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Abstract

Digital watermarking techniques are crucial for copyright protection and source
identification of images, especially in the era of generative AI models. However,
many existing watermarking methods, particularly content-agnostic approaches
that embed fixed patterns regardless of image content, are vulnerable to steganalysis
attacks that can extract and remove the watermark with minimal perceptual distor-
tion. In this work, we categorise watermarking algorithms into content-adaptive
and content-agnostic ones, and demonstrate how averaging a collection of water-
marked images could reveal the underlying watermark pattern. We then leverage
this extracted pattern for effective watermark removal under both greybox and
blackbox settings, even when the collection of images contains multiple watermark
patterns. For some algorithms like Tree-Ring watermarks, the extracted pattern
can also forge convincing watermarks on clean images. Our quantitative and
qualitative evaluations across twelve watermarking methods highlight the threat
posed by steganalysis to content-agnostic watermarks and the importance of de-
signing watermarking techniques resilient to such analytical attacks. We propose
security guidelines calling for using content-adaptive watermarking strategies and
performing security evaluation against steganalysis. We also suggest multi-key
assignments as potential mitigations against steganalysis vulnerabilities. Github
page: https://github.com/showlab/watermark-steganalysis.

1 Introduction

Digital watermarking hides information within digital media, facilitating copyright protection and
source authentication [1–3]. With the advances in AI-based image generation and editing [4–7],
robust and secure digital watermarking is crucial for preventing deepfake misuse or manipulations of
created contents [8, 9].

We categorise digital watermarking methods into two types: content-adaptive and content-agnostic.
Content-adaptive methods take images into the watermarking process, dynamically adjusting the
watermark’s placement and strength based on the image content, as seen in technologies like HiD-
DeN [10] and RivaGAN [11]. Content-agnostic methods, however, use fixed, predefined watermark
patterns independent of or weakly dependent on image content. Apart from traditional methods like
DwtDctSvd [12], this also includes RoSteALS [13] that adds image-independent additive perturba-
tions, and Tree-Ring [14] that places a ring pattern to the initial noise of a diffusion generation process.
Content-adaptive methods typically offer better robustness against image processing distortions, while
content-agnostic methods are computationally lighter and easier to implement.

A fundamental requirement for digital watermarks is robustness, ensuring watermarks cannot be
easily removed or tampered with [2]. To meet the requirement, existing methods have been improving
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watermark robustness through design considerations [14] or data augmentation during training [10],
and have demonstrated strong robustness to various image distortions like noise perturbations or JPEG
compression [15, 14, 16]. Works like Tree-Ring [14] even demonstrated robustness against strong
attacks like VAE compression and image re-generation [17, 18]. In this paper, however, we reveal
that content-agnostic watermarking techniques, including Tree-Ring, are vulnerable to steganalysis
attacks, unmasking their hidden fragility.

To the best of our knowledge, our steganalysis is the first successful blackbox attack against Tree-Ring
watermarks [14]. We discovered a content-agnostic ripple pattern in Tree-Ring-watermarked images
and identified that this component is essential for watermark detection. Subtracting this pattern
allows evading watermark detection with minimal impact on image perceptual quality. This raises
the question: Do diffusion model watermarking methods that modify initial noise [19, 20, 14, 16]
truly add semantic watermarks, or do they merely propagate low-level content-agnostic patterns to
generated images?

Lastly, we propose new security guidelines for the watermarking community, emphasizing the
importance of robustness against steganalysis. The guidelines call for performing evaluations against
steganalysis when proposing new watermarking methods. It also encourages the development of
content-adaptive watermarking methods to enhance resistance to steganalysis. For existing content-
agnostic watermarking methods, we suggest assigning multiple watermarks per user as a mitigation
strategy. In summary, the main contributions of this paper are:

• We reveal the vulnerability of content-agnostic watermarking methods to steganalysis
removal and forgery.

• To the best of our knowledge, we are the first to successfully attack Tree-Ring water-
marks in a blackbox setting, providing deeper insights into the essence of diffusion noise
watermarking methods.

• We propose new security guidelines for future watermarking methods to help defend against
steganalysis attacks.

2 Related works

2.1 Digital image watermarking

The field of digital image watermarking has evolved from traditional rule-based approaches to more
recent deep learning-based techniques, with a significant focus on watermarking diffusion-generated
images [14, 21, 22]. We categorise digital watermarking technologies into content-agnostic, which
craft modifications based solely on the watermark information, and content-adaptive, which tailor
modifications based on both watermark information and the image content.

Content-agnostic watermarking Traditional methods like DwtDctSvd [12] employ fixed wa-
termark patterns in transform domains, while more recent approaches modify the initial noise for
diffusion-based image generation. Tree-Ring watermarks [14] replace the low-frequency Fourier-
domain pixels of Gaussian noise with a ring pattern before using it for diffusion denoising. Similarly,
Gaussian Shading [19] preserves the distribution while sampling the initial noise. Other approaches
[13, 23, 24] train encoders to generate additive watermark perturbations without conditioning on
image features.

