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Abstract

Minimum Bayes Risk (MBR) decoding is a powerful decoding strategy widely
used for text generation tasks, but its quadratic computational complexity limits
its practical application. This paper presents a novel approach for approximating
MBR decoding using matrix completion techniques, focusing on the task of ma-
chine translation. We formulate MBR decoding as a matrix completion problem,
where the utility metric scores between candidate hypotheses and pseudo-reference
translations form a low-rank matrix. First, we empirically show that the scores ma-
trices indeed have a low-rank structure. Then, we exploit this by only computing a
random subset of the scores and efficiently recover the missing entries in the matrix
by applying the Alternating Least Squares (ALS) algorithm, thereby enabling a fast
approximation of the MBR decoding process. Our experimental results on machine
translation tasks demonstrate that the proposed method requires 1/16 utility metric
computations compared to vanilla MBR decoding while achieving equal translation
quality measured by COMET22 on the WMT22 dataset (en↔de, en↔ru). We
also benchmark our method against other approximation methods and we show
gains in quality when comparing to them.

1 Introduction

The generation process in most conditional natural language processing tasks is usually guided
by the maximum-a-posteriori (MAP) rule: given an input x, generate the output ŷ that maximizes
the posterior probability distribution: ŷ = argmaxy p(y|x). It can be shown that MAP decoding
is optimal under a 0-1 loss criterion. However for more nuanced tasks, where different outputs
can be considered correct, and the quality of the output is not just a binary decision between
“right” and “wrong”, MAP decoding is no longer optimal. Neural Machine Translation (NMT) is
a prominent example of these types of tasks. For NMT, a system is trained to generate a sentence
in a target language given a source sentence in another language. For a given sentence, there exists
a variety of possible translations, each of which has a different quality level. Eikema and Aziz
(2020) demonstrated that MAP decoding methods are suboptimal for NMT, and showed that other
generation strategies may be preferred. Furthermore, NMT models often assign human translations
lower probabilities than their own beam search outputs, due to model calibration issues (Ott et al.,
2018; Freitag et al., 2020).

As an alternative, Eikema and Aziz (2020, 2022) applied MBR decoding for NMT models. MBR
decoding follows a two-step approach, where a model is used to generate a list of candidate translations
and a list of pseudo-references (which may be the same as the list of candidates). The candidates
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Figure 1: PMBR decoding only requires a subset of the utility computations to approximate
the output of MBR decoding. The method approximates the unknown values by running a matrix
completion algorithm which exploits the low-rank nature of the MBR matrix. Once the full matrix is
recovered, the method behaves similar to the vanilla MBR decoding method where the hypothesis
with the highest average score is selected.

are then scored with a performance metric using the pseudo-references as an approximation of the
true references, and the candidate with the maximum expected quality (or equivalently minimum
risk) is then selected. In contrast to MAP decoding, MBR decoding is not designed to generate the
translation with the highest estimated model probability; instead it aims to directly optimize a utility
function. Subsequent research conducted by Freitag et al. (2022a) showed that MBR decoding with
neural utility metrics leads to significant improvements over beam search decoding. However, MBR
is computationally expensive, with a time complexity of O(N2) for a candidate list containing N
samples and N pseudo-references (usually the two lists coincide). According to Freitag et al. (2022a),
ideally N ranges between 100 and 1 000, which involves thousands to millions of utility function
computations. Note than when using neural metrics, each of the O(N2) “computation steps” is itself
expensive, requiring a forward pass through a large neural network.

In this work, we propose to reduce the number of metric computations by scoring only a subset of
candidate–pseudo-reference pairs. We then proceed to use a matrix completion algorithm (ALS in
our case) to estimate the remaining utility scores. For such completion algorithms to work, the full
matrix has to fulfill some conditions, specifically to be a low-rank matrix. We empirically show that
this is indeed the case for the utility matrices for MBR decoding. Intuitively, this makes sense: akin to
recommendation systems, where similar users are expected to have similar book or movie preferences,
similar pseudo-references are expected to have similar “translation preferences”. Experimental results
show the effectiveness of our method, where the performance of the full MBR algorithm can be
matched with only a fraction of the computational cost. Compared to other approaches that also
seek to reduce the number of computations, our method does not compromise translation quality, as
confirmed by human evaluation.

Our scientific contributions are as follows:

1. We empirically show that the utility matrices for MBR decoding are low-rank.

2. We apply ALS to a subset of scores to approximate the full MBR matrix.

3. We show that using our method we can reduce the number of computations by a factor of
16, while maintaining the same translation quality level.

