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Abstract

Performative prediction aims to model scenarios where predictive outcomes sub-
sequently influence the very systems they target. The pursuit of a performative
optimum (PO)—minimizing performative risk—is generally reliant on modeling of
the distribution map, which characterizes how a deployed ML model alters the data
distribution. Unfortunately, inevitable misspecification of the distribution map can
lead to a poor approximation of the true PO. To address this issue, we introduce
a novel framework of distributionally robust performative prediction and study
a new solution concept termed as distributionally robust performative optimum
(DRPO). We show provable guarantees for DRPO as a robust approximation to
the true PO when the nominal distribution map is different from the actual one.
Moreover, distributionally robust performative prediction can be reformulated as
an augmented performative prediction problem, enabling efficient optimization.
The experimental results demonstrate that DRPO offers potential advantages over
traditional PO approach when the distribution map is misspecified at either micro-
or macro-level.

1 Introduction

In numerous fields where predictive analytics play an important role, decisions made on the basis of
machine learning models do not just passively predict outcomes but actively influence future input
data. Consider the domain of financial services, such as credit scoring and loan issuance, where a
model’s decision to grant or deny an application can affect the applicant’s future financial behaviors
and, consequently, the profile of future applicants. Similarly, in educational settings, the decision
process for school admissions can shape the applicant pool, as those who are accepted often share
their success strategies, indirectly influencing the preparation of future candidates. These examples
highlight the study of performative prediction [29], a recent framework that facilitates a formal
examination of learning in the presence of performative distribution shift resulting from deployed
ML models.

Delving deeper into the formulations of performative prediction, the concept of a distribution map
emerges as pivotal. This map characterizes the impact that a deployed ML model has on the
underlying data distribution, which is a crucial element in navigating performative effects. The
literature primarily revolves around the pursuit of performative stability (PS), a model which is
optimal for the distribution it induces [29, 25, 5, 8]. However, a more ambitious target is the
performative optimum (PO), which seeks the minimization of performative risk, the risk of the
deployed model on the distribution it induces. Efficiently achieving PO typically necessitates a
modeling of the distribution map [26, 14, 15, 24]. Practically, the precise influence of a model on the
data ecosystem is intricate and dynamic, making perfect specification an unattainable ideal.

In this work, we propose a distributionally robust performative prediction framework that aims
to enhance robustness against a spectrum of distribution maps, thereby mitigating the issue of
misspecification. Our contributions are summarized as follows: 1) in Section 2, we formalize the
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DRPO concept, anchoring it within the performative prediction literature as a robust alternative; 2)
in Section 3, we provide theoretical insights into the efficacy of DRPO, demonstrating its resilience
in the face of distribution map misspecification; 3) in Section 4, we recast distributionally robust
performative risk minimization as an augmented performative risk minimization problem, facilitating
efficient optimization; 4) in Section 5, we showcase DRPO’s advatanges over conventional PO by
empirical experiments. The paper concludes with a summary and discussion.

1.1 Related Work

Performative prediction. Performative prediction is an emerging framework for learning models that
influence the data they intend to predict. The majority of research focuses on performative stability
[29, 25, 5, 30, 21, 8, 7], albeit with a few exceptions aiming at performative optimality. [26] propose
a two-stage plug-in method for finding the PO. [14] propose to find the PO by a parametric model of
the distribution map. This method is extended by [15] to stateful performative prediction. [18] solves
the PO when the problem is outcome performative only. [24] argue that the PO with a misspecified
nominal distribution map can still reasonably approximate the true PO, as long as the misspecification
level is not significant. This claim is also supported by our theory and experimental findings. Unlike
them, we demonstrate that the DRPO is comparable to the PO if the misspecification is small, whereas
the DRPO can offer substantial advantages over the PO if the misspecification is moderate to large.
Moreover, the DRPO ensures reasonable performance for all distribution maps in an uncertainty
collection surrounding the nominal distribution map, rather than just a single distribution map.

Distributionally robust optimization. DRO solves a stochastic optimization problem by optimizing
under the worst-case scenario over an uncertainty set of probability distributions. Most popular DRO
frameworks are based on φ-divergence [13, 2, 11, 12, 20, 9] and Wasserstein distance [11, 27, 6, 31,
4, 3, 10]. The existing DRO literature pays no attention to performative prediction except for [28].
[28] study the repeated distributionally robust optimization algorithm, which repeatedly minimizes
the distributionally robust risk at the induced distribution. They show such repeated training algorithm
yields a distributionally robust performative stable (DRPS) solution, assuming conditions analogous
to the validity of repeated risk minimization [29, 25] in finding the performative stable (PS) solution.
Nevertheless, the DRPO solution, which lies at the heart of the distributionally robust performative
prediction problem, is not the subject of their study. Furthermore, they lacks theoretical guarantees
regarding the proximity of the DRPS to either the PS or PO solution.

2 Methodology

2.1 Performative Prediction Essentials

Let Θ denote the (finite-dimensional) model parameter space, Z denote the data sample space, and
P(Z) denote the set of probability measures supported on Z . In performative prediction, we aim to
find a θ ∈ Θ that achieves low performative risk

PRtrue(θ) = EZ∼Dtrue(θ)[ℓ(Z; θ)], (2.1)

where ℓ : Z ×Θ→ R is the (known) loss function, and Dtrue : Θ→ P(Z) is the true distribution
map. The true performative optimum (true PO) θPO,true is known to minimize the (true) performative
risk:

θPO,true ∈ argmin
θ∈Θ

{
PRtrue(θ) = EZ∼Dtrue(θ)[ℓ(Z; θ)]

}
. (2.2)

It is easy to see that if we know the true distribution map, then we can evaluate the true performative
risk and find the true performative optimum well up to some finite sample error which is negligible as
the sample size goes to infinity. However, the true map Dtrue(·) is unknown in general, thus posing a
significant obstacle in the pursuit of evaluating and optimizing the true performative risk.

To enable the optimization of performative risk, it is necessary to have a known nominal distribution
map D(·) that is believed to closely approximate the unknown true distribution map Dtrue(·). Then
one can find the performative optimum (PO) by minimizing the nominal performative risk:

θPO ∈ argmin
θ∈Θ

{
PR(θ) = EZ∼D(θ)[ℓ(Z; θ)]

}
. (2.3)

Because the distribution map is inevitably misspecified, D(·) ̸= Dtrue(·), the true performative risk is
generally not minimized by θPO. Therefore, we treat (2.3) as a solution concept to approximately
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solve the true performative risk minimization problem (2.2), and refer (2.3) to standard performative
prediction. Now we provide several illustrative instances of potential sources that may lead to the
misspecification of distribution map, i.e., D(·) ̸= Dtrue(·).
Modeling error. The modeling of D(·) can be either a deterministic model of explicit form or a
statistical model with model parameters to be estimated. The misspecification of D(·) may stem from
modeling error.
Example 2.1 (Strategic classification). Let Z = X × Y where X is the feature space and Y is the
label space, so that we are in the supervised learning regime. Strategic classification relies on a
working model of individual’s data manipulation strategy:

∆θ(x) = argmaxx′{uθ(x′)− c(x, x′)}, (2.4)

where ∆θ(·), uθ(·), and c(·, ·) are known as individual’s best response function, utility function, and
cost function, respectively. The best response function can be lifted to the measurable space of X ×Y
so that we have the response map

Tθ

([
x
y

])
=

[
∆θ(x)
y

]
=

[
argmaxx′{uθ(x′)− c(x, x′)}

y

]
.

The nominal distribution map D(·) is fully characterized by Tθ(·) and the sampling distribution of
Dtrue(0) (see details in Appendix E). In this example, the distribution mapD(·) could be misspecified
because the individual’s utility function and cost function could be misspecified.
Example 2.2 (Location family). Location family postulates a translation model:

Z ∼ D(θ) ⇐⇒ Z
d
= Z0 +Aθ where Z0 ∼ Dtrue(0),

where A ∈ Rdim(Z)×dim(Θ) is unknown and therefore must be estimated. If we observe the sampling
distributions of D(θ0),D(θ1) . . . ,D(θK), then A is partially identified up to a linear subspace of
Rdim(Z)×dim(Θ):

A ∈ {M |M(θk − θ0) = µk − µ0 for k ∈ [K]},
where µk is the mean of D(θk). In this example, the distribution map D(·) can be misspecified
because the model parameter A is only partially identifiable.

