
Categorical Flow Matching on Statistical Manifolds

Chaoran Cheng∗

University of Illinois Urbana-Champaign
chaoran7@illinois.edu

Jiahan Li∗
Peking University

lijiahanypc@pku.edu.cn

Jian Peng
University of Illinois Urbana-Champaign

jianpeng@illinois.edu

Ge Liu
University of Illinois Urbana-Champaign

geliu@illinois.edu

Abstract

We introduce Statistical Flow Matching (SFM), a novel and mathematically rig-
orous flow-matching framework on the manifold of parameterized probability
measures inspired by the results from information geometry. We demonstrate
the effectiveness of our method on the discrete generation problem by instantiat-
ing SFM on the manifold of categorical distributions whose geometric properties
remain unexplored in previous discrete generative models. Utilizing the Fisher
information metric, we equip the manifold with a Riemannian structure whose
intrinsic geometries are effectively leveraged by following the shortest paths of
geodesics. We develop an efficient training and sampling algorithm that over-
comes numerical stability issues with a diffeomorphism between manifolds. Our
distinctive geometric perspective of statistical manifolds allows us to apply op-
timal transport during training and interpret SFM as following the steepest di-
rection of the natural gradient. Unlike previous models that rely on variational
bounds for likelihood estimation, SFM enjoys the exact likelihood calculation for
arbitrary probability measures. We manifest that SFM can learn more complex
patterns on the statistical manifold where existing models often fail due to strong
prior assumptions. Comprehensive experiments on real-world generative tasks
ranging from image, text to biological domains further demonstrate that SFM
achieves higher sampling quality and likelihood than other discrete diffusion or
flow-based models. Our code is available at https://github.com/ccr-cheng/
statistical-flow-matching.

1 Introduction

Recently, conditional flow matching (CFM) models [38] have achieved remarkable success in vari-
ous generative domains including image generation [38, 17, 29], molecule [59, 58, 31] and protein
design [68, 10, 36], and sequence generation [60, 39, 12]. While attempts to generalize CFM and
diffusion models to discrete categorical data have been made, they typically exert ad hoc assump-
tions on the structure of the discrete distribution. One group of work relies on stochastic jumps of
Markov chains in either the discrete-time [6, 39, 1] or continuous-time setting [11, 55, 12] that dis-
cards the continuous nature of the underlying categorical distributions. Other work directly works
with the probability simplex [7, 60] or the corresponding logit space [28, 40, 24] with potentially
imperfect assumptions that fail to capture the underlying true geometry of the statistical manifold.
Furthermore, likelihood is often approximated by variational bounds in previous discrete generative
models due to the lack of tractable exact likelihood.

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

54787 https://doi.org/10.52202/079017-1738

https://github.com/ccr-cheng/statistical-flow-matching
https://github.com/ccr-cheng/statistical-flow-matching

We propose to incorporate the intrinsic geometry of the statistical manifold by viewing categorical
data as points on the statistical manifold of categorical distributions. Inspired by the mathematical
results from information theory, we utilize the Fisher information metric [51] to naturally equip
such a manifold with a Riemannian structure and develop an efficient generative training scheme for
learning the vector fields without stability issues. We summarize our contributions as the following:

(1) We propose Statistical Flow Matching (SFM), a novel and mathematically rigorous generative
framework on the manifold of parameterized probability measures. SFM does not pose any prior
assumptions on the statistical manifold but instead deduces its intrinsic geometry via mathematical
tools. To tackle the discrete generation problem, we instantiate SFM on the manifold of categorical
distributions. We deduce closed-form exponential and logarithm maps and develop an efficient flow-
matching training algorithm that avoids numerical issues by leveraging a diffeomorphism between
manifolds. SFM effectively leverages the intrinsic geometric properties by following the shortest
paths of geodesics between the noise and target distributions on the statistical manifold.

(2) Our distinctive geometric perspective of the statistical manifold allows us to further apply optimal
transport during training and derive tractable exact likelihood for any given sample of probability
measure, both of which are unachievable for most existing methods. We also introduce new theoret-
ical insights by establishing connections among Riemannian flow matching, information geometry,
and natural gradient descent, which allows us to interpret SFM as following the steepest descent of
the natural gradient from the optimization angle.

(3) We demonstrated with a toy example on simplex that SFM can learn more complex patterns on
the statistical manifold where existing models often fail due to impromptu prior assumptions. We
further conducted extensive experiments on diverse real-world discrete generation tasks involving
computer vision, natural language processing, and bioinformatics. SFM consistently outperformed
existing diffusion or flow-based models and also achieved comparable results with autoregressive
models on character-level generation.

2 Preliminary

2.1 Information Geometry

In this work, we are interested in learning a parameterized family of probability measures. It is
known from information theory that all probability measures over the sample space form the struc-
ture known as statistical manifold. Mathematically, consider probability densities p = dµ

dν : X → R
defined by the Radon-Nikodym derivative where µ is a probability measure on the sample space X
and ν is the reference measure on X . Suppose the statistical manifold P = P(X) = {p :

∫
X dµ =∫

X p(x; θ) dν = 1} is parameterized by θ = (θ1, θ2, . . . , θn) ∈ Θ, this parameterization naturally
provides a coordinate system for P on which each point is a probability measure µ with the corre-
sponding probability density function p(x; θ). The Fisher information metric is defined as

gjk(θ) = EX

[
∂ log p(X; θ)

∂θj

∂ log p(X; θ)

∂θk

]
=

∫
X

∂ log p(x; θ)

∂θj

∂ log p(x; θ)

∂θk
p(x; θ) dν. (1)

Rao demonstrated in his seminal paper [51] that statistical manifold can be equipped with the Fisher
information metric to obtain a Riemannian structure, the study of which is known as information
geometry [5, 4, 8]. This geometric view of statistical manifolds allows us to derive key geometric
concepts for our statistical flow matching framework. For example, a geodesic γ(t) : [0, 1] → P
defines a “shortest” path (under the Riemannian metric) connecting two probability measures on
the statistical manifold. The geodesic distance between two probability measures, also known as the
Fisher-Rao distance [51], measures the similarity between them. The tangent space Tµ(P) at a point
µ ∈ P can be naturally identified with the affine subspace Tµ(P) = {ν|

∫
X dν = 0} where each

element ν is a signed measure over X . The exponential map expµ : Tµ(P)→ P and logarithm map
logµ : P → Tµ(P) can also be defined on the statistical manifold. While the geodesic for a parame-
terized family of probability measures can be obtained numerically by solving the geodesic equation
when closed-form expression is unknown (see Appendix A.1), it usually requires expensive simu-
lations. Fortunately, closed-form geodesic distances are available for many common distributions
including categorical, multinomial, and normal distributions [44], which motivates our method.

2

54788https://doi.org/10.52202/079017-1738

2.2 Conditional Flow Matching on Riemannian Manifold

The conditional flow matching (CFM) framework [38] provides a simple yet powerful approach to
generative modeling by learning a time-dependent vector field that pushes the prior noise distribution
to any target data distribution. Such a flow-based model can be viewed as the continuous generaliza-
tion of the score matching (diffusion) model [56, 57, 26] while allowing for a more flexible design
of the denoising process. The Riemannian flow matching framework [14] further extends CFM to
general manifolds on which a well-defined distance metric can be efficiently computed.

Consider a smooth Riemannian manifoldM with the Riemannian metric g, a probability path pt :
[0, 1]→ P(M) is a curve of probability densities overM. A flow ψt : [0, 1]×M→M is a time-
dependent diffeomorphism defined by a time-dependent vector field ut : [0, 1]×M→ TM via the
ordinary differential equation (ODE): d

dtψt(x) = ut(ψt(x)). The flow matching objective directly
regresses the vector field ut with a time-dependent neural net v(xt, t) where xt := ψt(x). However,
this objective is generally intractable. Both [38, 14] demonstrated that a tractable objective can be
derived by conditioning on the target data x1 at t = 1 of the probability path. The Riemannian flow
matching objective can be formulated as [14]

L = Et∼U [0,1],x0∼p0(x),x1∼q(x)[‖v(xt, t)− ut(xt|x0, x1)‖2g] (2)

where q is the data distribution, p0 is the prior distribution, and xt := ψt(x|x0, x1) denotes the
conditional flow. [14] further demonstrated that if the exponential map and logarithm map can be
evaluated in closed-form, the condition flow can be defined as xt = expx0

(t logx0
x1), and the

corresponding vector field can be calculated as ut(xt|x0, x1) = d
dtxt = logxt

(x1)/(1− t). We also
adapt this formulation for our statistical flow, which we will elaborate on in the next section. We
note that, since we are working with manifolds of probability measuresM = P(X), we will use p, q
for probability densities over the manifold P(X) and µ, ν for probability measures (or probability
masses for discrete distributions) on the manifold P(X) to avoid confusion.

3 Method

Different from previous work that treated each distribution separately, we adopt an integral view-
point toward the manifold of probability distributions. In this section, we focus on the statistical
manifold of categorical distributions to demonstrate the application of our method on discrete gener-
ation tasks. However, we emphasize that our proposed SFM is applicable to any statistical manifold
with a closed-form geodesic distance and can be broadly used in generative tasks targeting probabil-
ity measures on the statistical manifold.

3.1 Statistical Manifold of Categorical Distributions

Consider the discrete sample space X = {1, 2, . . . , n}, an n-class categorical distribution over X
can be parameterized by n parameters µ1, µ2, . . . , µn such that

∑n
i=1 µi = 1, µi ≥ 0. In this way,

the reference measure ν is the counting measure and the probability measure µ can be written as
the convex combination of the canonical basis of Dirac measures {δi}ni=1 over X : µ =

∑n
i=1 µiδ

i.
Geometrically, this manifold can be visualized as the (n − 1)-dimensional simplex ∆n−1. The
geodesic distance between two categorical distributions is given in [51, 44] as

dcat(µ, ν) = 2 arccos

(
n∑

i=1

√
µiνi

)
. (3)

The tangent space at a point µ can be identified with Tµ(P) = {u|
∑n

i=1 ui = 0} and the corre-
sponding inner product at point µ is defined as

〈u, v〉µ =

n∑
i=1

uivi
µi

, µ ∈ P+, u, v ∈ Tµ(P) (4)

where P+ denotes the statistical manifold of positive categorical distributions. Note that the inner
product is ill-defined on the boundary, causing numerical issues near the boundary. To circumvent
this issue, we introduce the following diffeomorphism

π : P → Sn−1
+ , µi 7→ xi =

√
µi, (5)

3

54789 https://doi.org/10.52202/079017-1738

which maps the original statistical manifold to the positive orthant of a unit (n− 1)-sphere Sn−1
+ =

{x|
∑n

i=1 x
2
i = 1, xi ≥ 0} (see Fig.2). Note that we have ‖π(µ)‖22 =

∑n
i=1

√
µi

2 =
∑n

i=1 µi = 1.
The geodesic on Sn−1

+ follows the great circle, and the following proposition holds between the
geodesic distance on Sn−1

+ and P:

Proposition 1.

dS(π(µ), π(ν)) =
1

2
dcat(µ, ν), µ, ν ∈ P . (6)

A proof is provided in Appendix A.3. This indicates that we can work with the geodesic distance on
the unit sphere instead with up to a constant factor:

dS(x, y) = arccos(〈x, y〉), x, y ∈ Sn−1
+ . (7)

The geodesic distance dS and the inner product 〈·, ·〉 are well-defined for the boundary, and we
found this transform led to the practical stabilized training of the flow model. Visualizations of
the Riemannian geometry on the statistical manifold of 3-class categorical distributions and the
corresponding Euclidean geometry on the simplex are provided in Fig.1 for comparison. The straight
lines under the Euclidean assumptions fail to capture the true curved geometry of the statistical
manifold.