2 Related Work

While MT research has traditionally relied on MAP decoding or generating k-best lists through beam
search for MBR decoding, Eikema and Aziz (2020) proposed an approximation of MBR decoding
via unbiased sampling. Their method aims to address the limitations of MAP decoding (Eikema
and Aziz, 2020; Müller and Sennrich, 2021; Eikema and Aziz, 2022) by demonstrating that samples
drawn from the NMT model align more faithfully with training data statistics when compared to beam
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search. Freitag et al. (2022a) showed that using neural metrics results in significant improvements in
translation quality. Freitag et al. (2023a) reported that the choice of sampling approach is important,
and epsilon sampling (Hewitt et al., 2022) is ideal for MBR decoding and reranking.

While the improvements in translation quality afforded by MBR are widely acknowledged, its high
computational cost limits its application in practice. Different approaches have been proposed to
speed up MBR computation. Eikema and Aziz (2022) propose to decouple the candidate and pseudo-
reference lists to allow for different sizes, and propose a coarse-to-fine refinement of the hypothesis
space. Cheng and Vlachos (2023) speed up MBR decoding by gradually increasing the number of
samples used to estimate the utility, while additionally pruning the hypothesis space. Jinnai and
Ariu (2024) formulate MBR as a medoid identification problem, and apply approximate algorithms
developed on this problem. Vamvas and Sennrich (2024) aggregate the set of pseudo-references,
allowing for just one utility computation per candidate. This greatly accelerates the decoding process,
but the utility metric needs to fulfill certain conditions to be applicable. Finkelstein et al. (2024) use
MBR decoding in a knowledge-distillation framework to simulate MBR decoding with single-pass
search. Tomani et al. (2024) train quality-aware translation models in order to reduce the size of the
candidate list. Similar in spirit to MBR decoding, QE-rescoring approaches (Fernandes et al., 2022)
also directly optimize a utility function, with linear-time cost.

Low-Rank Matrix completion is an active area of research and multiple algorithms have been
developed to perform it. Nguyen et al. (2019) is an extensive survey for such methods. Some of
the popular algorithms are: Singular Value Thresholding (Cai et al., 2008), Bayesian Probabilistic
Matrix Factorization (Akulwar and Pardeshi, 2016), Maximum Margin Matrix Factorization (Srebro
et al., 2004) and Alternating Least Squares (Zachariah et al., 2012), which is the one we chose for this
work. To the best of our knowledge, this work is the first one to apply matrix completion algorithms
for completing a partial MBR score matrix.

3 Preliminaries

We are given an NMT model PΘ(y|x) which serves to estimate the probability of a hypothesis
segment y, given a source segment x, with Θ being the learned parameters of the neural network.
MAP decoding involves searching for the most probable translation under PΘ(y|x). However,
determining the hypothesis with the maximum probability is computationally intractable due to
the expansive and combinatorially complex search space. Consequently, approximations like beam
search (Graves, 2012; Sutskever et al., 2014) are often employed.

If we want to generate diverse hypotheses, e.g. in generative tasks where creativity is desired instead
of selecting the candidate with the highest probability (or an approximation thereof), we sample the
output sentence following the probability distribution defined by the model. For NMT, this approach
is used for generating a list of candidate translations. Specifically, epsilon sampling, as outlined
by Hewitt et al. (2022), has emerged as the leading sampling technique for MBR. It was shown
by Freitag et al. (2023a) to outperform other methods such as ancestral, top-k or nucleus sampling
(Holtzman et al., 2020). Epsilon sampling prunes away any token with a probability lower than a
threshold ε, thereby guaranteeing that each token within a sample is allocated a fair probability mass.

3.1 Minimum Bayes Risk Decoding

In MBR decoding (Bickel and Doksum, 1977; Berger, 1985), given a set of candidate hypothesesH,
the goal is to select the optimal hypothesis based on its expected utility, measured by a function u,
with respect to the distribution over human references within the space of all references Y .

Since the true distribution remains unknown, we resort to sampling from the model instead, which
relies on the assumption that the model provides a reliable approximation for the true underlying
distribution over human translations. Furthermore, the integration over the vast space of all possible
references Y is computationally intractable. Therefore, MBR adopts a finite sample estimate by
sampling a set of pseudo-referencesR from Pθ(·|x). This approximation can be expressed as:

hMBR = argmax
h∈H

1

|R|
∑
r∈R

u(h, r) (1)
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Usual practice is to setH = R, i.e. the same set of model hypotheses serves both as the candidate
listH as well as the pseudo-reference listR. The computational time complexity of MBR decoding
is O(N2) with N the size of the candidate list.

Note that this quadratic expression refers to each sentence to translate, i.e. for a corpus of size S,
the total cost will be O(S ·N2). Also there is a hidden (multiplicative) constant, namely the cost
of the computation of the utility function. For surface level metrics (e.g. BLEU, ChrF), this cost is
negligible, but for neural metrics it involves computing the forward pass of a large neural network.
Therefore, any reduction in the number of metric computations has an important effect on the total
running cost.