Distribution shift. Consider the training and test environments have different distribution maps,
Dtrain(·) and Dtest(·), respectively. We specify the nominal distribution map as the training distribu-
tion map D(·) = Dtrain(·). Then D(·) can be misspecified for the true distribution map Dtrue(·) =
Dtest(·) due to the difference between the training and test environments Dtrain(·) ̸= Dtest(·).
Example 2.3 (Disparate impacts and fairness). A population is comprised of majority and minority
subpopulations (e.g., by race or gender). The population distribution map is a mixture of the
subpopulation distribution maps: Dpop(θ)

d
= γDmaj(θ)+ (1− γ)Dmin(θ). In fair machine learning,

a theme is to check whether an ML model has disparate impacts on different subpopulations or
biased against the minority. Suppose that we work with D(·) = Dpop(·) and target at the minority
Dtrue(·) = Dmin(·). However, the population distribution map and the minority distribution map
may differ. In this example, the distribution map D(·) is misspecified because of subpopulation shift.

2.2 Distributionally Robust Performative Prediction

From an intuitive perspective, the PO solution (2.3) has the potential to achieve low performative risk
PRtrue(θPO) when the nominal distribution map D(·) closely aligns with the true distribution map
Dtrue(·). However, D(·) and Dtrue(·) may be quite different. In such cases, the PO solution may
incur high performative risk. To address this issue, we propose a distributionally robust formulation
for performative prediction, where we explicitly incorporate into the learning phase the consideration
that the true distribution map Dtrue(·) is different from the nominal one D(·).
Let D(·∥·) be the KL divergence, i.e.,

D(Q∥P ) =
∫
φ

(
dQ

dP

)
dP =

∫
log

(
dQ

dP

)
dQ,

where φ(t) = t log t for any t > 0. Here dQ/dP is the Radon–Nikodym derivative, and we
implicitly require the probability measure Q to be absolutely continuous with respect to P . With the
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KL divergence, we can define a family of distribution maps around the nominal distribution map.
Specifically, the uncertainty collection around D with critical radius ρ is defined as

U(D) = {D̃ : Θ→ P(Z) | D(D̃(θ)∥D(θ)) ≤ ρ, ∀θ ∈ Θ}.

The radius ρ reflects the the magnitude of shifts in distribution map we seek to be robust to. We
remark that the value of ρ can be prescribed or be selected in data-driven ways. We postpone the
discussion on critical radius calibration to Section 4.3.
Definition 2.4 (Distributionally robust performative risk). The distributionally robust performative
risk with the uncertainty collection U(D) is defined as

DRPR(θ) = sup
D̃:D̃∈U(D)

EZ∼D̃(θ)[ℓ(Z; θ)]. (2.5)

In other words, the distributionally robust performative risk DRPR(θ) measures the worst possible
performative risk incurred by the model parameterized by θ among the collection of all alternative
distribution maps that are ρ-close to the nominal distribution map D. With this intuition, it is natural
to define an alternative solution concept which minimizes (2.5).
Definition 2.5 (Distributionally robust performative optimum). The distributionally robust performa-
tive optimum (DRPO) is defined as

θDRPO ∈ argmin
θ∈Θ

DRPR(θ). (2.6)

We refer the method (2.6) to distributionally robust performative prediction. When comparing (2.6)
and (2.3), we view the DRPO (2.6) as a competing solution concept to the PO (2.3), because both of
them aim for achieving low performance risk (2.1).

2.3 Generalization Principle of DRPO

Distributionally robust performative prediction asks to not only perform well on a fixed performative
prediction problem (parameterized by the distribution map D), but simultaneously for a range of
performative prediction problems, each determined by a distribution map in an uncertainty collection
U . This results in more robust solutions, that is, those DRPOs which are robust to misspecification of
distribution map. The uncertainty collection plays a key role: it implicitly defines the induced notion
of robustness. Moreover, distributionally robust performative prediction yields a natural approach for
certifying out-of-sample performance, which is summarized by the following principle.
Proposition 2.6 (Generalization principle of distributionally robust performative prediction). Suppose
that the uncertainty collection U contains the true distribution map Dtrue, then the true performative
risk is bounded by the distribution robust performative risk: PRtrue(θ) ≤ DRPR(θ) for any θ ∈ Θ.
In consequence, we have PRtrue(θDRPO) ≤ DRPR(θDRPO).

Essentially, if U is chosen appropriately, the corresponding DR performative risk upper bounds the
true performative risk, and thus DRPO enjoys provable guarantees on its incurred performative risk.

2.4 Benefits of DRPO: A Toy Example

A toy example is employed to facilitate a conceptual understanding of the advantages of DRPO over
PO in relation to achieving improved control over the worst-case performative risk.

LetZ = R, Θ = [−1, 1], and ℓ(z; θ) = θz. Let the nominal distribution map beD(θ) = N (f(θ), σ2)
for some f : [−1, 1]→ R and σ2 > 0. Then the nominal performative risk is

PR(θ) = EZ∼N (f(θ),σ2)[ℓ(Z; θ)] = θf(θ).

Regularization effect. With the dual formula given in Section 3.1, one can derive the distributionally
robust performative risk directly:

DRPR(θ) = PR(θ) +
√
ρPenalty(θ),

where the penalty function Penalty(θ) =
√
2σ2 |θ| penalizes the deviation of θ from the origin

0, and the critical radius ρ tunes the level of regularization. That is to say, in this toy example,
the distributionally robust performative risk minimization problem is essentially a L1-regularized
performative risk minimization problem.
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Better worst-case control. To be more concrete, we let f(θ) = a1θ + a0 for some a1, a0 > 0. For
any D̃ ∈ U(D), let the performative risk of D̃ be PRD̃(θ) = EZ∼D̃(θ)[ℓ(Z; θ)]. If D̃ is the true
distribution map, then PRD̃(θ) is the true performative risk that we incur. Through direct calculation
(see details in Appendix A), one can show that θDRPO is more robust than θPO in the sense of worst-
case performative risk control, that is, supD̃∈U(D) PRD̃(θPO) ≥ supD̃∈U(D) PRD̃(θDRPO) +

ρσ2

2a1

for any fixed ρ ≤ a2
0

2σ2 . This example shows that the worst-case performative risk of the PO can
be arbitrarily larger than that of the DRPO, as a1 → 0. The message that DRPO offers certain
advantages over PO in terms of mitigating worst-case performative risk is also supported by the
empirical results shown in Section 5.

3 Theory

3.1 Strong Duality of DRPR

The evaluation of distributionally robust performative risk DRPR(θ) given in (2.5) involves an
infinite dimensional maximization problem which is generally intractable. Fortunately, it is in fact
equivalent to a minimization problem over a single dual variable.
Proposition 3.1 (Strong duality of DRPR). For any θ ∈ Θ, we have

DRPR(θ) = inf
µ≥0

{
µ logEZ∼D(θ)

[
eℓ(Z;θ)/µ

]
+ µρ

}
. (3.1)

The dual reformulation (3.1) will be served as the cornerstone of developing algorithms for finding
the DRPO in Section 4. As a byproduct of Proposition 3.1, a characterization of the worst-case
distribution map which attains the supremum in (2.5) is given in Appendix B.

3.2 Excess Risk Bound

For now, we are interested in bounding the excess risk: E(θ̂) = PRtrue(θ̂)−minθ∈Θ PRtrue(θ) =

PRtrue(θ̂)− PRtrue(θPO,true), where θ̂ is an approximate solution to the true PO θPO,true, which
could particularly be θPO and θDRPO. The excess risk captures the true performance of θ̂ relative to
the oracle performative optimum θPO,true, providing a direct measurement of the suboptimality of θ̂
in terms of performative risk. As follows, we show the excess risk bounds of the PO solution and the
DRPO solution, E(θPO) and E(θDRPO), and compare them.
Proposition 3.2 (Excess risk bound of the PO). Suppose that we have bounded loss function
|ℓ(z; θ)| ≤ B for any z ∈ Z, θ ∈ Θ and some B > 0. Then we have

E(θPO) ≤
√
2B sup

θ∈Θ

√
D(Dtrue(θ)∥D(θ)). (3.2)

Proposition 3.3 (Excess risk bound of the DRPO). Suppose thatD(Dtrue(θDRPO)∥D(θDRPO)) ≤ ρ.
Then we have

E(θDRPO) ≤
√
ρVarZ∼D(θPO,true)[ℓ(Z; θPO,true)] + o(

√
ρ). (3.3)

Comparing Proposition 3.2 and 3.3, we see that the excess risk bound of the DRPO can be localized
to the true PO while the excess risk bound of the PO is entangled with the full parametric space Θ.
Although we are comparing two upper bounds which can be not tight enough, the comparison sheds
lights to the potential benefits of using DRPO over PO solution. Even if in the case of no significant
improvement of using DRPO over PO solution, the excess risks of them are comparable, thus doing
no harm. Our insight has been verified through a toy example in Section 2.4 and as well experimental
results in Section 5. In Appendix C, we generalize Proposition 3.3 to the scenario when the uncertainty
collection doesn’t cover the true distribution map, i.e., D(Dtrue(θDRPO)∥D(θDRPO)) > ρ.