Content-adaptive watermarking These techniques leverage image features to generate watermarks
tailored to the input image content. Early encoder-decoder methods like HiDDeN [10] and StegaStamp
[15] employed deep neural networks to imprint watermarks onto the images. SSL [25] leveraged self-
supervised networks as feature extractors, while RivaGAN [11] used attention mechanisms to look
for appropriate local regions for watermark encoding. Recent approaches like Stable Signature [22],
WADiff [21], and Zhao et al. [26] finetune the diffusion model to enable content-aware watermarking
of diffusion-generated images. WMAdapter [27] designs a dedicated contextual adapter.

Through the classification, we highlight the vulnerability of content-agnostic techniques to steganaly-
sis attacks, as they employ fixed or weakly content-dependent watermark patterns.
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2.2 Attacks on watermarking

Traditional attacks applied distortions to disrupt watermarks, performing signal-level distortions like
image compression, noise perturbation, blurring or colour adjustment, and geometric transformations
like rotation or cropping [28–30, 10, 12]. In terms of videos, codecs may also distort invisible
watermarks [31, 32]. These attacks fool watermark detectors at the cost of significant image quality
degradation. To resist such attacks, training-based methods have been simulating the distortions via
"attack layers" during training [10, 33–35], while training-free methods have been employing design
considerations such as watermarking only low-frequency components [14].

Recent attacks base on deep models: regeneration attacks with diffusion models [36] and VAEs
can provably remove pixel-level invisible watermarks [37, 18]. But such attacks are shown to
be ineffective [17] for Tree-Ring [14] that alters the image a lot. When attackers can access the
watermarking algorithm, they may also perform adversarial attacks [38]. The downside is that both
regeneration and adversarial attacks are computationally expensive. In contrast, we propose a new
type of blackbox steganalysis attack, which is efficient and works for content-agnostic watermarks.
Steganalysis can extract meaningful watermark patterns, thus promoting further applications like
forgery or explainability.

3 Watermark steganalysis

3.1 Notations

Let x∅ denote the original digital image, w the watermark information (e.g., bit sequence or geometric
pattern), and E the watermark encoder that imprints w into x∅, yielding the watermarked image xw =
E(x∅, w). The embedding constraint ensures that x∅ and xw are perceptually indistinguishable. A
watermark decoder D recovers the embedded information ŵ = D(xw) for authentication purposes.

3.2 Threat model

The adversary aims to fool D by manipulating xw using a strategy denoted as T (·) such that
D(T (xw)) ̸= w (watermark removal) or manipulating x∅ such that D(T (x∅)) = w (watermark
forgery). Formally, the adversary solves:

Watermark Removal: max
T

∥D(T (xw))− w∥,

Watermark Forgery: min
T

∥D(T (x∅))− w∥,
(1)

subject to the constraint that the original image x and the manipulated image T (x) are perceptually
indistinguishable. Rather than applying strong distortions as T , we demonstrate that the adversary
can take a steganalysis approach to fool D.

3.3 Steganalysis: watermark extraction, removal and forgery

Figure 1 illustrates our watermark removal/forgery strategy T , which assumes that E perturbs an
additive pattern δw agnostic to image content, such that xw = x∅ + δw. This assumption can be
refined based on a detailed understanding of specific watermarking algorithms (as will be showcased
in Section 4.4.1). Under this additive assumption, to either remove or forge watermarks, we can
approximate δ̂w = xw − x∅. To improve approximation and reduce randomness, we propose
averaging over n images during pattern extraction:

δ̂w =
1

n

(
n∑

i=1

xw,i −
n∑

i=1

x∅,i

)
. (2)

With the approximated δ̂w, the adversary can perform greybox watermark removal (x̂∅ = T (xw) =

xw − δ̂w) or forgery (x̂w = T (x∅) = x∅ + δ̂w) on a given image x. Even without paired x∅,
the adversary can perform blackbox removal/forgery by approximating x∅ through averaging any
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Figure 1: Watermark pattern extraction, removal and forgery under the Simple Linear Assumption.
Two groups of paired (greybox) or unpaired (blackbox) images are first averaged and then subtracted
to reveal the watermark pattern. The pattern extracted is then used for watermark removal/forgery.

collection of clean images from the Internet. There is a practical scenario where the adversary’s
watermarked image collection contains multiple different watermarks, we show in Section 4.4.4 that
they can still use Equation 2 for pattern extraction.