3.2 Low-Rank Matrix Completion

Low-Rank Matrix Completion is a fundamental problem in machine learning and data analysis
with popular application such as Collaborative Filtering (Rennie and Srebro, 2005) and Image
Denoising (Candes and Recht, 2008). The goal of matrix completion is to estimate the missing
entries of a partially observed matrix, under the assumption that the underlying matrix is low-rank.
This assumption implies that the matrix can be well-approximated by a product of two smaller
matrices, capturing the latent factors that explain the observed data. Candes and Recht (2008)
proved that perfect approximations can be achieved if the number of observed entries is larger than
CN1.2r log(N) for some positive numerical constant C, for most N ×N matrices of rank r with
very high probability.

One simple and efficient algorithm is Alternating Least Squares (ALS) (Zachariah et al., 2012). To
recover any matrix M , the algorithm approximates it by two smaller matrices M ≈ XTY and then
minimizes the following equation given the observed entries.

min
X,Y

∑
mij observed

(mij − xTi yj)2 + λ

∑
i

||xi||2 +
∑
j

||yj ||2
 (2)

The algorithm achieves this by alternatively solving for X and Y as shown in Algorithm 1 The
algorithm has three hyperparameters: λ a regularization term, r the second dimension of the smaller
matrices and n the number of alternating steps performed. The main motivation for picking this
algorithm in our approach is its simple implementation.

Algorithm 1 ALS for Matrix Completion
Require: λ, r and N

1: Initialize X , Y with shapes N × r and r ×N
2: repeat
3: for i = 1 . . . n do
4: xi =

(∑
mij∈mi∗

yjy
>
j + λIk

)−1∑
mij∈mi∗

mijyr

5: end for
6: for j = 1 . . . n do

7: yj =
(∑

mij∈m∗j
xrx
>
r + λIk

)−1∑
mij∈m∗j

mijxi

8: end for
9: until convergence

4 MBR Matrix

4.1 Definition of MBR matrix

Given a source sentence, we use an NMT model to generate a setH of hypotheses such that |H| = N .
As explained in the preliminaries section, the MBR method uses two different sets of hypotheses and
pseudo-references, but in practice we use the same set of samples for bothH andR. The pairwise
scores for all hypotheses in H gives an N × N matrix M such that M [i, j] = U(hi, hj) for all
(hi, hj) ∈ H × H and a utility metric U that computes some similarity between two hypotheses.
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Table 1: Summary of the first three singular values of MBR matrices for the MetricX and chrF utility
functions, with two different sizes and four different language pairs

64x64 128x128

MetricX chrF MetricX chrF

LP σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

English→German 45.7 2.1 1.0 39.9 2.4 1.4 91.6 3.8 1.7 76.2 4.2 2.1
German→English 47.4 2.1 1.4 47.5 1.5 1.4 94.6 3.7 2.1 93.7 3.0 2.0
English→Russian 47.7 2.0 1.1 36.1 1.9 1.3 95.4 3.6 1.7 76.8 3.4 2.1
Russian→English 46.1 2.2 1.0 40.5 2.8 1.3 92.0 4.1 1.7 81.8 5.7 2.1

Average 46.7 2.1 1.1 41.0 2.15 1.35 93.4 3.8 1.8 82.1 4.1 2.1

Figure 2: Plot the singular values of an example 124x124 MBR matrix using logscale. We observe a
sharp drop after the first singular value for the two utility metrics indicating that the matrix is rank-1.

With this matrix formulation, MBR decoding reduces to picking the row with the highest average
(since each row maps to one sample in the hypotheses list).

4.2 MBR matrices are low rank

Intuitively, the values within the MBR matrix are highly correlated, since by definition each value
M [i, j] is computing a similarity score between two hypotheses given a utility metric. This is a key
assumption that our work is built on since low-rank matrices have theoretical bounds on the number
of entries required to recover the full matrix (Candes and Recht, 2008).

We verify this assumption empirically. We generated 1024 samples for each example in the WMT
2022 en ↔de and en ↔ru datasets. We then generated the N × N matrices for different values
of N ∈ {64, 128} by only considering a random subset of the samples using two different utility
metrics: MetricX (Freitag et al., 2022b) and ChrF (Popović, 2015). We then perform singular value
decomposition and look at the distribution of the singular values, shown in Figure 2 and Table 1. We
observe that across utility metrics and matrix dimensions, σ1 � σ2. On average across datasets we
have σ2/σ1 < 0.05, this means that most of the information within the matrix can be captured by a
single dominant direction or component and thus can be approximated by a rank-1 matrix.

