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Abstract

We propose a novel inventory reserving algorithm which draws new insights into
Bandits with Knapsacks (Bwk) problems in piecewise-stationary environments.
Suppose parameters 7min, Tmax € (0, 1] respectively lower and upper bound the
ratio between the reward earned and the resources consumed in a round. Our algo-
rithm achieves a provably near-optimal competitive ratio of O(log(7max/Mmin))>
with a matching lower bound provided. Our performance guarantee is based on a
dynamic benchmark that upper bounds the optimum, different from existing works
on adversarial Bwk Immorlica et al.|(2019); |[Kesselheim and Singla| (2020) who
compare with the stationary benchmark. Different from existing non-stationary
Bwk work |Liu et al.|(2022), we do not require a bounded global variation.

1 Introduction

In a bandits with knapsack (Bwk) problem, each action « in the action set C is associated with a
latent and random amount of reward earned, R;(a), and resource consumed, C;(a), in each round
t =1,...,T. A decision maker (DM) selects an action a; € K in round ¢, and observes bandit

feedback (R;(a:),Ci(at)). The DM targets at maximizing the total reward Zthl Ry(ay), while

satisfying the hard capacity constraint Zthl C¢(a;) < B. Bwk has many real-life applications
such as dynamic pricing [Babaioff et al.| (2015)), resource allocation [Zhalechian et al.| (2022), online
auction |Balseiro and Gur|(2019) and assortment planning |[Agrawal et al|(2019). Stochastic Bwk
is first introduced by [Badanidiyuru et al.| (2018)), followed by generalizations to concave reward
with convex constraints |[Agrawal and Devanur (2014)), combinatorial bandits [Sankararaman and
Slivkins|(2018)) and contextual bandits Badanidiyuru et al.|(2014); |Agrawal and Devanur| (2016). In
stochastic Bwk problems, the expected feedback E[(R;(a), Ci(a))| = (r(a), c(a)) is stationary for
alla € K, t € {1,...,T}, and a sublinear-in-T regret is achievable. Nevertheless, the stationary
model could be too ideal in many applications.

Adversarial Bwk is firstly considered in Immorlica et al.|(2019) where (¢, ¢;) = {(r:(a), ct(a)) }aek
can change arbitrarily over the horizon. They achieve a competitive ratio (CR) of O(d log(T)) with
respect to a static benchmark when there are d budget constraints. A static benchmark picks a fixed
optimal action (or a fixed optimal distribution over arms), and applies the same action (or distribution)
in all T rounds. Kesselheim and Singlal (2020) further improve the CR to O(log(d) log(T')). Other
papers consider different regimes such as unlimited rounds (Rangi et al.| (2018))), large budget
B = Q(T) (Castiglioni et al.|(2022a)), strict feasibility (Castiglioni et al.|(2022b))) and approximate
stationarity (Fikioris and Tardos| (2023)). All these works compare with static benchmarks (see
Appendix [A.T). Moreover, adversarial Bwk could be too conservative in certain real-life scenarios.
For instance, sales patterns could be stationary for a duration of time, but only change during periods
of hot seasons/promotions/new trends, which fits into our piecewise-stationary Bwk regime.
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An abundance of existing works explore adversarial online knapsack problems with full feedback,
where (7, ¢;) can change arbitrarily but their realized value of {(R;(a),Ct(a))}sex is observed
before choosing a; (Karp et al.|(1990); Mehta et al.|(2007); Zhou et al.| (2008))). Many of these works
compare their accrued rewards with dynamic benchmarks (stronger than the static benchmarks used
in adversarial Bwk), where the DM picks different optimal actions a} in different rounds. However,
the dynamic benchmarks considered in the above papers are best single arm benchmark, which only
allows pulling a single arm in each round; while our benchmark is a best distribution over arms
benchmark (see Appendix [A.2]for a more detailed elaboration). Further, the ability of observing
{(R¢(a), Ct(a))}aex before selecting a; is crucial in the algorithm designs in [Karp et al.| (1990);
Mehta et al.| (2007); Zhou et al.|(2008). Their algorithm design cannot be readily generalized to the
bandit setting, where the DM only observes (R:(at), Ct(a)) after selecting a.

Another line of recent research investigates non-stationary online knapsack problems with either
full feedback Jiang et al.| (2020); Balseiro et al.| (2022)) or bandit feedback [Liu et al| (2022).
These works quantify the scale of non-stationarity in terms of both the local variation loc =
Soio i dist((Pe41, cer1), (e, ;) and the global variation glo = 3, dist(X,_, (re, ¢) /T (¢, ct)),
where dist is a certain metric. Assuming max{loc, glo} grows sublinearly in T, they achieve sublinear-
in-T" regret bounds compared to the dynamic benchmark. However, glo growing sublinearly in 7" is
rather strong assumption. We could have glo linear in 7', even with one change point (see Remark
for more detail). In this work, we consider piece-wise stationary models that allow a higher
degree of non-stationarity, which is yet to be studied in all aforementioned works.

Our contributions. Firstly, on modeling (see Section E]), the DM does not know the number of change
points and when changes happen. We formulate our model as a single-resource problem, and extend
to d-resource problems in Appendix with an extra multiplicative factor of d on the competitve
ratio. Secondly, on algorithm design (see Sections and[4.T), we propose novel algorithms which
are natural, intuitive and easy to implement. Our idea of reserving inventory based on the reward-
consumption ratio provides new insights into the problem. Thirdly, on performance guarantee
(see Sections [3.2]and[.2), we achieve a provably near-optimal competitive ratio with respect to a
best distribution over arms benchmark without requiring a bounded glo, which distinguishes our
work from the existing literature. Specifically, suppose there exists parameters 7min, max € (0, 1]
such that Ny < 7¢(a), ci(a) < Nmax for all ¢, a. Our algorithms achieve a competitive ratio of
O (1og(Mmax/Mmin ) ), Which requires a novel analysis. We prove the tightness of our competitive ratio
by providing a matching lower bound (see Section[d.4). We also run some illustrative numerical
experiments (see Section[5) to compare our algorithm performance with Immorlica et al.| (2019) and
Zhou et al.| (2008) under the piecewise-stationary settings.

2 Model

2.1 Problem formulation

Problem dynamics. The online model involves 7" rounds, indexed ast € T = {1,2,...,T}. We
index an arm as a € K. Additionally, we define the null arm a,,;, where no allocation is made
when ay, is chosen. In round ¢ € 7, the DM chooses an arm a; € KC U{anun}, and observes a noisy
outcome vector (R;(at), Ci(ar)) € [0, 1]? as the bandit feedback, where R;(a;) and Cy(ay) are the
reward and the resource consumption in round ¢ respectively. We set R;(aqu) = Ct(anu) = 0 with
certainty for all £ € 7. The DM is endowed with B < T units of the resource. The DM’s goal is to
maximize the total reward, with the constraint that the total resource consumption is at most B with
certainty. Denote 7y = {r¢(a)}sex = {E[Rt(a)]}acx and c; = {ci(a)}aex = {E[Ci(a)]}aexc. We
consider a piece-wise stationary setting, where the planning horizon 7 is partitioned into L stationary
pieces {to = 1,...,t1},{t1 +1,...,t2},...,{tL—1 + 1,...,tr = T}. On each stationary piece ,
we have (r,¢;) = (r®D, D) forallt € {t;_1 + 1,...,4}.

The DM does not know the number of rounds 7', the number of stationary pieces L, the rounds
t1,...,tr_1 where changes happen, the values of {(r(!), c(l))}le{l,_.’L} and their realized outcomes.

Goal and benchmark. Our goal is to develop an online algorithm that maximize the expected total

reward ]E[Zthl Ry (a;)] while satisfying the inventory constraint Zthl Ct¢(ar) < B, which can be
formulated as the following dynamic program DP. In DP, X; = {X;(a)}4cx is a binary decision vari-
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able indicating whether to pick arm « in round ¢ (i.e., X¢(a) = 1) or not (i.e., X;(a) = 0). An online
algorithm is non-anticipatory in the sense that X; depends only on B and {(R;(as), Cs(as), X))} 2}

s=1"
T L
DP := max E lz Z Ri(a)X¢(a) FA := max Z(tl —ti—1) Z r(a)z(a)
X t=1aek =1 aelkl
T L
st Y ) Ci(a)Xi(a) < B st Y (i —tim) Y, P(a)x(a) < B
t=1aek I=1 aek
Y Xi(a)<1  VteT Mm@ <1 Vi=1,...,L
aelk aek
Xi(a) € {0,1} Vae K, teT. z1(a) =0 VaeK,l=1,...,L.

In non-stationary bandits without resource constraints, the performance bound of an online algorithm
is in the form of Zthl Ri(ar) = Zthl ri(aj) — Reg, where Zthl r¢(a}) is the optimal expected
reward obtained by choosing the best arm in each round, and Reg is a sublinear-in-T" regret character-
izing the reward loss. In our Bwk setting, due to the inventory constraint, achieving a sublinear-in-7T'
regret is impossible without assuming a bounded global variation (see Appendix [A.3). We denote
opt(P) as the optimum of an optimization problem P. We aim for a performance guarantee of the
form Zthl Ri(a) = CLR - opt(DP) — Reg, where opt(DP) is the optimum of DP, CR is a competitive
ratio, and Reg is a sublinear-in-T" regret. Unfortunately, DP is hard to solve. Therefore, we define a
fluid approximation FA of DP, where R, and C} are replaced by their respective expectations, and the
decision variables are fractional. In the following Lemma [2.1] (proved in Appendix [C.T)), we justify
that opt(FA) can serve as a benchmark for our algorithms’ performance since

T
1 1
R > — . opt(FA) — Reg > — - opt(DP) — Reg,
;:1 +(ar) R opt(FA) — Reg CR OPUDP) — Reg

and we aim to derive performance guarantees of the form Zthl Ryi(at) > & - opt(FA) — Reg.

Lemma 2.1. opt(FA)=opt(DP).

2.2 Assumptions, limitations and discussions

Compared with the adversarial Bwk literature, our piecewise-stationary setting has two limitations.
The first is on L, the number of change points. When L is not known, our result is meaningful only
when L = 0(+/T - Tmin). When L is known, our result is meaningful when L = o(T - min) (see
Theorem[.2)). In contrast, existing works on adversarial Bwk generally allow L = T'. The second is
on the value range of non-null actions:

Assumption 2.2. Forall a € K,l € {1,..., L}, there exists known constants nmin, Jmax € (0, 1]
such that 7in < 7 (a), ¢V (a) < Nmax.

While 7)min can be as small as 0 generally, we argue that this assumption is mild. Assumption [2.2]
holds in many real-life scenarios. For instance, in portfolio management, an investor allocates a
limited budget among different investment options (arms) to maximize the overall return. The investor
has assessments on lower and upper ranges of the expected returns for each investment option. The
lower range is usually strictly positive, since the investor would not consider investment options
with 0 or negative expected return. In applications such as dynamic pricing, assortment planning,
network resource allocation and energy management, expected profits and consumer demands are
usually within a known positive value range. We further justify that Assumption [2.2] theoretically in
the following Lemma [2.3| (proved in Appendix [C.3).

Lemma 2.3. For any online algorithm, there exist an instance for which 0 < r(a), ci(a) < 1 for all
a € K,teT,and that CR> Q(log(Nmax/Mmin))-

Additionally, in Appendix @]we demonstrate that knowing the values of Nyin, max 1S necessary
for achieving CR= O (10g("max/Mmin))-
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2.3 High-level idea of our algorithm

Decomposing opt(FA) in terms of reward-consumption ratios. Throughout our paper, we fix an
optimal solution {z}}~ , to FA. We define the set £ = {{ € {1,..., L} : > _, 2} (a) > 0}, which
indexes stationary pieces where non-null allocations are made under the optimal solution {z;* }ZL=1 to
FA . For each [ € L, we define

O@)at () _ [
Ratio* = DI L € [nmm ) nmax] . Bf =t —t_ cD(a)z*(a). 1
S 0@ (@) © [ | 2~ (B 1m0 2y Dt (@)

Ratio)*, whose value range follows from Assumption is the optimal expected reward earned
per unit of consumed resource under {x?‘}f=1 We call RatioV* the optimal expected reward-
consumption ratio of stationary piece . B;* represents the optimal expected amount of resources
assigned for stationary piece [. To aid our algorithm design, we define the following linear program:

LP(7,¢, B) := max 2 7(a)x(a)
aell

s.t. Z ¢(a)z(a) < B

aelkl

Z z(a) <1
z(a) =0 Va e K.

