Algorithm 3, whose
expected regret is at most Õ(

√
T ∧ σ−2

S ) against any buyer with discount rate γ ∈ [0, 1). Here, Õ(·)
hides only constants and logarithmic terms.

Algorithm 3 AAaI (Adaptive Action-as-Instruments) Algorithm.
Input: T .
for t = 1 to T0 ≂ Θ(log T ) do

Observe market randomness ϵSt or supply intercept α0 + ϵSt.
end for
Hypothesis Test: H0 : σ2

S ≲ O( 1√
T
) and H1 : σ2

S ≳ Ω( 1√
T
), denoting the result as H.

Conduct AaI(T − T0) with Act-HT(H, ·, ·) (Algorithm 5 in Appendix C.2) replacing Act(·, ·).

In Algorithm 3, Act-HT is essentially a generalized version of Act: if H0 holds, we treat σS as if it is
0; if not, we treat σS as it is. When T is unknown or infinite, we can leverage the well-known doubling
trick [9, 16] to achieve the same order of regret. From Theorem 4.3, we know that when the supply
randomness is small enough, namely, σ2

S ≲ O(1/
√
T ), the expected regret has a fixed rate Θ̃(

√
T ),

whereas when the supply randomness is large enough, namely σ2
S ≳ Ω(1/

√
T ), the expected regret is

inversely proportional with respect to σ2
S — an inverse square law ignoring constants and logarithmic

terms. Therefore, there exists an essential phase transition when σ2
S ≂ Θ(1/

√
T ) (see Figure 4) —

this tells us that we should take market randomness into consideration whenever solving pricing
problems.

5 Numerical Study

In this section, we conduct two simulation experiments. The goal is to test the performance of our
algorithms as well as numerically demonstrate the phase transition phenomenon. We provide detailed
experimental descriptions in Appendix G.

In the first experiment, we consider regret attained in Algorithm 1 under two scenarios. Here, we
set T = 105. We replicate 10 times in each setting and draw the average regrets and their 95%
confidence regions. We consider both constant σ2

S and zero randomness in Figure 2. It’s obvious that
when σ2

S ≂ Θ(1), the growth rate of regret is significantly smaller than the growth rate when σ2
S = 0.

The first regret is slightly larger than 200 and the second one is more than 1200, validating the
respective O(log2 T ) and O(

√
T log T ) expected regrets. Numerically, when σ2

S = 1, we find that
the regrets when T = 20000, 40000, 60000, 80000, 100000 (log T = 9.90,10.60,11.00,11.29,11.51)
are 220, 230, 234, 236, and 237, respectively. These points are even slightly sublinear. So, the actual
performance is even better than the theoretical bound. In addition, when there is no randomness in the
supply, i.e., σ2

S = 0, we have log(Regret) = 6.43, 6.75, 6.95, 7.10, 7.17, respectively. The estimated
slope by linear regression is 0.47, testifying our regret bound.

Moreover, we increase the number of trajectories to 100 and observe that the bandwidth of the
corresponding confidence region significantly decreases (cf. Figure 3 (top, right)). Additionally, we
test the regret under different σ2

S values, say 0.5, 1, 1.5 and 2. We notice that the larger the σ2
S , the

smaller the regret, which confirms our theoretical results (cf. Figure 3).
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Figure 2: 95% confidence region of regret of Algorithm 1 over 10 trajectories: σ2
S = 1 (left) and

σ2
S = 0 (right).

Figure 3: 95% confidence region of regret of Algorithm 1 over 100 trajectories: σ2
S = 0.5, 1, 1.5, 2

(top to bottom, left to right).

Then, we conduct the second experiment examining the dependency of regret on supply randomness
σ2
S . We set T = 104 and range σ2

S from 0.001 to 1. We replicate the simulation 20 times and use
quantile statistics to enhance the robustness (see raw results in Figure 5, i.e., blue points). There are
around 100 points choosing H0 and we can observe the phase transition when σ2

S ≈ 0.1. Notice that
Algorithm 3 has aO(

√
T log T ) expected regret for H0 butO(

√
T log2 T ) for H1 when σ2

S ≂ Θ( 1√
T
)

(cf. Appendix F.5). This additional log T factor explains why there is increasing fluctuation in regret
near the phase transition point, as Algorithm 3 engages in a mixture of applying H0 and H1. Finally,
we employ locally weighted scatterplot smoothing (LOWESS) [25] to approximate regret for each
level of randomness σ2

S , with the fitting depicted by a red line. We notice that regret first reaches a
plateau and keeps nearly constant and then gradually decreases, testifying Theorem 4.3.
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Figure 4: Phase transition with supply randomness
σ2
S . Aggregating Theorems 4.1 to 4.3.

Figure 5: Phase transition in Algorithm 3 and
its non-parametric local fitting.

6 Conclusion

In this paper, we study the dynamic pricing problem for third-party platforms. Our model incorporates
practical challenges involving lack of demand knowledge, limited observation of equilibria, and
buyer strategic behavior. We design an effective policy that obtains optimal performance guarantees
to address the challenges by injecting carefully chosen randomness, using non-i.i.d. actions as
instruments, and forcing a low-switching design. Specifically, in the case of supply fluctuations, we
achieve a regret upper bound of Õ(1), and when supply is fixed, we achieve a regret bound of Õ(

√
T ),

both of which match the information-theoretical lower bounds. Additionally, we demonstrate the
relationship between regret and supply randomness, and provide their optimal dependency and phase
transition points.

Questions arise for future explorations. What is the dependence of regret on the discount rate γ?
Our conjecture is that a discount rate strictly less than 1 will introduce inevitable Ω( 1

1−γ ) regret
universally, meaning the regret upper bound in Theorem 3.2 is optimal with respect to γ but the
bound in Theorem 3.1 may not. Unfortunately, the analysis can be very challenging, which we leave
as an open question. Furthermore, one future work is to extend the linear model to more complex
models and investigate whether the insights in this paper (e.g., phase transition) still hold. Despite
the simplicity of our model, we hope our results offer valuable insights into solving general service
fee pricing problems for third-party platforms.
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A Literature Review

This work contributes to the theory of econometrics, demand learning, and pricing with strategic
buyers. We summarize below three lines of existing literature pertinent to our work.

Instruments in Machine Learning. Instrumental variable is a powerful tool in econometrics
[4, 5, 12]. Nambiar et al. [56] uses IV to learn the demand curve under model misspecification,
inspired by Petrin and Train [59], Phillips et al. [60]. In recent years, a series of articles have emerged
that use the IV method to estimate machine learning parameters. Yu et al. [73], Liao et al. [47] utilize
instruments to learn a nearly-optimal policy via offline data. Chen and Qi [24], Uehara et al. [69]
adopt a non-parametric instrumental variable framework to do off-policy evaluation. Chen and Zhang
[23] considers a time-varying instrument and Singh [65] extends the kernel methods to scenarios
with confounders.

Unlike existing literature, our paper first leverages endogenous proactive actions as IV in online
learning problems, especially in pricing. Unlike offline data, the distribution of our instrument
variable is not only non-identical but also even non-independent. Meanwhile, as we face a revenue-
maximizing problem, we need to deal with the famous exploration-exploitation tradeoff. More
efficient instruments may decrease the estimation error leading to higher future revenue, but usually
suffer a larger short-term loss. Thus, prior research does not encompass our model and we examine
the robustness of IV to market randomness with novelty.

Pricing with Strategic Buyers. There is a burgeoning amount of literature on pricing with strategic
buyers. Amin et al. [2] first proves that no algorithm can achieve sublinear regret when buyers are as
patient as sellers. Deng et al. [29] considers pricing in dynamic mechanism design with less patient
buyers. It obtains sublinear regret in contextual auctions. Golrezaei et al. [37] study optimal reserve
design problem original from Myerson [55] facing strategic bidders while Mohri and Munoz [54]
considers a corresponding revenue optimization problem. Golrezaei et al. [38] considers pricing with
strategic buyers under non-parametric market noise and Ai et al. [1] extends to Markov decision
process (MDP) pricing models. Mohri and Medina [53], Kanoria and Nazerzadeh [43], Epasto et al.
[32], Amin et al. [3] also study such issues under different information structures and depict different
scenarios in real markets.

The difficulty in our model is that we can only observe equilibrium prices and quantities. Worst
yet, there are confounders behind the information feedback. Therefore, the methods from previous
literature cannot be directly applied to our model. Consequently, we explore a robust pricing
framework originating from econometrics to address this issue.

Demand Learning under Uncertainty. Demand learning is a hot topic in microeconomics, man-
agement science, and operations research [14, 26, 46, 21, 7, 48, 20]. Lobo and Boyd [50] considers
a linear demand model and invents a “price-dithering” policy to add perturbation. Den Boer and
Zwart [28] invents the controlled variance pricing idea and Broder and Rusmevichientong [18] scales
exploration by adding t−1/4 which has similar connotations to our approach.

Nambiar et al. [56] considers confounders in demand learning but doesn’t involve strategic buyers.
We extend high-level econometrics ideas behind it and design recipes against non-truthful buyers.
We construct a robust pricing framework free of prior knowledge of both discount info and market
randomness and attain optimal regret bounds across all settings.

B Discussion on Assumption 2.2

We clarify the definition of Surt first. Similar to the Ramsey model [62], there are three different
types of sellers, namely, civilian-run enterprises, state-owned enterprises, and mixed-ownership
enterprises [57]. For civilian-run enterprises, 100% of the profits belong to individuals, namely the
representative buyer, so she aims to maximize the sum of producer surplus and consumer surplus.
Then, it holds that

Surt = Consumer surplus at time t+ Producer surplus at time t.

Meanwhile, for state-owned enterprises, their goal is to maximize their own scale. This is a common
form of business organization, especially in developing countries, such as China (see Modigliani and
Cao [52] for more information). Because the buyer cannot receive dividends from companies, she
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will only maximize their consumer surplus, namely,

Surt = Consumer surplus at time t.

Finally, for mixed-ownership enterprises, a portion of the profits will be distributed to the buyer in
the form of dividends. We use α ∈ (0, 1) to denote the proportion. Therefore, we have

Surt = Consumer surplus at time t+ α ∗ Producer surplus at time t.