4 Algorithms

We recall a standard algorithm for performative risk minimization in Appendix E. In the following
subsections, we will see that any off-the-shelf algorithms for finding the PO can be utilized as an
intermediate algorithm for finding the DRPO by using our proposed algorithms. Moreover, we
provide practical considerations for the selection of a critical radius in the last subsection.

5

55034 https://doi.org/10.52202/079017-1746



4.1 Distributionally Robust Performative Risk Minimization

By the strong duality in Proposition 3.1, DR performative risk minimization is equivalent to the
following optimization problem jointly over (θ, µ):

min
θ

DRPR(θ) ⇐⇒ min
θ∈Θ

inf
µ≥0

{
ψ(θ, µ) = µ logEZ∼D(θ)

[
eℓ(Z;θ)/µ

]
+ µρ

}
. (4.1)

This suggests an alternating minimization, summarized in Algorithm 1, where we learn θDRPO by
fixing µ and minimizing on θ and then fixing θ and minimizing on µ alternatively until convergence.

Algorithm 1 DR Performative Risk Minimization

1: Input: radius ρ, nominal distribution map D(θ)
2: Initialize µ
3: while µ has not converged do
4: Update θ ← argminθ∈Θ

{
EZ∼D(θ)

[
eℓ(Z;θ)/µ

]}
5: Update µ← argminµ≥0 {ψ(θ, µ)} (ψ in (4.1))
6: end while
7: Return: θ

The step of minimizing on θ with fixed µ
(Line 4 in Algorithm 1) is itself a perfor-
mative risk minimization problem, which
can be solved by any suitable performa-
tive risk minimization algorithm. The
step of minimizing on µ with fixed θ
(Line 5 in Algorithm 1) can be solved by
the line search or the Newton–Raphson
method since ψ(θ, µ) is convex in µ. The
total cost of Algorithm 1 is therefore com-
parable to that of the performative risk minimization algorithm used in the intermediate step. Lastly,
the alternating minimization algorithm in common practice guarantees global convergence (to station-
ary point) regardless of how the optimization parameters are initialized. With the strong convexity
assumption, the alternating minimization algorithm guarantees convergence to the global minimum.

4.2 Tilted Performative Risk Minimization

Treating ρ as a hyperparameter which can be tuned by a practitioner, the solution of the dual problem
(4.1) can be denoted by (θ⋆(ρ), µ⋆(ρ)). One can show that µ⋆(ρ) is a decreasing function of ρ. An
intuition is that as µ → ∞, we have argminθ∈Θ {ψ(θ, µ)} ≈ argminθ∈Θ

{
EZ∼D(θ)[ℓ(Z; θ)]

}
,

which reduces to the original performative risk minimization problem, or the distributionally robust
performative risk minimization problem with ρ = 0 (see an formal explanation in Appendix F).

With this motivation, instead of tuning ρ, we can tune µ (or the inverse of it, denoted by α = µ−1)
and solve the α-tilted performative risk minimization problem:

θTPO ∈ argmin
θ∈Θ

{
TPR(θ) = EZ∼D(θ)

[
eαℓ(Z;θ)

]}
, (4.2)

Algorithm 2 Tilted Performative Risk Minimization

1: Input: tilt α, nominal distribution map D(θ)
2: Update θ ← argminθ∈Θ

{
EZ∼D(θ)

[
eαℓ(Z;θ)

]}
3: Return: θ

where TPR(θ) stands for the tilted perfor-
mative risk and θTPO is the tilted performa-
tive optimum, that is, the performative opti-
mum of the tilted problem. In order to have
stronger distributional robustness property,
we tune α to be larger. Given the correspondence µ⋆(ρ), we should have θTPO with α equals θDRPO

with ρ = (µ⋆)−1(1/α). Therefore, the tilted performative risk minimization implicitly solves a
corresponding DR performative risk minimization problem. Finally, we remark that exponential
tilting is a statistical method that has been around at least since the exponential family [17] was first
invented. More recently, it has been applied to operation research [1] and machine learning [22, 23].

4.3 Calibration of Critical Radius

The performance of the DRPO is contingent on the uncertainty collection radius ρ, which is typically
difficult to choose a priori without additional information. The greater the value of ρ, the higher the
level of distributional robustness, and thus the greater the tolerance for distribution map misspecifica-
tion. Therefore, the selection of ρ reflects a practitioner’s risk-aversion preference. In this subsection,
we present two simple, yet effective calibration techniques for selecting ρ.

Post-fitting calibration. Without additional information, we can only hope to be robust to a prescribed
set of distribution maps, say Ξ. The assumption of Proposition 3.3 requires only the uncertainty
collection at the DRPO, which reduces to an uncertainty ball centered at D(θDRPO), encompassing
the true distribution Dtrue(θDRPO). Therefore, in order to provide a provable guarantee for all
distribution maps in Ξ, the radius ρ can be chosen based on the following criterion:
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ρcal = argmin
ρ≥0

{
max

Dtrue∈Ξ
D̂(Dtrue∥D) ≤ ρ

}
,where

D̂(Dtrue∥D) := D̂(Dtrue(θDRPO(ρ))∥D(θDRPO(ρ))).

Here D̂ is the estimated KL divergence, and θDRPO(ρ) is indexed by the radius ρ to highlight its
dependence on ρ as a tuning parameter to be calibrated. We implement the post-fitting calibration
approach (with bisection search for ρ) in Section 5.1.

Calibration set. With additional information, such as a small set of calibration data, we can pick
ρ (or α if we use Algorithm 2) by evaluating the performance of θDRPO(ρ) on the calibration set.
Consider Example 2.3 where the training and test distribution maps may differ, we can conduct
the following grid searching procedure to choose ρ: 1) for a candidate set C of ρ’s, we compute
{θDRPO(ρ) : ρ ∈ C} under Dtrain; 2) we obtain a few calibrating samples from Dtest, on which
we evaluate the performance of θDRPO(ρ); 3) we select ρcal ∈ C with the best calibration set
performance. The calibration set approach is implemented in Section 5.3.

To conclude this subsection, we discuss the computational costs of the proposed calibration methods.
For general problems, these calibration methods necessitate a grid search, which may be computa-
tionally expensive. Fortunately, for specific problems (for example, experiments in Section 5.1), we
can exploit the decreasing nature of the estimated KL divergence as a function in ρ. As a result, we
can use bisection search rather than grid search to significantly reduce computational costs.

5 Experiments

We revisit Examples 2.1, 2.2, and 2.3 and compare the PO and the DRPO empirically. For a particular
(true) distribution map, either the PO or the DRPO may have the potential to outperform the other
in terms of the performative risk evaluated at this particular distribution map. In contrast to the
PO, however, the DRPO aims to guarantee reasonable performance for all distribution maps in an
uncertainty collection around the nominal distribution map. To ensure the performance of the DRPO
on a (set of) specific distribution map(s), the radius ρ (or the tilt α) must be calibrated. Lastly, each
shaded region in figures below shows the curve’s standard error of the mean from 30 trials.

5.1 Strategic Classification with Misspecified Cost Function

In reference to Example 2.1, we examine strategic classification involving a cost function that is
misspecified. The experimental setup resembles that in [29]. The task is credit scoring, specifically
predicting debt default. Individuals strategically manipulate their features to obtain a favorable
classification.