Then, we can express opt(FA) in terms of LP(7, &, 3) and Ratio)*, B} as follows:

opt(FA) = Y (t — t11) - opt (LP (r<l>,c<”,B;"/(tl _ tl_l))> = Y Ratioc®* - Bf.  (2)
lel lel

The first equation in (2) can be verified by noting that x* is feasible to LP(r"), ¢, B /(t; — t;_1))
foreach [ € {1,..., L}, and the concatenation of the optimal solutions of {LP(r(), c(), B /(t, —
t;—1) }iec forms a feasible solution to FA. The second equation in holds, by the definitions of
RatioV*, B* and the fact that opt(LP(r®), ¢, B¥/(t; — t;_1))) = X,cxe 7V (a) 2 (a).

Algorithm design. Fix an arbitrary constant o > 1 (we set o = e by default, but our results hold
for any constant o > 1). We define M = [log,, (Mmax/"min )| and partition [9min/Mmax; Mmasx/Mmin |
into 2M intervals [a= M, o= M+ J{(a™, o™} 2L . For each stationary piece | € L,

we denote m* € {—M,..., M — 1} as the interval such that Ratio’* € (™, o™i +1]. In the
forthcoming discussion, with some abuse of notation, we sometimes write interval [OFM ,a—M +1]
as (™M, a=M+1], and we refer to interval (o™, a™*1] as reward-consumption ratio interval m, or
“interval m” in short. Then we can decompose opt(FA) regarding reward-consumption ratio intervals:

M—1
opt(FA) = (2) = Z Z RatioV* . 1(RatioV* € (o™, a™*1]) - Bff
m=—M lel
M=—1
= Z Z Ratio)* - 1(m} = m) - Bf. (3)
m=—M leL

The key intuition of our algorithm is to achieve a reward guarantee for each interval m regarding
the reward-consumption ratio 1(m} = m) - Ratio")* and the resource consumption ¥, 1(m} =
m) - Bj, which is done by performing two tasks: (a) for each [ € £, we guess the value of m such
that RatioV* e (o™, a/™*1]. We guarantee that for at least 1/(M + 1) fraction of requests on each [,
our guessed ratio interval are close to the correct interval mz“; (b) for each interval m, we “reserve”
B/2M resource units. That is, we reserve an inventory of B/2M resource units to satisfy requests
with a guessed reward-consumption ratio interval m. When the inventory reserved for interval m is
depleted, the DM rejects (by choosing an,) all future requests with a guessed interval m.

By accomplishing task (a), we ensure that for each [ € £, atleast 1(m;* = m)- B} /(M +1) requested
resources are served by resources reserved for interval m, generating reward at a ratio of at least
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a™. Then, by accomplishing task (b), if the reserved inventory for interval m are not depleted by
round T', our algorithm earns a reward of at least o™ - 1(m;* = m) - B /(M + 1) during stationary
piece I. Else, if the reserved B/2M resource units for interval m are depleted by round 7', then the
DM earns a reward of at least o™ - B/(2M) > o™ - >, 1(m] = m) - B} /(2M) from resources
reserved for interval m, since ), . 1(m; = m)- B} < B. By judiciously analyzing the relationship
between stationary pieces and reward-consumption ratio intervals, for each interval m, we ensure
that a reward of

1
7~Zam-1(ml* =m) - B
O(M) leL
is accrued, which is 1/O(M) of the benchmark resources consumed on all stationary pieces | € £
whose Ratio* € (o™, o/™*!]. By summing over m € {—M, ..., M — 1}, we achieve 1/O(M)

fraction of reward (3).

3 Warm-up: Full-feedback deterministic outcome setting

In this section, we introduce the main idea of our algorithm on the bandit model by relaxing the
model uncertainty assumptions and specializing to the full-feedback deterministic setting: (R;, C}) =
(M, ) with certainty for each t € {t; 1 + 1,...,t;}. Thus, (r®, ¢(®) is observed at the start
of the stationary piece [. The DM does not know L and {t1,...,¢;_1} before the online process
begins. The DM’s decision can be fractional, which means on each stationary piece [, a decision can
take the form of z; € {z € [0,1]*I : 3 - 2(a) < 1,2(a) = 0 Va € K}, resulting in a reward of
e 7 (a)x;(a) and resource consumption of Y, _, ¢! (a)z;(a) in a round.

3.1 Inventory REServing (IRES) algorithm

Upon observing (R, Cy) = (r®, ¢®), guessing Ratio)* (see Section is equivalent to guess-
ing «}, which is equivalent to guessing B} /(t; — t;_1), since {z}*}} | is an optimal solution to
LP(r®, e B /(t; —t;_1)). In this section, when we say “Line xx”, we refer to a line of Algorithm
which displays IRES. At the start, the IRES reserves B/2M units of resource to each interval

m e {—M,...,M — 1}, and each resource unit is reserved by exactly one interval. In Line [5} for
each stationary piece I, we firstly solve LP(r("), ¢ n.i. - a?) for each ¢ € {0,..., M}, and get
an optimal solution :cgq)* = {xl(q)*(a)}ae;g. Each nyin - @4 is a guess of B} /(t; — t;—1). For each

q€{0,..., M}, we define
Sere T (@) (a)

Saer O (@)} (a)

as a guess of RatioV*. Claim in Appendix shows that, by guessing a ¢ such that 9y, - a9
is within a factor of « from B}*/(t; — t;_1), we also have Ratiol(‘I) to be at most a factor of o from
RatioV*. As time progresses on [, we go round-robin on the choices of ¢; € {0, ..., M} for each
round ¢ (Lines. Inroundt € {t;—1 +1,...,¢}, weidentify m; € {—M, ..., M — 1} such that
Ratio\%) e (@™, o™ 1] (Line E) If there remains enough reserved resource units for interval m;
(Line , the DM fulfils the ¢-th request by selecting fractional action z; = atl(qt)* (Line , which
consumes resources reserved for m; (Lines E], E]) Otherwise, the DM selects an, and rejects the

request (Line . By Line|§|, we have ﬁ(m) = {se{l,...,t} : ms = m}, which consists of rounds
in {1,...,¢} when the DM attempts to fulfil a request with resources reserved for interval m.

Ratiol(q) =

3.2 Performance guarantee of IRES

We provide a performance guarantee to IRES in Theorem 3.1
Theorem 3.1. For any given o > 1, IRES achieves a reward of at least

(1 _ 2loga(nma§/nmm)+1> - opi(FA)

6@2 : loga (nmax/nmin)
under mild requirements that t; — t;_1 = M + 1 VI € L. In particular, IRES achieves a competitive
ratio of O(10g, (max/Mmin)) if B = Q(1og,, (max/Mmin))-

)
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Algorithm 1 Inventory REServing with deterministic input (IRES)

1: Input: resource capacity B, Mmins Nmax-

2: Tnitialize | = 0, = 1, ¢; = 0, 7,"™ = & for all m, 1.
3: whilet < 7T do

4: Setl=1+1.

5: Solve LP(r®") ¢ noin - ad) Vg € {0,1,..., M} for optimal x {x *(a)}aek-
6: while stationary piece [ not end do

7: Let (14, ¢;) = (r®, W), 2y = xl(qt)*.

8: Find m; € {—M, ..., M — 1} such that Ratio{” € (™, a™:+1],
9: Set 7, = T, Ut}
10: if ZseTfj”l'f) e ¢s(a)zs(a) < 55 — 1 then

11: Pick fractional arms x;.

12: else

13: Pick arm a; = agy-

14: end if
15: ifg: <M — 1thensetq; 1 = q; + 1elseset ¢;11 = 0.

16: Sett =1+ 1.

17: end while
18: end while

Remark 3.2 (Comparing with online knapsack problems). Our deterministic setting resembles online
knapsack problems with adversarial (7, ¢;) revealed in each round Zhou et al.[(2008), but our (1, ¢;)
remains the same for an unknown number of rounds. Assuming B > Q(7)max),/Zhou et al.| (2008))
achieve a competitive ratio of 210g(7max/Mmin) + 1 and they provide a nearly-matching lower bound.
We recover their competitive ratio with an extra 3o> multiplicative factor in a piece-wise stationary
setting and a stricter requirement on B.

3.3 Analysis

Denote 7. = {r(m)(1), 7(m)(2),...} where 7(™) (1) < 7(™)(2) < ..., and T(™ is the prefix of
TA™ satisfying

= (m B
’T( ) = { T(m) 2 2 C-r(’")( ) 7—(’")( )( ) m - 1}

s=1aek

That is, 7" consist up to the last round assigned to interval m such that the reserved inventory is
not fully consumed. It is evident that if >, _—m ¢s(as) < B/(2M) — 1, then T = TT(m).
T

Define J; = {t;—1 + 1,...,t;}, the time interval of the I-th piece. The reward achieved by IRES is
REW = >, > .cx 7t(a)z¢(a), which can be decomposed as REW = Z%;ﬁM REW (™) where

REW(™) — Z 1(m] =m) Z Z ri(a)xy(a).

lel te(UiV[:_lM 7‘—(n)) NI aelkl

The set (U M T ) J; consists of rounds in stationary piece [, which requests are not rejected
due to shortage in reserved resource units. The summation }},_. 1(m;* = m) yields the reward

accrued on pieces where m;* = m. By the summation ZM ! REW(m), we obtain the total reward

accrued with resources reserved for 2 intervals.
Similarly, we decompose the benchmark opt(FA) = ZM ! Y; opt(FA) ) where
opt(FA)(™) — Z 1(m} = m) - RatioV* . B,
lel

To prove Theorem | it suffices to show REW("™) > —@M+1)/ opt(FA)(m) for each interval m,
as in the following almﬂ] and Claim 2] Then Theorem [ﬁ/’can be established by summing over
me{—M,...,.M—1}.
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Claim 1. For any interval m € {—M, ..., M — 1}, if for all n € {max{m — 1, —M}, m} we have
T = 7", then REW(™ > _L_. opt(FA)"™).

Claim 2. For any interval m € {—M,..., M — 1}, if for at least one element n € {max{m —
1,—M}, m} we have T(") ¢ TT(n), then REW(™) > % - opt(FA)(™).

Sketch proofs of Claims [T} 2] Claims [T} 2] are proved in Appendices respectively. We
first show in Claim [3|in Appendix that on a stationary piece | € L, there exists a “correct”
Ch

q; € {0,..., M}, such that when selecting decision z; = x; )* (the optimal solution to the
%
LP(r(® D poin-ad)), our guess Ratiol(ql ) on the ground-truth Ratio®* € (o™i, ™! 1] satisfies

(ai")

. *
Ratio,”" " € (« ™

m;"—l’am;"-&-l] _ (Ozml*_l,aml*] U (a ,Osz-‘_l]. 4)

*
When taking fractional action xl(ql )*, we consume resources reserved for reward-consumption ratio
intervals m;* — 1 or m;*. Therefore by our round-robin design, on each stationary piece / such that
mj = m, atleast (t; — t;_1)/(M + 1) requests are assigned to intervals m — 1 or m, under decision
*
xgq’ " 1t remains to analyze how many requests are fulfilled by resources reserved for the correct

*
interval ml"< = m at the correct reward-consumption ratio Ratiol(ql ), as discussed in Section

For an interval m where 7("™) = ’7;9'”), Tm=1) = Tjgm_l) (Claimcase), there are still remaining
resources reserved for intervals m — 1, m at the end of the horizon. Hence, for each stationary
piece I such that m;* = m, at least (t; — t;—1)/(M + 1) requests (consuming B;* /(M + 1) resource
units) are indeed fulfilled by resources reserved for interval m — 1 or m, accruing reward at the
reward-consumption ratio of at least Ratio* /o according to @) Summing over all / such that
m} = m, we have REW(™) > ZleL(Ratio(l)*/a) -1(m} = m) - Bf/(M + 1) and Claim
is validated. For an interval m where there exists some n € {max{m — 1,—M}, m} such that

T o 7'T(”) (Claimcase), the B/2M resource units reserved for interval n are depleted before
the end of the horizon. In this case, some requests on stationary piece [ where m;* = m may be
rejected, but the B/(2M) resource units reserved for interval n have been consumed, generating
reward at a reward-consumption ratio of at least o™ > o™~ 1. Since the total resources that should be
consumed w.r.t. interval 7 under the optimal FA solution is }},_ . 1(m; = m) - B} < B, we have

REW(™ > a™=1. B/(2M) > ¥, (Ratio* /a?) - 1(m} = m) - B}, and Claim [2]is validated.