Hence, we make Assumption 2.2 in our paper, all sellers are civilian-run enterprises. We point out
that this assumption won’t affect our results and regrets with the same order can be obtained under
state-owned enterprises and mixed-ownership enterprises. Here, we use the definition of Surt to
detail Assumption 2.2 as Assumption B.1.

Assumption B.1. Without loss of generality, we assume that all sellers are civilian-run enterprises.
Then, the strategic representative buyer aims to maximize her cumulative surplus aligned with the
sum of the corresponding consumer surplus and provider surplus. In other words, Surt has the form
of

Surt = Consumer surplus at time t+ Producer surplus at time t.

C Omitted Details of Algorithm Implementations

C.1 Omitted Details of Algorithm 1

In this section, we present the subroutine used in Algorithm 1. Specifically, Algorithm 4 details the
coefficient estimation process.

Algorithm 4 IV Algorithm.
Input: D and A.
Regress {Qe, P e} on {at}: Qe = â0 + â1a, P

e = b̂0 + b̂1a.
Estimate β1: β̂1 = b̂1

â1
.

Calculate sample means1: Q̄e = 1
size(A)

∑
t Q

e and P̄ e = 1
size(A)

∑
t P

e.

Estimate β0: β̂0 = P̄ e − β̂1Q̄
e.

Output: (β̂0, β̂1).

C.2 Omitted Details of Algorithm 3

We fill in the details of Algorithm 3 below.

Algorithm 5 Act-HT Algorithm.
Input: H, PS and PD.
Calculate â∗ ← argmaxa≥0 a · Q̂e(a), where Q̂e(a) is decided by PS(Q̂

e) + a = P̂D(Q̂e).
Generate an independent noise term ϵ ∼ N (0, 1√

size(A)+1
)

Set service fee a← â∗ + ϵ · 1{H = H0}.
Output: a.

D Concentration Inequalities

We now recall some inequalities [70] which bound the accumulated difference of a martingale and
are extensively used in our proofs.

1We define 0
0
= 0 for convenience.
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Lemma D.1 (Bernstein-type bound for a martingale difference sequence). Let {(Dk,Fk)}∞k=1 be a
martingale difference sequence, and suppose that E

[
eλDk | Fk−1

]
≤ eλ

2v2
k/2 almost surely for any

|λ| < 1/αk. Then the following hold:

(a) The sum
∑n

k=1 Dk is sub-exponential with parameter tuple
(√∑n

k=1 v
2
k, α∗

)
, where α∗ :=

maxk=1,...,n αk.

(b) The sum satisfies the concentration inequality

P

[∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣ ≥ t

]
≤

 2e
− t2

2
∑n

k=1
v2
k if 0 ≤ t ≤

∑n
k=1 v2

k

α∗

2e−
t

2α∗ if t >
∑n

k=1 v2
k

α∗

Lemma D.2 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n, are independent, and
Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

[∣∣∣∣∣
n∑

i=1

(Xi − µi)

∣∣∣∣∣ ≥ t

]
≤ 2 exp

{
− t2

2
∑n

i=1 σ
2
i

}
.

E Omitted Proof in Section 3

We first prove results in Section 3.2 and then prove results in Section 3.1 in leverage of some lemmas
derived from the proof of Theorem 3.2.

E.1 Omitted Proof in Section 3.2

Since we assume that all equilibrium prices and quantities are bounded, reflecting the buyer’s
budget constraint and sellers’ production capacity, we use P̄ and Q̄ to represent their upper bounds
respectively. Moreover, recall that the buyer is myopic, so the demand curve behaved P ′

D is the same
as the real demand PD.

We first consider the situation in which the buyer is myopic as a warm-up. We have the following
theorem.

Theorem E.1. Under Assumption 2.1, for any fixed failure probability ι ∈ (0, 1), with probability at

least 1− ι, Algorithm 1 achieves at most O( log T log( log T
ι )

σ2
S

) regret, where O(·) hides only absolute
constants when facing a myopic buyer.

E.1.1 Useful Facts for Proving Theorem E.1

Now, we state the following lemma for the planning problem first.

Lemma E.1. If β0 and β1 are common knowledge, the optimal service fee is a∗ = β0−α0−ϵS
2 .

Meanwhile, the corresponding equilibrium quantity is Qe = β0−α0−ϵS+2ϵD
2(α1−β1)

.

Proof. Since PS = α0 + α1Q + ϵS and PD = β0 + β1QD + ϵD, applying PS + a = PD leads
to Qe = β0−α0−a+ϵD−ϵS

α1−β1
. As the platform cannot observe ϵD when setting the service fee a, i.e.

ϵD is realized ex post, the expected revenue associated with a is Ea ∗ Qe = (β0−α0−a−ϵS)a
α1−β1

. It’s
maximized when

a∗ =
β0 − α0 − ϵS

2
.

With some calculation, we know that the equilibrium quantity is

Qe =
β0 − α0 − ϵS + 2ϵD

2(α1 − β1)
.

The reason why ϵS appears explicitly is that the shock on the supple curve is ex-ante and observed by
the platform.
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Thereafter, we’d like to bound the estimation of β0 and β1 in Algorithm 4. We have the following
proposition. We ignore the flooring in ⌊log2 T ⌋ throughout this section to avoid notation clutter.

Proposition E.2. Let β̂1 be the estimated slope of Algorithm 4 after the m-th episode. Then, under
Assumption 2.1, there exists a constant C1 such that with probability at least 1− 6δ, we have

|β̂1 − β1| ≤
C1

√
log log T

σS

√
2m

for all m ∈ [log2 T ],

then

|β̂1t − β1| ≲ O(
√
log log T

σS

√
t

) for all t ∈ [T ],

where subscript t represents which round.

Proof. After the m-th episode, we know that we have data sets D and A with Size(A) = 2m := n.
Then, we need to prove that there exists a uniform constant C1 such that |β̂1 − β1| ≤ C1

√
log log T

σS
√
n

.

Since during episode m, we choose the service fee as β̂0−α0−ϵS
2 , where β̂0 is the latest estimate of

β0, i.e. the estimate after m− 1-th episode. With a little abuse of notation, we omit the subscript of it
with β̂0 along the road of proof without confusion.

When Size(A) = n, it means that there are n samples in the data set, that is to say, a trajectory of
length n. We use En to represent the sample mean and E to represent the population mean. With
simple algebra, we know that

β̂1 =
En[P

e(a− Ena)]

En[Qe(a− Ena)]
=

1
n

∑n
i=1 P

e
i (ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

.

Since P e = β0 + β1Q
e + ϵD as (P e, Qe) is on the demand curve, it holds that

β̂1 = β1 +
1
n

∑n
i=1 ϵDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

.

First, we bound the numerator 1
n

∑n
i=1 ϵDi(ai−Ena) = − 1

2n

∑n
i=1 ϵDiϵSi +

1
2EnϵSEnϵD. We use∑

i xi to denote
∑

i ϵDiϵSi for simplicity.

For 1
n

∑
i xi, we leverage Lemma D.1 to give a Bernstein-type bound for the corresponding martingale

difference sequence.

Lemma E.3. There exists constants n1 and ν such that with probability at least 1− δ, it holds that
for any n ≥ n1 where n = 2m and m ∈ [log2 T ],

| 1
n

n∑
i=1

xi| ≤

√
2ν2 log( 2 log2 T

δ )

n
.

Proof. In our case, we know that ai depends on not only previous ϵD and ϵS , but also ϵSi. However,
it doesn’t rely on ϵDi. This conditional independence motivates us to use actions as nearly valid
instruments. Similarly, xi has the same property. Therefore, by utilizing this independence, we know
that

E[xi |x1, ..., xi−1] = E[ϵDi] ∗ E[ϵSi |x1, ..., xi−1] = 0.

As a result, {xi}ni=1 becomes a martingale difference sequence and we use F to denote associated
filtration. Then, let’s compute the moment-generating function (MGF).

E[eλxi | Fi−1] =

∫
exp(λϵSϵD)

1√
2πσS

e
− ϵ2S

2σ2
S

1√
2πσD

e
− ϵ2D

2σ2
D dϵSdϵD

=
1√

1− λ2σ2
Sσ

2
D

.
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as long as |λ| ≤ 1
σSσD

. The first equation comes from the definition of ϵD and ϵS while the second
equation comes from simple algebra.

Therefore, assuming α = 2σSσD, we know that for any |λ| ≤ 1
α ,

E[eλxi | Fi−1] ≤
1√

1− λ2σ2
Sσ

2
D

≤ eλ
2σ2

Sσ2
D .

Then, assuming ν =
√
2σ2

Sσ
2
D =

√
2σSσD, it holds that xi is sub-exponential with parameters

(ν, α).

With the help of Lemma D.1, we know that as long as n ≥ 2α2 log(
2 log2 T

δ )

ν2 := n1, with probability at

least 1− δ
log2 T , | 1n

∑n
i=1 xi| ≤

√
2ν2 log(

2 log2 T
δ )

n . Since there are at most log2 T kinds of different

values for n, the total sum of probabilities of bad events is less than δ
log2 T ∗ log2 T = δ, which ends

the proof.

For EnϵS , we have the following lemma therein to bound it.

Lemma E.4. With probability at least 1− δ, it holds that for any n = 2m and m ∈ [log2 T ] that

| 1
n

n∑
i=1

ϵSi| ≤

√
2σ2

S log( 2 log2 T
δ )

n
.

Proof. For any n = 2m where m ∈ [log2 T ], we know that ϵSi is a sub-Gaussian variable with
parameter σS because it follows distribution N (0, σ2

S).

By applying Lemma D.2, namely Hoeffding’s inequality, it holds that with probability 1− δ
log2 T

| 1
n

n∑
i=1

ϵSi| ≤

√
2σ2

S log( 2 log2 T
δ )

n
.

Combining all nuisance leads to the probability of all inequalities holding, that is, 1 − δ, which
finishes our proof.

Moreover, for EnϵD, we have a similar result whence giving an upper bound for it.

Lemma E.5. With probability at least 1− δ, it holds that for any n = 2m and m ∈ [log2 T ] that

| 1
n

n∑
i=1

ϵDi| ≤

√
2σ2

D log( 2 log2 T
δ )

n
.

Proof. The proof is the same as the one for Lemma E.4 with replacement of ϵSi by ϵDi.

Second, let’s give some concentration bounds for the denominator 1
n

∑n
i=1 Q

e
i (ai − Ena).