Figure 1: The Riemannian geometry of the statistical manifold for categorical distributions in
comparison to Euclidean geometry on the simplex. Left: Contours for the geodesic distances to
µ0 = (1/3, 1/3, 1/3). Middle: Exponential maps (geodesics) from µ0 to different points near the
boundary. Right: Logarithm maps (vector fields) to µ0.

3.2 Statistical Flow Matching

We provide the analytical form of the exponential and logarithm maps on the statistical manifold of
categorical distributions in Appendix A.3. Although it is possible to directly learn the vector field
following the loss in Eq.(2), such a direct parameterization has numerical issues near the boundary.
As described in Sec.3.1, we apply the diffeomorphism π in Eq.(5) to derive a more stable training
objective on the spherical manifold:

LSFM = Et∼U [0,1],x0∼π∗(p0(µ)),x1∼π∗(q(µ))

[
‖v(xt, t)− uSt (xt|x0, x1)‖22

]
, (8)

where p0 is the prior noise distribution over P and q is the data distribution; π∗ denotes the standard
pushforward measure. v : Sn−1

+ × [0, 1] → TSn−1
+ is a learnable time-dependent vector field net-

work that maps the interpolant xt on the unit sphere to a tangent vector in the tangent bundle TSn−1
+ .

The ground truth conditional vector field uS is calculated using the exponential and logarithms maps
on the sphere (Appendix A.2). The overall training and inference scheme is visualized in Fig.2 and
described in Alg.2 and 3 in Appendix C.

We further implement a Euclidean flow matching model on the probability simplex with linear in-
terpolation between the noises and the target distributions. Though linear flow matching offers
“straight” lines under the Euclidean assumption, it is unaware of the intrinsic geometric properties

4

54790https://doi.org/10.52202/079017-1738

of the statistical manifold and turns out to trace longer paths in terms of the Riemannian metric. The
objective for linear flow matching can be described as

LLinearFM = Et∼U [0,1],µ0∼p0(µ),µ1∼q(µ)

[
‖v(µt, t)− (µ1 − µ0)‖22

]
. (9)

In the discussion above, we assume a single data dimension on the statistical manifold. This can be
extended to any data dimension by treating them as independent channels of the input. In practice,
each probability measure on the simplex is represented by a matrix X ∈ [0, 1]D×n where D is the
data dimension and each row sums to 1. The priors are independently sampled from the uniform
distribution over the (n − 1)-simplex and each data dimension is independently interpolated with
the same timestep t ∼ U [0, 1]. The flow model, on the other hand, takes all the data dimensions
as input to capture the dependence between different dimensions. During sampling, existing ODE
solvers and the simple Euler method are used to integrate the vector field through time to obtain
the final categorical distributions. Discrete samples are then drawn from the generated categorical
distributions for evaluation. Details regarding model parameterization and sampling are further
described in Appendix C.1 and C.2.

Figure 2: Statistical flow matching (SFM) framework. (a) During training (Sec.3.2), probability
measures on P are mapped to Sn−1

+ via diffeomorphism π to compute the time-dependent vector
field (in red). During inference, the learned vector field generates the trajectory on Sn−1

+ and we
map the outcome of ODE back to P (in blue). (b) In the NLL calculation for one-hot examples
(Sec.3.5), the probability density is marginalized over a small neighborhood of some Dirac measure
to avoid undefined behaviors at the boundary (in green).

3.3 Optimization View of Statistical Flow Matching

We further provide an interpretation of our proposed statistical flow matching framework from the
perspective of an optimization problem. From the optimization viewpoint, for a generative model on
a statistical manifold, we want to minimize the discrepancy between the target distributions and the
generated distributions. Naturally, the Kullback-Leibler divergence DKL(µ(θ)‖µ(θ1)) can be used
as a measure of statistical distance. We note that the Fisher information metric can be obtained as
the Hessian of the KL divergence with respect to the parameter θ. This can be demonstrated by the
fact that the KL divergence reaches the global minimum of 0 at θ = θ1, so all first-order partial
derivatives are zero, and the Hessian is positive semi-definite. Therefore, Taylor expansion of KL
divergence at θ1 with ∆θ = θ − θ1 gives

DKL(µ(θ)‖µ(θ1)) ≈
1

2

∑
jk

∆θj∆θk
∂2

∂θj∂θk
DKL(µ(θ)‖µ(θ1))

∣∣∣∣
θ=θ1

=
1

2

∑
jk

∆θj∆θkgjk(θ1) =
1

2
‖∆θ‖2g.

(10)

From the geometric viewpoint, the geodesic, by definition, is a (locally) length-minimizing curve
with respect to the corresponding Riemannian metric. Therefore, by following the direction of the
vector field that decreases the geodesic element ds2 = ‖ dθ‖2g ≈ ‖∆θ‖2g , we are indeed following
the steepest direction that minimizes the local KL divergence. In this sense, the Fisher information
metric defines a second-order optimization scheme for the KL divergence by following the “steepest”
direction of the Hessian. Indeed, The steepest direction ∆θ that decreases the KL divergence is

5

54791 https://doi.org/10.52202/079017-1738

known as the natural gradient in the existing literature [2, 3] and has been explored in optimization
known as natural gradient descent[48, 42, 46]. Instead of optimizing along the normal gradient, the
natural gradient is defined as ∇̃L = F−1∇L where F is the Fisher information matrix estimated
from a batch of sampled data. Results established in [2, 42] demonstrated that stochastic natural
gradient descent is asymptotically “Fisher efficient” and is indeed the steepest descent direction in
the manifold of distributions where distance is measured in small local neighborhoods by the KL
divergence. Following the geodesic defined by the Fisher information metric, our SFM framework
also shares these benefits with an additional advantage of analytical expressions for geodesics, as
we focus on the family of categorical distributions instead of general statistical models. Such a
theoretical connection may contribute to the better performance of SFM.

3.4 Optimal Transport on Statistical Manifold

The geometric viewpoint of the statistical manifold offers a continuous and differentiable formu-
lation of generative modeling and also provides a robust way to measure the distance between
two categorical distributions via the well-defined geodesic distance in Eq.(3). In contrast, the
Markov chain-based methods cannot establish a robust distance measure due to the stochastic
jumps between discrete states. Inspired by the optimal transport formulation in previous work
[45, 20, 68, 63], we naturally extend it to our statistical setting in which the cost is defined by
averaging the statistical distances over data dimensions as dcat(X,Y) = 1

D

∑D
k=1 dcat(µ

(k), ν(k))

for X = {µ(k)}Dk=1, Y = {ν(k)}Dk=1. An optimal assignment of the initial noises to the target data
distributions can potentially lead to more efficient training, which we demonstrated empirically in
our ablation studies.

3.5 Exact Likelihood Calculation

Unlike diffusion-based models which rely on variational lower bounds for likelihood estimation, our
proposed method shares the continuous normalizing flow’s capability of exact likelihood calculation.
For an arbitrary test sample x ∈ M, using the change of measure formula, the likelihood can be
modeled by the continuity equation [14, 43]:

∂

∂t
log pt(xt) + divg(vt)(xt) = 0, (11)

where divg is the Riemannian divergence and vt(xt) := v(xt, t) is the time-dependent vector field.
In this way, the pushforward probability measures pt(xt) defined via the learned flow can be ob-
tained as the integral of the Riemannian divergence back through time on the simulated trajectory
xt. Following [9, 7], we define the ODE log-likelihood as the change of the log-likelihood as:

log pODE(x1) =

∫ 0

1

divg(vt)(xt) dt, (12)

where the trajectory xt is obtained by solving the differential equation ∂
∂txt = vt(xt) reverse

through time with the initial condition x1 at t = 1. In this way, we have log p(x1) = log pODE +
log p0(x0) where log p0(x0) is the log-likehood of the prior distribution at data point x0. In prac-
tice, we follow previous work [7] to use Hutchinson’s trace estimator [30] to efficiently obtain an
unbiased estimation of the divergence using standard normal random variables. To further account
for the transform π from P to Sn−1

+ and the reverse transform π−1, additional change of measure
formulae need to be applied. Consider the pushforward of the probability measure P over P under
the diffeomorphism π defined by π∗P (V) := P (π−1V), we have the change of measure identity
π∗P (π(µ))| det dπ(µ)| = P (x) for x = π(µ). Therefore, by adding the two log-determinant of the
pushforward measures, the log-likelihood can be formulated as

log p1(µ1) = log | det dπ−1(x1)|+ log pODE(x1) + log | det dπ(µ0)|+ log p0(µ0). (13)

The above formula is well-defined for all interior points of P , but the change of measure terms
are undefined on the boundary. This can be understood as the fact that discrete likelihoods can be
arbitrarily high [62]. Following [7], we derive a variational lower bound for the likelihood as the
marginalized probability over the small neighborhood of a Dirac measure µ1 = δ at the boundary:

log p(δ) ≥ Eq(µ̃1|δ)[− log q(µ̃1|δ) + log p(δ|µ̃1) + log p1(µ̃1)], (14)

6

54792https://doi.org/10.52202/079017-1738

where q(µ̃1|δ) can be viewed as the forward noising probability at µ̃1 which is close to δ with
a closed-form likelihood. p(δ|µ̃1) is the categorical likelihood (cross-entropy) and p1(µ̃1) is the
model likelihood in Eq.(13). The overall workflow of calculating NLL is demonstrated in Fig.2, and
more details regarding likelihood computation can be found in Appendix B.1. It is worth mentioning
that the continuous likelihood calculated here is defined with respect to the probability distribution
over the statistical manifold P . In contrast, the bits-per-dimension score for autoregressive models is
usually defined with respect to a specific categorical distribution on P and therefore not comparable,
as was also noted in [7].

4 Experiments

Our proposed SFM framework can be leveraged to approximate arbitrary distribution over P , i.e.,
any distribution over the parameterized family of probability measures. We first demonstrate this
with the toy example of a Swiss roll distribution on the probability simplex. We then conduct ex-
tensive experiments on real-world datasets for discrete generation across various domains including
computer vision, natural language processing, and bioinformatics to demonstrate the effectiveness
of our proposed model. We train and evaluate two different versions of the SFM framework: SFM
w/ OT for our proposed model with optimal transport during training and SFM w/o OT for the
model without optimal transport. A naive approach that directly works with the exponential and log-
arithm maps on the statistical manifold without the diffeomorphism (SFM w/o π) is also compared
in the toy example. We also implement a linear flow matching model on the probability simplex
using the loss in Eq.(9) as an additional baseline, for which we dub LinearFM. For discrete data,
we always use Eq.(14) to obtain finite negative log-likelihood (NLL). More details regarding model
architectures and the experimental setup can be found in Appendix C.