4 Bandit-feedback stochastic outcome setting

In this section, we consider the original piece-wise stationary Bwk model, where the DM receives
bandit feedback on outcomes (R;, C;), and decisions are randomized.

4.1 Inventory REServing with change monitoring (IRES-CM) Algorithm

In this section, when we say “Line xx”, we refer to a line of Algorithm [2] which displays IRES-
CM. In the bandit-feedback setting, guessing RatioV* requires estimating (1"(1)7 c(l)). To do so, we
adaptively partition 7 into exploration rounds and exploitation rounds. In each round ¢, we conduct
exploration with probability 7, = M+/|K[log(1/5)(log(|K[) + 1)/v/Nt (reflected in a Bernoulli
random variable U (t) in Line [7)), where 6 € (0, 1) is a confidence parameter and N is defined in
(3). In an exploration round ¢ (Lines [9I3)), we uniformly sample an arm a € K and pull it for
N consecutive rounds. We update an estimate (7;(a), & (a)) on (r,(a), ¢ (a)) = (r®(a),c®(a))
using the {(R;(a), Cs(a))},e73(q) information, where 7,°(a) denotes the set of the most recent N

exploration rounds before round t when arm @ is pulled. That is, we set 7,5 (a) = {7 € {t—s4,...,t—
1} : a; = a} where s; = arg maxs{ZtT;lt_s 1(a; = a) = N}. We define
N — 2710g(2/(5) £ (a) - ZSETtS(a) Rs(a) é a) o 2567;5(&) Cs(a) (5)
a (171/\/a)2'77min7 ! B N ' ! a N ’

The estimates 7, ¢; have two sources of error: error due to random noise, which decreases with V;
and error due to non-stationarity, which increases with N. We set [V according to (5) to balance these
two errors. We let 7R denote the set of exploration rounds.
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In an exploitation round ¢ (Lines i we take turns to pull arms according to decision xiq')*,
which is very similar to Algorithm|I{with (7, &) in place of (1, ¢;). We define
N ~(@)*
Ratioiq) _ ek Tt(a)ﬁq)*(a), ()¢ = max {min {Ratioiqt), aM} ,aM} ,
Qe Ci(a@)@y" (a)
which can both be interpreted as a guess of RatioV* at any round ¢ during stationary piece . We
reserve B/(2M) units of resources for each interval m € {—M, ..., M — 1}. Inround ¢, we serve

request ¢ using resources reserved for interval 772; such that (1); € (o™, o *+1]. If interval 172, has

~(qt)* ( ) ~(qt)*

remaining reserved 1nventory, then we pull arm a; = a with probability Z; or a; ~ I

in short. We let 7; ™) denote the set of exploitation rounds using resources reserved for interval m.
We finally highlight that the major performance difference between IRES and IRES-CM is due to
estimating (r¢, ¢;) by (7, ¢&), which is detailed in Section 4.3

Algorithm 2 Inventory REServing with Change Monitoring (IRES-CM)

1: Input: resource capacity B, rate v, bounding parameters Mmin, Pmax-

2: Set TR = & for all ¢ and 7™ = & for all m, .
3: Pull each arm a € K for N times, get #,(a), & (a) as in (3).
4: Sett = N|K| + 1.
5: whilet < T do
6: Solve LP(#¢, &, min - @9) Vg € {0,1, ..., M} for optimal &; 0% {igq)*(a)}ae;c.
7: Sample U(t) ~ Bern(v;).
8: if U(t) = 1 then
9: Pick arm a ~ Uni(K), pull arm a5 = a.
10: SetU(s) =1forse {t,...,t + N —1}.
11: Set TR = TR, Uft, ... st forse{t,....,t + N —1}.
12: Sett:t+N, (ft,ét)z Vﬁth,éth).
13: Update ¢ (a), #+(a) as in
14: else
15: forq=0,...,M do
16: Setq: = q.
17: Determine 1, € {—M, ..., M — 1} such that (}); € (a™¢, o™ 1],
18: Set 7, = 1) Ut}
19: if ZseTtI(f;”) Cs(as) < 2M — 1 then
20: Pick arm a; ~ 502(5 w)*
21: else
22: Pick arm a; = agy-
23: end if
24 Sett =1 +1, (ft, ét) = ('Ft—la ét—l)-
25: end for
26: end if

27: end while

4.2 Performance guarantee of IRES-CM

We impose the following assumption on the ranges of B, opt(FA).

Assumption 4.1. min{B, opt(FA)} = Q(L+/ \IC |N T), where Q(-) hides multiplicative factors in
terms of 10g,, (Mmax/Mmin ), 10g(1/6), (10g(\l€|

The performance of IRES-CM is as follows:

Theorem 4.2. For any given o > 1, with probability at least 1 — 2|K| - (1og,, (masx/Mmin) L + T)9,
IRES-CM achieves a reward of at least

1—0(1)
10&4 : loga (nmax/nmin

;- (opt(FA) —0 (L |IC|NT))
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under Assumption where o(-) hides multiplicative factors in terms of /M /B and O(-) hides
multiplicative factors in terms of 10g,, (Nmax/Mmin ), 10g(1/8), (log(|K|) 4+ 1). In particular, IRES-CM
achieves a competitive ratio of O(log,, (Nmax/Mmin)) as long as L = o(x/T - Nmin)-

The proof of Theorem[4.2]can be found in Appendix [C.4} We provide a thorough comparison of our
performance guarantee with existing works on adversarial and non-stationary Bwk in Appendix [Al

Remark 4.3 (Improved performance with known L). If the DM knows L, Assumption can be

relaxed to y
min{ B, opt(FA)} > Q(«/L|KC|NT).

Furthermore, in our performance guarantee in Theorem the deductive term (N)(L«/ ICINT)
from opt(FA) can be improved to O(,/L|K|NT) by setting the exploration parameter ~, =
M/L|K|log(1/8)(log(]K]) + 1)/+/Nt in IRES-CM. Without prior knowledge of L, the deduc-
tive term O(L+/|K|NT) = o(T) if L = o(+/T - jmin); With prior information of L, the deductive
term O(\/L|K|NT) = o(T) if L = o(T - Nnin)-

Remark 4.4 (Deterministic setting with bandit feedback). In our full-feedback deterministic setting,
since (1), c() is given at the beginning of each stationary piece, our performance guarantee is

independent on ||, L. In a bandit-feedback deterministic setting, IRES-CM can be applied by setting
N = 1. In this case, under Assumption4.1] IRES-CM achieves a reward of at least

1—o(l) : (opt(FA) - O(L«/|IC\T)) .

6a2 - loga ('flmax/nmin)

4.3 Analysis

We denote 04(a) = min{s : s € T5(a)} as the 1st element in 7,%(a). We partition the exploitation
round set 7;(7") into two sets 71(™) and T1™) ie., 7}[(7") — Tlm) U7, Tm) A7 = .

A time index t € ’7;(7”) belongs to the set 71(™) (referred to as “successful exploitation rounds
regarding interval m”) if and only if the following condition is satisfied for all a € K:

{(rs(a), es(a))}ack = {(ro,(a)(@); Cop(a) (@) Jaek, Vs € {ou(a), ... 1} ©)

For t € T1m) (referred to as “failed exploitation rounds regarding interval m”), inequality (@) is
violated for at least one a € K. We denote 7' (™) = {71(m) (1) 71(m)(2) ..} where 7/(™)(1) <
r1m)(2) < .... We let T be a prefix of 71(™) satisfying

- > n B
Tl(m) = {Tl(m) (n) € Tl(m) . Z Z CTI(m)(S) (aTI(m)(S)) < m — 1}

s=1aell

which consists up to the last exploitation round satisfying (6)) for interval m, such that the reserved
resource is adequate. If 3. __im) Cs(as) < B/(2M) — 1, then 71™) = T1(m),

seT, }
Sketch proof of Theorem 4.2} Recall that the performance guarantee of our algorithms is in the form
of Zthl Ri(ar) = gg - opt(FA) — Reg. The proof consists of mainly two steps: (a) we derive the
CR= O(M) by bounding two different cases of interval m in a similar manner to Claim and Claim
(see Appendix , with 71(m) (successful exploitation rounds in IRES-CM) in place of qum) (all
rounds in IRES); (b) we derive the Reg= O(L«/ |IC|NT) by bounding the number of exploration
rounds | 7R | and failed exploitation rounds | JY__,, T10m)| (see Appendix .

Comparing performance of IRES and IRES-CM. We highlight that the major performance

difference between IRES and IRES-CM is the loss caused by estimating (7, ¢;), reflected in the

following aspects: (i) reward loss caused by exploration (upper bounding |7X|); (i) 7;°(a) contains
change points, causing failed estimation of (7, ¢;) (upper bounding | Uf\f:_ o TH; (i) T3 (a)

does not contain change points, but the discrepancy between (r¢, ¢;) and (7, ¢;) results in assigning

Ratio(V* (estimated by lgti\oiq)) to the wrong interval. We remark that the losses due to (i, ii) are
accounted for in Reg, while (iii) is accounted for in the CR.
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4.4 A lower bound on competitive ratio

We complement our analysis by showing the tightness of our CR (see Appendix [C.6|for proof).

Theorem 4.5. Consider a fixed but arbitrary o > 1, and set iy = a3, Nmax = 1 for an arbitrary
v € Z~q. For any online algorithm, there exist an instance for which Nyin < 7¢(a), ¢i(a) < Nmax for

alla € K,t €T, and that ZtT=1 Ryi(at)/opt(FA) < ©(1/10g,, (NMmax/Mmin) )-

S Numerical Experiments

We run numerical experiments on a single-resource problem where L = 2, T' = 20000 (each
stationary piece has 10000 rounds), K = {1,2}, B = 9360 and we set a = e for our algorithms.
The rewards and resource consumption in all rounds are uniformly distributed within a [—0.2, +0.2]
range from their mean values. We compare the performance of IRES-CM with Immorlica et al.
(2019)’s algorithm and Zhou et al.| (2008))’s algorithm. Recall that Immorlica et al.|(2019) focus on
an adversarial Bwk problem and achieves a CR w.r.t. a static benchmark. [Zhou et al.|(2008) study a
full-feedback adversarial setting and achieves a CR w.r.t. a single best arm benchmark. In Figure[T}
each curve represents the average cumulative reward over 10 simulations, and the shaded area around
each curve marks the variance over the simulations. We provide Zhou et al.| (2008)’s algorithm with
extra information of (r;, ¢;) before making decisions in each round, and compare the performance of
algorithms with the linear program benchmark FA (dotted curves in Figure I)).

Performance comparison of algorithms

Performance comparison of algorithms le3
14 — Immorlica et al.
12 { — Immerlica et al. —— Zhou et al.
—— Zhouetal. o 81— IRES
194 — IRES R R LP Benchmark
----- LP Benchmark a g
; E
= 0.8 =4
Y 2
= B
B 08 24
£ £
3 04 o
2
02
Do £ : : : : , , , 0 1 ; ' , , : .
0o0 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
Time step t led Time step t led
(a) FA optimal solution: single arm (b) FA optimal solution: mixed arms

Figure 1: Performance comparison of algorithms for piecewise-stationary Bwk

In Figure a), we set (0 (1) = r1(2) = 0.5, (1) = ¢V)(2) = 1 for stationary piece 1; and
set 72 (1) = 1,7 (2) = 0.5, (1) = 0.5,¢()(2) = 1 for stationary piece 2. In Figure [1[b),
we switch the values of r(?)(1) and #(?(2). i.e., setting #(?)(1) = 0.5,7(?)(2) = 1. Observe that
IRES-CM outperforms Immorlica et al.| (2019)’s algorithm in both cases. This is mainly because
Immorlica et al.|(2019)’s algorithm is designed for a more general adversarial Bwk setting. In contrast,
we utilize the extra information that 1,,;, = 0.5. Therefore, Immorlica et al.|(2019)’s algorithm is
significantly more conservative than IRES-CM in reserving inventories for future customers. |[Zhou
et al.[(2008))’s algorithm outperforms IRES-CM in Figure Eka), but performs worse than IRES-CM in
Figure[I[(b). This is because that in Figure[I|a), the optimal solution of the benchmark FA chooses a
single arm on each stationary piece, which aligns with|Zhou et al.|(2008)’s single best arm benchmark.
Zhou et al[(2008))’s algorithm performs well with the extra information of (¢, ¢;) before making
decisions. In Figure [I(b), the optimal solution of the benchmark FA chooses mixed arms on the
second stationary piece, where x4 (1) = 0.128, 2% (2) = 0.872. The numerical results are consistent
with the theoretical results that|Zhou et al.|(2008) achieve sub-optimal rewards compared with a best
distribution over arms benchmark, while our IRES-CM performs well. Finally, our experiments are
run on a Surface Pro 7 with an i5-1035G4 processor. All results can be produced within 30 minutes.
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A Comparing our performance guarantee with existing literature

A.1 Comparing with adversarial BwKs

Immorlica et al[(2019) (achieving O(dlog(T')) competitive ratio) and Kesselheim and Singlal (2020)
(achieving O(log(d) - log(T')) competitive ratio) study the adversarial BwKs, where the adversarial
bandit feedback (r:(a:),ct(at)) is revealed in each time step after pulling arm a;. Their setting
is more general than ours, since they require no boundedness assumption or piece-wise stationary
assumption on their outcomes. Note that if our 7,;, can be expressed as a function of 7T, i.e.,
Nmin = 77 fora 3 € (0, 1), our result can extend to multiple resources and achieve a competitive
ratio of O(dlog(T')) (see Appendix [B.5). However, we highlight that their result do not imply our
result, due to the following two reasons.