By applying Lemma E.1, we have the following decomposition of the denominator that

1

n

n∑
i=1

Qe
i (ai − Ena)

=
1

2n(α1 − β1)

[∑
i

2(ai − Ena)ϵDi −
∑
i

(ai − Ena)ϵSi +
∑
i

(ai − Ena)(2β0 − β̂0 − α0)

]
.

We use
∑

i xi,
∑

i yi and
∑

i zi to denote for shorthand 2
∑

i(ai − Ena)ϵDi,
∑

i(ai − Ena)ϵSi and∑
i(ai − Ena)(2β0 − β̂0 − α0) respectively.
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From Lemmas E.3 to E.5, we know that with probability at least 1− 3δ, it holds that

| 1
n

∑
i

xi| ≤

√
2ν2 log( 2 log2 T

δ )

n
+

2σSσD log( 2 log2 T
δ )

n
,

where ν are defined in Lemma E.3.

For 1
n

∑
i yi, we have the following lemma to illustrate its property.

Lemma E.6. There exists constant n2 such that with probability at least 1− 3δ, it holds that for any
n ≥ n2 where n = 2m and m ∈ [log2 T ],

| 1
n

n∑
i=1

yi +
σ2
S

2
| ≤ 3P̄

2

√
2σ2

S log( 2 log2 T
δ )

n
+

√
8 log(2 log2 T

δ )

n
.

Proof. Let’s decompose yi as −Ena ∗ ϵSi +
β̂0−α0

2 ϵSi − ϵ2Si

2 .

For −Ena ∗ ϵSi, similar to Lemma E.4, it holds that with probability at least 1− δ, for all n = 2m,

| 1
n

∑
i

−Ena ∗ ϵSi| = |
1

n

∑
i

ϵSi| ∗ |Ena|

≤ P̄ | 1
n

∑
i

ϵSi|

≤ P̄

√
2σ2

S log( 2 log2 T
δ )

n
.

The first equation holds due to simple algebra while the first inequality holds because the service fee
has a trivial upper bound P̄ . The last inequality holds due to Lemma D.2.

As for term β̂0−α0

2 ϵSi, we use ti to denote it. Like the proof of Lemma E.3, we know that β̂0 only
depends on previous ϵD and ϵS but don’t ϵSi. So, it holds that E[ti | t1, ..., ti−1] = 0 and we use F to
denote the corresponding filtration. Since we have the following MGF

E[eλti | Fi−1] = e
λ2σ2

S(β̂0−α0)

32 ≤ e
λ2σ2

SP̄2

32 ,

we know that ti is a sub-Gaussian random variable with a parameter σSP̄
4 , which is also sub-

exponential with parameters (σSP̄
4 , 0). With Lemma D.1, we know that with probability 1− δ

| 1
n

∑
i

β̂0 − α0

2
ϵSi| ≤ P̄

√
σ2
S log( 2 log2 T

δ )

2n
for all m ∈ [log2 T ] and n = 2m.

For the term σ2
Si

2 , since ϵ2Si

σ2
S
∼ χ2

1 and χ2
1 is sub-exponential with parameters (2, 4), we know that

with probability 1− δ,

| 1
n

∑
i

ϵ2Si

2
− σ2

S

2
| ≤

√
8σ4

S log( 2 log2 T
δ )

n
,

as long as n ≥ 8 log(2 log2 T
δ ) := n2.

Accordingly, combining the above three terms leads to the needed lemma.

For 1
n

∑
i zi, we notice that it’s indeed zero. It holds that

| 1
n

∑
i

zi| = |
1

n

∑
i

(ai − Ena)(2β0 − β̂0 − α0)| = 0,

due to the definition of Ena.
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With the bounds for both nominator and denominator, it holds that

|β̂1 − β1|

≤
2(α1 − β1)(

1
2

√
2ν2 log(

2 log2 T
δ )

n +
σSσD log(

2 log2 T
δ )

n )

σ2
S

2 −
√

2ν2 log(
2 log2 T

δ )

n − 2σSσD log(
2 log2 T

δ )

n − 3P̄
2

√
2σ2

S log(
2 log2 T

δ )

n −
√

8σ4
S log(

2 log2 T
δ )

n

.

Then, there exists constants C2, C3 and C4 such that when n ≥ max{n1, n2, C3 log log T} =

C4 log log T , |β̂1 − β1| ≤ C2

√
log log T

σS
√
n

due to ν =
√
2σSσD. Note that C4 ≲ O( 1

σ2
S
) from previous

definitions and process of proof.

When n ≤ C4 log log T , we can choose large enough constant C5 such that C5

σS

√
C4

is greater than a
trivial bound for β1. Since we care about the situation when σS is small, the probable appearance of
it in the denominator won’t cause trouble for us. Afterwards, by setting C1 = max{C2, C5}, we find
a uniform constant such that

|β̂1 − β1| ≤
C1

√
log log T

σS

√
2m

.

Moreover, we know that after the m-th episode, i.e. in the m + 1-th episode, t ∈ {2m+1 − 1 :
2m+2 − 1}, then t ≂ Θ(2m). Therefore, from the above, we know

|β̂1t − β1| ≲ O(
√
log log T

σS

√
t

) for all t ∈ [T ].

Whereas when calculating the probability of bad events, there is some redundancy, after calibration,
the union bound on the probability of bad events is 6δ which ends the proof.

Since we can estimate β1 with high accuracy, we similarly have the following proposition about the
estimates of β0 when Proposition E.2 holds.

Proposition E.7. Let β̂0 be the estimated intercept of Algorithm 4 after the m-th episode. Then,
under Assumption 2.1 and conditional on the event that Proposition E.2 holds, there exists a constant
D1 such that with probability at least 1− δ, we have

|β̂0 − β0| ≤
D1

√
log log T

σS

√
2m

for all m ∈ [log2 T ],

then

|β̂0t − β0| ≲ O(
√
log log T

σS

√
t

) for all t ∈ [T ],

where subscript t represents which round.

Proof. It holds that for any n = 2m, with probability at least 1− δ,

|β̂0 − β0| = |β1EnQ
e − β̂1EnQ

e + EnϵD|

≤ |β1EnQ
e − β̂1EnQ

e|+ |EnϵD|

= |EnQ
e| ∗ |β1 − β̂1|+ |EnϵD|

≤ C1Q̄
√
log log T

σS
√
n

+

√
2σ2

D log( 2 log2 T
δ )

n
.

The first equation comes from Algorithm 4. The first inequality holds due to the triangle inequality
while the second inequality holds due to Proposition E.2 and Lemma E.5.

Then, for any n = 2m, there exists a D1 such that |β̂0 − β0| ≤ D1

√
log log T

σS
√
n

. Similarly, since
t ≂ Θ(n), it holds that

|β̂0t − β0| ≲ O(
√
log log T

σS

√
t

).

Finally, bad events coming from EnϵD have a cumulative probability of δ which closes the proof.
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Up to now, we provide proof of Propositions E.2 and E.7 showing that even when IV is not i.i.d.
with respect to time, we can obtain good estimation results, demonstrating the effectiveness of our
Algorithm 4.

E.1.2 Proof of Theorem E.1

Proof. With Appendix E.1.1 in hand, we are ready to give a high probability upper bound for the
total regret.

We use f(a) to denote Ea ∗Qe(PS , PD, a) = β0−α0−a−ϵS
α1−β1

a. Then, with an ordinary Taylor-series
expansion and the mean value theorem, it holds that

SubOptt(at) =
df(a∗t )

da
(a∗t − at) +

1

2

d2f(αa∗t + (1− α)at)

da2
(a∗t − at)

2,

where α ∈ [0, 1]

From Lemma E.1, we know that df(a∗
t )

da = 0. Besides, it holds that (a∗t − at)
2 ≲ O(|β̂0t − β0|2) ≲

O( log log T
σ2
St

) due to Proposition E.7. Then, since |d
2f

da2 | is uniformly bounded by a constant, namely
2

α1−β1
, we have that

SubOptt(at) ≲ O(
log log T

σ2
St

).

As a result, it holds that

Regret(T ) =
T∑

t=1

SubOptt(at) ≲
T∑

t=1

O( log log T
σ2
St

) ≲ O( log T log log T

σ2
S

).

The last inequality holds due to
∑n

i=1
1
i ≤ 1 + log n.

The total odds of some inequalities not holding is 7δ. Among them, 6δ derives from Proposition E.2
and δ originates from Proposition E.7. Note that δ only appears in log log T terms. Setting ι = 7δ
ends our proof.

We then turn to prove Theorem 3.2. We begin this section with some preparing lemmas. Then, we
will prove Theorem 3.2 in leverage of them. Finally, we will give a brief proof of the statement on
time-varying discount.

E.1.3 Useful Facts for Proving Theorem 3.2

Since the buyer may behave as having a different demand curve P ′
D rather than the true one PD, we

first give the following proposition of depicting such untruthfulness.
Proposition E.8. For any behavior P ′

D, we can fully characterize it with a drift parameter ηD.
Consequently, without loss of generality, we can assume that

P ′
Dt = β0 + β1Q+ ϵDt + ηDt.

Proof. Since the platform can only observe achieved equilibrium price P e
t and quantity Qe

t each
round, we only need to find an associated ηDt leading to the same results.

By setting ηDt = P e
t − β0 − β1Q

e
t − ϵDt, we find that (P e

t , Q
e
t ) will satisfy Equation (1). Since two

lines in Euclidean space have at most one intersection point, we know that ηDt fully describes P ′
Dt,

and this correspondence is unique. Hence, we can use ηD to represent untruthful behavior P ′
D and it

finishes our proof.

Using the equivalence in Proposition E.8, we present the relationship between equilibrium price and
quantity and the service fee.
Lemma E.9. For any valid service fee a and tuple (PS , P

′
D), the equilibrium price and quantity

follow

Qe =
β0 − α0 − a+ ϵD − ϵS + ηD

α1 − β1
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and

P e =
α1β0 − α0β1 − β1a+ α1ϵD − β1ϵS + α1ηD

α1 − β1
,

respectively. Then, the change coming from ηD leads to

∆Qe =
ηD

α1 − β1
and ∆P e =

α1ηD
α1 − β1

.