Consider an instantiation of the response map (2.4) such that uθ(x) = −θ⊤x and c(x, x′) =
1
2ϵ × ∥xstrat − x

′
strat∥22 +∞× ∥xnon-strat − x′non-strat∥22. Without loss of generality, let the first

m features be strategic features and the last d − m features be non-strategic features. Let B =
diag(1, . . . , 1, 0, . . . , 0) ∈ Rd×d where the first m diagonal elements are 1’s and the others are 0’s.
Then the best response function is ∆θ(x) = x− ϵBθ.

For the base distributionD(0), we use a class-balanced subset of a Kaggle credit scoring dataset ([16],
CC-BY 4.0). Features encompass an individual’s historical data, including their monthly income
and credit line count. Labels are binary where the value of 1 represents a default on a debt and 0
otherwise. There are a total of 3 strategic features and 6 non-strategic features. We use logistic model
for the classifier and the cross-entropy loss with L2-regularization for the loss function ℓ.

Consider the cost function is misspecified by its performativity level ϵ. We specify the cost function
with the nominal performativity level ϵ = 0.5. However, the true performativity level ϵtrue might not
be 0.5, but in the range of [0.5− 0.5η, 0.5 + 0.5η] for some η ≥ 0.

The left plot of Figure 1 shows performative risk incurred by the PO and the DRPO’s with various
radius ρ’s. Note that the PO can be understood as the DRPO with ρ = 0. As ρ increases, the DRPO
aims to achieve more uniform performance across a wider range of ϵtrue. The middle plot of Figure 1
shows relative improvement in worst-case performative risk1 of the DRPO to the PO as the radius ρ

1The relative worst-case improvement of θ to θPO is maxϵtrue PRtrue(θPO)−maxϵtrue PRtrue(θ)

maxϵtrue PRtrue(θPO)
× 100%.
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Figure 1: Results of Experiment 5.1. Left: performative risk incurred by the PO and the DRPO’s
with various radius ρ’s. Middle: relative improvement in worst-case performative risk of the DRPO
to the PO as the radius ρ increases, for different range of misspecification η’s. Right: radius ρ
versus estimated KL divergence between Dtrue(θDRPO(ρ)) and D(θDRPO(ρ)), where vertical bands
indicate the calibrated radius ρcal’s.
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Figure 2: Results of Experiment 5.2. Left: performative risk incurred by the PO and the TPO’s with
various tilt α’s. Middle: relative improvement in worst-case performative risk of the TPO to the
PO as the tilt α increases, for different range of misspecification η’s. Right: the correspondence
relationship between the radius ρ and the (inverse of) optimal dual variable µ⋆.

increases, for different range of misspecification η’s. Curves positioned above the horizontal dotted
line indicate that the DRPO outperform the PO in terms of worst-case performative risk. When there
is a larger range of misspecification η, the DRPO has greater potential to beat the PO. The right
plot of Figure 1 demonstrates the post-fitting calibration of radius ρcal described in Section 4.3. The
vertical bands indicate the calibrated radius ρcal’s, which lead to the DRPO’s with sound relative
worst-case improvement and avoid overconservative solutions, as depicted by the corresponding
bands in the middle plot of Figure 1.

5.2 Partially Identifiable Distribution Map

Recall Example 2.2, we examine a location model for distribution map where the mis-
specification arises from the estimation error of the model parameter. Let V =
[θ1 − θ0 | θ2 − θ0 | · · · | θK − θ0] ∈ Rd×K and U = [µ1 − µ0 | µ2 − µ0 | · · · | µK − µ0] ∈ Rd×K

where d = dim(Θ). The unknown parameter A can only be partially indentified through the equation
AV = U when K < d. A particular estimate of A is Â = UV † = U(V ⊤V )−1V ⊤, where V † is
the Moore-Penrose inverse of V . In fact, the parameter A is only identifiable up to the subspace
W = {UV † +E | span{E⊤} ⊂ N (V ⊤)}, where N (V ⊤) is the left null space of V . Precicely, we
have AV = U if and only if A ∈ W .

In this experiment, we still use the credit data. We observe sampling distribution of D(0), D(e1),
and D(e2), where ei is the i-th canonical basis. For the true distribution map, the performativity
of the first two features is 0.5, while the performativity of the other 7 features is ϵtrue. In short,
Atrue = diag(0.5, 0.5, ϵtrue, . . . , ϵtrue). We set the range of ϵtrue to be [−0.5η, 0.5η] for η ≥ 0. By
using the estiamte Â, we model the performativity of the first two features correctly, but wrongly
model the other features as non-strategic. This time we fit TPO by Algorithm 2 instead of DRPO.

The left plot of Figure 2 shows performative risk incurred by the PO and the TPO’s with various tilt
α’s. As α increases, the TPO performs more uniformly across a wider range of ϵtrue. The middle
plot of Figure 2 shows relative improvement in worst-case performative risk of the TPO to the PO
as the tilt α increases, for different range of misspecification η’s. Without misspeicification, η = 0,
the PO is for sure better than the TPO. With moderate to large misspecification, η ∈ {2/3, 4/3, 2},
the TPO demonstrates certain advantages over the PO. The right of Figure 2 shows the relationship
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between the distributionally robust performative risk minimization and the tilted performative risk
minimization: fitting DRPO with ρ (which returns the optimal dual variable µ⋆) is equivalent to
fitting TPO with α = 1/µ⋆.

5.3 Fairness without Demographics
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Figure 3: Results of Experiment 5.3. Performa-
tive risk of the population, the majority, and the
minority, as the tilt α increases. The vertical band
indicates the calibrated tilt αcal’s.

Referencing to Example 2.3, we examine the
scenario where the population distribution map
is a mixture of two subpopulation distribution
maps. We train a classifier using the population
distribution map Dpop, but target at its perfor-
mance on both the majority and minority, Dmaj

and Dmin. The distribution map is therefore
misspecified due to subpopulation shift.

The experimental setup resembles that in [28].
Note that the credit dataset used in the previ-
ous experiments lacks demographic features. To
enable oracle access to demographic informa-
tion, synthetic data is generated for a performa-
tive classification task. The synthetic dataset
exemplifies a scenario in which a linear decision
boundary is not able to effectively classify both
the majority and minority groups, necessitating
a trade-off between them.

Figure 3 shows performative risk of the population, the majority, and the minority incurred by the
TPO, as the tilt α increases. The PO (which is TPO with α = 0) exhibits the lowest performative risk
at the population, but the greatest disparity between its performance for the majority and minority
groups. As α increases, the TPO reduces the performance gap between the two groups at the
expense of an increased population performative risk. This suggests that the distributionally robust
performative prediction framework has the potential to mitigate unfairness towards the minority group,
even in the absence of demographic information. Using a small calibration set with demographics,
we can calibrate the tilt αcal’s via the calibration set approach described in Section 4.3. The goal is to
calibrate the tilt to satisfy a four-fifth rule2 with minimal population performative risk. The vertical
bands in Figure 3 shows the calibrated tilt αcal’s reasonably meet the goal.

6 Summary and Discussion

In this work, we present a distributionally robust performative prediction framework that aims
to improve robustness against a variety of distribution maps, thereby mitigating the problem of
distribution map misspecification. We show provable guarantees for DRPO as a robust approximation
to the true PO when the nominal distribution map differs from the actual one. We developed efficient
algorithms for minimizing the distributionally robust performative risk. Empirical experiments are
conducted to support our theoretical findings and validate the proposed algorithms.

The components of our approach are not new, but we are combining them in a novel way to solve
a relevant problem. To be precise, the proposed approach is novel in the context to use the idea
of distributional robustness to solve the practical problem of distribution map misspecification in
performative prediction. In addition, it is novel to study the solution concept of distributionally robust
performative optimum (DRPO), both theoretically and algorithmically.

In Appendix H, we extend the KL divergence distributionally robust performative prediction frame-
work to a general φ-divergence distributionally robust performative prediction framework. Further-
more, it is possible to go beyond general φ-divergence. An extension to a Wasserstein DRO version
is a natural direction for future research, calling for the development of new algorithms.3

2The minority’s performative risk is not 25% higher than that of the majority, as motivated by the four-fifth
rule documented in Uniform Guidelines on Employment Selection Procedures, 29 C.F.R. §1607.4(D) (2015).