Firstly, they consider a static benchmark, dubbed FD, which is FA with the additional constraint that
xf = a* for all [ € L; while we compare our result with the dynamic benchmark FA. Specifically,
Immorlica et al. (2019) prove that no algorithm can achieve a competitive ratio smaller than 7'/ B2
w.r.t. the dynamic benchmark. We further improve this lower bound to ©(7'/B) in Lemma[2.3{a) by
setting L = T'/B, and provide a matching lower bound of £2(log(T")) comparing with opt(FA) when
Nmin > 0. Secondly, they have more restrictive assumptions on the value ranges of B and opt(FD).
Specifically, Immorlica et al.[(2019) assume opt(FD) - B/|K| > Q(T7/*), which is strictly stronger
than our Assumptiond.1]

Some research works consider more specific regimes, including [Rangi et al.| (2018]); |Castiglioni
et al.| (2022a)); [Fikioris and Tardos| (2023). We highlight that all these works still compare with
static benchmarks. |Castiglioni et al.[ (20224) focus on the regime where B = Q(T') and achieves
a competitive ratio of T'/B. [Fikioris and Tardos|(2023) provides a competitive ratio depending on
(max¢{r:}/ ming{r: }, max;{c; }/ ming{c: } ). [Rangi et al.[(2018) achieves a sublinear-in-T regret in
a different setting with no round limit (sales stop when the inventory is depleted). Therefore, their
result is incomparable with ours.

Some recent papers focus on linear contextual Bwk with adversarial contextual vectors [Sivakumar
et al.| (2022)) (achieving O(dlog(T")) competitive ratio) or with multiple but stationary customer
classes |Kim et al.| (2023) (achieving sublinear in T" regret). We highlight that contextual vectors for
each arm are observable before making decision in each round, while our model only observe bandit
feedback after an arm is chosen. Therefore their results do not generalize to our setting.

A.2 Comparing with adversarial online knapsack problems with full feedback

In our Section [3| we discuss a warm-up setting where {R;(a), C}(a)}qex is observable upon the
arrival of the round ¢ customer, which is similar with adversarial online knapsack with full feedback
(Karp et al.| (1990); Mehta et al.| (2007); Zhou et al.|(2008))). Zhou et al|(2008) is the most closely
related to our work, where they start off from an online matching problem and extends the results to
the online knapsack problem. They define LB = min, ;{r:(a)/c:(a)}, UB = max, ({ri(a)/ct(a)}
and achieves a competitive ratio of log(UB/LB) w.r.t. a dynamic best single arm benchmark, which
differs from our FA by setting x;(a) € {0,1} for each a,l. Our FA, on the other hand, is a best
distribution over arms benchmark. In fact, for stationary Bwk, Badanidiyuru et al.| (2018)) show (see
their Appendix A) that the best single arm benchmark is strictly weaker than best distribution over
arms, which could noticably affect the achievable CR. It is evident that in the picewise-stationary
setting, this is also the case.

Additionally, this line of works crucially require knowing {(R;(a),Ci(a))}.ex before making
decisions. By contrast, we take a different approach in algorithm design in Section [3|allows a natural
generalization from full to bandit feedback shown in Section 4

A.3 Comparing with non-stationary bandit/full-feedback online optimization with knapsacks

In|Balseiro et al.| (2022)); Jiang et al.[(2020); [Liu et al.| (2022)), they measure the non-stationarity of a
time-varying knapsack model with a quantity called the global variation

T

T
glo =) dist (Z(Tt,ct)/T, (rt,ct)> :

t=
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While dist can be any metric, to give a more concrete idea, we highlight an example form Liu et al.
(2022)) being

dist((r,), (', ') = max{|s’(a) = r(a)]} + max{\¢'(a) - c(a)|}

They all have boundedness assumption on glo. In our setting (glo unbounded), their algorithms incur
a linear-in-T" regret even when L = 1, and no non-trivial competitive ratio is established in their work.
To see the case of L = 1 but glo = ©(T’), consider the case of L = {1}, and we have

(r1(1),c1(1)) = ... = (rpje(1),cpp2(1)) = (1,0.5),
but
(rrj241(1); erjp41 (1) = ... = (ro(1), er(1)) = (0.5, 1).
In this case, we can verify that

T T
dist <Z(rt,ct)/T, (ri,c1) > = dist (Z re, ) /T, TT/2+1,CT/2+1)> = 0.5,
t=1

t=1

so we have glo = 0.57 despite L = 1.

B Auxiliary results

B.1 Notation

For functions f(z) : Rzo — Rsgand g(x) : Ry — Rxo, wesay f(z) is O(g(x)) (resp. Q(g(x))) if
there exist positive constants C' and n, such that forall z > n, f(z) < C-g(z) (resp. f(z) = C-g(z)).
We use O(g(x)) (resp. 2(g(x))) to hide logarithmic terms in x other than g(x).

B.2 Concentration inequalities

Lemma B.1 (Multiplicative Azuma-Hoeffding Inequality (Kuszmaul and Qi/(2021))). X1,...,X, €
[0, c] are real-valued random variables, and {F,}?_ is a filtration. Let jp = Y ;_, a; where a; are

real-valued constants.
(i) Suppose B[ X;|F;_1] < a; holds for all i € {1, ... ,n} almost surely. Then for any § € (0, 1),

[ & 3c 1 1
Pr| ) X;<(1+4/=log 5)|n| =10
i1 H |

(ii) Suppose B[ X;|F;_1] = a; holds for all i € {1, ..., n} almost surely. Then for any ¢ € (0,1),

Pr in><1_ 2010g<§)>u =>1-46.
[i=1 H |

Lemma B.2 (Lemma 2.1, Badanidiyuru et al.| (2018)). Let X1, ..., Xx € [0, 1] be random variables.
Let X = Zfil X; be the sample average, and let p = 22111 E[X;|X1,...,XN]. Then, for any
5€e(0,1),

Pr <|X — p| < A/2X Tog(1/8) + 410g(1/5)> >1- 34

B.3 Main claim on reward-consumption ratio

Recall that a:Z(Q)* is an optimal solution to LP(r(l)7 c(l), Nmin * @?)), and x;“ is an optimal solution

of LP(r(, ¢ B /(t; — ;1)) which is an optimal solution of our benchmark. In the following
Claim [3| we show that the round-robin technique in IRES ensures that, on each stationary piece [,

xl(q)* for at least one g € {0, ..., M} is close to =} in terms of both the resource consumption and
the reward-consumption ratio. This leads to the important result that for all t € {¢;—; + 1,...,%},
my € {m;" — 1,mjf}.
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Claim 3. On stationary piece [ € £, there exists ¢;° € {0,1,..., M} that satisfies both

onin - %1 < 3, €D (@)af (@) < e €O(0)7 (@) < i - 0 g > 0
{O < ek C(Z)(a)l’?(a) < Dgek C(l)(a)xz(ql*)*(a) < 7Jmin i q =0 -0
and
ek @2 (@) _ S rO@a(a) _ o Baeer@e )
ok C(l)(a)xl(ql*)*(a) = D ek c(l)(a)x?‘ (a) = S c(g)(a)xl(ql*)*(a)~

Proof of ClaimEl The existence of ql* satisfying is evident, since Nmin - al = Nmin and Nmin -
oM = Nmax- 10 show that ql* also satisfy , we define

*
4O _ Dack O @)z (a)
Yaex D (a)zf(a)

9
and claim that

S 0(@)at (@) < 3 rO (@)l (@) < d 3 1O (a)af (a). (10)

aekl aelkl aekl
The first inequality in holds since B /(ti—t1—1) = D yex V(@) 7 (@) < Nimin - . Therefore,
the resource constraint in LP(r®), (), B /(t; — t;_1)) is tighter than LP(r() ¢ p;, - aql*).
*
We prove the second inequality in (10) by contradiction. Suppose >, i r(l)(a)zl(ql )*(a) >
*
d0) D (a)a¥(a). Then we set 2y = z.% * /d®) and have
]. *)*
Y @) = 5 3 O @)n™" = 3 (@) (@) = Bf /(0 — tra).

aell aek aell
In this case, z; is a feasible solution to LP(r("), () B¥/(t; — t;_1)) and we have
1 (af)%
N O (a)ai(a) = ol MO (@)™ > 3 0 (@)} (a),
aekl aekl aek

contradicting the fact that ¥ is an optimal solution of LP(r), c(), B /(t; — t;_1)). Therefore,
combining (9) and (I0), we establish

ek r(l)(a)xqu *(a) < Daek T(l)(a)xik(a) < d®. Dack T(l)(a)flql *(a)
* = S * .
D ack c(l)(a)a:l(ql )*(a) ek €D (a)z} (a) P C(l)(a)xl(ql )*(a)

To establish , it suffices to show dV) < a. By and (EI), it is evident that d¥) < a when
*

g > 0.1If ¢ = 0, then constraints }, . z;(a) < land )}, ml(q’ )*(a) < 1 are not tight in both

LP(r® e® B /(t; — t;—1)) and LP(r®), ¢ y4,). In this case, both LPs are knapsack problems

and have closed-form solutions of

Bl* — 7'(1) (a) * MNmin _ T(l) (a

z¥(a) = Tt )@ @ = r8MaAXeek | c0(a) ’ a:l(QL )*(a) _ )@ @= AT8MAXaek \ Thi(q) |
0 otherwise 0 otherwise

Therefore, we have

*
Sk V@2 (@) T V(@)
cD(a x(ql*)* a Dack ) (a)x?‘(a)’
S €O (@)l (a)

which shows that d©) = 1 < o when q' =0. O
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B.4 Decomposing ratio of REW to opt(FA) in deterministic setting

Recall
Fon) ) m) () < B
={7"™(n): Z 2 Cr(m) (5) (@) T (m) (5) (@) < oM
s=1aell
and J; = {t;—1 + 1,...,t;}. Then for the reward achieved by IRES, we have
REW = Z Z ri(a)xi(a)

teT aek

=Z Z Zrt(a)sct(a)

leLteT (T, aeK

> Z Z Z ri(a)z(a)

leL tG(Uﬁi_,lM 7”*(71,)) NJ, a€k
M-1
> ), D mf=m) > Y re(a)ze(a)
m=—M leL te(Uﬁg_lM 7‘(71,)) NJi aelkl
M-1
= > REW(™
m=—M

1 M—1 min{m+1,M—-1}

>3 Z Z 2 1(m) = w) 2 Z ri(a)ze(a).  (11)

m=—M w=max{m—1,—M} leL tE(UM—i_lM 7"(71)) NI acelkl

Inequality (T1)) holds since by summing over w € {max{m — 1, —M}, m, min{m + 1, M — 1}} for
eachm e {—M,..., M — 1}, we repeat the sum for at most 3 times.