4.1 Toy Example: Swiss Roll on Simplex

We project the Swiss roll dataset onto the 2-simplex with some additional margins to make sure
no point resides on the boundary. We used a time-dependent MLP to model the vector field for all
models. The generative points on the simplex and NLL are calculated using the Dopri5 ODE solver
[19] and are shown in Fig.3.

Figure 3: Generated samples of the Swiss roll on simplex dataset and NLL (lower is better). The
NLLs are estimated using Hutchinson’s trace estimator, whereas those in the parenthesis are exact.

We note that most existing models assume the target data to be Dirac measures (one-hot distributions)
and cannot be applied to this task. Both DDSM [7] and DirichletFM [60] imposed strong prior
assumptions on the data distribution as Dirichlet distributions, which failed to capture the complex
geometric shape of the Swiss roll data points as demonstrated in the generated samples. On the
contrary, directly built upon the geometry of the statistical manifold, our SFM model successfully
captured the detailed data geometry. As no data resides on the boundary, exact NLL can be obtained
using Eq.(13) and was averaged over all points in the dataset. Though linear flow matching could
also capture the geometry of the data, our SFM outperformed it in terms of NLL.

7

54793 https://doi.org/10.52202/079017-1738

4.2 Binarized MNIST

We extend our SFM to model discrete generation tasks in computer vision. The binarized MNIST
dataset [53] is the binarized version of the original MNIST dataset [34] by thresholding the original
continuous value to be either 0 or 1, thus can be viewed as a 2-class generation task with a data
dimension of 282 = 784. We also compared D3PM [6] and DFM [22] as examples of masked
diffusion models for discrete generation. We used a convolutional neural net adopted from [57] with
additional additive Fourier-based time embeddings. The quantitative evaluation of NLL and Fréchet
inception distance (FID) are shown in Tab.1.

Table 1: NLL and FID of different discrete models on binarized MNIST. The NLLs in the parenthesis
are discrete NLLs; therefore, they are not directly comparable. * is from [7].

Model SFM w/ OT SFM w/o OT SFM w/o π LinearFM

NLL↓ -1.687 ± 0.020 -1.631 ± 0.027 0.928 ± 0.035 0.622 ± 0.022
FID↓ 4.62 5.15 8.2073 5.91

Model DirichletFM DDSM D3PM DFM

NLL↓ NA 0.100 ± 0.001* (0.141 ± 0.021) (0.101 ± 0.017)
FID↓ 77.35 7.79 67.36 34.42

All the generated results and NLL calculations were based on the Dopri5 ODE solver. Additional
ablation results can be found in Appendix D.2 and generated images can be found in Appendix D.3.
The NLL for diffusion-based models (D3PM and DDSM) was also calculated based on the varia-
tional bounds derived in their papers. Our proposed model consistently outperformed both the linear
flow matching and other diffusion baselines in terms of FID and NLL, achieving higher sample
quality and likelihood.

4.3 Text8

The Text8 dataset [41] is a medium-size character-level corpus consisting of a small vocabulary of
27, which includes the 26 lowercase letters and the whitespace token. We followed the convention
in previous work [6, 24] to use random chunks of length 256 in both training and evaluation without
any preprocessing. We used a 12-layer diffusion transformer (DiT) [49] based predictor, similar
to the one used in [39]. As our exact likelihood is not directly comparable to bits-per-character
(BPC) reported in previous work which relies on an alternative variational bound for the likelihood,
we additionally calculate such BPC inspired by [52]. See Appendix B.2 for additional details. All
generated samples and NLL were estimated using the Dopri5 ODE solver. Quantitative results of
BPC are provided in Tab.2 and generated texts are provided in Appendix D.3. The results for the
autoregressive language models are also provided as a reference (Discrete Flow [64] is based on
autoregressive normalizing flow).

Note that, unlike all of the other baselines, SFM and LinearFM do not directly optimize such a BPC
as a training objective, so such an evaluation metric is unfavorable for our model (see Appendix B.2).
Despite such an unfavorable evaluation, our proposed SFM still achieved the second-best perfor-
mance among other diffusion and flow baselines that were directly trained with cross-entropy losses.
We also noted a significant performance gap between SFM and the naive linear flow matching on
simplex, highlighting the importance of capturing the intrinsic geometric properties of the underly-
ing statistical manifold. Optimal transport does not significantly affect the final performance here,
which we presume might be due to the long training stage in which vector fields were well-explored.
Additional evaluation following [12] is provided in Appendix D.1, in which SFM achieved the best
generation entropy as evaluated by the pre-trained GPT-J-6B model [67].

4.4 Promoter Design

We further apply SFM to the practical task of promoter DNA sequence design in the bioinformatics
realm. The promoter is a key element in gene transcription and regulation, and the generation of
desired promoters can better help us understand the intricate interactions between human genes.
[7] proposed a human promoter sequence dataset containing 100k promoter sequences with the

8

54794https://doi.org/10.52202/079017-1738

Table 2: BPC on Text8. Results marked *

are taken from the corresponding papers.
Model BPC↓
SFM w/ OT 1.399 ± 0.020
SFM w/o OT 1.386 ± 0.033
LinearFM 1.651 ± 0.027
D3PM-absorb[6] 1.47*

BFN[24] 1.41*

SEDD-absorb[39] 1.32*

MultiFlow[12] 1.41*

Argmax Flow[28] 1.80*

Discrete Flow[64] 1.23*

Transformer[6] 1.23*

Transformer XL[16] 1.08*

Table 3: SP-MSE (as evaluated by Sei [13])
on the generated promoter DNA sequences.
Results marked * are from [7] and results
marked † are from [60].

Model SP-MSE↓
SFM w/ OT 0.0279
SFM w/o OT 0.0258
LinearFM 0.0282
DDSM 0.0334*

D3PM-uniform 0.0375*

Bit-Diffusion (one-hot) [15] 0.0395*

Bit-Diffusion (bit) [15] 0.0414*

Language Model 0.0333†

DirichletFM 0.0269†

corresponding transcription initiation signal profiles. Each promoter sequence is 1024 base pairs
long and is centered at the annotated transcription start site position [27]. Therefore, we can model
promoter design as a generation task with 4 categories (the base pair ATGC) conditioned on the
given transcription signals. We follow [7] to concatenate the signal as additional input to the vector
field predictor built upon 20 stacks of 1-dimensional convolutional layers on the input sequence.
Optimal transport can also be applied for conditional generation, as we can pair the conditions with
the input to make sure that the conditional arguments align with the target one-hot distributions.

To provide a quantitative evaluation of the generated promoter sequences, we follow [7] to apply the
pre-trained deep learning sequence model Sei [13] to predict active promoters based on predictions
of the chromatin mark H3K4me3. As the dataset spans the whole range of human promoter activity
levels from highly expressed promoters to those with very low expression, the evaluation is based
on comparing the scores between the generated sequences and the ground truth human genome pro-
moter sequences on the test chromosomes. The metric SP-MSE is the mean squared error between
the predicted promoter activity of the generated sequences and human genome sequences (lower
is better) and is demonstrated in Tab.3. Our SFM was able to achieve the lowest SP-MSE score
compared with other baselines. It is worth noting, though, that optimal transport produced slightly
sub-optimal results. We hypothesize that this is because, in conditional generative tasks, the final
generation should rely heavily on the conditions. Simply matching inputs with the targets using
distance measures may discard important information in the conditional arguments and may not be
the best practice.

5 Related Work

As we put a special interest in discrete generation, we start with the existing work on discrete gen-
eration. We first list a few traditional autoregressive models [16, 50, 64] and masked language
models [18, 54] but will skip them as we mainly focus on the diffusion and flow matching mod-
els. Existing diffusion and flow-based discrete generative models can be categorized into two main
groups. The first group relies on stochastic jumps of Markov chains by treating discrete classes as
Markov states. By choosing a proper transition matrix, the target one-hot distribution can be grad-
ually noised into the stationary distribution. Noticeably, this approach can also adopt an additional
absorbing state to mimic the mask token in masked language modeling [6]. D3PM [6] adapted
the discrete-time Markov chain with the diffusion framework and SEDD [39] proposed a more ef-
ficient training scheme by learning the score entropy between different states. [11, 55] extended
it to the continuous-time Markov chain by using the infinitesimal generator (rate matrix) instead,
and [12, 22] further applied the flow matching framework. Although the transition matrix or the
rate matrix determines the entire diffusion trajectory, there is no canonical way of choosing it for
different generation tasks to control the mixing rate. Also, due to the presence of discrete jumps of
the Markov chain, exact likelihood calculation is no longer feasible. Only variational bounds were
derived in [6, 12]. The other group directly works with the probability simplex or the logit space

9

54795 https://doi.org/10.52202/079017-1738

with certain assumptions of the underlying geometric structure [36]. As an example, our linear flow
matching assumes a Euclidean geometry on the probability simplex and is often used as a baseline
in previous work [60]. The multinomial diffusion [28] assumed a Euclidean geometry on the logits
space so interpolation became multiplication back on the probability simplex. Dirichlet diffusion
(DDSM) [7] and Dirichlet flow matching (DirichletFM) [60] exerted a strong prior assumption on
the probability path as the Jacobi diffusion process. We provide a more detailed analysis of these
models in Appendix A.4. For models that directly operate on the logit space, the Bayesian flow net-
work (BFN) assumed Gaussian distributions on the logit space with Bayesian update rules. [40] also
assumed a Euclidean geometry in the logit space with targets as soft one-hot logits. The assump-
tions made in these models may not always hold, e.g., for the Swiss roll on simplex dataset in Fig.3.
These assumptions also did not necessarily capture the true geometry of the underlying statistical
manifold. In contrast, our proposed SFM framework does not exert any strong prior assumptions
and is aware of the intrinsic geometry by following the geodesics.

We also briefly review the related work on statistical manifolds and information geometry. The
field of information geometry, the study of geometric properties of statistical manifolds, was first
established in Rao’s seminal paper in 1945 [51] discussing the Fisher information metric. Most
previous work utilizing information geometry focuses on optimization [2, 3] with a few exceptions
on representation learning. [65] utilized the geodesic distance between two univariate Gaussians for
function shape matching for retrosynthesis of gold nanoparticles. [35] treated point cloud data as
probability measures over the 3D Euclidean space and considered the pullback metric on the latent
space to obtain optimal latent coordinates for the autoencoder. [47] further applied such a method on
single-cell RNA sequence trajectories. These models demonstrated the advantage of following the
proper geometry compared with the vanilla Euclidean setting, but the pullback metric needed to be
evaluated with expensive Jacobian-vector products during training. In contrast, our proposed SFM,
for the first time, leverages mathematical tools from information geometry to generative modeling.
SFM directly operates on the statistical manifold with closed-form geodesics, providing a simulation-
free approach for efficient generative training.