5 The PMBR Method

We propose an approximation method for MBR decoding that leverages the low-rank structure of the
MBR matrix. The procedure is shown in Algorithm 2. Given an NMT model, we start by generating
a set of hypothesesH similar to the vanilla MBR method. Then, instead of computing all the pairwise
scores in the utility matrix, we only compute a random subset of the scores that we denote with Ω.
The size of Ω depends on the computation budget available. We define the budget as the ratio of
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computations performed with respect to the total amount of computations to compute the full matrix.
Thus for any given budget 1/r, we end up with N2/r entries observed in the matrix. The next step is
to apply ALS on M [Ω] as described in Algorithm 1, where M [Ω] denotes the matrix of size N ×N
where only the entries of Ω are non-null. Finally, with all the pairwise scores recovered, we perform
vanilla MBR decoding. We call this procedure PMBR for Probabilistic MBR decoding.

Algorithm 2 PMBR: MBR Approximation using ALS
Require: List of hypotheses H , reduction ratio r ∈ (0, 1)

1: N ← |H|
2: S ← d|N |2 · re . Number of utility computations
3: Ω← Sample S coordinate pairs (i, j) from N ×N
4: M ← 0|N |×|N | . Initialize empty matrix
5: for (i, j) ∈ Ω do
6: Mij ← U(i, j)
7: end for
8: M ← ALS(M, hyperparameters)
9: return vanilla_MBR(M)

Time Complexity The time complexity of this algorithm is dominated by the utility metrics
computations. The utility metrics are deep neural networks that require a number of floating-point
operations in the order of millions while ALS requires only a few hundred operations. For reference,
30 steps of the ALS algorithm with r = 10 running on a CPU takes on average 0.2 seconds to
run while the MetricX inference takes 3.4 seconds on a TPUv4 platform. Thus, the savings in run
time achieved by our approximation is close to proportional to the savings in number of utility
computations. Note that this analysis focuses only on the second stage of MBR decoding, i.e. we do
not take the cost of generating the hypotheses into account.

6 Experimental Setup

6.1 Metrics

We use MetricX (Juraska et al., 2023) as the utility function for all variants of MBR decoding as it
has been shown that neural fine-tuned metrics outperform word-overlap metrics like BLEU (Papineni
et al., 2002) and ChrF (Popović, 2015) for MBR decoding (Freitag et al., 2022a). MetricX is an
extension of BLEURT (Sellam et al., 2020), showing higher correlation with human judgment (Freitag
et al., 2023b) and has been designed to also work on multi-sentence segments (Deutsch et al., 2023)
and not only sentences in isolation. In addition, we report COMET22 (Rei et al., 2020, 2022) scores as
there is a risk of overfitting (Amrhein and Sennrich, 2022) on MetricX. In addition, for one selected
experiment we conducted expert-based human evaluations using MQM (Freitag et al., 2021), a human
evaluation scheme centered on marking errors present in the translations. We report results by varying
the budget available to the MBR methods. For each budget, we randomly sample from the full MBR
matrix, and report the average results of 1000 trials.

6.2 Datasets and Model

We run experiments using the WMT 2022 test sets for English↔German (en↔de) and
English↔Russian (en↔ru). The official WMT test sets (Kocmi et al., 2022) are split into sen-
tences but come with document information. We constructed multi-sentence (paragraph) level test
sets with the following method: for each document, we concatenate sentences together as long as
we do not exceed 500 sentence piece model (SPM) tokens (given the MetricX SPM model). We
respect sentence boundaries and do not truncate sentences. In WMT22, there are four different
domains. Some domains lack document context, so segments remain as single sentences, even within
multi-sentence test sets. Test data statistics can be seen in Appendix 5. We use PaLM8B (Chowdhery
et al., 2022) as translation model and sample 1024 examples for each sentence using epsilon sampling
with ε = 0.02 (Freitag et al., 2023a) and using 3-shot prompting with examples taken from the
FLORES corpus (Guzmán et al., 2019)
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budget 1/32 1/16 1/8 1/4 1/2 1/1
# utility calls 512 1024 2048 4096 8192 16384

Matrix
size

PMBR (|Ω|) 512 1 024 2 048 4 096 8 192 16 384
N×K 128× 4 128× 8 128× 16 128× 32 128× 64 128× 128
S×S 22× 22 32× 32 45× 45 64× 64 90× 90 128× 128

Figure 3: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring picks
without replacement 128 samples from the 1024 samples available for each sentence. The highlighted
area shows the standard deviation of the scores.

6.3 Decoding Methods

We compare our approximation PMBR against three other decoding methods. To enable a fair
comparison, we adapt each method so that the number of utility function computations is the same
for each method. (Recall that for a given budget 1/r, we only observe N2/r entries in the matrix
when performing PMBR.) We compare PMBR with the following methods:

• FMBR: This is the full MBR method. This is the only method that is not affected by the
budget i.e the full matrix is observed.