Proof. From Proposition E.8 and Equation (1), we can have the formulas for Qe and P e with some
simple algebra. Furthermore, comparing them and the ones without ηD leads to the formulas about
∆Qe and ∆P e, which finishes the proof.

With these preparations, we are ready to give some properties of ηDt and show good performance of
Algorithm 1.
Lemma E.10. Considering the m-th episode of Algorithm 1, in the i-th round of this episode, we
use ηDi to denote ηD(2m+i−2) though a little abuse of notations. Then, it holds that for any rational
buyer,

|ηDi| ≤
(α1 − β1)Q̄√

1− γ
γ

n−i+1
2 ,

where the m-th episode contains n = 2m rounds. More precisely, it holds that
n∑

i=1

γi−n−1η2Di ≤
(α1 − β1)

2Q̄2

1− γ
.

Proof. From Assumption 2.2, we know that

Sur =
∫ Qe

0

(PD − PS − a)dQ.

Therefore, we know that in the i-th round of the m-th episode, the loss of surplus is

∆Suri =
1

2
(∆Qe

i )
2(β1 − α1) = −

1

2

η2Di

α1 − β1
.

Since the update of the estimation of (β0, β1) happens in n − i rounds, the maximum gain from
misreport is bounded by

T∑
j=n−i

γj+1 1

2
(α1 − β1)Q̄

2 ≤
∞∑

j=n−i

γj+1 1

2
(α1 − β1)Q̄

2 =
γn−i+1(α1 − β1)Q̄

2

2(1− γ)
,

because the surplus is bounded by a trivial bound 1
2 (α1 − β1)Q̄

2 in each round. The inequality holds
because every term is positive. With some calculations, we have the final equation.

Hence, we know that if the buyer is rational, she will guarantee that

−1

2

η2Di

α1 − β1
+

γn−i+1(α1 − β1)Q̄
2

2(1− γ)
≥ 0,

ending with

|ηDi| ≤
(α1 − β1)Q̄√

1− γ
γ

n−i+1
2 .

When we consider all n rounds in the m-th episode as a whole, we know the total loss of surplus
at the point of the last round in the m − 1-th episode is

∑n
i=1 γ

i 1
2

η2
Di

α1−β1
. The maximum surplus

increment is less than γn+1 (α−β1)Q̄
2

2(1−γ) . For a rational and strategic buyer, it holds that

n∑
i=1

γi 1

2

η2Di

α1 − β1
≤ γn+1 (α− β1)Q̄

2

2(1− γ)
,
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leading to
n∑

i=1

γi−n−1η2Di ≤
(α1 − β1)

2Q̄2

1− γ
,

which finishes our proof.

We notice that since the buyer owns strictly less than 1 discount rate, if we inverse time, the bound of
misreport will exponentially decay. Therefore, we have reason to believe that these misreports will not
significantly affect the estimation of parameters. Consequently, we have the following propositions.

Proposition E.11. Let β̂1 be the estimated slope of Algorithm 4 after the m-th episode. Then, under
Assumptions 2.1 and 2.2, with probability at least 1 − 6δ, it holds that when 2m ≳ O( log log T

σ2
S

+
1

σ2
S(1−γ)

),

|β̂1 − β1| ≲ O(
√
log log T

σS

√
2m

+
1

2mσ2
S(1− γ)

) for all m ∈ [log2 T ],

then

|β̂1t − β1| ≲ O(
√
log log T

σS

√
t

+
1

σ2
S(1− γ)t

) for all t ∈ [T ],

where subscript t represents which round.

Proof. Similar to Proposition E.2, it holds that

β̂1 = β1 +
1
n

∑n
i=1 ϵDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

+
1
n

∑n
i=1 ηDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

.

For the numerator, we know that with probability at least 1− 3δ,

| 1
n

n∑
i=1

ϵDi(ai − Ena)| ≤
1

2

√
2ν2 log( 2 log2 T

δ )

n
+

σSσD log( 2 log2 T
δ )

n
,

due to Lemmas E.3 to E.5.

Moreover, we bound 1
n

∑n
i=1 ηDi(ai − Ena) directly in leverage of Lemma E.10. It holds that

| 1
n

n∑
i=1

ηDi(ai − Ena)| ≤
2P̄

n

n∑
i=1

|ηDi|

≤ 2P̄

n

√√√√ n∑
i=1

γi−n−1η2Di

√√√√ n∑
i=1

γn+1−i

≤ 2(α1 − β1)P̄ Q̄

n
√
1− γ

√
γ

1− γ

=
2(α1 − β1)P̄ Q̄

√
γ

n(1− γ)
.

The first inequality holds due to ai ≤ P̄ while the second inequality holds due to Lemma E.10 and
Cauchy–Schwarz inequality. The third inequality holds because every term in the summation is
positive and the geometric series sum formula.

For the denominator, since ∆Qe = ηD/(α1 − β1) from Lemma E.9, we only need to bound
1
n

∑n
i=1

ηD

α1−β1
(ai − Ena). It holds that

1

n

n∑
i=1

ηD
α1 − β1

(ai − Ena) ≤
2P̄ Q̄

√
γ

n(1− γ)

due to the same process as bounding | 1n
∑n

i=1 ηDi(ai − Ena)| above.
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Therefore, we notice that

| 1
n

n∑
i=1

Qe
i (ai − Ena)| ≥

1

2(α1 − β1)

(
σ2
S

2
−

√
2ν2 log( 2 log2 T

δ )

n
−

2σSσD log( 2 log2 T
δ )

n

− 3P̄

2

√
2σ2

S log( 2 log2 T
δ )

n
−

√
8σ4

S log( 2 log2 T
δ )

n

)
−

2P̄ Q̄
√
γ

n(1− γ)
,

with probability at least 1− 6δ due to Lemma E.6.

Combining all these terms, it holds that

|β̂1 − β1| ≤
∣∣∣∣ 1n ∑n

i=1 ϵDi(ai − Ena)
1
n

∑n
i=1 Q

e
i (ai − Ena)

∣∣∣∣+ ∣∣∣∣ 1n ∑n
i=1 ηDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

∣∣∣∣
≲

O(σS

√
log log T√

n
)

O(σ2
S)−O(σS

√
log log T√

n
)−O( 1

n(1−γ) )
+

O( 1
n(1−γ) )

O(σ2
S)−O(σS

√
log log T√

n
)−O( 1

n(1−γ) )

≲ O(
√
log log T

σS
√
n

+
1

nσ2
S(1− γ)

)

≲ O(
√
log log T

σS

√
2m

+
1

2mσ2
S(1− γ)

).

The first inequality holds due to the triangle inequality while the second inequality holds due to
previously presented concentration bounds. The third inequality holds due to simple algebra while
the last one holds due to n = 2m. Besides, taking into account repeated bad events, the probability of
all inequalities holding is at least 1− 6δ. Here, we need n ≥ O( log log T

σ2
S

+ 1
σ2
S(1−γ)

).

Considering that for any round in the m+1-th episode, we have t ∈ {2m+1 − 1 : 2m+2 − 1}, it then
holds that

|β̂1t − β1| ≲ O(
√
log log T

σS

√
t

+
1

σ2
St(1− γ)

) for all t ∈ [T ],

which ends the proof.

Conditional on having a good estimation of β1, we have the following proposition, saying that we
can also estimate β0 precisely.

Proposition E.12. Let β̂0 be the estimated intercept of Algorithm 4 after the m-th episode. Then,
under Assumptions 2.1 and 2.2 and conditional on the event that Proposition E.11 holds, we have
with probability at least 1− δ,

|β̂0 − β0| ≲ O(
√
log log T

σS

√
2m

+
1

2mσ2
S(1− γ)

) for all m ∈ [log2 T ],

then

|β̂0t − β0| ≲ O(
√
log log T

σS

√
t

+
1

σ2
S(1− γ)t

) for all t ∈ [T ],

where subscript t represents which round.
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Proof. We know that β̂0 = EnP
e − β̂1EnQ

e. Thus, it holds that

|β̂0 − β0| ≤ |EnP
e − β̂1EnQ

e − β0|

≤ |β1EnQ
e + EnϵD + EnηD − β̂1EnQ

e|

≤ |β̂1 − β1| ∗ |EnQ
e|+ |EnϵD|+ |EnηD|

≤ |β̂1 − β1| ∗ Q̄+ |EnϵD|+ En|ηD|

≲ Q̄ ∗ O(
√
log log T

σS
√
n

+
1

nσ2
S(1− γ)

) +

√
2σ2

D log( 2 log2 T
δ )

n
+

(α1 − β1)Q̄
√
γ

n(1− γ)

≲ O(
√
log log T

σS
√
n

+
1

nσ2
S(1− γ)

).

The first inequality holds due to the definition of β̂0 while the second inequality holds due to
Proposition E.8. The third inequality holds due to the triangle inequality while the fourth inequality
holds due to Jensen’s inequality and trivial upper bound Q̄. The fifth inequality holds with probability
at least 1− δ because of the results achieved in the proof of Proposition E.11 while the last inequality
holds due to simple algebra.

Similarly, we have that

|β̂0t − β0| ≲ O(
√
log log T

σS

√
t

+
1

σ2
St(1− γ)

) for all t ∈ [T ],

which ends the proof.

Propositions E.11 and E.12 highlight the statistical efficiency of Algorithm 1 even when the buyer is
far-sighted, showing the robustness of our algorithm against non-myopic strategic agents.

E.1.4 Proof of Theorem 3.2

Proof. We recall the definition of SubOptt in round t first, that is,

SubOptt(at) = E[a∗t ∗Qe(PSt, PDt, a
∗
t )− at ∗Qe(PSt, P

′
Dt, at)].

Hence, we can use the triangle inequality to gain

SubOptt(at)
≤ E|a∗t ∗Qe(PSt, PDt, a

∗
t )− at ∗Qe(PSt, PDt, at)|+

E|at ∗Qe(PSt, PDt, at)− at ∗Qe(PSt, P
′
Dt, at)|.

For the first term, it holds that

E|a∗t ∗Qe(PSt, PDt, a
∗
t )− at ∗Qe(PSt, PDt, at)| ≲ O(

log log T

σ2
St

+
1

σ2
St(1− γ)

)

where the first term is similar to the proof of Theorem E.1. For the second term, since | dfda | ≤
2P̄

(α1−β1)
,

we use the first-order approximation to obtain it. We thereafter know that

T∑
t=1

E|a∗t ∗Qe(PSt, PDt, a
∗
t )− at ∗Qe(PSt, PDt, at)| ≲ O(

log T log log T

σ2
S

+
log T

σ2
S(1− γ)

).