6 Discussion

In this paper, we proposed statistical flow matching (SFM) as a general generative framework for
generative modeling on the statistical manifold of probability measures. By leveraging results from
information geometry, our SFM effectively captures the underlying intrinsic geometric properties of
the statistical manifold. Specifically, we focused on the statistical manifold of categorical distribu-
tions in this work and derived optimal transport and exact likelihood formulae. We applied SFM
to diverse downstream discrete generation tasks across different domains to demonstrate our frame-
work’s effectiveness over the baselines. We noted that SFM can be further extended to non-discrete
generative tasks whose targets are probability distributions, which we will leave as future work.

We are also aware of the limitations of our SFM framework. As a special case of the flow matching
model, the generation is an iterative process of refinement that cannot modify the size of the initial
input. This may pose limitations to generation compared with autoregressive models. Furthermore,
we adopted the assumption of independence between classes so that the canonical Riemannian struc-
ture can be induced by the Fisher metric. However, discretized data like CIFAR-10 [32] (256 ordinal
pixel values) do not follow this assumption, and results on such data might be suboptimal.

References
[1] S. Alamdari, N. Thakkar, R. van den Berg, A. X. Lu, N. Fusi, A. P. Amini, and K. K. Yang.

Protein generation with evolutionary diffusion: sequence is all you need. bioRxiv, pages 2023–
09, 2023.

[2] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

[3] S.-i. Amari and A. Cichocki. Adaptive blind signal processing-neural network approaches.
Proceedings of the IEEE, 86(10):2026–2048, 1998.

[4] S.-i. Amari and H. Nagaoka. Methods of information geometry, volume 191. American Math-
ematical Soc., 2000.

10

54796https://doi.org/10.52202/079017-1738

[5] C. Atkinson and A. F. Mitchell. Rao’s distance measure. Sankhyā: The Indian Journal of
Statistics, Series A, pages 345–365, 1981.

[6] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg. Structured denoising dif-
fusion models in discrete state-spaces. Advances in Neural Information Processing Systems,
34:17981–17993, 2021.

[7] P. Avdeyev, C. Shi, Y. Tan, K. Dudnyk, and J. Zhou. Dirichlet diffusion score model for biologi-
cal sequence generation. In International Conference on Machine Learning, pages 1276–1301.
PMLR, 2023.

[8] N. Ay, J. Jost, H. Vân Lê, and L. Schwachhöfer. Information geometry, volume 64. Springer,
2017.

[9] H. Ben-Hamu, S. Cohen, J. Bose, B. Amos, A. Grover, M. Nickel, R. T. Chen, and Y. Lip-
man. Matching normalizing flows and probability paths on manifolds. arXiv preprint
arXiv:2207.04711, 2022.

[10] A. J. Bose, T. Akhound-Sadegh, K. Fatras, G. Huguet, J. Rector-Brooks, C.-H. Liu, A. C.
Nica, M. Korablyov, M. Bronstein, and A. Tong. Se (3)-stochastic flow matching for protein
backbone generation. arXiv preprint arXiv:2310.02391, 2023.

[11] A. Campbell, J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet. A
continuous time framework for discrete denoising models. Advances in Neural Information
Processing Systems, 35:28266–28279, 2022.

[12] A. Campbell, J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola. Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint
arXiv:2402.04997, 2024.

[13] K. M. Chen, A. K. Wong, O. G. Troyanskaya, and J. Zhou. A sequence-based global map of
regulatory activity for deciphering human genetics. Nature genetics, 54(7):940–949, 2022.

[14] R. T. Chen and Y. Lipman. Riemannian flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023.

[15] T. Chen, R. Zhang, and G. Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

[16] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl: Atten-
tive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[17] Q. Dao, H. Phung, B. Nguyen, and A. Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[19] J. Dormand and P. Prince. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19–26, 1980.

[20] K. Fatras, Y. Zine, S. Majewski, R. Flamary, R. Gribonval, and N. Courty. Minibatch optimal
transport distances; analysis and applications. arXiv preprint arXiv:2101.01792, 2021.

[21] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer Berlin
Heidelberg, 2004.

[22] I. Gat, T. Remez, N. Shaul, F. Kreuk, R. T. Chen, G. Synnaeve, Y. Adi, and Y. Lipman. Discrete
flow matching. arXiv preprint arXiv:2407.15595, 2024.

[23] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[24] A. Graves, R. K. Srivastava, T. Atkinson, and F. Gomez. Bayesian flow networks. arXiv
preprint arXiv:2308.07037, 2023.

11

54797 https://doi.org/10.52202/079017-1738

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[27] C.-C. Hon, J. A. Ramilowski, J. Harshbarger, N. Bertin, O. J. Rackham, J. Gough,
E. Denisenko, S. Schmeier, T. M. Poulsen, J. Severin, et al. An atlas of human long non-coding
rnas with accurate 5’ ends. Nature, 543(7644):199–204, 2017.

[28] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling. Argmax flows and multino-
mial diffusion: Learning categorical distributions. Advances in Neural Information Processing
Systems, 34:12454–12465, 2021.

[29] V. T. Hu, W. Zhang, M. Tang, P. Mettes, D. Zhao, and C. Snoek. Latent space editing in
transformer-based flow matching. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 2247–2255, 2024.

[30] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989.

[31] L. Klein, A. Krämer, and F. Noé. Equivariant flow matching. Advances in Neural Information
Processing Systems, 36, 2024.

[32] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[33] A. Le Brigant, S. C. Preston, and S. Puechmorel. Fisher-rao geometry of dirichlet distributions.
Differential Geometry and its Applications, 74:101702, 2021.

[34] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[35] Y. Lee, S. Kim, J. Choi, and F. Park. A statistical manifold framework for point cloud data. In
International Conference on Machine Learning, pages 12378–12402. PMLR, 2022.

[36] J. Li, C. Cheng, Z. Wu, R. Guo, S. Luo, Z. Ren, J. Peng, and J. Ma. Full-atom peptide design
based on multi-modal flow matching. arXiv preprint arXiv:2406.00735, 2024.

[37] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1925–1934, 2017.

[38] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

[39] A. Lou, C. Meng, and S. Ermon. Discrete diffusion language modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

[40] R. K. Mahabadi, J. Tae, H. Ivison, J. Henderson, I. Beltagy, M. E. Peters, and A. Cohan. Tess:
Text-to-text self-conditioned simplex diffusion. arXiv preprint arXiv:2305.08379, 2023.

[41] M. Mahoney. Large text compression benchmark, 2011.

[42] J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

[43] E. Mathieu and M. Nickel. Riemannian continuous normalizing flows. Advances in Neural
Information Processing Systems, 33:2503–2515, 2020.

[44] H. K. Miyamoto, F. C. Meneghetti, and S. I. Costa. On closed-form expressions for the fisher-
rao distance. arXiv preprint arXiv:2304.14885, 2023.

12

54798https://doi.org/10.52202/079017-1738

[45] K. Nguyen, D. Nguyen, T. Pham, N. Ho, et al. Improving mini-batch optimal transport via
partial transportation. In International Conference on Machine Learning, pages 16656–16690.
PMLR, 2022.

[46] L. Nurbekyan, W. Lei, and Y. Yang. Efficient natural gradient descent methods for large-
scale pde-based optimization problems. SIAM Journal on Scientific Computing, 45(4):A1621–
A1655, 2023.

[47] A. Palma, S. Rybakov, L. Hetzel, and F. J. Theis. Modelling single-cell rna-seq trajectories on
a flat statistical manifold. In NeurIPS 2023 AI for Science Workshop, 2023.

[48] H. Park, S.-I. Amari, and K. Fukumizu. Adaptive natural gradient learning algorithms for
various stochastic models. Neural Networks, 13(7):755–764, 2000.

[49] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[51] C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters.
In Breakthroughs in Statistics: Foundations and basic theory, pages 235–247. Springer, 1992.

[52] S. S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and
V. Kuleshov. Simple and effective masked diffusion language models. arXiv preprint
arXiv:2406.07524, 2024.

[53] R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In
Proceedings of the 25th international conference on Machine learning, pages 872–879. ACM,
2008.

[54] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff. Masked language model scoring. arXiv
preprint arXiv:1910.14659, 2019.

[55] J. E. Santos, Z. R. Fox, N. Lubbers, and Y. T. Lin. Blackout diffusion: generative diffusion
models in discrete-state spaces. In International Conference on Machine Learning, pages
9034–9059. PMLR, 2023.

[56] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[57] Y. Song and S. Ermon. Improved techniques for training score-based generative models. Ad-
vances in neural information processing systems, 33:12438–12448, 2020.

[58] Y. Song, J. Gong, M. Xu, Z. Cao, Y. Lan, S. Ermon, H. Zhou, and W.-Y. Ma. Equivariant flow
matching with hybrid probability transport for 3d molecule generation. Advances in Neural
Information Processing Systems, 36, 2024.

[59] H. Stark, B. Jing, R. Barzilay, and T. Jaakkola. Harmonic prior self-conditioned flow matching
for multi-ligand docking and binding site design. In NeurIPS 2023 AI for Science Workshop,
2023.

[60] H. Stark, B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola. Dirichlet flow
matching with applications to dna sequence design. arXiv preprint arXiv:2402.05841, 2024.

[61] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[62] L. Theis, A. v. d. Oord, and M. Bethge. A note on the evaluation of generative models. arXiv
preprint arXiv:1511.01844, 2015.

[63] A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio.
Improving and generalizing flow-based generative models with minibatch optimal transport.
arXiv preprint arXiv:2302.00482, 2023.

13

54799 https://doi.org/10.52202/079017-1738

[64] D. Tran, K. Vafa, K. Agrawal, L. Dinh, and B. Poole. Discrete flows: Invertible generative
models of discrete data. Advances in Neural Information Processing Systems, 32, 2019.

[65] K. Vaddi, H. T. Chiang, and L. D. Pozzo. Autonomous retrosynthesis of gold nanoparticles via
spectral shape matching. Digital Discovery, 1(4):502–510, 2022.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[67] B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[68] J. Yim, A. Campbell, A. Y. Foong, M. Gastegger, J. Jiménez-Luna, S. Lewis, V. G. Satorras,
B. S. Veeling, R. Barzilay, T. Jaakkola, et al. Fast protein backbone generation with se (3) flow
matching. arXiv preprint arXiv:2310.05297, 2023.

14

54800https://doi.org/10.52202/079017-1738

https://github.com/kingoflolz/mesh-transformer-jax

Supplementary Material

A Riemannian Manifold and Information Geometry

In this section, we give a more detailed mathematical background on Riemannian manifold and in-
formation geometry related to this work. A more comprehensive background on the Riemannian
manifold can be found in [21]. For information geometry, [8, 4] provide more comprehensive anal-
yses and rigorous formulations.