• N×K: This method was proposed by Eikema and Aziz (2022) and works by shrinking the
pseudo-references list size. For a budget 1/r the MBR matrix gets reduced to an N ×K
matrix with K = N/r. The K pseudo-references are randomly sampled.

• S×S: This method corresponds to FMBR, but reduces the total size of the utility matrix to
a size of S · S, where the total number of entries corresponds to the available budget, i.e.
S =

√
N2/r. The S examples are randomly sampled.

6.4 Hyperparameter Tuning

The ALS algorithm has three hyperparameters λ, n and r as described in Algorithm 1. We perform
a grid search to optimize these hyperparameters, setting our loss function to be the accuracy with
respect to the vanilla MBR method. Concretely, for each example sentence we rank all samples by
running the vanilla MBR. Let us denote with hMBR the hypothesis selected by the full MBR method,
and let posPMBR(hMBR) the rank the position of hMBR after ordering the hypotheses according to
the scores predicted by PMBR. The loss function is then just the sum of posPMBR(hMBR) for all
the hypotheses in a subset of the data. We minimize this loss per language pair on 10 examples
that we hold from the data generated with the WMT 2022 datasets with this search space {λ ∈
{0.1, 0.15, 0.2}} × {r ∈ {5, 6, . . . 14, 15}} × {n ∈ {10, 11, . . . , 29, 30}}

7 Results

The main experimental results are summarized in Table 2 and Table 3. In Table 2, we fix N = 128
and we study the behaviour of each approximation method by limiting their budget to a fraction of the
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Table 2: Results on the four translation directions on the WMT22 data. Each number (except for
FMBR) is the average of 1 000 runs with different random values taken from the full MBR matrix.
N is set to 128, and the budget is allocated according to the description in Section 6.3. ‘C’ denotes
COMET22 scores and ‘X’ MetricX scores.

budget 1/32 1/16 1/8 1/4 1/2

C X C X C X C X C X

en
→

de

FMBR 83.52 77.01 83.52 77.01 83.52 77.02 83.52 77.02 83.52 77.01

PMBR 83.53 75.94 83.63 76.50 83.63 76.81 83.60 76.96 83.56 77.01
N×K 82.18 74.96 82.90 75.99 83.28 76.59 83.45 76.84 83.48 76.93
S×S 83.39 76.12 83.52 76.43 83.57 76.63 83.59 76.79 83.57 76.91

de
→

en

FMBR 79.97 73.52 79.97 73.52 79.97 73.52 79.97 73.52 79.97 73.52

PMBR 80.00 73.32 80.01 73.44 80.03 73.52 80.02 73.53 80.00 73.54
N×K 79.75 72.93 79.87 73.24 79.92 73.39 79.95 73.45 79.96 73.49
S×S 79.87 73.17 79.91 73.29 79.94 73.37 79.96 73.44 79.97 73.49

en
→

ru

FMBR 83.52 77.01 83.52 77.01 83.52 77.02 83.52 77.02 83.52 77.01

PMBR 83.53 75.94 83.63 76.50 83.63 76.81 83.60 76.96 83.56 77.01
N×K 82.18 74.96 82.90 75.99 83.28 76.59 83.45 76.84 83.48 76.93
S×S 83.39 76.12 83.52 76.43 83.57 76.63 83.59 76.79 83.57 76.91

ru
→

en

FMBR 79.17 75.57 79.17 75.57 79.17 75.57 79.17 75.57 79.17 75.57

PMBR 79.15 75.15 79.23 75.40 79.22 75.48 79.19 75.51 79.18 75.56
N×K 78.71 74.68 78.99 75.21 79.08 75.41 79.14 75.52 79.15 75.54
S×S 78.98 75.01 79.06 75.20 79.10 75.34 79.13 75.43 79.15 75.52

Table 3: Summary of the average scores of the full DeEn WMT 2022 pairs scored 1000 times using
MetricX and COMET22 as evaluation metrics while varying the size of the hypothesis list

budget 1/32 1/16 1/8 1/4 1/2

C X C X C X C X C X

N
=3

2

FMBR NA NA 79.91 73.29 79.91 73.29 79.91 73.29 79.91 73.29

PMBR NA NA 79.87 73.01 79.97 73.26 79.99 73.36 79.95 73.34
NxK NA NA 79.46 72.27 79.74 72.84 79.84 73.09 79.88 73.22
SxS NA NA 79.61 72.56 79.73 72.82 79.82 73.04 79.87 73.17