3Due to space constraints, we provide additional materials for discussion (e.g., limitations) in Appendix I.
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Supplementary Materials for
Distributionally Robust Performative Prediction

This supplementary materials contain the omitted details, technical proofs, and additional results
pertaining to the main article “Distributionally Robust Performative Prediction”. In Section A, the
missing deriving steps for the toy example in Section 2.4 are provided. In Section B, we provide a
characterization of the worst-case distribution map which attains the supremum in (2.5), and show
that the DR performative prediction regulates the right tail of the performative losses. In Section
C, we show a generalized excess risk bound for the DRPO. In Section D, all of the deferred proofs
are presented. In Section E, we recall a standard algorithm for performative risk minimization. In
Section F, we explain the claim in Section 4.2. In Section G, we provide omitted experimental details
and additional empirical results. In Section H, we generalize the KL divergence DR performative
prediction framework to a general φ-divergence DR performative prediction version, and propose an
algorithm to find the associated DRPO. In Section I, we provide additional materials for discussion.
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A Toy Example in Section 2.4 (Continued)

Recall that Z = R, Θ = [−1, 1], ℓ(z; θ) = θz, and the nominal distribution map is D(θ) =
N (f(θ), σ2) for some f : [−1, 1]→ R and σ2 > 0. Then the nominal performative risk is

PR(θ) = EZ∼N (f(θ),σ2)[ℓ(Z; θ)] = θf(θ).

We firstly show that the distributionally robust performative risk is given by

DRPR(θ) = PR(θ) +
√
ρPenalty(θ),

where the penalty function Penalty(θ) =
√
2σ2 |θ|.

Proof. By Proposition 3.1, the strong duality of DRPR, and the well-established moment generating
function of Gaussian distribution, we have

DRPR(θ) = sup
D̃:D̃∈U(D)

EZ∼D̃(θ)[ℓ(Z; θ)]

= inf
µ≥0

{
µ logEZ∼D(θ)

[
eℓ(Z;θ)/µ

]
+ µρ

}
= inf

µ≥0

{
µ

[
θf(θ)

µ
+
σ2θ2

2µ2

]
+ µρ

}
= θf(θ) + inf

µ≥0

{
σ2θ2

2µ
+ µρ

}
= θf(θ) +

√
2ρσ2 |θ| = PR(θ) +

√
ρPenalty(θ).

Therefore, we derive an alternative form of DRPR(θ), which is PR(θ) with an L1-regularization
term.

Now we are in a more concrete setup that f(θ) = a1θ + a0 for some a1, a0 > 0. Recall that for any
D̃ ∈ U(D), we denote the performative risk of D̃ be

PRD̃(θ) = EZ∼D̃(θ)[ℓ(Z; θ)].

We secondly show that

sup
D̃∈U(D)

PRD̃(θPO) ≥ sup
D̃∈U(D)

PRD̃(θDRPO) +
ρσ2

2a1

for any fixed ρ ≤ a2
0

2σ2 .

Proof. In fact, we have

θPO =
−a0
2a1

, θDRPO =

√
2ρσ2 − a0
2a1

, and DRPR(θDRPO) =
−(a0 −

√
2ρσ2)2

4a1
.

By Proposition 2.6, the generalization principle of distributionally robust performative prediction, we
have

sup
D̃∈U(D)

PRD̃(θDRPO) ≤ DRPR(θDRPO) =
−(a0 −

√
2ρσ2)2

4a1
.

On the other hand, consider an adversarial distribution map Dadv(θ) = N (a1θ + a0 −
√

2ρσ2, σ2).
One can show that DKL(Dadv(θ),D(θ)) = ρ for all θ ∈ Θ, and therefore Dadv ∈ U(D). Then

sup
D̃∈U(D)

PRD̃(θPO) ≥ PRDadv
(θPO) =

−(a0 −
√
2ρσ2)2

4a1
+
ρσ2

2a1
.

Therefore we complete the proof.
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Multi-variate case. We extend the uni-variate example to multi-variate case. Let Z = Rd, Θ =
[−1, 1]d, and ℓ(z; θ) = θ⊤z. Let the distribution map be D(θ) = Nd(f(θ),Σ) for some f :
[−1, 1]d → Rd and Σ is positive semi-definite. One can show that the performative risk is

PR(θ) = EZ∼D(θ)[ℓ(Z; θ)] = EZ∼Nd(f(θ),Σ)[ℓ(Z; θ)] = θ⊤f(θ)

and the distributionally robust performative risk is

DRPR(θ) = sup
D̃:D̃∈U(D)

EZ∼D̃(θ)[ℓ(Z; θ)] = θ⊤f(θ) +
√
2ρθ⊤Σθ = PR(θ) +

√
ρPenalty(θ),

(A.1)
where the penalty function Penalty(θ) =

√
2θ⊤Σθ penalizes the deviation of θ from the origin 0, and

the critical radius ρ tunes the level of regularization. We also note that in this case the distributionally
robust performative prediction problem can be transformed to a second-order cone constrained
program (A.1).

B Worst-Case Distribution Map

As a byproduct of the proof of Proposition 3.1, here we provide a characterization of the worst-case
distribution map which attains the supremum in (2.5).

Proposition B.1 (Worst-case distribution map). Suppose the problem (3.1) is solved by the unique
µ⋆(θ) > 0 for any θ ∈ Θ. We define a distribution map D̃ satisfying the density ratio equation

dD̃(θ)
dD(θ)

=
eℓ(Z;θ)/µ⋆(θ)

EZ∼D(θ)[eℓ(Z;θ)/µ⋆(θ)]
, ∀θ ∈ Θ. (B.1)

Then we have that D̃ is the unique worst-case distribution map, that is,

D̃(θ) = arg sup
D̃(θ):D̃∈U(D)

EZ∼D̃(θ)[ℓ(Z; θ)]. (B.2)

Proposition B.1 shows that the worst-case distribution map D̃ is an exponentially tilted distribution
map with respect to the nominal distribution map D, where D̃ puts more weights on the high ends.

Figure 4 shows histogram of performative loss for the PO, the DRPO with ρ = 0.02, and the DRPO
with ρ = 0.04, under the setup of Experiment 5.1 with ϵtrue = 0.5. These plots displayed in a
left-to-right manner demonstrate that the DRPO regulates the right tail of the performative losses.
Moreover, as the radius ρ increases, there is a corresponding increase in the degree of regulation
effects.
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Figure 4: Histogram of performative loss under Experiment 5.1 with ϵtrue = 0.5. Left: histogram
for the PO. Middle: histogram for the DRPO with ρ = 0.02. Right: hitogram for the DRPO with
ρ = 0.04.

C Generalized Excess Risk Bound

We upper bound E(θDRPO) when the uncertainty collection doesn’t cover the true distribution map. To
be specific, we analyze the excess risk bound of the DRPO whenD(Dtrue(θDRPO)∥D(θDRPO)) > ρ.
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Proposition C.1 (Excess risk bound of the DRPO in general). Suppose that we have bounded loss
function |ℓ(z; θ)| ≤ B for any z ∈ Z, θ ∈ Θ and some B > 0. Then we have

E(θDRPO) ≤
√
ρVarZ∼D(θPO,true)[ℓ(Z; θPO,true)] + o(

√
ρ)

+
√
2B inf

P :D(P∥D(θDRPO))≤ρ

√
D(Dtrue(θDRPO)∥P ).

(C.1)

Comparing (C.1) to (3.3), we have an additional term in the excess risk bound which accommodates
and accounts for the misspecification of uncertainty set around D(θDRPO), which doesn’t necessarily
coverDtrue(θDRPO). Furthermore, it is not difficult to see that ifD(Dtrue(θDRPO)∥D(θDRPO)) ≤ ρ,
then the last infimum term in the upper bound of (C.1) vanishes and (C.1) reduces to (3.3). Therefore,
Proposition C.1 provides a generalized excess risk bound for the DRPO than Proposition 3.3.

D Deferred Proofs

For simplicity of notation, we denote the true PO by θ⋆PO, which is denoted by θPO,true in the main
article.

D.1 Proof of Proposition 3.1 and Proposition B.1

Proof of Proposition 3.1. We only have to show that for any fixed θ ∈ Θ, the dual form (3.1) holds.
This follows Theorem 1 presented in [13].