A.1 Riemannian Manifold

A Riemannian manifoldM is a real, smooth manifold equipped with a positive definite inner product
g on the tangent space Tx(M) at each point x ∈ M. Let TM =

⋃
x∈M Tx(M) be the tangent

bundle of the manifoldM, a time-dependent vector field onM is a mapping ut : [0, 1]×M→ TM
where ut(x) ∈ Tx(M). A geodesic is a locally distance-minimizing curve on the manifold. The
existence and the uniqueness of the geodesic state that for any point x ∈ M and for any tangent
vector u ∈ Tx(M), there exists a unique geodesic γ : [0, 1] → M such that γ(0) = x and
γ′(0) = u. The exponential map exp :M×TM→M is uniquely defined to be expx(u) := γ(1).
The logarithm map log : M×M → TM is defined as the inverse mapping of the exponential
map such that expx(logx(y)) ≡ y, ∀x, y ∈ M. Note that the formulation here is slightly different
from Sec.2.1 where we fix a point µ on P . With the exponential map and logarithm map, the time-
dependent flow can be compactly written as time interpolation along the geodesic:

xt := ψt(xt|x0, x1) = expx0
(t logx0

x1), t ∈ [0, 1]. (15)
It can be demonstrated that the above flow indeed traces the geodesic between x0, x1 with linearly
decreasing geodesic distance dg(xt, x1) = (1 − t)dg(x0, x1) [14]. For an n-dimensional Rieman-
nian manifold, the geodesic can be obtained by solving the geodesic equation (using the Einstein
summation convention):

d2xk

dt2
+ Γk

ij

dxi

dt

dxj

dt
= 0, k = 1, 2, . . . , n, (16)

where xi are local coordinates of the geodesic and Γk
ij are the Christoffel symbols defined by

Γk
ij =

1

2
gkm

(
∂gmi

∂xj
+
∂gmj

∂xi
− ∂gij
∂xm

)
, i, j, k = 1, 2, . . . , n, (17)

where gij is the inverse metric such that gijgjk = δik. The closed-form expressions for the geodesic
are generally not available. [44] curated a wide range of common statistical manifolds for parame-
terized families of both the discrete and the continuous distributions. We will focus on the statistical
manifold of categorical distributions and also the spherical manifold, as the latter is closely related
to the former via the diffeomorphism π in Eq.(5).

A.2 Spherical Manifold

The positive orthant of the unit (n− 1)-sphere Sn−1
+ is a (n− 1)-dimensional manifold. The sphere

can be embedded into the ambient Euclidean manifold Rn such that it inherits the canonical inner
product as

〈u, v〉S = 〈u, v〉 =
n∑

i=1

uivi, u, v ∈ Tx(Sn−1
+). (18)

The tangent space Tx(Sn−1
+) = {u|〈u, x〉 = 0} is a (n− 1)-dimensional hyperplane perpendicular

to the vector x. The geodesic on the sphere follows the great circle between two points, and the
geodesic distance can be calculated in Eq.(7). The corresponding exponential map can be calculated
as:

expx(u) = x cos ‖u‖2 + u sinc ‖u‖2, (19)
where sinc(θ) = sin θ/θ is the unnormalized sinc function. The logarithm map can be calculated
as:

logx(y) = arccos(〈x, y〉) Px(y − x)
‖Px(y − x)‖2

, (20)

where Px(w) = w − 〈x,w〉x is the projection of vector w onto the tangent space Tx(Sn−1
+).

15

54801 https://doi.org/10.52202/079017-1738

A.3 Statistical Manifold of Categorical Distributions

By calculating the Fisher information matrix for a categorical distribution, we can obtain the explicit
form of the metric tensor as [44]

gjk(µ) =
δjk
µj

+
1

µn
, 1 ≤ i, j,≤ n− 1, (21)

where δjk is the Kronecker delta. Substituting this into 〈u, v〉µ leads to the Riemannian inner product
in Eq.(4). The statistical manifold of categorical distributions P(X) is closely related to Sn−1

+ by
the diffeomorphism π in Eq.(5). In fact, π is an isometry between the Fisher information metric on
P and the standard induced metric on Sn−1

+ up to a constant scaling factor of 1/4. To see this, we
have the following proposition:

Proposition 2. 〈
∂π(µ)

∂u
,
∂π(µ)

∂v

〉
=

1

4
〈u, v〉µ, u, v ∈ Tµ(P). (22)

Proof.〈
∂π(µ)

∂u
,
∂π(µ)

∂v

〉
=

〈
d

dt
π(µ+ tu)

∣∣∣∣
t=0

,
d

dt
π(µ+ tv)

∣∣∣∣
t=0

〉
=

n∑
i=1

ui
2
√
µi

vi
2
√
µi

=
1

4
〈u, v〉µ.

Note that the infinitesimal arc length on the geodesic can be expressed as ds2 = ‖ dx‖2g =∑
jk dxjgjk(x) dxk where ‖ · ‖g is the canonical Riemannian norm induced by the inner product.

Integrating over the geodesic, we can easily arrive at the result in Proposition 1. Based on this, the
exponential map and logarithm map on this statistical manifold can be written as

expµ(u) =

(
√
µ cos

∥∥∥∥ u

2
√
µ

∥∥∥∥
2

+
u

2
√
µ
sinc

∥∥∥∥ u

2
√
µ

∥∥∥∥
2

)2

, (23)

logµ(ν) =
2 arccos(〈√µ,

√
ν〉)√

1− 〈√µ,
√
ν〉

(
√
µ� ν − 〈√µ,

√
ν〉µ), (24)

where � denotes the pairwise multiplication. We mentioned in the main text that directly using the
exponential and logarithm maps on the statistical manifold has numerical issues near the boundary.
Instead, we used the mapping π to work with the spherical manifold. Nonetheless, Eq.(23) and (24)
provide useful tools for visualization of the statistical manifold, as demonstrated in Fig.1.

We specifically note the property that the Riemannian structure induced by the Fisher information
metric leads to vector fields more parallel to the boundaries. This can also be derived mathematically
from the logarithm map in Eq.(24). Consider the direction term

√
µ� ν−〈√µ,

√
ν〉µ. For µ close to

the boundary with µk ≈ 0, its corresponding vector field will also have a close to uk ≈ 0 component,
which is different from linear flow matching’s fixed ν − µ. We hypothesize that one potential
benefit of such a curved geometry over the naive Euclidean geometry is that the former helps prevent
overshooting across the boundaries. Specifically, consider a target point on the boundary. The
Euclidean vector field will continue to push the points outside the manifold, whereas the Riemannian
vector field tends to travel parallel to that boundary to prevent going across the boundary. Once
overshooting happens during sampling, the model may exhibit undefined behavior as it was never
trained on the points outside the manifold.

We also noted the relation between the Fisher information metric defined in Eq.(1) and the canonical
inner product defined in Eq.(4) for general statistical manifolds. LetM be an n-dimensional differ-
entiable manifold and consider an embedding defined byM ↪→ P(M), θ 7→ p(θ) =

∑
i∈X pi(θ)δ

i.

16

54802https://doi.org/10.52202/079017-1738

The pullback of the Fisher metric g defines a metric onM. For u, v ∈ Tθ(M), we have

gθ(u, v) := p∗(g)θ(u, v)

= gp(θ)

(
∂p

∂u
,
∂p

∂v

)
=
∑
i

1

pi(θ)

∂pi
∂u

(θ)
∂pi
∂v

(θ)

=
∑
i

pi(θ)
∂ log pi
∂u

(θ)
∂ log pi
∂v

(θ)

(25)

which gives the more common definition of the Fisher information matrix in Eq.(1). This relation
also generally holds for a continuous sample space X but requires more careful handling with mea-
sure theory tools. We refer interested readers to mathematical references, e.g., Chapter 3.1 in [8].

A.4 Other Statistical Manifolds

The statistical manifold of categorical distributions provides an intuitive way of modeling discrete
targets. However, we noted that other parameterized distributions can also be used to derive alterna-
tive statistical manifolds with different geometries. We will briefly discuss some manifolds that have
been used in previous generative models (though not from the information geometry perspective as
we do).

Dirichlet Distribution The Dirichlet distribution Dir(α) is a multivariate generalization of the
beta distribution. It is defined on the (n − 1)-dimensional simplex ∆n−1 with n concentration
parameters α = {αi}ni=1. The probability density function is defined as

p(x;α) =
1

B(α)

n∏
i=1

xαi−1
i , x ∈ ∆n−1 (26)

where B(α) =
∏n

i=1 Γ(αi)/Γ(
∑n

i=1 αi) is the multivariate beta function. The closed-form expres-
sions for the geodesics between Dirichlet distributions (and for the marginal beta distributions, as
were used in [7]) are unknown. It is known that, however, this statistical manifold has non-constant
negative sectional curvatures everywhere [33]. [7] proposed to follow the specific path of Jacobi
diffusion processes on the marginal beta distributions, for which expensive modified Jacobi polyno-
mials needed to be precomputed. [60] further applied the flow matching framework by considering
the probability path of Dir(1+ tek) for some fixed maximum timestep. Still, expensive calculations
of the regularized incomplete beta functions were required. Compared with these two generative
models, our proposed SFM on categorical distributions has the following advantages:

• DDSM and DirichletFM have strong prior assumptions that the categorical distributions
follow some specific forward noising process which always terminates at (or near) one-hot
distributions. This assumption generally holds for discrete generation, but cannot be gener-
alized to more complex geometry on the probability simplex, as we have demonstrated in
our toy example of the Swiss roll on simplex dataset in Fig.3.

• The forward noising paths are not the shortest geodesics in the sense of the Riemannian met-
ric. In our SFM, the vector fields always follow the geodesic, thus following the sharpest
direction of decreasing KL divergence (see Sec.3.3).

• Our SFM framework does not require the computation of expensive polynomials and is
more mathematically concise.

• The final one-hot distributions are unreachable in [60], as it would require an infinite
timestep. Therefore, a variational bound needs to be derived for likelihood estimation,
which was not done in the original paper.

Multinomial Distribution Consider m i.i.d. experiments that follow a categorical distribution
with n possible outcomes and probability µ = {µi}ni=1, a multinomial distribution gives the proba-

17

54803 https://doi.org/10.52202/079017-1738

bility of getting xi times the i-th outcome with
∑n

i=1 xi = m. The geodesic distance for multino-
mial distributions is identical to that of the categorical distributions up to a scaling constant [44]:

dmul(µ, ν) =
√
ndcat(µ, ν) = 2

√
n arccos

(
n∑

i=1

√
µiνi

)
. (27)

Therefore, our model can also be interpreted as multinomial flow matching on the corresponding
statistical manifold. The previous work of multinomial diffusion (argmax flow) [28] transformed
the one-hot distribution to nek − 1 in the logit space (soft one-hot logits) and assumed the common
Euclidean structure of the logit space for constructing the diffusion process. This assumption did
not consider the intrinsic geometry of the underlying statistical manifold and also had the inacces-
sibility issue of the Dirac measure as DirichletFM. We have demonstrated that SFM consistently
outperformed the naive multinomial diffusion on the Text8 datasets, indicating the effectiveness of
tracing the true geodesics.