N
=6

4

OFMBR 79.97 73.45 79.97 73.45 79.97 73.45 79.96 73.45 79.97 73.45

PMBR 79.90 73.07 79.98 73.30 80.02 73.44 80.02 73.47 80.00 73.47
NxK 79.43 72.25 79.76 72.91 79.88 73.20 79.93 73.35 79.96 73.40
SxS 79.73 72.80 79.82 73.04 79.88 73.19 79.92 73.30 79.95 73.38

N
=1

28

FMBR 79.97 73.52 79.97 73.52 79.97 73.52 79.97 73.52 79.97 73.52

PMBR 80.00 73.32 80.01 73.44 80.03 73.52 80.02 73.53 80.00 73.54
NxK 79.75 72.93 79.87 73.24 79.92 73.39 79.95 73.45 79.96 73.49
SxS 79.87 73.17 79.91 73.29 79.94 73.37 79.96 73.44 79.97 73.49

N
=2

56

FMBR 79.96 73.60 79.96 73.60 79.96 73.60 79.96 73.60 79.96 73.60

PMBR 80.02 73.44 80.03 73.53 80.02 73.55 80.01 73.58 80.00 73.61
NxK 79.86 73.28 79.90 73.42 79.94 73.49 79.95 73.52 79.96 73.56
SxS 79.94 73.36 79.96 73.45 79.97 73.49 79.98 73.54 79.97 73.56
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Table 4: Summary of the average scores of the full EnDe WMT 2022 with N=256 and r=1/16 pairs
scored 1000 times using MetricX and COMET22. The MQM scores are limited to 65 examples where
all systems disagreed.

COMET22 MetricX MQM
FMBR 83.33 77.15 1.169

PMBR 83.51 76.95 1.370
NxK 83.11 76.75 1.746
SxS 83.59 76.79 1.566

full computational cost on each language pair. The top row comprises the results obtained with the
full MBR method (FMBR) running on the complete list of N=128 candidates, and can be considered
as an upper bound for the performance of each approximation method. The number of utility calls for
FMBR is 1282 = 16 384. In Figure 3, we plot the data for the for de→en from Table 2. In Table 3,
we fix the language pair to (de↔en) and we set N to different values. This simulates the behavior
of approximation methods as the candidate list grows. Similar results for (en↔de) are shown in
Appendix 6. MQM human evaluation results are summarized in Table 4.

As measuring performance with the same metric we are optimizing for has the risk of overfitting, we
mainly focus on COMET22 to assess translation quality. These are the main findings:

(1) PMBR outperforms all other tested approximation methods PMBR outperforms both the
NxK and SxS approximation methods across language pairs, sample sizes and budgets. The gap
between the approximation methods closes as the budget increases. Moreover the results in Table ??
show that the same pattern holds when the size of the hypotheses list changes.

(2) PMBR is competitive to FMBR We can reduce the computational cost by up to r = 1/32
with PMBR without any loss in translation quality as measured by COMET22. Interestingly, we
observe that MetricX scores slightly drop when reducing the budget. As this does not affect the final
translation quality as measured by COMET22, we argue that this is a good sign and PMBR acts as
some kind of regularization.

(3) Human Evaluation confirms (1) and (2) To verify our findings based on COMET22, we do
run a MQM human evaluation with professional translators. Results are summarized in Table 4. The
results confirm our previous findings: (1) PMBR is the best approximation method when compared
to NxK and SxS, and (2) PMBR is getting close to the performance of FMBR.

8 Conclusions

In this paper we have shown the inherent low-rank structure of Minimum Bayes Risk (MBR) score
matrices which we leveraged to develop an approximation method for MBR decoding that achieves
competitive performance while significantly reducing computational complexity. Our empirical
results demonstrate the efficacy of this approach across diverse language pairs and evaluation metrics,
suggesting its potential for wider application in machine translation and other natural language
generation tasks.

Future research could explore the efficacy of alternative matrix completion algorithms to further
enhance the low-rank approximation. In addition, the observed low-rank property could be exploited
to inform sampling strategies, potentially leading to more efficient and informative data collection for
MBR decoding. Another promising avenue is to investigate the applicability of this work to domains
beyond natural language generation tasks.

9 Limitations

While we have verified that the MBR matrices are low-rank, we did not conduct an empirical analysis
on their coherence. A low-rank matrix is easier to complete if its energy spreads evenly across
different coordinates. This property is captured by the notion of coherence (Candes and Recht, 2008).
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In this paper, we only run experiments with MetricX as utility function. The computational costs
for computing all pairwise utility scores is expensive. However, we showed that the low-rank matrix
structure holds for both MetricX and chrF which gives us confidence that PMBR will generalize
regardless of the utility function.