For the second term, it holds that

E|atQe(PSt, PDt, at)− at ∗Qe(PSt, P
′
Dt, at)| ≤ E|at| ∗ |Qe(PSt, PDt, at)−Qe(PSt, P

′
Dt, at)|

≤ P̄ ∗ E|Qe(PSt, PDt, at)−Qe(PSt, P
′
Dt, at)|

≤ P̄

α1 − β1
|ηDt|.

26

53550https://doi.org/10.52202/079017-1695



The first inequality holds due to simple algebra while the second inequality holds because the service
fee is always no larger than P̄ . The last inequality holds due to Lemma E.9.

Then, during the m-th episode, there are n = 2m rounds and we have

P̄

α1 − β1
|ηDi| ≤

P̄ Q̄√
1− γ

(
√
γ)n−i+1,

and
n∑

i=1

γi−n−1η2Di ≤
(α1 − β1)

2Q̄2

1− γ
.

Furthermore, it holds that
T∑

t=1

P̄

α1 − β1
|ηDt| =

log2 T∑
m=1

2m∑
i=1

P̄

α1 − β1
|ηDi| ≤

log2 T∑
m=1

P̄

α1 − β1

(α1 − β1)Q̄
√
γ

1− γ
=

P̄ Q̄
√
γ log2 T

1− γ
.

The inequality holds due to the same process when proving Proposition E.11. It comes from
Lemma E.10 and Cauchy-Schwartz inequality.

Consequently, we have

Regret(T ) =
T∑

t=1

SubOptt(at)

≲ O( log T log log T

σ2
S

+
log T

σ2
S(1− γ)

) +
P̄ Q̄
√
γ log2 T

1− γ
+O( log log T

σ2
S

+
1

σ2
S(1− γ)

)

≲ O( log T log log T

σ2
S

+
log T

σ2
S(1− γ)

),

with probability at least 1− 7δ. For the first inequality, the first term comes from suboptimal service
fees while the second term comes from misreport. The last term is needed because of the requirement
of n ≥ O( log log T

σ2
S

+ 1
σ2
S(1−γ)

).

Finally, as δ merely hides within log log T terms, setting ι = 7δ leads to the desired result and
finishes our proof.

E.1.5 When Facing Time-varying Discount

When the buyer has a time-varying discount rate γt, we can replace it with its uniform upper
confidence bound γ̄ in the proofs of Lemma E.10, propositions E.11 and E.12, and theorem 3.2.
Since we use upper bound γ̄ for every spot discount rate, all estimators become more conservative.
Intuitively, the higher the discount rate, the greater the buyer’s motivation to misreport. So, all
inequalities will hold with corresponding probabilities.

Therefore, when the discount rates are changing in different rounds but with a uniform upper bound
γ̄, Algorithm 1 still achieves O(log T log log T ) regret with high probability which ends the proof.

E.2 Omitted Proof in Section 3.1

So as to prove Theorem 3.1, we state some auxiliary lemmas at first.

E.2.1 Useful Facts for Proving Theorem 3.1

Recall that we use ϵ to represent added noise which follows N (0, 1√
Size(A)+1

) and ηD to represent

the distance between P ′
D and PD thanks to Lemma E.9. We have the following lemma to depict the

equilibrium price and quantity in each round.

Lemma E.13. For any estimation β̂0 and tuple (PS , P
′
D), the equilibrium price follows

Qe =
2β0 − β̂0 − α0 + 2ϵD + 2ηD − 2ϵ

2(α1 − β1)
.
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Then, the change coming from ηD leads to

∆Qe =
ηD

α1 − β1
.

Proof. We get the formula of Qe from Equation (1) with ϵS = 0 and the implementation of Algo-
rithm 2. Moreover, due to Lemma E.1, we know the optimal ex-ante service fee a∗ = β0−α0

2 without
untruthful behavior and extra noise term ϵ.

Since the choice of ϵ is independent of ηD, we know that Lemma E.10 still holds, that is, in the i-th
round of m-th episode, the quantity of misreport ηDi follows that for the rational and strategic buyer,

n∑
i=1

γi−n−1η2Di ≤
(α1 − β1)

2Q̄2

1− γ
, (2)

where the m-th episode contains n = 2m rounds.

Subsequently, we are ready to bound the distance between the estimates of β0 and β1 and their true
values.
Proposition E.14. Let β̂1 be the estimated slope of Algorithm 4 after the m-th episode. Then, under
Assumptions 2.1 and 2.2, with probability at least 1−8δ, it holds that when 2m ≳ O(log T log log T+

1
(1−γ)2 ),

|β̂1 − β1| ≲ O(
√
log log T

2
m
4

+
1

2
m
2 (1− γ)

) for all m ∈ [log2 T ],

then

|β̂1t − β1| ≲ O(
√
log log T

t
1
4

+
1

(1− γ)
√
t
) for all t ∈ [T ],

where subscript t represents which round.

Proof. Let’s first decompose the error terms of estimating β1. Assume that n = 2m as usual. From
the implementation of Algorithm 4, we know that

β̂1 =
En[(a− Ena)P

e]

En[(a− Ena)Qe]
= β1 +

∣∣∣∣ 1n ∑n
i=1 ϵDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

∣∣∣∣+ ∣∣∣∣ 1n ∑n
i=1 ηDi(ai − Ena)

1
n

∑n
i=1 Q

e
i (ai − Ena)

∣∣∣∣ .
Since a = β̂0−α0

2 + ϵ, it holds that 1
n

∑n
i=1 ϵDi(ai − Ena) =

1
n

∑n
i=1 ϵi ∗ ϵDi − Enϵ ∗ EnϵD. Let’s

bound them one by one.

First, let’s give a high probability upper bound for 1
n

∑n
i=1 ϵi ∗ ϵDi. We note that it’s a martingale

difference sequence because ϵDi has mean zero conditional on previous events. From the proof of
Lemma E.3, we know that ϵi ∗ ϵDi is sub-exponential with parameters νi =

√
2 σD

i1/4
and αi = 2 σD

i1/4

because Var(ϵi) =
1√
i
. Then, it holds that due to Lemma D.1,

P(|
n∑

i=1

ϵi ∗ ϵDi| ≥ nt) ≤ 2 exp(− n2t2

4σ2
D

∑n
i=1 σ

2
i

)

≤ 2 exp(− n2t2

8σ2
D

√
n
)

= 2 exp(−n3/2t2

8σ2
D

).

The first inequality holds due to Lemma D.1 while the second inequality holds due to
√
n ≤∑n

i=1
1√
i
≤ 2
√
n. Hence, by setting t =

√
8σ2

D log(
2 log2 T

δ )

n3/4 , it holds that P(| 1n
∑n

i=1 ϵi ∗ ϵDi| ≥

t) ≤ δ
log2 T . Besides, we need nt ≤

∑n
i=1 ν2

i

maxi αi
. A sufficient condition is n ≥ (8 log(2 log2 T

δ ))2, then
n ≳ O((log log T )2). Finally, we have that with probability at least 1− δ, for any m ∈ [log2 T ],

| 1
n

n∑
i=1

ϵDiϵi| ≤

√
8σ2

D log( 2 log2 T
δ )

n3/4
.
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For the term EnϵDi, we have the following result from Lemma E.5

|EnϵDi| ≤

√
2σ2

D log( 2 log2 T
δ )

n

with probability at least 1− δ.

For the term Enϵi, we know that ϵi is sub-Gaussian with parameter σi =
1

i1/4
. Consequently, it holds

that

|Enϵi| ≤

√
4 log( 2 log2 T

δ )

n3/4
,

with cumulative probability at least 1− δ due to Lemma D.2.

We thereafter bound the term 1
n

∑n
i=1 ηDi(ai−Ena). From Equation (2), we can obtain the following

bound directly inherited from the proof of Proposition E.11 that

| 1
n

n∑
i=1

ηDi(ai − Ena)| ≤
2(α1 − β1)P̄ Q̄

√
γ

n(1− γ)
.

After that, we need to investigate the property of
∑n

i=1 Q
e
i (ai − Ena). We divide it into three terms.

It holds that

1

n

n∑
i=1

Qe
i (ai − Ena)

=
1

α1 − β1
[
1

n

n∑
i=1

ϵDi(ai − Ena)︸ ︷︷ ︸
q1

+
1

n

n∑
i=1

ηDi(ai − Ena)︸ ︷︷ ︸
q2

+
1

n

n∑
i=1

(−ϵi)(ai − Ena)︸ ︷︷ ︸
q3

].

From previous results, we know that with probability at least 1− 3δ

|q1| ≤

√
8σ2

D log( 2 log2 T
δ )

n3/4
+

√
8σ2

D log2( 2 log2 T
δ )

n5/4
,

and

|q2| ≤
2(α1 − β1)P̄ Q̄

√
γ

n(1− γ)
.

For the last term q3, it holds that

−q3 =
1

n

n∑
i=1

ϵ2i − (
1

n

n∑
i=1

ϵi)
2.

Besides, we know that with probability at least 1− δ, it holds that

(
1

n

n∑
i=1

ϵi)
2 ≤

4 log(2 log2 T
δ )

n3/2
,

due to Lemma D.2.

Finally, for 1
n

∑n
i=1 ϵ

2
i , we know that ϵi ∼ N (0, 1√

i
) and they are independent. Therefore, ϵ2i is

sub-exponential random variable with νi =
2√
i

and αi =
4√
i

with scaling of χ2
1 random variable.

So, from Lemma D.1, it holds that

P(|
n∑

i=1

ϵ2i −
n∑

i=1

1√
i
| ≥ nt) ≤ max

{
2 exp(− n2t2

8
∑n

i=1
1
i

), 2 exp(− nt

2α∗ )

}
,
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where α∗ = maxi αi = 4. By choosing t = max

{√
8(1+log T ) log(

2 log2 T
δ )

n ,
8 log(

2 log2 T
δ )

n

}
, we

know that with probability at least 1− δ, we have

1

n
|

n∑
i=1

ϵ2i −
n∑

i=1

1√
i
|

≤ max


√
8(1 + log T ) log(2 log2 T

δ )

n
,
8 log(2 log2 T

δ )

n

 ≲ O(
√
log T log log T

n
),

for any n = 2m. Here, we use facts log n ≤
∑n

i=1
1
i ≤ 1 + log n and n ≤ T .