We refer the readers to Proposition H.2 for a standard derivation for the dual form of a general
φ-divergence distributionally robust performative risk.

Proof of Proposition B.1. This follows Proposition 1 presented in [13] and the discussion paragraph
right after the proposition.

D.2 Proof of Proposition 3.2

Proof. We have the following decomposition of the excess risk bound of the PO,

PRtrue(θPO)−min
θ∈Θ

PRtrue(θ)

=PRtrue(θPO)− PRtrue(θ
⋆
PO)

=PRtrue(θPO)− PR(θPO) + PR(θPO)− PR(θ⋆PO)︸ ︷︷ ︸
≤0 by definition of θPO

+PR(θ⋆PO)− PRtrue(θ
⋆
PO)

≤2 sup
θ∈Θ
|PR(θ)− PRtrue(θ)|

=2 sup
θ∈Θ

∣∣EZ∼D(θ)[ℓ(Z; θ)]− EZ∼Dtrue(θ)[ℓ(Z; θ)]
∣∣

≤2B sup
θ∈Θ

DTV(Dtrue(θ)∥D(θ))

≤
√
2B sup

θ∈Θ

√
DKL(Dtrue(θ)∥D(θ)).

The last two inequalities are due to the asumption of bounded loss, |ℓ(z; θ)| ≤ B, and Pinksker’s
inequality.
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D.3 Proof of Proposition 3.3

Proof. We have the following decomposition of the excess risk bound of the DRPO,

PRtrue(θDRPO)−min
θ∈Θ

PRtrue(θ)

=PRtrue(θDRPO)− PRtrue(θ
⋆
PO)

=PRtrue(θDRPO)−DRPR(θDRPO)︸ ︷︷ ︸
≤0 by generalization principle

+DRPR(θDRPO)−DRPR(θ⋆PO)︸ ︷︷ ︸
≤0 by definition of θDRPO

+DRPR(θ⋆PO)− PRtrue(θ
⋆
PO)

≤DRPR(θ⋆PO)− PRtrue(θ
⋆
PO)

=
√
VarZ∼D(θ⋆

PO)[ℓ(Z; θ
⋆
PO)]ρ+ o(

√
ρ).

The last equality is due to the sensitivity property of KL divergence-based DRO [9].

D.4 Proof of Proposition C.1

Proof. For any distribution P such that DKL(P∥D(θDRPO)) ≤ ρ, we have the following decompo-
sition of the excess risk bound of the DRPO,

PRtrue(θDRPO)−min
θ∈Θ

PRtrue(θ)

=PRtrue(θDRPO)− PRtrue(θ
⋆
PO)

=PRtrue(θDRPO)− EZ∼P [ℓ(Z; θDRPO)] + EZ∼P [ℓ(Z; θDRPO)]−DRPR(θDRPO)︸ ︷︷ ︸
≤0 by generalization principle

+DRPR(θDRPO)−DRPR(θ⋆PO)︸ ︷︷ ︸
≤0 by definition of θDRPO

+DRPR(θ⋆PO)− PRtrue(θ
⋆
PO)

≤PRtrue(θDRPO)− EZ∼P [ℓ(Z; θDRPO)] + DRPR(θ⋆PO)− PRtrue(θ
⋆
PO)

=PRtrue(θDRPO)− EZ∼P [ℓ(Z; θDRPO)] +
√

VarZ∼D(θ⋆
PO)[ℓ(Z; θ

⋆
PO)]ρ+ o(

√
ρ)

=EZ∼Dtrue(θDRPO)[ℓ(Z; θDRPO)]− EZ∼P [ℓ(Z; θDRPO)] +
√
VarZ∼D(θ⋆

PO)[ℓ(Z; θ
⋆
PO)]ρ+ o(

√
ρ)

≤BDTV(Dtrue(θDRPO)∥P ) +
√
VarZ∼D(θ⋆

PO)[ℓ(Z; θ
⋆
PO)]ρ+ o(

√
ρ)

≤
√
2BDKL(Dtrue(θDRPO)∥P ) +

√
VarZ∼D(θ⋆

PO)[ℓ(Z; θ
⋆
PO)]ρ+ o(

√
ρ).

By the arbitrariness of P in the divergence ballDKL(P∥D(θDRPO)) ≤ ρ, we complete the proof.

E Performative Risk Minimization

We recall a standard algorithm for performative risk minimization when the nominal distribution map
D(·) is modeled by a response map Tθ : Z → Z and samples from the base distribution Dtrue(0):

Z ∼ D(θ) ⇐⇒ Z
d
= Tθ(Z0) where Z0 ∼ Dtrue(0).

This is a popular model for distribution map including strategic classification (see Example 2.1) and
location family (see Example 2.2) as prominent examples.

It is not hard to see that the nominal distribution map D(·) is fully characterized by the response map
Tθ and the base measure Dtrue(0) because

D(θ) d
= Tθ♯(Dtrue(0)) for any θ ∈ Θ,

that is, the measure D(θ) is the pushforward measure of Dtrue(0) under the transport map Tθ. The
performative risk can then be reformulated as

PR(θ) = EZ∼D(θ)[ℓ(Z; θ)] = EZ∼Tθ♯(Dtrue(0))[ℓ(Z; θ)] = EZ∼Dtrue(0)[ℓ(Tθ(Z); θ)].

With the last formula, the performative risk minimization problem becomes a standard (possibly
nonconvex) stochastic optimization problem, which can be solved efficiently by any popular stochastic
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optimization algorithm, e.g., sample average approximation (SAA, [19]). given the loss function
ℓ(z; θ) and the response map Tθ(z) are sufficiently differentiable with respect to θ.

We refer to Section 1.1 for a summary of existing performative risk minimization algorithms.

F An Explanation to the Claim in Section 4.2

In Section 4.2, we claim that argminθ∈Θ {ψ(θ, µ)} ≈ argminθ∈Θ

{
EZ∼D(θ)[ℓ(Z; θ)]

}
as µ→∞.

This is due to the fact of that ex ∼ x+1 for small x→ 0 and the argmax/argmin theorem. Therefore,
we have

argminθ∈Θ

{
µ logEZ∼D(θ)

[
eℓ(Z;θ)/µ

]
+ µρ

}
≈ argminθ∈Θ

{
µ logEZ∼D(θ)

[
ℓ(Z; θ)

µ
+ 1

]
+ µρ

}
≈ argminθ∈Θ

{
EZ∼D(θ)[ℓ(Z; θ)]

}
as µ→∞.

G Experimental Details and More Results

For the loss function ℓ(x, y; θ), we adopt the cross-entropy loss with L2-regularization, that is,

ℓ(x, y; θ) = −y log hθ(x)− (1− y) log(1− hθ(x)) +
λ

2
∥θ∥22,

where hθ(x) =
(
1 + exp{−θ⊤x}

)−1
and λ = 0.001. Given a model θ, we predict ŷ = 1{hθ(x) ≥

0.5}. In addition, each replicate of the experiments is run on a local machine with an Intel Xeon Gold
6154 CPU and 32GB of RAM in less than an hour execution time.

G.1 Strategic Classification with Misspecified Cost Function in Section 5.1 (Continued)

The data preprocessing procedure for the credit dataset [16] follows the procedure documented in [29].
After that procedure, the base distribution Dtrue(0) has n = 14878 data points with equal probability
mass. We treat the distribution map associated with Dtrue(0) as the underlying test distribution map
which is unknown to us. We generate n IID samples from Dtrue(0) to get a training base distribution
D̂(0), that is, D̂(0) ∼ Dtrue(0)

⊗n, and then we have a training nominal distribution map induced by
D̂(0). This training procedure is repeated for 10 trials, and the shaded region in each of the figures in
this paper represents the standard error of the mean calculated from the 10 trials for the corresponding
curve.

The left of Figure 5 shows performative balanced error rate, which refers to the balanced error rate
(BER) on the test model-induced distribution, incurred by the PO and the DRPO’s with various radius
ρ’s. Because the cross-entropy loss serves as a surrogate for classification error, we see patterns of
these curves similar to those in the left of Figure 1: as ρ increases, the DRPO achieves more uniform
performance across a wider range of ϵtrue. On the other hand, because the performative classification
error is not exactly the criterion we minimize, different patterns are also observed: the DRPO with
relatively large radius ρ = 0.04 outperforms the PO for all ϵtrue ∈ [0, 1]. As indicated by the right
of Figure 5, by increasing ρ the DRPO constantly improves the relative worst-case performance in
terms of performative BER for η ∈ {0.6, 0.8, 1.0}. Here the relative worst-case improvement in
performative BER of θ to θPO is defined by maxϵtrue BERtrue(θPO)−maxϵtrue BERtrue(θ)

maxϵtrue BERtrue(θPO) × 100%.