Our human evaluation is limited in size because it is costly. With automatic metrics, we can simulate
multiple runs of scoring the datasets but this is not feasible with human evaluations. Thus, we put
less statistical significance on our human evaluation.
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A Appendix / supplemental material

A.1 DeEn graphs for all hypothesis size lists

Figures 7, 5 and 6 show the performance of PMBR for different hypothesis list sizes. The number are
represented in the main results section in Table 3. PMBR outperforms all the other methods measured
by both COMET22 and MetricX.

A.2 WMT 2022 paragraph level data statistics

We provide the statistics of the dataset used after combining the sentences from the same document
in Table 5. The procedure to create paragraph level data is described in details in the data section.

A.3 Scores for EnDE while varying the hypotheses list size

In Table 6, we summarize all COMET22 and MetricX scores after varying the hypotheses list size.
We see similar results as shown in the main results sections. PMBR outperforms all the other
approximation methods in most cases.

A.4 Standard deviations for DeEn and significance test values

In Table 7, we present the standard deviation for values presented in Table 3. We also run a p-value
significance test to verify that the gap in performance between PMBR and the other systems is
significant.

A.5 Other matrix completion algorithms

We experimented with running Singular Value Thresholding (SVT) instead of Alternating Least
Square (ALS) algorithm to perform the matrix completion. SVT under performed compared to ALS
as shown in Figure 8. This behavior might be caused by a mistuning of the SVT hyperparameters,
but it highlights the importance of the matrix completion algorithm in the PMBR procedure.

A.6 Different samples for the hypotheses and pseudo-references lists

In all our experiments, we have used the same set of samples for both hypotheses and pseudo-
references which is a common practice for MBR decoding in the NMT use case. In Figure 9, we
verify that the matrices are still low rank even when the two set of samples are different. We also run
an experiment to benchmark the performance of PMBR in this case. The results are shown in Figure
10

Figure 4: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring picks
without replacement 32 samples from the 1024 samples available for each sentence. The highlighted
area shows the standard deviation of the scores.
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Figure 5: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring picks
without replacement 64 samples from the 1024 samples available for each sentence. The highlighted
area shows the standard deviation of the scores.

Figure 6: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring picks
without replacement 256 samples from the 1024 samples available for each sentence. The highlighted
area shows the standard deviation of the scores.

A.7 Compute Resources

We give a high level estimate of the resources to run the experiments:

• Samples Generation: We used around 500 TPUv5 for 5 hours per language pair to generate
the samples.

• MetricX pairwise computations: We used around 2000 TPUv4 for 24 hours per language
pair to compute all the scores.

• Scoring simulations: These were run on CPUs in parallel on a cluster of 1000 machines.
Each setting (budget, hypothesis length) takes around 15 minutes to run.
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Table 5: Statistics of the WMT 2022 dataset and its paragraph level transformation.

LP # segments Avg. #words/segment Avg. #sent/segment
wmt_22 2037 16.7 1.01En-De → paragraph 219 154.6 7.99

wmt_22 2037 16.7 1.01En-Ru → paragraph 219 154.6 7.99

wmt_22 1984 14.6 1.01De-En → paragraph 309 93.2 5.73

wmt_22 2016 13.6 1.01Ru-En → paragraph 258 106.0 7.32

Table 6: Summary of the average scores of the full EnDe WMT 2022 pairs scored 1000 times using
MetricX and COMET as evaluation metrics while varying the size of the hypothesis list

budget 1/32 1/16 1/8 1/4 1/2

C X C X C X C X C X

N
=3

2

FMBR NA NA 0.8352 0.7641 0.8352 0.7641 0.8352 0.7641 0.8352 0.7641

PMBR NA NA 0.8294 0.7489 0.8347 0.7571 0.8357 0.7615 0.8356 0.7634
NxK NA NA 0.8072 0.7262 0.8229 0.7445 0.8297 0.7541 0.8335 0.7595
SxS NA NA 0.8255 0.7463 0.8291 0.7525 0.8323 0.7577 0.8339 0.7611

N
=6

4

FMBR 0.8361 0.7679 0.8360 0.7679 0.8360 0.7679 0.8361 0.7679 0.8359 0.7679

PMBR 0.8304 0.7504 0.8354 0.7587 0.8366 0.7637 0.8366 0.7662 0.8365 0.7676
NxK 0.8057 0.7266 0.8226 0.7472 0.8299 0.7577 0.8338 0.7633 0.8354 0.7659
SxS 0.8293 0.7525 0.8323 0.7578 0.8340 0.7612 0.8352 0.7642 0.8356 0.7662

N
=1

28

FMBR 0.8352 0.7701 0.8352 0.7701 0.8352 0.7702 0.8352 0.7702 0.8352 0.7701

PMBR 0.8353 0.7594 0.8363 0.7650 0.8363 0.7681 0.8360 0.7696 0.8356 0.7701
NxK 0.8218 0.7496 0.8290 0.7599 0.8328 0.7659 0.8345 0.7684 0.8348 0.7693
SxS 0.8339 0.7612 0.8352 0.7643 0.8357 0.7663 0.8359 0.7679 0.8357 0.7691