B Likelihood Calculation

In this section, we provide more concrete mathematical details regarding the exact likelihood cal-
culation in the main text. We first make a distinction between negative log-likelihood (NLL) and
bits-per-dimension (BPD, including bits-per-character, BPC) in this work. As we are dealing with
probability distributions over the statistical manifold of probability measures, it is important for us
to keep the difference between the probability spaces P(P(X)) and P(X). In our notation, we use
µ, ν to denote elements in P(X), or categorical distributions, and use p, q to denote elements in
P(P(X)), or distributions over categorical distributions. We further use NLL to refer to − log p(µ)
for a specific µ and BPD for categorical likelihood − log2 p(δ|µ) where δ is the ground truth Dirac
measure (one-hot distribution). Note this definition of BPD (BPC) follows the convention in autore-
gressive language models where the conditional probabilities for the next token are calculated and
averaged [16, 23]. In contrast, most previous work drew equivalence between these two concepts.

B.1 Negative Log-Likelihood (NLL) Calculation

Our SFM framework enjoys the exact negative log-likelihood calculation as a continuous normal-
izing flow model [38, 14]. It is worth noting that negative NLLs are not uncommon [14]. As a
probability density, the NLL can indeed go to negative infinity at the boundary. Consider the arcsine
distribution defined on the finite support [0, 1] with the probability density function

p(θ) =
1

π
√
θ(1− θ)

, θ ∈ (0, 1). (28)

It is easy to see the density approaches infinity as θ approaches 0 or 1. Note that the arcsine distri-
bution is a special case of beta distribution Beta(12 ,

1
2), which is in turn a special case of Dirichlet

distribution Dir(12 ,
1
2). Each θ can be naturally viewed as the parameter for the Bernoulli distribu-

tion (2-class categorical distribution), so the arcsine distribution indeed defines a distribution over
Bernoulli distributions with negative NLLs near the boundary. In fact, for discrete data, the target
data always come in as Dirac measures, which indicates that the target distribution must be a convex
combination of Dirac measures with infinite likelihood: q =

∑n
i=1 θiδi where δi := δδi is the Dirac

measure over the underlying Dirac measure δi on the discrete class i.

Variational Bound We followed [7] to derive a variational bound as marginalized over a small
neighborhood of the Dirac measure in Eq.(14) to obtain finite NLLs. The variational bound can be

18

54804https://doi.org/10.52202/079017-1738

derived via the standard variational approach as

log p(δ) = Eq(µ|δ) [log p(δ)]

= Eq(µ|δ)

[
log

(
p(δ, µ)

p(µ|δ)

)]
= Eq(µ|δ)

[
log

(
p(δ, µ)

q(µ|δ)
q(δ, µ)

p(µ|δ)

)]
= Eq(µ|δ)

[
log

(
p(δ, µ)

q(µ|δ)

)]
+DKL(q(µ|δ)‖p(µ|δ))

≥ Eq(µ|δ)

[
log

(
p(δ, µ)

q(µ|δ)

)]
= Eq(µ|δ) [log p(δ|µ) + log p(µ)− log q(µ|δ)] .

(29)

The posterior probability q(µ|δ) serves as the forward diffusion process in [6, 60] with a closed-form
expression that depends on the timestep. In our Riemannian flow matching formulation, however,
such a forward process is implicitly defined via the time-interpolation along the geodesics. Nonethe-
less, we do know that the conditional distribution should approach the Dirac measure when t → 1
as the geodesic distance approaches 0: p1(µ|δ) ≈ δ. Therefore, as we are marginalized over a small
neighborhood, we can define a time-dependent posterior distribution qt(µ|δ) that approaches δ as
t → 1. In principle, any forward probability that approaches the Dirac measure at t = 1 with an
analytical likelihood can be used to derive the lower bound. For example, we can follow [7] to use
the Jacobi diffusion process. To avoid the need for expensive Jacobi polynomial calculation, we
instead use simple indicator measures over the simplex as

qt(µ|δk) =

{
p0

(1−t)n−1 , µi ≤ t, 1 ≤ i ≤ n, i 6= k

0, otherwise
(30)

where p0 is the base probability of the uniform distribution over the simplex, µi = θi is the i-
th component of the categorical distribution of µ. In other words, qt(µ|δk) is the time-interpolated
probability between the Dirac measure and the uniform distribution: qt(µ|δk) = tδk+(1−t)U∆n−1.
We have

log qt(µ|δk) = log p0 − (n− 1) log(1− t). (31)
In practice, we use t = 0.995 and provide more results in the ablation studies in Appendix D.2. The
categorical likelihood p(δk|µ) is the standard cross-entropy loss, also referred to as the reconstruc-
tion loss in some previous work [24]. It can be calculated as

log p(δk|µ) = log µk. (32)

Prior Likelihood The prior likelihood accounts for the base probability when we sample from
the prior noise distribution. During both the training and the inference stages, we uniformly sample
from the simplex ∆n−1. This can be efficiently done by normalizing n i.i.d random variables from
the exponential distribution:

θ̃i ∼ Exp(1), θi = θ̃i/

n∑
k=1

θ̃k, i = 1, 2, . . . , n. (33)

The uniform distribution over simplex is exactly the Dirichlet distribution Dir(1, . . . , 1). Therefore,
the log-likelihood can be calculated as

log p0 = log Γ(n) (34)

where Γ is the Gamma function. Note that the prior likelihood is independent of the samples.

Change of Measure The diffeomorphism π in Eq.(5) induces a pushforward measure on Sn−1
+

which can be described by the change of measure identity

π∗P (π(µ))| det dπ(µ)| = P (x), x = π(µ). (35)

19

54805 https://doi.org/10.52202/079017-1738

The change of measure term can be calculated using the change of volume formula with the canoni-
cal coordinates {x̃i}n−1

i=1 and {ϕi}n−1
i=1 as

µ1 = x̃1, x1 =cosϕ1

µ2 = x̃2, x2 =sinϕ1 cosϕ2

...
...

µn−1 = x̃n−1, xn−1 =sinϕ1 . . . sinϕn−2 cosϕn−1

(36)

where 0 ≤ ϕi ≤ π/2. The diffeomorphism x = π(µ) is given by

x̃1 = cos2 ϕ1

x̃2 = sin2 ϕ1 cos
2 ϕ2

...

x̃n−1 = sin2 ϕ1 . . . sin
2 ϕn−2 cos

2 ϕn−1.

(37)

The change of measure term is

log | det dπ−1(x)| = −(n− 1) log 2−
n∑

i=1

log xi. (38)

Similarly, for the inverse mapping, the term is

log | det dπ(µ)| = (n− 1) log 2 +
1

2

n∑
i=1

log µi. (39)

Model Likelihood The model likelihood can be viewed as the pushforward measure of the learned
flow:

pt = (ψt)∗p0. (40)
We demonstrated in Sec.3.5 that this term can be calculated as the integral of divergence in Eq.(12)
plus the base probability in Eq.(34). More specifically, the NLL can be obtained as the solution to
the following ODE system back through time with the initial condition of x1 and log pODE

1 = 0:

d

dt

[
xt

log pODE
t

]
=

[
vt(xt)

− divg(vt)(xt)

]
. (41)

For manifolds that can be embedded in the ambient Euclidean space (e.g., simplex and sphere), the
Riemannian divergence can be calculated as the normal Euclidean divergence divg = div [14]. We
further use Hutchinson’s trace estimator [30] to efficiently estimate the divergence as

div vt(x) = Eε∼N (0,I)[ε
⊤∇vt(x)ε]. (42)

The expectation can be efficiently computed using the vector-Jacobian product. For data with a uni-
tary dimension D = 1 (e.g., Swiss roll on simplex), we also calculate the exact divergence using
the equality div v = Tr(J(v)), where J(v) is the Jacobian of the vector field v. The computa-
tional cost for the exact divergence calculation scales quadratically with the data dimension D, as
the interdependence between data dimensions makes it computationally expensive to calculate the
Jacobian. Therefore, we only demonstrated the NLL with exact divergence calculation for the Swiss
roll dataset in Fig.3, in which Hutchinson’s trace estimator could make a decent estimation of the
exact divergence.

Combining Eq.(31), (32), (34), (38), and (39) with Eq.(14) and (13), we can efficiently calculate the
NLL given arbitrary Dirac measures as input. The NLL calculation scheme is visualized in Fig.2
and described in Alg.1.

B.2 Bits-Per-Character (BPC) Calculation

We have demonstrated that the NLL can reach negative infinity. In contrast, the common definition of
BPC with the cross-entropy loss − log2 p(δ|µ) is always non-negative and consistent with previous

20

54806https://doi.org/10.52202/079017-1738

Algorithm 1 NLL Calculation for Discrete Data

1: Sample µ̃1 ∼ qt(µ|δ) in Eq.(30) and calculate − log qt(µ̃1|δ) and log p(δ|µ̃1).
2: Apply the diffeomorphism in Eq.(5) to obtain x̃1 = π(µ̃1) and calculate log | det dπ−1(x̃1)|.
3: Solve the ODE system in Eq.(41) to obtain x0 and log pODE.
4: Apply π−1 to obtain µ0 = π−1(x0) and calculate log | det dπ(µ0)|.
5: Calculate the base log probability log p0(µ0).
6: return NLL as in Eq.(14).

autoregressive language models [62]. However, as our flow-based model is not autoregressive, we
instead follow the variational formulation in [52] to calculate the alternative NLL and BPC for
comparison. The ELBO in [52] can be calculated as

LELBO = −Eµ1∼q(µ)

[∫ 1

0

1

1− t
log〈µ̂1(µt), µ1〉 dt

]
(43)

where µt = expµ0
(t logµ0

µ1), µ0 ∼ p0(µ) denotes the interpolation along the geodesic and µ̂1(µt)
denotes the learned model’s prediction for t = 1 given the current noise data µt. This can be
efficiently done by one-step prediction with the learned vector field v as

µ̂1(µt) = expµt
((1− t)vt(µt)) . (44)

The standard Euclidean inner product is used in Eq.(43) so it can be understood as a weighted cross-
entropy loss. Note that the integral in Eq.(43) has a singularity at t = 1, making it numerically
unstable to estimate using ODE solvers. Instead, we follow [52] to apply the change of variable
s = − log(1− t) to reformulate the ELBO as

LELBO = −Eµ1∼q(µ)

[∫ ∞

0

log〈µ̂1(µt), µ1〉 ds
]

(45)

where t = 1 − e−s. Note that for large s, the corresponding t is very close to 1, so the integrand is
very close to zero. Indeed, s = 10 corresponds to 1− t < 5×10−5, so we simply set the upper limit
to 10 and used the Dopri5 solver to numerically estimate the ELBO. BPC can be then calculated
as LELBO/ log 2. This formulation also shares a similar form as the other ELBOs derived in [6, 12],
and is thus comparable to most existing models.