For implementing the post-fitting calibration procedure in Section 4.3, we have to estimate the KL
divergence between Dtrue(θDRPO(ρ)) and D(θDRPO(ρ)) for any fixed ρ. Here we index θDRPO by
the radius ρ to emphasize its dependence on ρ. Recall that

Z ∼ D(θ) ⇐⇒ Z
d
= Z0−0.5Aθ andZ ∼ Dtrue(θ) ⇐⇒ Z

d
= Z0−ϵtrueAθ whereZ0 ∼ Dtrue(0).

Here A⊤ =
[
B⊤ | 0d

]
(see Section 5.2 for the definition of B) and we have training base distribution

D̂(0) from Dtrue(0). We use an inexact parametric method to estimate the KL divergence. Assume
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Figure 5: Additional results of Experiment 5.1. Left: performative balanced error rate incurred
by the PO and the DRPO’s with various radius ρ’s. Right: relative improvement in worst-case
performative balanced error rate of the DRPO to the PO as the radius ρ increases, for different range
of misspecification η’s.

Dtrue(0) ∼ N (µ,Σ), then

D(Dtrue∥D) = D(N (µ− 0.5AθDRPO,Σ)∥N (µ− ϵtrueAθDRPO,Σ))

= 0.5(ϵtrue − 0.5)2θ⊤DRPOA
⊤Σ−1AθDRPO.

Let Σ̂ be the sample covariance of D̂(0), a plug-in method implies an estimate of the KL divergence,
which is given by

D̂(Dtrue(θDRPO(ρ))∥D(θDRPO(ρ))) = 0.5(ϵtrue − 0.5)2θ⊤DRPOA
⊤Σ̂−1AθDRPO.

G.2 Partially Identifiable Distribution Map in Section 5.2 (Continued)

The data generating procedure is the same as that in Experiment 5.1. The left of Figure 6 shows
performative balanced error rate (BER) incurred by the PO and the TPO’s with various tilt α’s.
Similar to the left of Figure 5, we observe that 1) as α increases, the TPO achieves more uniform
performance across a wider range of ϵtrue; 2) the TPO with relatively large tilt α = 0.5 outperforms
the PO for all ϵtrue ∈ [−1, 1]. The right of Figure 6 shows relative improvement in worst-case
performative balanced error rate of the TPO to the PO as the tilt α increases, for different range of
misspecification η’s. Without misspeicification, η = 0, the TPO has comparable performance to
the PO in terms of performative BER. With moderate to large misspecification, η ∈ {2/3, 4/3, 2},
the TPO shows significant advantages over the PO in terms of relative improvement in worst-case
performative BER.
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Figure 6: Additional results of Experiment 5.2. Left: performative balanced error rate incurred by
the PO and the TPO’s with various tilt α’s. Right: relative improvement in worst-case performative
balanced error rate of the TPO to the PO as the tilt α increases, for different range of misspecification
η’s.
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G.3 Fairness without Demographics in Section 5.3 (Continued)

We adopt the following data generating process similar to that in [28]. Let X ∼ γN (µA,ΣA) +
(1− γ)N (µB ,ΣB). Let γ = 0.8 so that group A is the majority group and group B is the minority
group. Let µA = 1 × 1d, µB = 0.8 × 1d, and ΣA = ΣB = 0.1 × Id. If X comes from group A,
then label Y = 0 if X⊤1d ≤ µ⊤

A1d. If X comes from group B, then label Y = 0 if X⊤1d ≤ µ⊤
B1d.

The distribution map follows:

X1:⌊d/2⌋ ← X1:⌊d/2⌋ − ϵθ1:⌊d/2⌋
X(⌊d/2⌋+1):d ← X(⌊d/2⌋+1):d

so that the first ⌊d/2⌋ features are strategic features, and ϵ controls the strength of performativity.
We choose d = 10 and ϵ = 0.5 to wrap up the setup. Finally, we assume knowledge of the true
performativity and observe IID samples of size n = 12500 from the population base distribution. In
short, we eliminate the effect of population distribution map misspecification, and instead concentrate
on the effect of subpopulation distribution map shift.

Figure 7 shows the performative accuracy, which refers to the accuracy on the model-induced
distribution, of the population, the majority, and the minority incurred by the TPO, as the tilt α
increases. Because the cross-entropy loss serves as a surrogate for classification error, we see patterns
of the three curves similar to those in Figure 3. The PO (which is TPO with α = 0) exhibits the
highest performative accuracy at the population, but the greatest disparity between its performance
for the majority and minority groups. As α increases, the TPO reduces the performance gap between
the two groups at the expense of an decreased population performative accuracy. This suggests that
the distributionally robust performative prediction framework has the potential to mitigate unfairness
towards the minority group, even in the absence of demographic information.
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Figure 7: Additional results of Experiment 5.3. Performative accuracy of the population, the majority,
and the minority, as the tilt α increases.

For implementing the calibration set procedure in Section 4.3, we have to obtain access to a few
samples with the group membership information. Here we allow ourselves to observe IID samples of
size ncal = 125 with the known group membership from the population base distribution.

H Extension to General φ-Divergence

The KL divergence distributionally robust performative prediction framework can be extended to
a general φ-divergence distributionally robust performative prediction framework. Recall that a
φ-divergence is defined by

Dφ(Q∥P ) =
∫
φ

(
dQ

dP

)
dP,

where φ : R+ → R+ and φ(1) = 0. Here dQ/dP is the Radon–Nikodym derivative, and we
implicitly require the probability measure Q to be absolutely continuous with respect to P . Note that
if we choose φ(t) = t log t, then we recover the framework presented in the main article. Now we
keep φ as a generic function and we will instantiate some popular families of φ-divergence after the
presentation of the general framework.
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With the φ-divergence, we can define a family of distribution maps around the nominal distribution
map. Specifically, the uncertainty collection around D with critical radius ρ is defined as

U(D) = {D̃ : Θ→ P(Z) | Dφ(D̃(θ)∥D(θ)) ≤ ρ, ∀θ ∈ Θ}.

Definition H.1 (φ-divergence distributionally robust performative risk). The φ-divergence distribu-
tionally robust performative risk with the uncertainty collection U(D) is defined as

DRPRφ(θ) = sup
D̃:D̃∈U(D)

EZ∼D̃(θ)[ℓ(Z; θ)]. (H.1)

The evaluation of φ-divergence distributionally robust performative risk DRPRφ(θ) given in (H.1)
involves an infinite dimensional maximization problem which is generally intractable. Fortunately, it
is in fact equivalent to a minimization problem over two dual variables. This is given by the following
strong duality result.
Proposition H.2 (Strong duality of DRPRφ). For any θ ∈ Θ, we have

DRPRφ(θ) = inf
µ≥0,ν∈R

{
EZ∼D(θ)

[
µφ∗

(
ℓ(Z; θ)− ν

µ

)
+ µρ+ ν

]}
, (H.2)

where φ∗(s) = supt{st− φ(t)} is the convex conjugate of φ.

Proof. We only have to show that for any fixed θ ∈ Θ, the dual form (H.2) holds. We introduce
the likelihood ratio L(Z) = dD̃(θ)/dD(θ). By change of variable, we can rewrite the φ-divergence
distributionally robust performative risk (H.1) as

sup
D̃(θ):Dφ(D̃(θ)∥D(θ))≤ρ

EZ∼D̃(θ)[ℓ(Z; θ)]

= sup
L≥0

{
EZ∼D(θ)[L(Z)ℓ(Z; θ)] | EZ∼D(θ)[φ(L(Z))] ≤ ρ,EZ∼D(θ)[L(Z)] = 1

}
,

where the supremum takes over measurable functions. This gives us a constrained optimization
problem. Let µ ≥ 0 be the Lagrange multiplier for EZ∼D(θ)[φ(L(Z))] ≤ ρ and ν ∈ R be the
Lagrange multiplier for EZ∼D(θ)[L(Z)] = 1. The corresponding Lagrangian is

L(L, µ, ν) = EZ∼D(θ)[(ℓ(Z; θ)− ν)L(Z)− µφ(L(Z))] + µρ+ ν.