N
=2

56

FMBR 0.8332 0.7715 0.8333 0.7715 0.8332 0.7715 0.8332 0.7715 0.8332 0.7715

PMBR 0.8354 0.7659 0.8351 0.7695 0.8347 0.7711 0.8341 0.7714 0.8338 0.7717
NxK 0.8274 0.7617 0.8311 0.7675 0.8326 0.7699 0.8332 0.7710 0.8332 0.7712
SxS 0.8357 0.7662 0.8359 0.7679 0.8357 0.7692 0.8351 0.7702 0.8344 0.7709

Figure 7: A matrix representing the p-value significance test that checks if PMBR is better than the
approximation methods as shown in Table 3. A green boxes means PMBR is significantly better than
the other system
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Table 7: Summary of the standard deviations of the full DeEn WMT 2022 pairs scored 1000 times
using MetricX and COMET22 as evaluation metrics while varying the size of the hypothesis list as
shown in Table 3

budget 1/32 1/16 1/8 1/4 1/2

C X C X C X C X C X

N
=3

2

FMBR NA NA 0.0014 0.0019 0.0014 0.0018 0.0014 0.0018 0.0014 0.0019

PMBR NA NA 0.0016 0.0027 0.0015 0.0023 0.0014 0.0022 0.0013 0.0020
NxK NA NA 0.0021 0.0032 0.0017 0.0026 0.0014 0.0022 0.0013 0.0020
SxS NA NA 0.0015 0.0025 0.0015 0.0022 0.0013 0.0021 0.0013 0.0019

N
=6

4

FMBR 0.0012 0.0017 0.0012 0.0017 0.0012 0.0017 0.0012 0.0017 0.0012 0.0017

PMBR 0.0016 0.0026 0.0015 0.0022 0.0013 0.0021 0.0013 0.0018 0.0012 0.0017
NxK 0.0023 0.0034 0.0016 0.0025 0.0014 0.0021 0.0013 0.0018 0.0012 0.0018
SxS 0.0014 0.0022 0.0013 0.0021 0.0012 0.0019 0.0013 0.0019 0.0012 0.0017

N
=1

28

FMBR 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015

PMBR 0.0014 0.0023 0.0013 0.0020 0.0012 0.0019 0.0011 0.0016 0.0012 0.0016
NxK 0.0015 0.0024 0.0014 0.0020 0.0013 0.0018 0.0012 0.0016 0.0011 0.0016
SxS 0.0013 0.0020 0.0013 0.0019 0.0012 0.0017 0.0012 0.0017 0.0012 0.0017

N
=2

56

FMBR 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015 0.0011 0.0015

PMBR 0.0013 0.0019 0.0011 0.0017 0.0011 0.0016 0.0012 0.0015 0.0011 0.0015
NxK 0.0014 0.0021 0.0013 0.0018 0.0012 0.0016 0.0012 0.0015 0.0011 0.0015
SxS 0.0012 0.0017 0.0012 0.0016 0.0011 0.0016 0.0011 0.0016 0.0011 0.0015

Figure 8: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring picks
without replacement 128 samples from the 1024 samples available for each sentence. The highlighted
area shows the standard deviation of the scores. In this setup, we compare ALS and SVT as matrix
completion algorithms.
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Figure 9: Plot the singular values of an example 124x124 MBR matrix using logscale. The plot on
the left shows the case where both the samples for hypotheses and pseudo-references lists, while the
right shows the case when they are different. Both plots follow a similar pattern.

Figure 10: We scored WMT22 DeEn dataset 1000 times for each budget available. Each scoring
picks without replacement 128 samples from the 1024 samples available for each sentence. In this
setup, we pick different samples for the hypotheses and pseudo-references lists.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Our experimental results show the claims made in the abstract.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a Limitations section that discusses this.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: The answer NA means that the paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The PaLM64B is avaialble through the cloud API. MetricX and COMENT are
publicaly avaialble. The PMBR algorithm code is submitted as supplemental.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We share the code of all the approximation methods used including our new
algorithm. We also use an open dataset WMT22. We are working on clearing internal
Google policies to release the generated data and scores.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We share our hypeparameter search space and optimizer. We also share our
data splits for eval and train.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 1-sigma error bars in our graphs.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: We provide an estimate of the resources in the appendix.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper adheres to the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: The answer NA means that there is no societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The answer NA means that the paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: The PaLM model is cited. The MetricX and Comet metrics models are cited.
The WMT22 dataset is cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The answer NA means that the paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes] .
Justification: We used humans to collect MQM annotations as described in the original
paper.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
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