So, with probability at least 1− 2δ, we know that

|q3| ≥
1√
n
−max


√
8(1 + log T ) log(2 log2 T

δ )

n
,
8 log(2 log2 T

δ )

n

− 4 log(2 log2 T
δ )

n3/2

≳
1√
n
−O(

√
log T log log T

n
).

Combing all these terms, we know that

|β1 − β̂1| ≤
(α1 − β1)

(√
8σ2

D log(
2 log2 T

δ )

n3/4 +

√
8σ2

D log2(
2 log2 T

δ )

n5/4 +
2(α1−β1)P̄ Q̄

√
γ

n(1−γ)

)
1√
n
−O(

√
log T log log T

n )−
√

8σ2
D log(

2 log2 T
δ )

n3/4 −
√

8σ2
D log2(

2 log2 T
δ )

n5/4 − 2(α1−β1)P̄ Q̄
√
γ

n(1−γ)

≲ O(
√
log log T

n1/4
+

1√
n(1− γ)

).

as long as n ≳ O(log T log log T + 1
(1−γ)2 ).

Since we know that t ≂ Θ(n), it holds that with probability at least 1− 8δ,

|β̂1t − β1| ≲ O(
√
log log T

t
1
4

+
1√

t(1− γ)
),

which ends the proof.

Now, we have the following proposition to bound the estimation error of β0 in a similar manner.

Proposition E.15. Let β̂0 be the estimated intercept of Algorithm 4 after the m-th episode. Then,
under Assumptions 2.1 and 2.2 and conditional on the event that Proposition E.14 holds, we have
with probability at least 1− δ,

|β̂0 − β0| ≲ O(
√
log log T

2
m
4

+
1

2
m
2 (1− γ)

) for all m ∈ [log2 T ],

then

|β̂0t − β0| ≲ O(
√
log log T

t
1
4

+
1

(1− γ)
√
t
) for all t ∈ [T ],

where subscript t represents which round.
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Proof. Similar to the proof of Proposition E.12, it holds that β̂0 = EnP
e − β̂1EnQ

e. Consequently,
we have with probability at least 1− δ,

|β̂0 − β0| ≤ |EnP
e − β̂1EnQ

e − β0|

≤ |β1EnQ
e + EnϵD + EnηD − β̂1EnQ

e|

≤ |β̂1 − β1| ∗ |EnQ
e|+ |EnϵD|+ |EnηD|

≤ |β̂1 − β1| ∗ Q̄+ |EnϵD|+ En|ηD|

≲ Q̄ ∗ O(
√
log log T

n1/4
+

1√
n(1− γ)

) +

√
2σ2

D log( 2 log2 T
δ )

n
+

(α1 − β1)Q̄
√
γ

n(1− γ)

≲ O(
√
log log T

n1/4
+

1√
n(1− γ)

).

The first four inequalities are the same as the one in the proof of Proposition E.12. Moreover, the
fifth inequality comes from Proposition E.14 and the last inequality comes from simple order of
magnitude analysis.

Similarly, we have that

|β̂0t − β0| ≲ O(
√
log log T

t
1
4

+
1√

t(1− γ)
) for all t ∈ [T ],

which ends the proof.

Propositions E.14 and E.15 show that although we add approaching zero noise to explore the unknown
environment, we can asymptotically estimate true parameters β0 and β1 accurately. Nevertheless,
comparing with Propositions E.2, E.7, E.11 and E.12, the convergence rates have decreased to a
certain extent, ultimately resulting in a larger regret.

E.2.2 Proof of Theorem 3.1

Proof. Basically, similar to the proof of Theorem 3.2, we decompose the SubOpt(·) into two parts.

SubOptt(at)
≤ E|a∗t ∗Qe(PSt, PDt, a

∗
t )− at ∗Qe(PSt, PDt, at)|+

E|at ∗Qe(PSt, PDt, at)− at ∗Qe(PSt, P
′
Dt, at)|.

We know that the optimal service fee at round t is a∗t = β0−α0

2 while the service fee we set is

at =
β̂0t−α0

2 + ϵt. Therefore, considering the Taylor’s expansion, it holds that

E|a∗t ∗Qe(PSt, PDt, a
∗
t )− at ∗Qe(PSt, PDt, at)| ≲ O(

log log T√
t

+
1

t(1− γ)2
+ ϵ2t ),

where the expectation is taken over ϵDt due to Proposition E.15 and (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

Considering the m-th episode, we know that there are n = 2m rounds in it. Since we already have
that

1

n
|

n∑
i=1

ϵ2i −
n∑

i=1

1√
i
| ≲ O(

√
log T log log T

n
),

with probability at least 1− δ
log2 T , it holds that

n∑
i=1

ϵ2i ≲ O(
√
n+

√
log T log log T ).

This will lead to the following result that
T∑

t=1

ϵ2t ≲ O(
√
T )
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because of the geometric series summation formula.

As a result, we get

T∑
t=1

E|a∗t ∗Qe(PSt, PDt, a
∗
t )− at ∗Qe(PSt, PDt, at)| ≲ O(

√
T log log T +

log T

(1− γ)2
),

with probability at least 1− δ.

As for the second term E|at ∗Qe(PSt, PDt, at)− at ∗Qe(PSt, P
′
Dt, at)|, similarly, we have

T∑
t=1

E|at ∗Qe(PSt, PDt, at)− at ∗Qe(PSt, P
′
Dt, at)| ≤

P̄ Q̄
√
γ log2 T

1− γ

due to Equation (2).

Recall that we also need that n ≳ O(log T log log T + 1
(1−γ)2 ) to make Proposition E.14 hold.

Combining all these terms, it holds that

Regret(T ) =
T∑

t=1

SubOptt(at)

≲ O(
√
T log log T +

log T

(1− γ)2
) +

P̄ Q̄
√
γ log2 T

1− γ
+O(log T log log T +

1

(1− γ)2
)

≲ O(
√
T log log T +

log T

(1− γ)2
),

with probability at least 1− 10δ.

Recall that δ is exclusively concealed within log log T terms. By assigning ι = 10δ, we have reached
the following conclusion that

Regret(T ) ≲ O(
√
T log(

log T

ι
) +

log T

(1− γ)2
),

which finishes our proof.

F Omitted Proof in Section 4

F.1 Useful Facts for Proving Theorem 4.1

First, we introduce some auxiliary lemmas on Kullback–Leibler (KL) divergence.
Lemma F.1. For two independent normal distributions p = N (µ1, σ

2
1) and q = N (µ2, σ

2
2), the KL

divergence between them is

KL(p∥q) = σ2
1 + (µ1 − µ2)

2

2σ2
2

+ log(
σ2

σ1
)− 1

2
.

Proof. Recall that KL(p∥q) =
∫
x
p(x) log(p(x)q(x) )dx. It leads to the result with the expression of

normal distribution and some calculations.

Lemma F.2 ([68]). For two probability distributions p, q over space (Ω,F), it holds that for any
A ∈ F

p(A) + q(Ac) ≥ 1

2
e−KL(p∥q).

F.2 Proof of Theorem 4.1

Proof. We only prove the lower bound against myopic buyer which is the loosest one. Let’s consider
the following case. We assume the supply curve is PS = QS and the family of the demand curve
parameterized by ϵ is {PϵD = 20 + 5ϵ− (1 + ϵ)QD + ϵϵD} where ϵϵD ∼ N (0, ( 2+ϵ

2 )2).
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The system is depicted completely by (at, P
e
ϵt), where Qe

ϵt = P e
ϵt − at. Recall that at depends on

history up to t− 1, namely,Ht=1 = (a1, P
e
ϵ1, ..., at−1, P

e
ϵ(t−1)). From Lemma E.1, we know that{

Qe
ϵ =

20+5ϵ−a+ϵϵD
2+ϵ ,

P e
ϵ = 20+5ϵ+(1+ϵ)a+ϵϵD

2+ϵ .

Then, we know that P e
ϵ ∼ N ( 20+5ϵ+(1+ϵ)a

2+ϵ , 1
4 ) due to the definition of ϵϵD. Moreover, the ex-ante

optimal service fee is a∗ = 20+5ϵ
2 .

We now consider the situation when ϵ = 0 and ϵ = T− 1
4 and we use Pϵ to denote associated

probability measure. With the help of Lemma F.1, it holds that

KL(P0∥Pϵ) = Ea[KL(P0(· | a)∥Pϵ(· | a)) | a] = Ea[
ϵ2(10− a)2

2(2 + ϵ)2
],

where we use the law of iterated expectations.

During the whole T round, we calculate the number of rounds with |10− at| ≥ 5ϵ denoted by T0.
With a slight abuse of notation, we use [T0] to denote the corresponding index set. Let’s consider
achieved regret with T0 case by case.

On the one hand, when T0 ≥ T
2 , it holds that one-round suboptimlality for ϵ = 0 is at least

SubOpt0t(at) =
(10−a)2

2 when t ∈ [T0]. Then, we have

Regret0(T ) + Regretϵ(T ) ≥ Regret0(T )

≥
∑

t∈[T0]

SubOpt0t(at)

≥ T0
25ϵ2

2

≥ T

2

25

2
√
T

≳ Ω(
√
T ).

The first inequality holds due to the positivity of regret while the second inequality holds due to the
positivity of SubOpt(·). The third inequality holds because when t belongs to [T0], we have that
|10− a| ≥ 5ϵ while the fourth inequality holds due to the assumption of T0.

On the other hand, when T0 < T
2 , there exists more than T

2 rounds such that |10 − a| ≤ 5ϵ. In
these rounds, denoted by [T − T0], it holds that KL(P0∥Pϵ) ≤ 25ϵ4

2(2+ϵ)2 ≤
25ϵ4

18 as ϵ ≤ 1. The first
inequality holds with no need to consider the distribution of a because we use a union bound over all
a. Then, the total KL among these T − T0 rounds is no larger than (T − T0)

25ϵ4

18 ≤
25
18 ≲ O(1) as

ϵ = T−1/4 in leverage of properties of KL divergence.