Eq.(43) was directly optimized in Markov chain-based methods like D3PM [6], MultiFlow [12], and
SEDD [39], and also autoregressive language models. In contrast, our SFM (and LinearFM) follows
the continuous normalizing flow setup in [38], which enables the exact likelihood calculation instead
of ELBOs. Therefore, trained on the alternative objective of minimizing the Riemannian vector field
norm in Eq.(8), SFM did not directly try to minimize such an ELBO. Despite such an unfavorable
evaluation compared to other baselines, SFM was still able to achieve the second-best BPC, as
demonstrated in Tab.2.

B.3 GPT-J-6B Likelihood

GPT-J-6B [67] is a transformer-based large language model with 6B trainable parameters. We follow
the pipeline in [12] to first tokenize the generated text using the provided tokenizer with GPT-J-6B.
The GPT-J-6B NLL is then calculated based on the predicted logits on the token level using the
pre-trained model as:

LGPT = − 1

K

K∑
k=1

log p (wk|w1:k−1) , (46)

where w are tokens and K is the number of tokens. Similarly, the entropy is calculated on the
empirical distribution of the tokens based on a large number of generated texts. We noted that, as
GPT-J-6B was not pre-trained on Text8, its NLL does not necessarily reflect the true data distribu-
tion in Text8, as we will demonstrate more concretely in the evaluation plot in Appendix D.1 and
generated samples in Appendix D.3.

C Experimental Setup

In this section, we further describe the experimental setup, model architecture, and datasets.

21

54807 https://doi.org/10.52202/079017-1738

C.1 Model Parameterization

Our SFM architecture is encoder-agnostic and can be applied to arbitrary discrete generative tasks.
Here, we describe the common setting of the flow model across different datasets. We use the
sinusoidal timestep embedding described in [66] as Emb : [0, 1]→ RH . We follow [14] to manually
project the predicted vector field onto the corresponding tangent space. For the spherical manifold,
the projection can be described as

vt(xt) = ṽt(xt)− 〈xt, ṽt(xt)〉xt. (47)

For linear flow matching on the simplex, the projection can be described as

vt(xt) = ṽt(xt)−
1

n

n∑
i=1

ṽt(xt)i. (48)

The projection guarantees that the final prediction lies on the corresponding tangent space, and the
data points will stay on the manifold during Euler sampling. We will always assume the projection
is performed in the following context of using vt. The training stage of SFM is described in Alg.2.
The time complexity of our SFM framework is dominated by the underlying vector field predictor
with little overhead. Each model for binarized MNIST and promoter design was trained on a single
80GB NVIDIA A100 GPU for 6-10 hours. Each model for Text8 was trained on four 80GB NVIDIA
A100 GPUs for about 7 days. We will further describe the encoders for each generation task in the
following subsections.

Algorithm 2 Training SFM

1: while not converged do
2: Sample noise distribution µ0 ∼ p0(µ) and target distribution µ1 ∼ q(µ).
3: if optimal transport then
4: Do batch OT assignments of µ0 and µ1 according to the average statistical distances.
5: end if
6: Apply the diffeomorphism in Eq.(5) to obtain x0 = π(µ0), x1 = π(µ1).
7: Sample t ∼ U [0, 1] and interpolate xt = expx0

(t logx0
x1) using Eq.(19) and (20).

8: Calculate the conditional vector field uSt (xt|x0, x1) = d
dtxt = logxt

(x1)/(1− t).
9: Predict the vector field using v(xt, t) and optimize the SFM loss in Eq.(8).

10: end while

C.2 Model Sampling

The sampling process from the trained model can be described as solving the differential equation
∂
∂txt = vt(xt) from t = 0 to 1 with the initial conditional x0 sampled from the prior noise distri-
bution. Alternatively, we can write the solution as the integral of the learned time-dependent vector
through time as

x1 = x0 +

∫ 1

0

vt(xt) dt. (49)

We always use the Dopri5 ODE solver [19] for our ODE sampling and NLL calculation. For Euler
method with N discrete steps, the timesteps 0, 1/N, 2/N, . . . , (N − 1)/N are used with a step size
of 1/N . The sampling stage is described in Alg.3.

C.3 Swiss Roll

The Swiss roll on the 2-simplex is generated by normalizing the span of the 2-dimensional Swiss
roll to [0 + ε, 1− ε] where ε is a small margin to make sure no point lies on the boundary. The third
dimensional is automatically obtained as µ3 = 1− µ1 − µ2. We fixed a random seed and generated
1000 samples for a full batch training. The vector field predictor is based on simple multi-layer
perceptions (MLPs) and can be described as

v(xt, t) = MLP(MLP(xt)‖MLP(Emb(t))) (50)

where ‖ denotes concatenation and we used a hidden dimension of H = 128. Each model was
trained for 2000 epochs using full batch gradient descent with an initial learning rate of 10−3. 1000

22

54808https://doi.org/10.52202/079017-1738

Algorithm 3 Sampling from SFM

1: Sample noise distribution µ0 ∼ p0(µ).
2: Apply the diffeomorphism in Eq.(5) to obtain x0 = π(µ0).
3: if ODE sampling then
4: Solve ∂

∂txt = vt(xt) using Dopri5 ODE solver with initial condition x0.
5: else . Euler method
6: for t← 0, 1/N, 2/N, . . . , (N − 1)/N do
7: xt+1/N = expxt

(v(xt, t)/N)
8: end for
9: end if

10: return µ1 = π−1(x1)

samples were sampled using the Dopri5 ODE solver, and NLL (based on Hutchinson’s trace es-
timator) was calculated on the whole training data with 20 repeats. The DirichletFM model was
originally trained with cross-entropy loss which could not be used for this task. We instead used the
binary cross-entropy loss during training and kept all the other flow-based part the same as described
in the original paper [60].

C.4 Binarized MNIST

We used the preprocessed binarized MNIST dataset from [53] which has a split of 50k/10k/10k. We
adopted the CNN-based vector field predictor from [57] with additional additive time embeddings at
each convolution layer’s output. The model has 4 residual layers [25] and 4 refinement layers [37]
with a total number of 29.8M trainable parameters. All models were trained for 100k iterations with
a batch size of 256 (approximately 510 epochs) with an initial learning rate of 3× 10−4.

For the quantitative evaluation of the generated samples, we calculated the FID score for 1000
generated samples for each model. The statistics for the binarized MNIST dataset were calculated
on the whole training set via the pre-trained InceptionV3 [61] model. The NLLs reported in the
main text were calculated on a fixed subset with 1000 samples of the test set using the Dopri5 ODE
solver. See Appendix D.3 for generated images.

C.5 Text8

We followed previous work [24, 6] to use a fixed split of 90M/5M/5M with a fixed sequence length
of 256. We used a 12-layer diffusion transformer (DiT) [49] based predictor, similar to the one
used in [39]. The resultant model has 92.4M trainable parameters. Noticeably, our model size is
smaller than [24] which used a full 24-layer model, but is similar to [39]. The models were trained
for a total number of 3M iterations with a batch size of 512 per GPU (approximately 16 epochs), an
initial learning rate of 10−4, and an exponential moving average (EMA) decay rate of 0.9999. We
further used 1000 iterations as the linear warmup of the learning rate and used a decay rate of 0.8
with a patience of 3 and a validation interval of 2000 training iterations. The model snapshot with
the lowest validation loss was saved for evaluation. BPCs were calculated on the first 4k sequences
of length 256 of the test set (about 1M characters) with the Dopri5 solver as described in Appendix
B.2, and generated texts were also obtained using the Dopri5 ODE solver. GPT-J-6B NLL and
the generation token entropy were calculated based on 4k generations of length 256 (about 1M
characters). See Appendix D.3 for generated texts.

C.6 Promoter Design

We used the splits from the dataset paper [7] that assign Chromosome 10 to the validation set,
Chromosomes 8 and 9 to the test set, and all the other 21 human chromosomes to the training
set. This assignment can avoid potential data leakage on the same chromosome. The transcription
signals are provided as a float number for each base pair position. We also followed [7] to use a total
number of 100k sequences with a context window of 1024 base pairs and added a random offset of
10 to the sequence position during training. The vector field predictor we used was identical to that
in [7], with 20 stacks of 1D convolutional layers and a total number of 13.3M trainable parameters.
Our models were trained for 200k iterations with a batch size of 256 and an initial learning rate

23

54809 https://doi.org/10.52202/079017-1738

of 5 × 10−4. The model snapshot with the lowest validation SP-MSE on the validation set was
saved for evaluation. The test SP-MSE was evaluated on the generated samples on the full test set’s
transcription signals with 300 Euler steps of generation.

D Additional Result

In this section, we provide additional results of the evaluation on Text8, additional ablation studies,
and generated samples for each task.

D.1 Additional Result on Text8

Figure 4: GPT-J-6B NLL versus sample entropy. For MultiFlow, D3PM, and autoregressive, the
curve represents different logit temperatures from 0.5 to 1. Baseline data are from [12].

We further follow [12] (MultiFlow) to calculate the NLL using GPT-J-6B [67], a pre-trained autore-
gressive large language model. As such an NLL can be easily fooled by repeating high-frequency
words, we also follow [12] to report additional token entropy, for which a closer entropy to data
is preferred. The GPT-J-6B NLL and the token entropy are plotted in Fig.4, with the raw baseline
data and the permission to reproduce provided by the authors of [12]. An additional random base-
line that generates each character independently based on the letter frequency was provided. The
ground truth data NLL and entropy are also included as the dotted horizontal and vertical lines. They
demonstrate the best results any model can possibly achieve. Our SFM tended to better capture the
diversity of the text corpus with the best entropy. Generated texts are provided in Appendix D.3.

As GPT-J-6B was not trained on Text8, we noted a caveat that its NLL may not necessarily reflect
the Text8 distribution fitness. From the MultiFlow results, such an NLL can be made artificially low
by duplicating high-frequency words, e.g., repeated numbers with little semantic meaning as in the
low-temperature MultiFlow generations (see Appendix D.3 for examples). We also noted that such
an NLL can be easily fooled by randomly generated strings based on letter frequency. Additionally,
low-temperature MultiFlow variants achieved lower NLLs than the ground truth data, making this
metric less credible. We noted the huge impact of temperature on MultiFlow as it generated more
repeated numbers with lower temperatures. In contrast, SFM achieved perceptually similar or even
better results with more diversity.

D.2 Ablation Study

We provide ablation studies of the effect of different sampling methods, different sampling steps for
the Euler methods, and different tmax ≈ 1 for NLL calculation. The results are provided in Tab.4.
The effect of the variational timestep tmax matched the results from [7], which stated that a closer
timestep to the target data would decrease the NLL. The reasons we choose t = 0.995 instead of
higher values are: 1) we noticed numerical stability issues at a timestep very close to the target, 2)
we want a fair comparison with [7] which used an equivalent timestep of 0.9975, and 3) as long as

24

54810https://doi.org/10.52202/079017-1738

we use a same timestep, the results are comparable within. We also found that NLL increased with
the number of Euler sampling steps. We hypothesize that it is due to the large divergence change at
t ≈ 1 and naive Euler steps tend to overestimate its contribution. Nonetheless, the Euler method with
more than 300 steps gave a similar NLL as the ODE solver. We further provide additional results of
the NLLs and FID scores on different sample methods in Tab.5 in which we used t = 0.995 and 300
Euler steps. The final performance was quite similar between these two sampling methods.