For the reward achieved by FA, we have

Zae/C T(l) (a)‘r?‘ (a’) *
t(FA) = * -B 12
P = S D @ar(a) (12)
M—1
# Ve " (@)zf(a) .
= 1 = . . B
m;M ;c i’ = m) Diaek C(l)(a)mfk(a) !
M—1
= Z opt(FA)(m).
m=—M

Inequality (T2) follows from (2).
Therefore, the ratio of the reward achieved by IRES to opt(FA) can be decomposed as:

ZteT ZaelC Tt (a’)xt (a)
opt(FA)
M-1 m
D ar REW™
fo;i M opt(FA)(™
M-—1 min{m+1,M—1
5 Xt St M T N 1mf = w0) Se s 7o) 7 Daek rel@)ze(a) "
- z
= M—1 Daex TV (@)zf (a)
Dim——n 2iec Lmf =m) - m B
Then, to prove Theorem 3.1} it suffices to show
SM-t  REW™ 1—(2M +1)/B
T 23z —F 77— (14)
St opt(FA)(™) 6a” M
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To prove (T4), we focus on showing in Claims[I]and 2]

min{m-+1,M—
REW™ 3 St Y Biee Lmf = w) Byt 7o .7 Bk 71(@)1(a)
(m) = Yaex rV @)z (a)
opl(FA) Siep Umf = m) - S - B
_1-@M 1B
- 602 M

foreachme {—M,..., M — 1}.

B.5 Extending results to multiple resources

Our results can be readily extend to the multiple-resource case, with |Z| = d resources indexed
by ¢ € Z. An upper bound for a multi-resource allocation problem (corresponding to FA in the
single-resource setting) can be formulated as:

L

FAMYE . — max Z(tl —ti—1) Z D (a)z;(a)
=1 aell
L
LYt —tie1) Y. et (@)zi(a) < B VieT
=1 aell
PIOES! vi=1,...,L
aell
x1(a) =0 VaeK,l=1,...,L.
which is evidently upper bounded by the following LP:
L
FAMULU . — max E(tl —ti—1) Z rD(a)z;(a)
=1 aell
S !
st (i —ti) Y (Z cf ><a>> zi(a) < |Z|B
=1 aell \ieZ
PEIOES! Vi=1,...,L
aell
z1(a) =0 VaeK,l=1,...,L.
It is evident that the LP below achieves a reward of at least 1/d fraction of opt(FAMY-V),
L
FAMUMF . — max Z(tl —t1—1) Z 0 (a)a;(a)
=1 aell
L
sUY (—ti) Y, <Z cg”(a)) z1(a) < B
=1 aell \ieZ
dima) <1 vi=1,...,L
aell
zi(a) =0 VaeK,1=1,..., L.

Therefore, FAMYL is transformed into a single-resource allocation problem FAMUL'F, with an extra
multiplicative factor d in the competitive ratio.

B.6 Core lemma on reward-consumption ratio in general setting

Recall that set 73 (a) = {7 € {t — s¢,...,t — 1} : a; = a} where s; = argmax,{>"_,_ 1(a, =

T=t—s

a) = N} consists of the most recent N rounds where arm a is sampled by exploration; and
o¢(a) = min{s : s € T5(a)} is the 1-st element in 7,%(a). Recall that

éa) = Lseria (@) e(a) = Zuersio Fo(0)

t - N ) t - N
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are the average resource consumption and the reward earned for the most recent N pulls of arm a.
Additionally, recall that we define x(q) {2} #(@) (a)}aex as a solution to LP(7y, &, Nmin - ) (50,(5‘1)*
being the optimal solution) for g = 0, 1,..., M -1
We further define
ZseTg(a) cs(a) ZseT;(a) rs(a)

N ’ N
as the average mean resource consumption and the reward earned for the most recent /N pulls of arm
a. Note that when condition (6)

{(TS(a)a CS(a))}a'E’C = {(rot(a)(a)7 Cat(a)(a))}a€K7 Vs e {Utv R ,t}
is satisfied for all a € K, then rounds s € {0y, ..., t} are on the same stationary piece and we have
ci(a) = ¢i(a), Ti(a) = ri(a). We let ;qu) = {:E§Q)(a)}a€,c be a solution to LP (7, ¢, Nmin - %)

(I’(Q) being the optimal solution) forg = 0,1,..., M — 1. By Claim , we know that there exists
qf €1{0,1,..., M} such that forall t € 7,

Et(a) = Ft(a) =

*®_ %
{nmin-aql L2 e €D (@) (@) < Spere (@2 (@) < i - @ w>0 s

0 < Yo cD(@)7F (0) < Tocx (@) *(0) < Do - 2 gF =0

We show in the following Lemma@that when condition @ is satisfied for all @ € /IC, our decisions
have several nice properties which facilitate our proofs.

Lemma B.3. Fix an arbitrary a € (0,1]. For any t > oy(a), if

{(rs(a), es(a))}ack = {(ro,(a)(a); Cop(a) (@) Jaek, Vs € {ou, . 8},

then with probability at least

¢ o
1 Bae @3 (@) S re(@)as™ (@) o S (@) (o) 6
(* . R % )
C Ve @ (@) Lo @i () Sex (@ (@)
1 & (g*
—= 2@ (@) < 3 rVa)af(a) <a- Y r(a)d," (), (17)
aell aell aell
* %
L Suec (@ (@) _ yex vV (@)af(a) Spex @& @),
va (4] D)zt (a) = avo (47 far =0
VO S ekt @) Zaex (@) (@) Saer éi(@)dy" " ()
(18)
Proof of Lemma(B-3] We define
€= Llo 2 > max Llo 2 Llo 2
B N - Thmin & ) - N - Thmax & é ’ N - Thmin & ) ’
Then by the multiplicative Azuma-Hoeffding inequality (Lemma BT}, for any a € K we have
Pr[(1 —€)ci(a) < é(a) < (1 +€)cr(a)] =1 -4 (19)
Pr[(1 —¢)ri(a) < 7(a) < (L4 €)r(a)] =1 -4 (20)

The above probability bounds (T9) and (20) hold since
N - Nmin < Z ct(a), Z ri(a) < N - Nmax-
€T (a) seTS (a)
We set (1 — 3¢)? = 1/a, and therefore
2710g(2/6)
(1 =1//a)*  Tmin”

Our following discussion is conditioned on the good event that both (T9) and (20) hold for all a € K.
This good event holds with probability 1 — 2||é.

N_
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Validating (16). Given that and (20) hold, we have

. NG N . )
1—e_zﬁxnmm$)ﬂw<iz%Kn<>Q”W@ 1+e_zﬁnnm>?lﬁ>
1 NCH) NCH) - A NCH
te ZaGIC ct( ) o *( ) ZQE)C Ct( ) o *(CL) € ZaeK Ct(a)xt ( )
A (
:>(1 - 26) . ZaGIC Tt( ) *(a> Zaelc ’rt( ) @ *(a) 1 . ZaelC ( *< )
S T (@) Sy eae (0 1% 300 <>q”ﬂ>
2D
Since 1 — 2¢ > 1 — 3¢ = 1/a, (21) indicates (16).
R L RN (' N () £
Validating (17). It is evident that by letting #,"* '(a) = %, "' " (a)/(1 + €), we have
—(q])*
. (g R T a
S e = Y )
aelkl aelkl €
(g7 )* (a)

< t

<D (1 +e)er(a) T (22)
aell

d

= Y al@z" (@)
aell

gnmin -af.

Inequality follows from inequalities (19). Since a:( ! )(a) = fgql * (a)/(1 + €) is a feasible
solution to LP (7, ¢, Nmin - adl ), we have

*
i (a)
1+e

S @i (@) = Y #fa)

aekl aekl
7(q )
> Z 'Ft(a) Ly (a)

2
= (I1+¢)

>(1-26) Y #4(a)7 % (a)

aekl

>(1-36) Y ()7 * (a). 23)

acell
%k
Similarly, by letting g‘c,(fql*)(a) =(1- e)irgq‘ )*(a), we have
*
S @)z (@) = Y eila) - (1— @ (a)

aelkl aell
é(a) (g*
<) 21— 95T @)
aell
= Y} @@ ™ (0
aell
S<Mmin - al.
*
Since :E)qu )(a) =(1- )ﬁ:gql * (a) is a feasible solution to LP(r¢, ¢t, Nimin - oﬂl*), we have
NYAVSCraL. NCHE fng*)*(a) 1 —(a)*
D (@)@ a) < (L o) Y r@)d,™ (a) < )] rila) < >, re(@)z ™ (a).
1—e¢ 1—2¢
aell aell aell aell
(24)
Since (1 — 3¢)? = 1/a, putting (23) and together, we have
1 *
Gh S (@7 (@) < 3 r(@)@ @) < va- Y r@)z* (a). (25)
aell aell aell
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By (I0) in Claim[3] we have
1 % ®
) r(@a (@) < 3 rO(@)at (@) < Y ri(a)z ) (a). 26)

aell aell aell
Given (23) and (26), we prove (I7).

*
Validating . For | € £ such that ¢; = 0, we have >, ct(a)fciq’ )*(a) = Nmin. Given li for

allt e 7,
1 (g*
T S el @ = o i < Y @@ @) < win = 3 @i (@),
aell aell aelC

(27)
Putting @ and (24) together, we have

Zrt gl )<Zﬁ() <va- ) Y29 (). (28)

aell aell aell
Inequality @) and (28) gives
o NCL (a7 )% . NCHE
1 . ZaelC Tt (a’) “ (a) < ZaeIC Tt (a)xtq’ (a) < o - Zae}c Tt (a)xtql (a) (29)
~ * ~ * .
VO Y e @) Sex (@i ) Saer @)™ (a)
Recall from (B) in Claim[3] for all ¢ € J; we have
7( ) 7( )
S @0 SOt @, Sardww g
D (a)* :
e @) (@)  Zaex V@I g (@7 (@)
Putting (27) and (30) together, we establish (I8). O
B.7 Bounding exploration rounds and failed exploitation rounds
To upper bound | TR J(UM__,,_, 7™)|, it suffices to upper bound | 7| (forthcoming Clalm'

and | UMH Mo TI m)| (forthcoming C1a1m
Claim 4. Forany 0 € (0,1), |TR| < TN~yr + N4 /3Tyr log (%) with probability at least 1 — ¢.

Proof of Claim[] Define the event Ef = {Conduct exploration in round t} = B} ) UES @,

where ER(1 = {Ja € Kst.t = oy(a)} and Ef(z) = {Ja € Kst.t € T a)\ot(a)}. We
define random variables YR = 1(ER), YR(l) = l(Ef(l)) and Y,;R(Q) = 1(Ef(2)). Define
event B! = {Conduct exploitation in round ¢} = I(l) UE;(Q), where E;(l) = {¢ = 0} and

E;® = {q, > 0}. We define random variables Y| = l(El) v = 1Bl and V[ = 1(E]®).

We further define random variables Z;, where Z; =Y, R L Bern(+y;) for all ¢ such that YR(l) 1
or Ytl(l) = 1 and Z; ~ Bern(v;) otherwise. It is evident that in each round ¢, Z; follows a Bernoulli

distribution with mean ~; and Z; > YtR(l). Therefore, the total rounds of forced exploration over the
planning horizon can be upper bounded as

T T T T
S = S < N <N Y 7,
t=1 t=1

t=1 t=1

Since Z, are independent and ]E[ZtT:1 Zi] = Zthl ¢ < 2T~r, we can apply the Chernoff bound
(which is a subcase of Lemma[B.1)) on Z;,

T
Pr| Y Z > 2Ty + 4 [6Tyr log <2> <.
t=1 6

Hence we have | TX| = 23:1 YR < 2T N~yr+NA/6T~yr log(2/5) with probability at least 1—4. [J
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Claim 5. Fix any § € (0,1), |7'™)| < L|K|log(1/6)(log(|K|) + 1)/vr with probability at most
1—|K|LS.

Proof of Claim[3] If round t is a change point, i.e., (¢, ¢) # (r4—1,¢4—1), we define set K(t) < K
such that (r(a), ct(a)) # (ri—1(a),ci—1(a)) for all a € K(t). Notice that after a change happens,
some exploitation rounds could run with condition (6] violated, resulting in consuming resources
from the wrong reward-consumption interval m. Hence, |’Tl(m) | can be upper bounded by the total
number of exploitation rounds run before all arms are updated after each change point. After all arms
are updated after a change point, (6) is satisfied again. In the following Claim [6} we suppose round ¢
is a change point, and upper bound the number of exploitation rounds run before all arms a € K(t)
are updated.