We define an event A that in more than T
4 rounds, at ≥ 40+5ϵ

4 . Therefore, Ac contains at least T
4

rounds that at < 40+5ϵ
4 . Therefore, it holds that

E[·|T0<
T
2 ] [Regret0(T ) + Regretϵ(T )] ≥ E[·|T0<

T
2 ]

 ∑
t∈[T−T0]

SubOpt0t(at) + SubOptϵt(at)


≥ P0(A |T0 <

T

2
)
T

4

25ϵ2

32
+ Pϵ(A

c |T0 <
T

2
)
T

4

25ϵ2

16(2 + ϵ)

≥ 25ϵ2T

192
(P0(A |T0 <

T

2
) + Pϵ(A

c |T0 <
T

2
))

≥ 25
√
T

192

1

2
e−

25
18

≳ Ω(
√
T ).
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The first inequality holds due to the positivity of SubOpt(·) while the second inequality holds because
the optimal service fee is 20+5ϵ

2 and one-round loss is [a−(20+5ϵ)/2]2

2+ϵ . The third inequality holds due
to ϵ ≤ 1 while the fourth inequality holds due to Lemma F.2.

Therefore, it holds that by combining both two cases
max{ERegret0(T ),ERegretϵ(T )}

≥ 1

2
(ERegret0(T ) + ERegretϵ(T ))

≥ min{E[·|T0≥T
2 ]

Regret0(T ) + Regretϵ(T )
2

,E[·|T0<
T
2 ]

Regret0(T ) + Regretϵ(T )
2

}

≥ 1

2
min{25

√
T

4
,
25
√
T

384
e−

25
18 }

≳ Ω(
√
T ),

due to ϵ = T−1/4. Therefore, for any algorithm against ϵ = 0 and ϵ = T−1/4, at least one regret is
no smaller than Ω(

√
T ), which ends the proof.

There are two key points when constructing such a hard-to-learn instance. When ϵ = 0, the optimal
service fee is 10 and the expected equilibrium is (P e, Qe) = (15, 5). Then, we choose a special
family of demand curves which are all through (P e, Qe) = (15, 5) in expectation. Therefore, when
the platform chooses a = 10, it cannot infer the value of ϵ which ends with large regret for non-zero ϵ.
However, if the platform sets service fee deviated from 10, it will suffer a high loss in the case when
ϵ = 0, ending with large total regret. This introduces an internal exploration-exploitation tradeoff
leading to Ω(

√
T ) regret loss bound. However, when σ2

S > 0, even if the platform sets optimal
service fee for ϵ = 0, the noise ϵS plays the role in exploring the environment. The platform can
utilize such information to do casual inference which heavily reduces the regret to Õ(1). So, we
answer the question that noise helps learning essentially.

Secondly, from a technical perspective, we adaptively adjust the noise variance in the demand. For
the tuned hyperparameter ϵ = T− 1

4 and baseline parameter ϵ = 0, we shrink σ2
ϵD from ( 2+ϵ

2 )2

to 1. Since the randomness of demand introduces noise into the equilibrium retrospectively, the
equilibrium price and quantity appear nebula-like. The shrinkage of variance results in greater
overlap between the two nebulae, which complicates the learning process. Mathematically, it causes
the equilibrium price to have the same variance regardless of the value of ϵ, entailing smaller KL
divergence between different choices of demand. To sum up, these two crucial aspects make up this
delicate and non-trivial example.

F.3 A Weaker Version of Theorem 4.2

Note that there is a gap between the proposed upper bounds and corresponding lower bounds when
σ2
S ≲ O( 1√

T
), indicating essential hardness in this interval. Therefore, we first give the following

lemma which is a little bit weaker than the original Theorem 4.2 but depicts the characteristics in this
area. Here, we use a constructive proof and then we give a complete information-theoretic proof of
Theorem 4.2 in Appendix F.4.

Algorithm 6 Oracle-Variant Algorithm.
Input: T , σ2

S .
Initialization: H0 ← ∅
for t = 1 to T do

Generate noise: ϵSt ∼ N (0, σ2
S).

Generate virtual supply curve: P ′
St = α0 + α1Q+ ϵSt.

Call Oracle(·, ·): ãt ← Oracle(Ht−1, P
′
St).

Select action: at = ãt + ϵSt.
Observe equilibrium: ot = (P e

t , Q
e
t ) from Equation (1).

Update history: Ht ← Ht−1 ∪ {ot, ϵSt}.
end for
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Lemma F.3. It’s impossible to find an algorithm such that there exists some σ2
S ≲ o( 1√

T
) and the

corresponding expectation of regret belongs to o(
√
T ), namely, ERegret(T ) ≲ o(

√
T ).

Proof. We have proof by contradiction to demonstrate this lemma. We assume that when the supply
randomness is σ2

S ≲ o( 1√
T
), there exists an algorithm denoted by Oracle whose expected regret

belongs to o(
√
T ). We use Ht to represent history until round t, namely, Ht = {aτ , P e

τ , Q
e
τ}tτ=1.

Therefore, Oracle(·, ·) is a mapping from Ht−1 × PSt to R. Now, we are going to show that if
existing such Oracle, we can find a variant of it called Oracle-Variant which achieves o(

√
T )

without supply randomness, contradicting Theorem 4.1. We assume γ = 0 which is enough to
construct a counterexample. We present the detail of Oracle-Variant in Algorithm 6. The input is
the number of rounds T and the supply randomness σ2

S ≲ o( 1√
T
) associated with Oracle.

We use ãt
∗ to denote the optimal service fee when there exists ϵSt ∼ N (0, σ2

S) and a∗t to denote the
one without randomness. Considering the following counterfactual case, if we adopt ãt when there
exists ϵSt, the equilibrium price and quantity will be

(P̃ e
t , Q̃

e
t ) = (

β0 − α0 − ãt + ϵDt − ϵSt

α1 − β1
,
α1β0 − α0β1 − β1ãt + α1ϵDt − β1ϵSt

α1 − β1
)

according to Lemma E.9. Fortunately, choosing at = ãt + ϵSt leads to the same equilibrium price
and quantity without randomness, that is to say, (P e

t , Q
e
t ) = (P̃ e

t , Q̃
e
t ).

Since we use Oracle, the regret when baseline is ãt
∗ is o(

√
T ). Therefore, we know that

E[
T∑

t=1

(ãt − ãt
∗)2] ≲ o(

√
T ),

according to the proof of Theorem E.1. Now, let’s give a decomposition of (at − a∗t )
2. It holds that

(at − a∗t )
2 ≲ O((at − ãt)

2) +O((ãt − ãt
∗)2) +O((a∗t − ãt

∗)2),

according to simple algebra. For the first term, we know that

E[
T∑

t=1

O((at − ãt)
2)] ≲ E[O(

T∑
t=1

ϵ2St)] ≲ O(Tσ2
S),

from the implementation of Algorithm 6. For the second term, it holds that

E[
T∑

t=1

O((ãt − ãt
∗)2)] ≲ o(

√
T ).

For the last term, we know that

E[
T∑

t=1

O((a∗t − ãt
∗)2)] ≲ E[

T∑
t=1

O(ϵ2St)] ≲ O(Tσ2
S),

because |a∗t − ãt
∗| = | ϵSt

2 | according to Lemma E.1.

Therefore, we know that without supply randomness, the expected regret of Algorithm 6 satisfying

Regret(T ) ≲ o(
√
T ) +O(Tσ2

S) ≲ o(
√
T ).

The last inequality holds due to σ2
S ≲ o( 1√

T
). However, from Theorem 4.1, we know that

ERegret(T ) ≳ Ω(
√
T ). It then causes a contradiction. We subsequently conclude that the ex-

istence of Oracle is untenable, which ends the proof.

F.4 Proof of Theorem 4.2

Proof. Let β = (β0, β1) and ϵDt ∼ N (0, σ2
D) with σD = (α1 − β1)σ for some σ > 0. To express

concisely, we use subscript β and superscript π to denote parameter and policy, respectively. We
know that

a∗t (β) =
β0 − α0 − ϵSt

2
.
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Also, when the decision maker sets any at, we observe

Qe
t =

β0 + ϵDt − at − α0 − ϵSt

α1 − β1

Note that the only unknown randomness comes from ϵDt since ϵSt is always observable. Meanwhile,
upon deciding at and observing Qe

t and ϵSt, the price from both the demand and supply side can be
uniquely decided. Therefore, the log-likelihood prior to time t can be calculated as:

Lt−1(β) =

t−1∑
i=1

− 1

2σ2

(
Qe

i −
β0 − ai − α0 − ϵSi

α1 − β1

)2

+ C,

where C is a constant only dependent on {ai, Qe
i}

t−1
i=1 and not dependent on β. The fisher information

matrix prior to time t can be calculated as

Fπ
t−1(β) = Eπ

β

[
−∂2Lt−1(β)/∂β

2
]
=

1

σ2
Eπ
β

[
t−1∑
i=1

[
1

(α1−β1)2
−β0−at−α0−ϵSt

(α1−β1)2

−β0−at−α0−ϵSt

(α1−β1)2
(β0−at−α0−ϵSt)

2

(α1−β1)2

]]
.

Let λ be an absolutely continuous density on Θ, taking positive values on the interior of Θ and zero
on its boundary (see, e.g., Keskin and Zeevi [44]). Then the multivariate Van Trees inequality [36]
implies that

Eλ

[
Eπ
β

[
(at − a∗t (β))

2
]]
≥

(
Eλ

[
C(β)(∂a∗t (β)/∂β)

⊤])2
Eλ

[
C(β)Fπ

t−1(β)C(β)⊤
]
+ F̃(λ)

. (3)

Let C(β) = [(β0 − α0)/2 1]. Then we have

C(β)(∂a∗t (β)/∂β)
⊤ = [(β0 − α0)/2 1][1/2 0]⊤ = (β0 − α0)/4 = Ω(1)

and

C(β)Fπ
t−1(β)C(β)⊤ =

1

σ2(α1 − β1)2
Eπ
β

[
t−1∑
i=1

(
β0 − α0

2
− (β0 − at − α0 − ϵSt)

)2
]

=
1

σ2(α1 − β1)2

t−1∑
i=1

Eπ
β

[(
ai −

β0 − α0 − ϵSi

2
+

ϵSi

2

)2
]

= O

(
t−1∑
i=1

(
Eπ
β

[
(ai − a∗i (β))

2
]
+ σ2

S

))
.