Table 4: NLL for different sampling meth-
ods, sampling steps, and tmax.
Method #step tmax NLL↓

Euler

300

0.9995 -2.545 ± 0.029
0.999 -2.442 ± 0.018
0.995 -1.689 ± 0.031
0.99 -1.019 ± 0.032

100
0.995

-1.871 ± 0.020
500 -1.677 ± 0.022
1000 -1.647 ± 0.024

ODE - 0.995 -1.687 ± 0.020

Table 5: NLL and FID for different sampling meth-
ods with tmax = 0.995. For the Euler method, we
used 300 Euler steps.
Method Model NLL↓ FID↓

ODE
SFM w/ OT -1.687 ± 0.020 4.62

SFM w/o OT -1.631 ± 0.027 5.15
LinearFM 0.622 ± 0.022 5.91

Euler
SFM w/ OT -1.689 ± 0.031 5.00

SFM w/o OT -1.653 ± 0.028 4.86
LinearFM 0.499 ± 0.022 6.47

D.3 Generated Samples

Figure 5: Generated samples of the binarized MNIST dataset from various models and different
sampling settings.

The ground truth images and generated samples of the binarized MNIST dataset using various mod-
els and different sampling settings are demonstrated in Fig.5. The lower row demonstrates generated
samples with different numbers of Euler steps.

25

54811 https://doi.org/10.52202/079017-1738

For the Text8 dataset, generated texts, NLL, entropy, and per sample NLL evaluated by GPT-J-6B us-
ing different models and sampling methods are demonstrated in Tab.6, with one sample with an NLL
chosen around the average, one above the average, and one below the average for each model to pro-
vide a more comprehensive demonstration of the generation. The MultiFlow with different sampling
temperatures used the model checkpoint in [12]. As SFM directly samples categorical probabilities
instead of making multiple discrete jumps with logits, it is incompatible with temperature-tuning.

Table 6: Generated samples and GPT-J-6B NLLs. For each model, the average NLL and entropy
calculated on 4k generations are also provided. The NLL marked for each generation is the sample
NLL, as evaluated by GPT-J-6B.

SFM w/ OT, ODE, NLL: 6.762, Entropy: 7.340
zero_zero_zero_more_as_well_as_the_needed_of_all_of_it_church_the_country_s_higner_upcoming_bank_the_country_comment_on_quebec_e
dits_includes_the_account_of_diego_hyle_ciaspare_coes_tain_three_zero_seven_zero_millimeter_if_south_of_the_south_leo_jordan_the

NLL: 6.336
such_as_in_outcarge_of_coincination_with_mows_such_as_adler_martie_the_hilly_patt_evedhon_of_morcele_s_night_of_blood_the_tremen
t_of_eliensberg_while_an_ulav_at_esrheim_that_he_had_to_proved_left_mainied_this_label_is_in_hellenistic_separatism_the_falix_ro

NLL: 6.805
t_orator_lemmoi_s_mother_toury_ghost_for_his_history_on_a_blaster_the_three_stallman_family_sources_including_the_film_that_a_ro
mance_nine_author_higtly_lacaded_the_second_harmour_open_source_for_which_orrie_changed_the_bluebogs_books_moy_s_athlite_s_medit

NLL: 7.522

SFM w/o OT, ODE, NLL: 6.811, Entropy: 7.387
_became_known_as_the_shacon_valley_to_the_heaven_green_and_in_the_middle_of_the_lechneit_tracked_the_line_kej_nis_a_valley_one_p
inochules_this_was_verified_by_many_charterly_brollary_applications_including_those_which_synonymous_with_orbits_some_of_the_mas

NLL: 6.407
cable_now_masi_had_little_to_port_from_six_eight_nine_made_hofavor_a_new_printer_of_disruption_this_platforv_would_be_faving_to_
the_current_country_but_this_need_for_saw_della_even_this_four_one_three_bit_moil_callers_did_soo_after_a_as_n_if_platform_for_t

NLL: 6.819
nomic_ancestor_wh_meil_berg_hiarst_red_rthonstrak_utter_upon_technology_baddendin_models_on_bendrays_hypothesies_anti_aer_dynami
cs_work_have_been_intelligent_to_develop_an_european_astronomic_conifice_in_the_production_of_ten_conifices_of_develop_and_princ

NLL: 7.479

LinearFM, ODE, NLL: 6.935, Entropy: 7.356
is_resulted_in_gawzik_college_in_the_five_season_of_feason_at_twice_the_atmosphere_is_named_after_the_list_called_him_before_inn
_s_college_at_stulpford_university_of_london_also_cambridge_the_burroughs_henrians_college_which_is_yelled_apollo_one_college_na

NLL: 6.466
ne_two_eight_zero_perhaps_that_one_s_stream_roman_frxwuapered_the_practices_of_telleeist_speakership_settled_and_an_army_of_the_
two_set_of_love_relationships_the_foundation_of_the_colfederation_homewater_to_during_the_civil_war_or_dan_brown_xian_john_zinso

NLL: 6.935
level_mortans_already_sick_but_evade_dissolve_the_moses_of_auctional_with_deng_about_four_sekes_there_was_a_moikade_problem_to_p
eople_who_receive_signed_grief_of_culture_of_the_middle_bone_island_for_a_more_designation_of_a_kick_trade_bands_and_rangers_bom

NLL: 7.454

MultiFlow, T = 1, NLL: 6.728, Entropy: 7.387
er_of_the_soap_opera_by_andrew_wills_goosecat_productions_one_nine_nine_one_the_sea_monsters_of_the_late_one_nine_nine_zero_s_th
e_famous_woman_stanley_goodman_jerdre_mcnabb_out_of_zoom_movie_barry_leroy_barbara_lewis_and_brenda_punceco_aka_sney_steary_aka_

NLL: 5.906
she_hill_obhalarnnach_eochrans_eileann_munthar_cearlomha_mhaonna__tardare_mho_mord_tore_lian_linn_mu_phaile_gael_cangallauig_lao
thuis_guilleith_leois_glion_guildh_lara_gall_innonte_tilbonne_guilecht_shuachtansert_guillaste_guatnaoic_asthache_cuichant_conai

NLL: 6.648
lde_its_replacement_and_or_not_mist_mere_decabeod_man_and_drast_m_ek_or_ubangostrades_dialogue_or_connon_cainne_as_follows_make_
wolsey_conane_i_get_clean_to_contemplate_the_static_problem_to_reduce_it_into_perception_for_frbellist_man_jewish_views_the_othe

NLL: 7.426

MultiFlow, T = 0.9, NLL: 6.249, Entropy: 7.240
inism_weaver_routledge_new_york_w_g_toland_one_nine_nine_two_women_texts_gender_history_raymond_lynn_lucky_henry_pecher_one_nine
_eight_eight_the_modern_women_lyceum_new_york_harper_mead_one_nine_seven_eight_wharke_george_one_nine_nine_one_modern_history_ex

NLL: 5.277
eight_it_deplets_the_size_of_the_starters_of_the_high_land_of_the_new_tahpu_co_bon_monte_tucals_and_quitla_land_as_elen_de_las_a
tlas_as_landous_pierce_the_torch_crack_into_steamy_places_to_eatons_hence_to_weed_out_their_blood_from_them_and_urge_them_to_hea

NLL: 6.352
ion_of_jack_molice_now_fise_bob_springfield_slurs_boiling_funny_fruit_feed_and_chasing_rocked_duos_off_r_e_s_life_both_sides_had
_an_unwanted_and_violent_violence_and_the_rage_gained_a_recent_show_the_trial_was_the_clash_of_john_d_d_the_first_trial_at_which

NLL: 7.074

MultiFlow, T = 0.8, NLL: 5.552, Entropy: 6.840
ht_six_four_alexander_leroda_russian_writer_d_one_nine_one_nine_one_eight_six_seven_daniel_chase_american_author_d_one_nine_thre
e_two_one_eight_seven_eight_adolf_luroda_austrian_composer_d_one_nine_six_four_one_eight_eight_two_robert_w_keisler_american_pub

NLL: 4.090
umadhushah_ashara_uladineshah_sahiraj_singh_one_five_seven_nine_rajnav_singh_ajmandharajaghar_singh_rohanjit_singh_one_five_eigh
t_zero_sardoyar_teachings_of_narshenhara_singh_one_five_eight_one_pranajmahr_jaharkara_jogyar_grandson_of_ujearjeer_one_five_nin

NLL: 5.223
y_daughter_god_originates_to_come_as_a_pot_of_inspiration_all_one_of_whom_shall_witness_the_extortion_unto_you_and_will_ask_your
_neighbour_do_you_hear_and_rempskyour_lord_and_all_our_love_are_wise_tough_hope_speaked_and_thy_beautiful_names_rather_cool_when

NLL: 6.840

26

54812https://doi.org/10.52202/079017-1738

Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have accurately outlined our major contributions and application scope in
the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Sec.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

27

54813 https://doi.org/10.52202/079017-1738

Justification: We have provided theoretical background and assumptions in Sec.2.1 and
Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed experimental setup information in Appendix C for
reproducing all the experiments in this work. Our code is available at https://github.
com/ccr-cheng/statistical-flow-matching.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

28

54814https://doi.org/10.52202/079017-1738

https://github.com/ccr-cheng/statistical-flow-matching
https://github.com/ccr-cheng/statistical-flow-matching

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in this work are publicly available. Detailed experimental
setup information is provided in Appendix C for reproducing all experiments, and our code
is available at https://github.com/ccr-cheng/statistical-flow-matching.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the detailed experimental settings in Appendix C. For data
splits and hyperparameter choosing, we mostly followed previous work without hyperpa-
rameter search.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For most results of our own models, we provided standard deviations of the
scores and metrics. Other collective metrics were averaged over a large number of samples
to eliminate the impact of randomness. More details were provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

29

54815 https://doi.org/10.52202/079017-1738

https://github.com/ccr-cheng/statistical-flow-matching
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided GPU specifications in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

30

54816https://doi.org/10.52202/079017-1738

https://neurips.cc/public/EthicsGuidelines

Justification: We describe the potential societal impacts here. Our proposed model is a gen-
eral discrete generative framework that can be applied to various domains in machine learn-
ing including computer vision, natural language processing, and bioinformatics. Therefore,
our proposed SFM can have potential positive impacts on various downstream applications
if the machine learning model is properly utilized. For example, the design of promoter
DNA sequence can better help us understand the complex interactions of gene activities.
However, we also noted the potential negative impacts if the model is misused, especially
in bioinformatics realms. We will work closely with both the machine learning community
and the science community to ensure the proper usage of our model for various discrete
generation tasks.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work did not curate or propose new data or pre-trained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

31

54817 https://doi.org/10.52202/079017-1738

Answer: [Yes]

Justification: All code, papers, and assets are properly credited and cited in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: Our work did not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work did not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

32

54818https://doi.org/10.52202/079017-1738

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work did not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

33

54819 https://doi.org/10.52202/079017-1738