Claim 6. Suppose round ¢ is a change point. With probability 1 — |XC(¢)|d, IRES-CM run at most

|K|log(1/6)(log(|K(t)[) + 1)/vr exploitation rounds (Algorithm[2] Lines[17}25) before updating
the change in exploration rounds (Algorithm [2] Lines [OHT3).

Proof of Claim[6] For some set K’ < K, let random variable Y (K’) denote the number of exploitation
samples (i.e., line 6 of Algorithm I giving U(t) = 0) between two nearest exploration samples
(i.e., line 6 of Algorithm [2| giving U(t) = 1) applied for arms a € K’. We denote K()\7) as
the j—th arm explored from set /C(t). After each exploitation sample, IRES-CM runs for each

q€{=M,...,M — 1}. Therefore, the number of exploitation rounds run before all a € k() are
updated is 2M - (Y (KC(t)) + ZIK(M Y (K(H\ULZL K(£)(™). For any subset K’ € K(t), we further

denote random variable Z (K’ ) as Y (K') plus the number of times that exploration is triggered for
any a € K\’ between two nearest exploration rounds applied for arms a € K'.

It is evident that Z (K') is a geometric random variable with time-varying probability p; = ~;|K'|/| K]

of success in each round. Therefore, we have Pr(Z(K') = n) = Hi?il(l — ps). Since for
any z € [0,1], it holds that 1 — z < e™%, by requiring e~"?7 < §, we have [[:27 (1 — p,) <

(1 —pr)™ < e ™PT < 4. In this case,

log(1 log(1
T <5 - pr < — log(1/6) < n > 28U/ _ [KCllog(1/5)
pr K]

Therefore, we have
, IKlog(1/5)> ( ' /Cllog(l/5)>
PrlY(K)Yz—"2)<Pr(Z(K) = ———"——= | <4,
(v = B8 K> =2

which suggests that with probability at least J, we run at most |K|log(1/6)/(yr|K’|) exploitation
rounds before updating (7;(a), é:(a)) for each arm a € K'.

Plugging C(t)\ Uf;ll K()™ in K’, with probability 1 — |K(t)|8

') 51 K@)l
+ Y VEe\ [ Jkm™) < )] |Kl1og(1/0)

= P\ o T
K(t)
|IC\ log(1/9) 1
T ; J
Kl|log(1/d
SR gy + 1) @y
YT
Inequality (3T) holds since
K@) 1 ISOI
Z = f = <1+ log([K(#)]) — log(1). (32)
=1 j Jj=1 J

<.

Notice that there are at most L change points over the entire planning horizon, contributing to T1(m)
for at most 2M L|K|log(1/6)(log(|K|) + 1)/r rounds, with probability at most 1 — [K|Lé. O
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Combining Claim {]and 5] with probability at least 1 — 2M |K| L4,

M-1 R
#U( U 7)
m=—M

2
<L2TN~vp + Ny |6T~yr log ((5>

N AM?L|K|log(1/6)(log(|K]) + 1)
YT

2
AT Ny 1 SLIK] log(1/0) (log ([K]) + 1)
yr

Recall that N = 271og(2/6)/((1 — 1/a)? - Numin) and . = M+/|K|log(1/8)(log(|K]) + 1)/v/Nt,
we further have

#U( U 7o)

m=—M

< 8MLA/|KINT log(1/5)(log(|K|) + 1) = O(LA/|KINT).  (33)

Note that if the DM knows L a priori, then we can set v = M+/L|K|log(1/5)(log(|K]) + 1)/v/Nt,
which results in [7TR (UYL, T'™)| < O(/LIK|NT).

C Proofs

C.1 Proof of Lemma[2.1]

Let 7 be a non-anticipatory feasible policy that achieves the expected optimum opt(DP) in DP, i.e.
IE[ZZ;I Daex Ri(a) X[ (a)] = E[opt(DP)] where X[ is the decision variable under algorithm 7.

We let ,
zi(a) = t _1tl_1]E [ 2 Z Xtﬂ(a)}

t=t;_1+1aek

foreachl = 1,..., L in FA. We claim that {x;}* | is feasible to FA, with objective value equal to
E[Z?zl > uex Ri(a)XT (a)] = E[opt(DP)], which indicates that under {z}}/- ; we have opt(FA) >
E[opt(DP)]. Thus, verifying the claims about the feasibility and the objective value proves the claim.

We first verify the feasibility to FA. Since the policy 7 satisfies the resource constraints, the inequality
Zthl Daerc Ci(a) X[ (a) < B holds. Taking expectation over X[ (a) and Cy(a) fort = t;_; +
1,...,%; gives

E [Z > Ct(a)XZ“(a)l = Zl] >,V (@E[XT (a)]

t=1acek l=1t=t;_1+1ack

Similarly, by taking expectation over each of the reward constraints, we have

E[XT, N Re@X7(@)] = SF (0 — ti1) Yoo O (@)ar(a) = Elopt(DP)].  Hence,
the claim about the objective value is shown, and the Lemma is proved. o

C.2 Proof of Claim[Il
Recall that in Algorithm |1} we try each ¢ € {0,1, ..., M} in a round-robin manner. Then we know
that on each stationary piece [, for at least (¢; — t;_)/M — 1 rounds, we choose ¢ = ¢;* and take

o
fractional decision xl(q’ )* such that l| and (8) hold. By Claiminequality , resources consumed
()%

under decision x; ' * are assigned with resources reserved for intervals {max{m; — 1, —M}, m}'}.
Therefore, for interval m where m;“ =m,
th—ti1
E g =qf) > —F — 1. 34
(@ =4 > F7 GV

teUZL:max{anl,flw} 7-(”> ﬂ{tlfl +17---7tl}
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Recall that if we choose the optimal decision ; on stationary piece [, B} units of resources would
be consumed, i.e. (t; — t1—1) 3, ¢V (a)x¥(a) = Bj. Hence by Claiminequality (7), we have

* B*
W@z (a) = ) eV (a)ef(a) > —L—. (35)
aelkl aelkl b=t
Putting everything together, we have
> Y, rila)ai(a)

teUMZt,, T N{ti—1+1,...,8,} €K
> 3 3 ru(a)ai(a)

tEU;n:max{m—l,—M} 7—(") ﬂ{t171 +1,---1tl} aek

o

> > g = af) ), vV (@) (a)

teUn masfm—1,— a1} T N {ti—1+1,...,t} aek

« M) ()2 4)*

> > g = af) - Y )" ) e

teUn"maxtm—1,-ary T N{ti—1+1,. 01} aek Zaelc c® (a)z; " (a)

B} rO(a)x*(a
> ) g =af) o e T )
- ti—ticr Y, c(a)zf(a)
teUnmaxim—1,—ary T N{ti—1 41,60} ae
_ * @) *
> (tltl_l _ 1) . Bl X Zaelc T([)(“)mi (a) (37)
M+1 alty—ti—1)  Duex W (a)zf(a)

. B N (@st(o) .

2000 1) Y,ep 0D (@)} (a)

Inequality (36) holds by plugging in (33) and (8). Inequality (37) holds by plugging in (34). Inequality
(38) stands since we can assume t; — t;_1 = 2(M + 1) without loss of generality. Because otherwise
we can ignore the stationary pieces where t; — ;1 < 2(M + 1), causing a reward loss of at most
O(M). Following (38), we have

min{m+1,M—1}

S N 1 = w) D S ri(a)a(a)

w=max{m—1,—M} leL tEU%;iM T (m) M{ti—1+1,...,t:} aekl
> 1(mj =m) > 3 re(a)zi(a)
leL teUMZt,, TOO N{ti—141,...,1,} a€K
1 > er®(a)z(a)
> - . 1(m* :m)_ aek l . B¥.
20(M +1) Zﬁ l Sex V(@) (a)

Therefore, for m € {—M, ..., M — 1} such that 7(") = 7'T(n) for n € {max{m — 1,—M}, m}, we
have

min{m+1,M—1
Zw=é1ax{mf1,f}M}ZzeL L(m} = w) Ye =1 Fm Aftrs 1,01} 2uaek Tt(@)T1(a) 1
>
_ Loer T @)z (a) ~ 2a(M + 1)
Ziee 1mi =m) - S O et @ B ol )
(39)
o
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C.3 Proof of Claim

We let 1 = min, {n € {max{m — 1, —M},m}, T < T{™}. Then we have

S S el = ¥ SIS o (a)nia)

teT(m) aek teT(m) “Hack ct(a aek
>a™ > ) ela)wi(a) (40)
teT (m) aek
- B-1
2o | —— -1 41
o (B 1) @

m

Inequality (40) stands since in rounds t € 7™, we have Y, - r¢(a)z¢(a)/ Yok ci(a)zi(a)

[a™, a™*1]. Inequality (41) holds since ZteT(m) ZaelC ci(a)zi(a) = (B =T Nmin)/(2M) — 1 =
(B—-1)/(2M) — 1 by the deﬁmtlon of 7(™), Then we have

min{m+1,M—1}

Z Z 1(m] = w) Z Z ri(a)zi(a)

w={max{m—1,—M}IleL teUf\f;iM T {ti_1+1,...,t1} aell

min{m+1,M—1}

> Z Z 1(m] = w) Z Z ri(a)zi(a)

w={max{m—1,—M}leL teT () N{ti—1+1,...,

1D r(a)z(a) (42)

teT (m) aelC

>o/ﬁ E _ ]_
- oM ’

Inequality (#2) holds since m; € {{max{m} —1,—M}, mj} forallt € {t;,_1 +1,...,t;}. Therefore,

*
. . . ~ *
it is possible to consume resources reserved for interval m € {max{m — 1, —M}, m} under ml(ql )
only when

m} € {max{m—1,—M}, m—1+1} U{m,min{erl,Mfl}} = {max{m—1,—M}, m,min{m~+1, M—1}}.

We also have

® * L
2 1(mzx< _ m) . Zaelc 'r(l)(a)xfk (a) Bl* < amtl. Z Bl* < a™tiB. 43)
leL 2iaex D(a)z] (a) ler

Putting together (42) and (@3), we know that for m € {—M, ..., M — 1} satisfying case (ii), we have
min{m+1,M—1
szx;{nax{m—l,—}lw} Dier LM = w) Yoo (i1 4+1,....t1) 2aaerc Tt(@)Te(a)
Y T (@)} (a)
Liec 10mi =m) - St B
_am-(B-1)/2M) —1)

amtlpB
1— 2M+1
1=
202 M
1—0(1)
> . 44
202 M (9
Inequality (@4) holds since we require B = Q(M ) (see Theorem [3.1). Combining (39) and (44), we
show that
1—0(1)
14) > ——+=. 45
‘Ii G2 (45)
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C.4 Proof of Theorem

Note that for reward-consumption ratio intervals n € {—M, ..., M — 1} where T = 710 pot
all requests assigned to these intervals are necessarily satisfied. This is because resources could run
out due to exploration before >} ., Cs(as) > B/(2M) — 1, i.e., when

T {t eT: Zt] Cs(as) < B— 1} c T T
s=1

It can be seen that requests in rounds (UM LT YNt e T Zb 1Cs(as) < B —1} are
satisfied. Therefore, we decompose the ratio of the IRES CM reward to opt(FA) as follows:

Sy Rilar)  Zwe(U—, F0) NfeeTo!, Culan)<B—1} 2ack ri(a)i* (a)
opt(FA) opt(FA)
H(1)
ZteT Ry(at)

Zte(ufjf:M T ) N{teT:3_, Cu(as)<B-1} Daek Tt(a)fcgqt)* (a)

HQ)

To establish Theorem it suffices to show H(1) = (1 — o(1)) - (opt(FA) —

O(\/LIK|NT))/(10a*M - opt(FA)) (see the forthcoming Section [C.4.1) and H(2) > 1 — o(1)
(see the forthcoming Section .

C.4.1 Bounding H(1)

Recall that 3 #(a ) W*( )/ Sk e(a)2l7* (@) € [a™, a™+1]. We further define "
such that 7, _ 74(a) i % * (a )/ Saex ()2, @)% () € [am”* | ™" *+1]. Likewise, we define
W* % g

, ]. We define

m"* such that 3. ()&% ¥ (@) S, e ()27 (a) € [

Z=jlﬂ{teT:Zt:CS(as)<B—1}.

s=1
Then H(1) can be further decomposed as:

- (qr)
Zte(Uf\f;jM TI) ({teT 30, Cs(as)<B—1} Zaelc Tt(a)xtq *(a)

opt(FA)

H(1) =

ZleLZte( Mo TN Fy Zaelc Tt(a)£§Qt)*(a)

Zleﬁ Ztejl ek r(l)(a)x;“(a)
2%7 1M e Zte( M TN G 1(m§l)* =m) - Dk Tt(a)fgm*(a) 46)
- S e S 1D = ) - Sy (a)
1 Xl Ziee D, 7100) 3 Zvmmanimezcoany Lmi = 0) - Toge re(@32"" (a)

5 st MZMZM 1(mf"* = m) - ¥, r®(a)zf (a)

(47)

Inequality holds since by summing over w € {max{m — 2,—M},... min{m + 2, M — 1}},
we repeat the numerator of (46) for at most 5 times.