Plugging the inequalities above into Inequality (3), we know that there exists a positive constant c
such that

Eλ

[
Eπ
β

[
(at − a∗t (β))

2
]]
≥ 2c

1 +
∑t−1

i=1 Eλ

[
Eπ
β [(ai − a∗i (β))

2]
]
+ (t− 1)σ2

S

.

From now on, for notation simplicity, we denote ∆[t,T ] =
∑T

i=t Eλ

[
Eπ
β

[
(ai − a∗i (β))

2
]]

. Summing
the formula above from t to T , we know that

∆[t,T ] ≥
T−1∑
i=t−1

2c

1 + ∆[1,i] + σ2
S · i

. (4)

Then supβ Regretπβ(T ) = Θ(∆[1,T ]). We show the lower bound in two cases.

(a). T ≤ 1 + 1/σ4
S . Then from Inequality (4) we have

∆[1,T ] ≥
T−1∑
i=1

2c

1 + ∆[1,i] + σ2
S · i

≥ 2c(T − 1)

1 + ∆[1,T ] +
√
T
≥ cT

∆[1,T ] + 2
√
T
.

36

53560https://doi.org/10.52202/079017-1695



Therefore,

(∆[1,T ] +
√
T )2 ≥ (1 + c)T,

which indicates that there exists a constant c0 =
√
1 + c− 1 > 0 such that ∆[1,T ] ≥ c0

√
T .

(b). T > 1 + 1/σ4
S . Let K be the smallest positive integer such that 2K ≥ 1 + 1/σ4

S . Then 2K−1 <

1 + 1/σ4
S , which indicate that

K + 1 = K − 1 + 2 < log2(1 + 1/σ4
S) + 2 ≤ 6(1 + log+(1/σS)).

From (a) we know that for t = 2K , we have

∆[1,t] ≥ c0

√
1 + 1/σ4

S ≥ c0
1

σ2
S

≥ c1
1 + log+(1/σS)

K

σ2
S

,

where c1 is a small positive constant irrelevant with K and σS such that c1(2 + 6c1) ≤ c.

Now we use induction. Suppose we have

∆[1,2k] ≥ c1
1 + log+(1/σS)

k

σ2
S

(5)

for some k ≥ K. From Inequality (4) we have

∆[2k+1,2k+1] ≥ (2k+1 − 2)c

1 + ∆[1,2k+1] + σ2
S · (2k+1 − 1)

≥ c

2−k + ∆[1,2k+1]

2k
+ 3

2σ
2
S

≥ c

∆[1,2k+1]

2k
+ 2σ2

S

.

Note that we have utilized the following inequality:

2−k ≤ σ4
S

1 + σ4
S

≤ σ4
S

2σ2
S

= σ2
S/2.

As a result,

∆[1,2k+1] ≥ c1
1 + log+(1/σS)

k

σ2
S

+
c

∆[1,2k+1]

2k
+ 2σ2

S

.

If ∆[1,2k+1] < c1
1+log+(1/σS)

k+1
σ2
S

, then

c

∆[1,2k+1]

2k
+ 2σ2

S

>
c

c1
1+log+(1/σS)

k+1
2kσ2

S
+ 2σ2

S

≥ c
c1

1+log+(1/σS)
K+1
2Kσ2

S
+ 2σ2

S

≥ c

(2 + 6c1)σ2
S

≥ c1
σ2
S

.

This causes a contradiction. Therefore, for any k ≥ K, Inequality (5) holds. Now select any
T > 1 + 1/σ4

S . If T < 2K , then

∆[1,T ] ≥ c0

√
1 + 1/σ4

S ≥
c1

1 + log+(1/σS)

K

σ2
S

≥ c1
1 + log+(1/σS)

log T

σ2
S

.

If T ≥ 2K , choose k = ⌊log2 T ⌋, then

∆[1,T ] ≥ ∆[1,2k] ≥ c1
1 + log+(1/σS)

k

σ2
S

≥ c1/2

1 + log+(1/σS)

log T

σ2
S

.
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F.5 Proof of Theorem 4.3

Proof. Note that the buyer’s strategic behavior only causes extra O( log T
σ2
S

) in Theorem 3.2 and
O(log T ) in Theorem 3.1. Since terms from estimation errors dominate them, we without loss of
generality assume that the buyer is myopic i.e., γ = 0 for simplicity without weakening our results.

From traditional results of hypothesis test [22], we know we need n ≂ Θ(( zασ
E )2) samples to

distinguish H0 and H1, where zα, σ and E are the z-score, the population standard deviation and the
acceptable margin of error, respectively. Here, we know that σ ≂ Θ(σ2

S) since Var(ϵ2St) ≂ Θ(σ4
S).

Besides, we set α ≂ Θ( 1
T ) and then zα ≂ Θ(

√
log T ) due to Lemmas D.1 and D.2. The largest

tolerance of error is E ≂ Θ( 1√
T
). Therefore, by setting T0 ≂ Θ(log T ) with some accurately

designed constants, we can distinguish H0 and H1 with probability at least 1−Θ( 1
T ).

Then, in the case of H0, we will add some human-made noise referring to Algorithm 5. Then, the
randomness of at comes from two parts. One is from original ϵSt. The other one comes from
artificially added noise. Therefore, the variance of at is no smaller than the one in the proof of
Theorem 3.1 and the estimation of parameters will be more accurate. Subsequently, we can bound
three parts of regret which construct the total Regret(T ). The first one comes from the gap between
at and a∗t . It will lead to an Õ(

√
T ) regret. The second part comes from the fact that the probability

that some inequalities don’t hold is at most O( 1
T ). The last part comes from the first T0 rounds.

Therefore, it holds that

ERegret(T ) ≲ Õ(
√
T ) + T ∗ O( 1

T
) +O(T0) ≲ Õ(

√
T ).

Recall that we will suffer st most extraO(log T ) from a strategic buyer which is indeed a subdominant
term. It covers cases when σ2

S ≲ o( 1√
T
).

In the case of H1, it will reduce to Theorem E.1 directly. The regret consists of three parts as well. The
first part is Õ( 1

σ2
S
) inherited from Theorem E.1. The second term comes from the O( 1

T ) probability
of some inequalities being violated. The last term is from the first T0 rounds, yielding

ERegret(T ) ≲ Õ( 1

σ2
S

) + T ∗ O( 1
T
) +O(T0) ≲ Õ(

1

σ2
S

).

Note that we will suffer an extra O( log T
σ2
S

) regret facing a far-sighted buyer. This case contains all

situations when σ2
S ≳ ω( 1√

T
). To be specific, from the proof of Theorems 3.1 and 3.2, we know we

hide O(log2 T ) for H1 but only O(log T ) for H0.

Finally, when σ2
S ≂ Θ( 1√

T
), the policy we use might be a mixture of the one under H0 and the one

under H1. Luckily, both of them will lead to an at most Õ(
√
T ) expected regret.

To sum up, we know that the expected regret of Algorithm 3 satisfies

ERegret(T ) ≲

{
Õ(
√
T ) when σ2

S ≲ O( 1√
T
)

Õ( 1
σ2
S
) when σ2

S ≳ Ω( 1√
T
).

Let’s now turn to the tightness of lower bounds. From Theorems 4.1 and 4.2, we have that

ERegret(T ) ≳


Ω(
√
T ) when σ2

S = 0

Ω(
√
T ) when σ2

S ≲ O( 1√
T
)

Ω( 1
σ2
S
) when σ2

S ≳ Ω( 1√
T
).

Therefore, we conclude that our regret lower bounds are tight and Algorithm 3 is optimal regardless
of constants and logarithmic terms.

Moreover, we instantly obtain the phase transition of regret and it finishes our proof.

F.6 A Lower Bound When γ = 1

We close off this section by giving an easy reduction to the Ω(T ) lower bound in Amin et al. [2]
when the buyer is patient, i.e., equipped with discount rate 1. To determine the optimal dependency
on γ is s beyond the scope of the current work and we leave it as an interesting future direction.
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For each β0, we have a unique optimal service fee a∗ corresponding to it. In the meanwhile, a∗ is
the marginal willingness to pay and we focus on the pricing problem for those with value a∗. From
Theorem 3 in Amin et al. [2], we know there exists a value v, i.e., a∗ here, an Ω(T ) regret is inevitable
for any algorithm when the buyer is patient, namely, γ = 1. Through the bijection between β0 and
a∗, we know there exists some β0 that makes this pricing problem unlearnable.

G Details of Numerical Experiments

We choose parameters γ = 0, α0 = 1, α1 = 1, β0 = 5, β1 = −1 and ϵD ∼ N (0, 1) in both
experiments.

In Section 5, we notice that the increment of regret has several stages. At the beginning of each stage,
the regret will increase relatively rapidly, and then the rate decrease gradually. The reason behind this
phenomenon is the way we implement Act(·, ·). We actually update our pricing policy at the start of
each stage. Therefore, the noise we add has a variance that starts from 1 and decreases according to
the inverse square root law.

For the second experiment, there are some hyper-parameters when implementing Algorithm 3. First,
we set T0 = 10 log2 T therein. Secondly, when we do the hypothesis test, we set H = H0 if the
sample mean of ϵ2S is smaller than 10√

T
and H1 otherwise. Among the 1000 choices of σ2

S , there are
about 100 cases where H = H0, nearly to say, when σ2

S ≤ 0.1. These choices of hyper-parameters
are not essential and not well-tuned though enough for our experiments. When using LOWESS, we
set the hyperparameter “fraction” as 0.15. It means that we use 15% nearest points when fitting the
needed function value. Similarly, it is not carefully selected but rather folklore. Besides, note that
log T ≈ 9.21 so regret fluctuating between 300 and 600 around σ2

S = 0.1 should be acceptable.

In conclusion, the first experiment testifies regret upper bounds in Theorems 3.1 and 3.2 while the
second experiment validates results about the tightness of our lower bounds and the existence of
phase transition in Theorem 4.3 in a concrete manner.
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• The answer NA means that the abstract and introduction do not include the claims
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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• If applicable, the authors should discuss possible limitations of their approach to
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experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

41

53565 https://doi.org/10.52202/079017-1695



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments. All experiments can be conducted on a personal computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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