For regular φ-divergence, we have

sup
D̃(θ):Dφ(D̃(θ)∥D(θ))≤ρ

EZ∼D̃(θ)[ℓ(Z; θ)]

= inf
µ≥0,ν∈R

sup
L≥0
L(L, µ, ν)

= inf
µ≥0,ν∈R

sup
L≥0

{
EZ∼D(θ)[(ℓ(Z; θ)− ν)L(Z)− µφ(L(Z))] + µρ+ ν

}
= inf

µ≥0,ν∈R
sup
L≥0

[
EZ∼D(θ)

[
µ

{
ℓ(Z; θ)− ν

µ
L(Z)− φ(L(Z))

}
+ µρ+ ν

]}
= inf

µ≥0,ν∈R

{
EZ∼D(θ)

[
µ sup

t≥0

{
ℓ(Z; θ)− ν

µ
t− φ(t)

}
+ µρ+ ν

]}
= inf

µ≥0,ν∈R

{
EZ∼D(θ)

[
µφ∗

(
ℓ(Z; θ)− ν

µ

)
+ µρ+ ν

]}
.

Here the last equality holds according to the definition of the convex conjugate φ∗(·).

To develop an algorithm for finding the DRPO, we introduce the (µ, ν)-augmented performative risk.
Definition H.3 ((µ, ν)-augmented performative risk). The (µ, ν)-augmented performative risk is
defined by

AugPRφ(θ, µ, ν) = EZ∼D(θ)

[
µφ∗

(
ℓ(Z; θ)− ν

µ

)
+ µρ+ ν

]
. (H.3)
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Algorithm 3 Augmented Performative Risk Minimization

1: Input: nominal distribution map D(θ)
2: Update (θ, µ, ν)← argminθ∈Θ,µ≥0,ν∈R

{
EZ∼D(θ)

[
µφ∗

(
ℓ(Z;θ)−ν

µ

)
+ µρ+ ν

]}
3: Return: θ

From (H.2) and (H.3), we see that the minimization problem of DRPRφ(θ) over θ is equivalent to
the minimization problem of AugPRφ(θ, µ, ν) jointly over (θ, µ, ν), which is itself a performative
risk minimization problem. We summarize this procedure in Algorithm 3.

For special choice of φ, the strong duality result (H.2) can be reduced to involving only a single dual
variable. Now we instantiate φ-divergence as the Cressie-Read family:

ϕk(t) =
tk − kt+ k − 1

k(k − 1)
,

for k > 1. Like KL divergence, a distributionally robust performative prediction problem induced by
a divergence from the Cressie-Read family has a dual reformualtion with single dual variable:

DRPRϕk
(θ) = inf

µ≥0

{
(1 + ρk(k − 1))1/kEZ∼D(θ)

[
max{ℓ(Z; θ)− µ, 0}k∗

]1/k∗
+ µ

}
, (H.4)

where k∗ is the conjugate number of k such that 1/k + 1/k∗ = 1. Therefore, an algorithm parallel to
Algirthm 1 can be developed in a similar fashion based on the single-variable dual form (H.4).

As a final remark, all of the theoretical results regarding excess risk bounds (see Proposition 3.3
and Proposition C.1) are still valid for the general φ-divergence distributionally robust performative
prediction (which means the result statements won’t change if one replaced the KL-divergence by
any φ-divergence).

On the other hand, it is possible to extend Proposition 3.2 to general φ-divergence, and the result
statement needs a slight modification. By generalized Pinsker’s inequality, there is an increasing
function F : [0, 2] → R+ such that Dφ(P∥Q) ≥ F (TV(P∥Q)). Then for general φ-divergence,
Proposition 3.2 can be modified to E(θPO) ≤ 2B supθ∈Θ F

−1(Dφ(Dtrue(θ)∥D(θ)) or E(θPO) ≤
2BF−1(supθ∈ΘDφ(Dtrue(θ)∥D(θ)) due to monotonicity of F (·). For a concrete example, F (v) =
v21{v < 1}+ v

2−v1{v ≥ 1} when φ(t) = (t− 1)2.

I Additional Discussion

In this appendix, we provide additional materials for discussion.

Extension to Wasserstein distance. It is possible to use Wasserstein distance to define the uncertainty
collection within our framework. Our algorithms can be modified to compute Wasserstein DRPO.
For example, one can establish the strong duality of Wasserstein DRPO and develop an alternating
minimization algorithm similar to Algorithm 1. However, the new algorithm involves an additional
step of transport cost-regularized loss maximization due to the more complex dual form of Wasserstein
DRO. For the corresponding theory, we expect that the square root of variance in (3.3) would be
replaced by the Lipschitz norm of ℓ(·, θPO,true).

Conservativeness of ρcal and trade-off in selecting ρ. The main text covers the discussion of
the conservativeness of ρcal in two ways. Firstly, we show the trade-off in selecting ρ. For values
of ρ ranging from small to moderate, DRPO outperforms PO in terms of performative risk (and
similarly for worst-case performative risk). Conversely, for large values of ρ, PO is better than DRPO.
There exists an "sweet spot" of ρ where DRPO yields maximal benefits over PO. This trade-off
between DRPO and PO is demonstrated in any "vertical slices" of the left plot of Figure 1 (and
similarly in the lines of the middle plot of Figure 1 for worst-case performance). Secondly, we
show the performance of the calibrated radius ρcal in the middle plot of Figure 1, where the vertical
bands indicate the calibrated radius ρcal. Although ρcal doesn’t achieve the best possible worst-case
improvement (which is an impossible oracle), it achieves a comparable performance, especially when
η ∈ {0.8, 1.0}. This demonstrates the effectiveness of ρcal chosen by our calibration method.

Difference between TPO and TERM, and difference between DRPO and simple DRO. TPO (see
Section 4.2 and Algorithm 2) differs from TERM [22] in that it takes into account performativity,
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whereas TERM ignores. To be precise, TPO minimizes EZ∼D(θ)[e
αℓ(Z;θ)] while TERM minimizes

EZ∼D(0)[e
αℓ(Z;θ)], where D(θ) is the distribution map and D(0) is the base distribution. An

analogous explanation applies to the difference between DRPO and simple DRO. TERM (or implicitly
equivalently simple DRO) is ineffective in the context of this work’s problem setup because it fails to
account for performativity. Note that our methods are not doing DRO because the uncertainty set
here depends on the model parameter θ. We borrow the idea of distributional robustness, but we have
a fundamentally different problem at hand.

Absence of small calibration set. The calibration set is not always available. Here we clarify the
calibration set method and briefly discuss a possible solution when there is no calibration set. In the
experiment of Section 5.3, we only need a small set of calibration data, which aligns with the regime
of "weak group information". It is generally difficult to calibrate radius for uncertainty set and most
distributional robustness related work only concerns the effect of increasing α and ρ. We do more
to demonstrate that there are some practical calibration methods that work. In the absence of any
calibration data, one can specify the radius by some prior belief. For example, consider Dpop(θ) =
γDmajor(θ) + (1 − γ)Dminor(θ) as in Example 2.3. If one believes that γ1 ≤ γ ≤ γ2 for some
0 < γ1, γ2 < 1, then one can upper bound the divergence D(Dmajor(θ)∥Dpop(θ)) ≤ − log(γ1) and
D(Dminor(θ)∥Dpop(θ)) ≤ − log(1− γ2). Further, one can choose ρ = max{− log(γ1),− log(1−
γ2)} when using DRPO. However, this choice of radius could be conservative.

Algorithmic convergence. The convergence guarantees of the proposed algorithms can be established
on a case-by-case basis, depending on the specific “inner” algorithm or solver employed for solving
performative risk minimization. Existing algorithmic convergence results for model-based PO solvers
[26, 14] can be taped into our algorithms naturally. Moreover, empirical results in Section 5 validate
the effectiveness of our proposed algorithms.

Broader impacts. This paper presents work whose goal is to advance the field of machine learning,
especially the subfield of performative prediction. Despite the development of new algorithms, their
direct societal impact are limited to those outlined in the original paper on performative prediction
[29].
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