We partition set {—M, ..., M — 1} into two disjoint sets M1, Ms. An interval m € M if for all
n € {max{m — 1, —~M},m,min{m + 1, M — 1}}, we have 71(*) = T1") je. 3" - Cy(as) <
B/(2M) — 1. An interval m € My if for some n € {max{m — 1,—M},m mm{m +1,M —1}},
we have 71 < F1(n)
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Regarding m € M. In the following analysis, we focus on the good event that (16), (I7), (I8)
in Lemma E 3[hold for all ¢ € 7. We know that with probability at least 1 — 2|IC\T 6 the good
event holds. On each stationary piece [ € £ and all ¢t € 7, for all rounds t € (UM ! TI(") YN T
such that mgl)* = m, we know that mg * e {max{m — 1,—M},m,min{m + 1, M — 1}} (see
(16) in Lemmam Due to the round-robin technique, at least 1/(M + 1) fraction of all rounds

te (UM j TI(”)) (\Ji,1 € L such that mg * — m are allocated by resources reserved for

intervals n € {max{m — 1, —M}, m, min{m + 1, M — 1}}. Therefore, we have

D D 1m* =m) g =qf) = > 3 1(m"* = m) - 1(q, = g})

lel te(U:,J=7_1]u 'f*l(n)) NJ lel te(Utxxxtl{nL+1 M— 1} Tl(n)) N

n=max{m—1,—

(OE S
2tec e (st M, 7o) nan MO

=

M+1
(48)

We ignore the stationary pieces | where | 7;| < 2M, since this cause a loss of at most O(M).

For m € M, although we have U::riTx_;:ni/[l_—liw} Tin) = U:iznn{lzzzﬁ__liﬂfl(n) (.e.,

Diserion Cslas) < B/(2M) — 1 for all n € {max{m — 1,—M}, m min{m + 1, M — 1}}), it
is not necessary that all requests assigned to intervals {max{m —1,—M},m,min{m + 1, M — 1}}
are satisfied. The resource units reserved for these intervals can run out due to exploration, i.e., when

min{m+1,M—1}

t min{m+1,M—1}
U i—l(va)ﬂ{teT:ECs(as)éB—l}; U 7~'I(n)ﬂ7'.
s=1

n=max{m—1,—M} n=max{m—1,—M}

We define

(T)(m) - Z Z 1(m§l)* =m) - Z rt(a)jgh)*(a)-
leL te(UM2,, TN T\Ti =
Then we have

min{m+2,M—1}

> > S 1m”* =w) Y n(a)F ™ (a)

leL tE(UM IM T‘(n)) N J, w=max{m—2,—M} aelkl
> Z Z l(mgl)* =m)- Z rt(a)a?gq")*(a)
&L te(UM,, TN Gy aek
1 (s .
=2, 2, 1" =m) - Y ri(@)z"* (@) - (1))
el te(UM=,, TN &7 aek
1 (as .
= > 1 = m) - 3 m(@)z{™*(a) - (1)
el te(UM,, TN T aek
1 (g .
>, 2 1m"* =m) - 1a = a) - Y, rel@)ay™ " (a) = (™
L te(Urinlme b Mb T N 7y aek
1 ! .
>a ) L = m) 1a = af) - Y rO (@)t (@) — ()™
[: <Umm{7n+{»1 1%1 i} T[(")) m.yl aclkC
(49)
1 ! .
ST > 1" =m) - ) rO(a)af(a) - (H™. (50)
leL tE(U:mriZ;T{;Ml 1} Tl(n)) N aek
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Inequality (@9) follows from (T7) in Lemma B3] and inequality (50) follows from inequality (#8).
Hence, we have

~(qe)*

l
Zme/\/[l Zleﬁ Zte( M1 ﬁ("))ﬂjl 1(m§ )k _ m) . Zaelc rt(a)xt (a)
l
S men, Diec zm 1(m"* = m) - Yo rO(a)z (a)
l m
ST Doty it Deg(mntrnsion o) 7, 101" = 1) Boere (@ (@) = Zepg, (D

n=max{m—1,

> max or " ,0
Zme./\/tl Zleﬁ Ztejl (mt = m) : Zaelc r(l)(a)xl (a)
l
705(1»“_1) . Zme/\/ll Zl 1 Zte(um‘“{’”“ M1 1} TI(">) N l(mg )# _ m) 'ZaelC r® (a)x?= (a) — |7—713|
> max nomertm = ,0
ZmeMl Zlec Ztejl (mt - m) : ZaelC T(l)(a)x;k (a>
(51)
l M-1  (m
T * Dmeaty Sier Thea 1™ = m) ~2ae,cr<l><a>x7<a> =T (UpZLy, 7o)
= max ;0
Zme/\/{l Zleﬁ Ztej, ( ) Z ICT( )( ) ( )
(52)
OGW/LIKINT
>max{ ) ( (l)|* INT) 7O} w.p. 1 — 2M|K|Lo.
+ meM1 Zleﬁ Ztejl 1(mt = m) . Zaelc T(l)(a)xl* (a)
(53)
Inequality holds since Z%;i 4 (D™ < | TR, Inequality is valid since
min{m+1,M—1} min{m+1,M—1} min{m+1,M—1}
J 7)Na= U 7™ )Na=a VR
n=max{m—1,—M} n=max{m—1,—M} n=max{m—1,—M}

Regarding m € Ma. Suppose in some interval 7 € {max{m — 1, —M},... min{m + 1, M — 1}},
we have Y}, 71 Cs(as) > B/(2M)—1. We aim validate the following two inequalities respectively:

min{m+2,M—1}

> > oo am = w) - Y n(a)i**(a)

lel te(UM 1 ’f’T(?L)) N J, w=max{m—2,—M} aell
- B B
>a 2. (21\4 s -log(1/0) — 4log(1/8) — 1) , (54)
22 1m* = m) - Y rD(a)af(a) < ™2 B, (55)
leL teT; aell

Since given (54) and (B3)).for any interval m € Mo,

min{m+2,M—1 l ~(q¢
imeMs e Zte(uff:—jM TI) N Zw:;&;{m 2,_}M} 1(m§ = W) - Dlaek Tt(a)xﬁq )*(a)

Smerts Sier e Lm"* =m) - 3 e rO (@) (a)

a=1/2 1 1 4log(1/8) + 1
27 . _ - . - =~ 7
am+5/2 <2M Bar - os(1/0) B
am=3/2 1 1 4log(1/8) + 1
27 . PR . - =~ 7
amt5/2 <2M Bar - os(1/0) B
1-o0(1)
~ 204M (56)
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Validating . In our algorithm, for any ¢ € Ui\g;i o T, we have a; ~ x(q') and hence,

E[Ri(a:)|Fi-1] = Dpex rt(a)xgqt)*(a). Therefore, by Lemma , for any 0 € (0,1), with
probability at least 1 — 35, we have

N a@i ™ @)= Y Cila) — 2 Y] Cilar) log(1/8) — 4log(1/6)

teT1(7) aek teT1(R) teT107)
B B
>—— —A/— -log(1/6) — 4log(1/6) — 1. 7
oo\ 1 108(1/8) — tlog(1/0) 57

Inequality holds since B/(2M) — 1 < >}, 1) Cs(as) < B/(2M). Then we have

. Za r ((If) () (e
S Y@t = 3 S S @i o
teFi(n) aek tein 2aek Ct(a ) ( ) aek
n 1/2 Z 2 Ct t)* (58)
teTl(R) aek
R B B
> A=1/2 [ =2 — . — — .
! <2M ” log(1/0) — 41log(1/6) 1) (59)

Inequality holds since for all £ € 7', we have 3", - 7 (a)Zy (ge)% (a)/ Daek Cela)dy (ae)% (a)

a. Then by inequality in Lemma L we have Y - ri(a )& (a)/ZaeIC ci(a)dy sl (a)
a™~1. Inequality follows from inequality ( . We further have

AR\

min{m+2,M—1}

> > oo 1am = w) - Y n(a)i*(a)

leL te(YMt,, TIm ) N J; w=max{m—2,—M} aek

min{m+2,M—1}

> Z Z Z l(mgl)ﬂ< =w)- Z rt(a)i"gqt)*(a)

leL teT1(7) N J, w=max{m—2,—M} aell
min{m+2,M—1}

=) 2 > 1(m{"* = w)- Y ri(a)2("*(a) (60)
l

€L teTI(R) NJ w=max{m72 7]\/1} aelkl

Z DI ITIC (61)
leL te71(R) NJ aclkl
2 > @i ()
teT1(n) aekl
. B B

> a-1/2 | =2 _ 2= . _ _ .
a <2M i log(1/6) — 41log(1/6) 1)

Inequality holds since the total B resource units have not run out before the reserved B/(2M)
resource units for interval 7 run out, i.e.,

t
7N {t €T : ), Cilas) <B— 1} =TT
s=1

Inequality is valid since for t € Tl(ﬁ), we have mg”* = n. Hence, we have

mi"* e {max{n—1,—M},#, min{a+1, M—1}} € {max{m—2, —M},... min{m+2, M—1}}.
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Validating (55). For | € £ such that ¢}* = 0, by in Lemma[B.3] we have
1
2 1m"* =m)- Y rO(a)ef (o)

teJ; acll
ZaEIC,F (a)i'g%*)*(a’) m  m+1 > O]
=21 5 €[a™, 1) -2, r @)z (a)
Zj < Sk (@i (a) &
r®(a)z# (a
_ ZaGIC r(l) (a)‘rl* (a‘) O['m—3/2 aTTL+5/2 . ZaEIC T(l) (a)xzk (a) . C(l) az¥(a
2" (Zae,c Taar@ <) S @@ &t @
<Mt Z Z W (a)zf (a). (62)
teJ; aelC

For [ € £ such that ¢/ > 0, by we have
%
Z ét(a)fciql )*(a) < Mmin aql* S Z C(l) (a’)xzk (a‘)

aelkl aell

S am"* =m) - Y. 1O (a)af(a)

In this case,

teJi aekl
%
sa- Z 1(m§l)* =m)- Z 'f’t(&).’%iql )*(a) (63)
tedy aelkl
oy alaf ) .
= - 1(m§l)* =m)- Dacxc Fr(a)dy (a) ) ét(a)zﬁgql )*(a)

ES
Soexc ée(@)d ) (a) ack

<am+1 . Z 2 ét(a)xgq’ )%

teJ; aek

<a™t?. Z Z W (a)zf (a). (64)

teJ; ae

Putting together (62) and (64)we have

Z 2 1(m§l)* =m)- Z r(a)zf(a) < ™2 Z Z Z (a)z}(a) < a™ %2 . B.

leL te T, aell leL te T, aek
Finally, let us combine the two cases where m € M; and m € Mo, If
D -
Zm}.f s S e Um* = m) - 3o r® (@)t (a) < O(VIIKINT), then (53) = 0 and
we have

1 Zme/\/t2 Zleg Zte( Mo T () 7 ( (UL = m) 'Zaelc Tt((l)i,(fqt)*(a)
Zm=fM Zlec Ztej,, (mt =m)- ZaEIC r( (a)
1 Sty Diee Bie(Ur,, 7o) 10me™™ = m)- Zae,c m( 2" (@) opira) — O(/IKINT)

H(D) >

=

5 Sments Dier Sie Lm"* = m) - 3 e 7O (@) (a) opt(FA)
_1—o(1) op(FA)— O(\/LIK|NT) 65)
~ 104 M opt(FA) '

If ZmeMl Dier Ztej, 1(m§l)* =m)- Y.k r(l)(a)x;"(a) > Q(q/L|IC|NT), then 1' =(1-
o(1))/(a(M + 1)). Then

—o(1) 1- 0(1)} _1-0(1) (66)

1
H(1) > mi , > .
(1) > min { 5a(M + 1) 10a4M |~ 10a4M
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Therefore, we conclude that

1004 M opt(FA)
with probability at least 1 — 2|C|(M L + T)é.

C.4.2 Bounding H(2)

H(2) is to bound the stochastic reward achieved by randomized decision and the expected re-
ward. In IRES-CM, for ¢t € U%;iM T | we have a; ~ f&‘“’*, and hence E[R;(a;)|Fi—1] =
D gk rt(a);i"gqt)*(a). Then by Lemma for any § € (0, 1), with probability at least 1 — §, we

have
> Ry(as) €
teyM-t,, Tiem
2 2 ~(qe)*
- NCBL log s Z Z Z re(a)z,"" (a),
Dler Zte(ufj’:M Fi0) 1 7, Yuer Tt(a); (a) €L 1M1, 10 ) () 7, €K
3 2 ~(qt)*
bt (qe)* log AR Z Z Z re(a)z,”"" (a)
Lier 2uie(UN, 7)1 71 Ziaekc TH(@)T () 1L (M, TIm) N J, aeK

2 2 3 2
- [(1 - ¢ A op) (5)) D -op(EA) <1 . ¢ D) opin) <5)> e °P“FA)1 |

Since H(1) - opt(FA) > (1 — o(1)) - (opt(FA) — O(x/LIK|NT))/(10a*M) = Q(opt(FA)) =
Q(\/LIK|INT). Then it is evident that H(2) > 1 — o(1) with probability at least 1 — 4.

C.5 Proof of Lemma[2.3

C.5.1 Proof of part (a)

The horizon T is partitioned into L = T'/B pieces with equal length B. We consider L instances
with two arms K = {1} and a,,;, and instance n happen with probability p,,. All instances have
deterministic outcomes, and they share the same consumption model C;(1) = 1 for all t € 7. Their
reward functions are:

Instance 1: RV (1) = [ a7, ... a7 F a7 B4 a7t a7t et ],
~
Piece 1 Piece 2 Piece L
Instance 2: R® (1) = [ a7 L, ... a7t a ™t . a7 EF o 0,...,0],
¥VJ
Piece 1 Piece 2 Piece L
Instance L : R¥ (1) = [ o=, ...,a"%,0,...,0,...,0,...,0
—_ e —_———
Piece 1 Piece 2 Piece L

Denote FA(™ as the FA for instance n € {1,...,L}. It is clear that opt(FA(™) = Ba ™. Recall
X¢(1) = 1(Pull 1 in round t). By the Yao’s principle|Yao| (1977), the competitive ratio of any online
algorithm is at most

L (n) T (n)
$ - EVIE AV OX (1), )
n=1

opt(FA™)
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for any p,, = 0 with Z£=1 pn = 1. The expectation E(™) is over the randomness in X in instance n.

The instances are crafted such that during piece j € {1,..., L}, it is impossible to distinguish among
instances j, ..., L, meaning that the quantity BJ(") = E™ [Xtepiece ; Xt(1)] for n € {j,..., L}
are all identical, and equal to a common value B;. Thus, for instance n € {1,..., L} we have

EM [Zthl Rgn)(l)Xt(l)] < ZJL:n Bja~I. Consequently,

By defining p; = =(1-L)p,forn=2,...,L, wehaveforevery j =1,...,L,

1
L(1-1/a)+1/cx
Zjlp a7 < !

" L(1-1/a)+ 1/«

n=1

leading to

ZL:&EP a7 < .
B " SL(1-1/a) + 1/a

j=1 n=1

by the inventory constraint Zle B; < B on instance 1. Since L can generally be larger than
log,, (Mmax/Mmin ), We have shown that the CR can be significantly larger than log,, (fmax/Mmin) When

Thmin
C.5.2 Proof of part (b)

While it is possible to derive a worse bound without 7,,,x by setting it to its upper bound of 1,
knowing the lower bound is essential for our algorithm’s functionality. To show that it is necessary to
know 7min, we suppose the DM be provided with a looser lower range parameter Myin < Mmin <
ri(a), c:(a) Ya,t, and show that it leads to sub-optimal CR.

A general case construction. We firstly construct a case with N + 1 instances when 7, = 3~V
for some absolute constant 5 > 1. We consider N + 1 instances with two arms K = {1} and aqun,
and instance n happen with probability p,,. All instances have deterministic outcomes, and they share
the same reward model R;(1) = 1 for all ¢. Their consumption functions are:

Instance 0: C(©)(1) = 1,...,1
;W__/
Piece 0: B rounds

Instance 1: C’(l)(l) = 1,...,1 ,1/8,...,1/8 |,
——— —

Piece 0: B rounds Piece 1: B-f3 rounds

Instance 2: C'®)(1) = 1,....,1 ,1/8,...,1/8,1/8%,...,1/6° |,
;W__/ /

~
Piece 0: B rounds Piece 1: B- rounds Piece 2: B-32 rounds

Instance N : CM)(1) = 1,....,1 ,1/8,...,1/8,...,1/8N,...,1/8Y
&_\/__J N—_————— N—— | ——e
Piece 0: B rounds Piece 1: B-3 rounds Piece N: B-N rounds

Denote FA™ as the FA for instance n € {0, ..., N}. It is clear that opt(FA(™) = Bj™. Recall
X:(1) = 1(Pull 1 in round t). By the Yao’s principle Yao| (1977), the competitive ratio of an online
algorithm is at most

N (n) T (n)
$ - EPIS AV OX (1), )
n=0

opt(FA™)
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for any p,, = 0 with 227:0 pn = 1. The expectation E(™) is over the randomness in X in instance n.

The instances are crafted such that during piece j € {0, ..., N}, it is impossible to distinguish among
instances j, . . ., N, meaning that the quantity B(") E(™) [ tepicce j c™x, ()] forne {j,...,N}
are all identlcal and equal to a common value B;. Thus, for instance n € {0,..., N} we have

EM [Zthl Rgn)(l)X 1] < Z;V jﬁj Consequently,
j

LB o

= (lfl/ﬂ)pn forn = 1,...,N, we have for every j =

m\m

By defining py =
0,...,N,

1
2(N+1)(1-1/B)+1/B

J ] 1
g+
DI e SV ESY:

leading to

DEDINEE 1
o) B = Pn S(N+1D)(A—-1/8)+1/8

by the inventory constraint Z =0 B; < B oninstance N. Therefore, when the DM is provided with

information 7, = B~ for any N € N, a CR= O(NN) lower bound is derived based on N + 1
instances constructed above.

Not knowing 7,,;,, = A but knowing 7., = —r A We suppose the real underlying 7y, = 3 —A
for some constant A, 7. = 1, but the DM only has weaker prior information that 7,3, = B*”'A
(k > 1 can be set arbitrarily large) and 1,ax = 1. The pattern of (R;, C;) follows the above case, and
therefore, different 7,,;, leads to different number of instances N. The DM only knows the number
of instances is no larger than ~ - A. Then from the DM’s point of view, the optimal CR she/he could
derive is CR= O(x - A); while from the perspective of a clairvoyant who knows the real 7, = 374,
the optimal CR should be ©(A).

We first show that given 7mi, = 374, the DM will not benefit from tightening the value ranges
by blindly guessing a value of ny;,. We suppose the DM blindly tightens the value range to
[ﬂf(K'A*d), 1] for some d > 1, without knowing the real 7,;,. Then he/she derives a CR lower
bound with N + 1 = k- A — d + 1 instances based on the above construction. Then the DM can
expect to achieve a total reward of

I N TIGHT(n) o A—d
TIGHT 1y _ 2un—0 Pn - OPt(FA ) B- A
3 RWOXF ) = Rt = (m-A—d)'

However, since the DM does not know the real 7y, it is possible that in fact Ny, = B_”"A. If this
is indeed the case, the optimal reward can be as large as

N

> o - opt(FA™) = (B - g*)

n=0
based on the above constructed N = & - A instances. Hence, from the DM’s perspective, she/he could
achieve a sub-optimal CR of

N (n)
n—0Pn - Opt(FA A K-A—d
ZTO pTlGHT )=Q Bt ———— ) = QB (k- A —d)),
Zt:l R (1) X/ (1) B-p
if she/he blindly assume 7y, = 8 —(mA=d) Thisis significantly worse than the optimal CR= ©(x-A)

(if in fact i, = B~N). Thus, the DM has no motivation to assume a lower bound larger than the
provided 7min .

Therefore, the DM must derive a CR on the full range [3%*, 1], which involves N + 1 = x - A + 1
instances as constructed above. Therefore the DM expects a reward of ©(B - 352 /(- A)). However,
since in fact there are only A + 1 instances, the DM wastes all her/his resources reserved for instance
A +2,...,k- A+ 1 and she/he can only achieve a reward of O(B - 3% /(k - A)). Compared with
the actual optimal reward Q(B - ) with A + 1 instances, the DM achieves a sub-optimal CR of
Q(k - A). Since & can be arbitrarily large, the CR derived without correct knowledge of 7y, is
significantly worse than the optimal CR= ©(A).
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C.6 Proof of Theorem

We prove Theorem [4.5|by considering 2v + 1 instances, which share the same K = {1}, B € Z~
and T' = B(2v + 1) (All instances have the null arm, as stipulated by our model definition). All
instances have deterministic outcomes, and they share the same consumption model C;(1) = 1 for
all t € 7. By contrast, they differ in the reward model. The horizon 7 is partitioned into 2v + 1
pieces with equal length B. Their reward functions are:

Instance —v: ROV (1) = [ a7, ...,a7 2, a2 a7 b Al |,
~ —_———
Piece —v Piece —v+1 Piece v

Instance —v + 1: ROVIV(1) = [ a7, ... a7, a7 2* a7 2 e, e |,

—
Piece —v Piece —v+1 Piece v
Instance v : R(”)(l) =, a7, e...0e,....6,...,€]|,
—_— —— ——
Piece —v Piece —v+1 Piece v

where € = a3, Denote FA™ as the FA for instance n € {—v, ..., v}. Itis clear that opt(FA(™) =
Ba 7~ Recall X;(1) = 1(Pull 1 in round t). By the Yao’s principle|Yao|(1977), the competitive
ratio of an online algorithm is at most

EM[YL R (1)X(1)]
Z b opt(FA(™)

) (69)

n=—v

for any p,, > 0 with ZT"L:_V pn = 1. The expectation E(™) is over the randomness in X, in

instance n. The instances are crafted such that during piece j € {—v,...,v}, it is impossible to
distinguish among instances —v, . . ., —j, meaning that the quantity Bj(.n) =E®™ [ tepiece j Xt(1)]
for n € {—v,...,—j} are all identical, and equal to a common value B;. Thus, for instance

n e {71/ .,v} we have E("™) [Zthl Rg"’)(l)Xt(l)] < Be + Z;— ,Bjad™" < B-a™¥ +

Bjad™". Consequently,

j=—v
d B-a 43" Bj-al™" Y B ]
j=—v ) J jtn
e =R P
n=—v n=—v
By defining p_, = m = (1-1)pyforn = —v + 1,...,v, we have for every
j=—V,...,U,

Z Pn - ijJrn < 1
2v(l = 1/a) + 1/

leading to

Y B . 1
2 B Z pr- o’ <o (1-1/a) + Ija’ 70)

j=—v n=—v

by the inventory constraint Z;; , Bj < B. Since v = 108, ("jmax/7min)/3, the Theorem is proved.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the contributions made in the paper and important
assumptions and limitations in our abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the important assumption and limitation of our work, which
1S Nin > 0, in Section “Assumption, limitation and discussion”. When we establish
theorems regarding performance guarantees of our algorithms, we also state clearly the
preliminary requirements for them to hold. We promise that we are honest on the limitations
of our algorithm.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We promise that our paper provides the full set of assumptions and a complete
(and correct) proof. Due to the page limit, our proofs are mostly in appendix. In the main
paper, we provide high-level ideas and sketch proofs of our claims, while pointing to the
locations of formal proofs in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We firstly make it clear that our paper is a theoretical paper. We only run
simple experiments for sanity check and drawing insights. We are affirmative that our paper
fully disclose all the information needed to reproduce the main experimental results of the
paper to the extent that it affects the main claims and/or conclusions of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our data are numerically generated and codes can be provided.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experiment does not involve training data, but we have specified the test
details and settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Though the experiment is not as important as theory in our paper, we run the
experiment repeatedly and plot variations of all tests.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiment is very simple and can be run within a few minutes on any
laptop.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This is a theoretical paper. There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does no involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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