4 Experiments

4.1 Experimental setup

Image experiments We evaluate our proposed steganalysis on 12 existing image watermarking
methods: Tree-Ring [14], RingID [16], RAWatermark [23], DwtDctSvd [12], RoSteALS [13],
Gaussian Shading [19], Stable Signature [22], WmAdapter[27], RivaGAN [11], SSL [25], HiDDeN
[10], and DwtDct [12]. For the greybox setting, we use the COCO2017 [39] validation set for
WmAdapter [27] and Stable Signature [22], Stable Diffusion Prompts [40] for Tree-Ring [14] and
RingID [16] prompts, and DiffusionDB [41] for the remaining methods as the non-watermarked
images (x∅). The corresponding watermarked images (xw) are generated using the respective
watermarking methods. In the blackbox setting with no access to paired images, we substitute x∅
with ImageNet [42] test set. The selection of images within the datasets is random. The datasets are
resized to 256×256 for RoSteALS, SSL, and HiDDeN, and 512×512 for other methods.

We assess watermark removal under different n (number of images averaged) during watermark
pattern extraction, and test on 100 images3 during watermark removal. We report detection AUC for
Tree-Ring [14] and RAWatermark [23], and watermark decoding bit accuracy for the other methods.
Additionally, we evaluate the image quality between xw and its non-watermarked counterpart,
reporting PSNR in the main text and SSIM, LPIPS [43], and SIFID [44] in the appendix.

Audio experiments We then extend the experiments to audio watermark removal on AudioSeal
[45] and WavMark [46], using the zh-CN subset of the Common Voice dataset [47]. Each audio
segment is preprocessed to a 16 kHz mono format, with only the first two seconds retained. We use
paired audio for greybox removal, and unpaired audio for blackbox removal. We report the watermark
detection accuracy for AudioSeal [45], and watermark decoding bit accuracy for WavMark [46]. To
quantify the audio quality after watermark removal, we calculate the Scale-Invariant Signal-to-Noise
Ratio (SI-SNR) between the watermark-removed audio and its non-watermarked counterpart.

Computing resources The experiments were conducted on an AMD EPYC 7413 24-Core Processor
and an Nvidia RTX 3090 GPU, requiring around 200GB of disk space. The execution time for each
experiment ranges from around 10 minutes (HiDDeN) to around 10 hours (Tree-Ring).

3Each configuration is tested on 100 images or audio segments to minimise computational cost during
repeated ablation studies on watermark removal and forgery.
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4.2 Quantitative analysis on watermark removal

As shown in Figure 2 (left column), our steganalysis-based watermark removal method effectively
degrades the detection performance of RAWatermark (0.5744 AUC), DwtDctSvd (0.5722 accuracy),
Tree-Ring (0.2407 AUC), RoSteALS (0.2444 bit accuracy), and Gaussian Shading (0.5615 bit
accuracy). The results highlight two key findings: (1) the aforementioned methods embed content-
agnostic watermarks, and (2) content-agnostic watermarks are susceptible to steganalysis-based
removal.

The effectiveness of our method increases as n decreases, albeit at the cost of increased image
distortion (smaller PSNR). In contrast, content-adaptive watermarking methods (Figure 2 right
column) demonstrate robust resistance to this attack, maintaining high detection accuracy (> 0.95)
upon convergence. This resilience underscores the importance of content-adaptivity in watermark
design to thwart steganalysis-based removal attacks.

4.3 Qualitative analysis

In this qualitative analysis, we first examine the patterns extracted from various watermarking
methods, then discuss how the removal of these watermarks affects image quality.

Extracted patterns Figure 9 displays patterns extracted from content-agnostic methods, while
Figure 10 shows those from content-adaptive methods. Content-agnostic watermarks tend to exhibit
unique patterns, like fingerprints. For example, RingID [16] patterns are concentric rings with bright
spots in the centre, DwtDctSvd [12] patterns resemble vertical lines like barcodes, and RoSteALS [13]
patterns appear as grid-like patches with non-uniform illumination. In contrast, patterns extracted
from content-adaptive watermarks are less discernible. Notably, under the greybox setting, the
HiDDeN-extracted [10] pattern converges to zero, indicating completely no discernible pattern.
Furthermore, patterns extracted in the greybox setting contain fewer visual artifacts than those in the
blackbox setting. As more images are averaged, the extracted watermark pattern becomes clearer
and more precise, with fewer residual artefacts from image contents. A more detailed analysis is
presented in Appendix A.3.

Visual quality degradation Figures 12 and 13 show the visual impact of removing content-agnostic
and content-adaptive watermarks, respectively. For all methods but Gaussian Shading [19], under the
greybox setting, when more than 50 images are averaged, virtually no visual artefacts remain after
watermark removal. In the blackbox setting, averaging over 100 images is necessary to eliminate
most artifacts. The exception is Gaussian Shading [19], which consistently produces visible artefacts
because the pattern extracted has a large magnitude. Subtracting this pattern significantly distorts the
image. Appendix A.4 provides a more detailed analysis.

4.4 Case study: Tree-Ring watermarks

To further reveal how steganalysis can be a threat to content-agnostic watermarking algorithms, we
conduct a case study on Tree-Ring watermarks [14]. Tree-Ring is a sophisticated diffusion-based
watermarking algorithm that injects a frequency-domain ring pattern into a Gaussian noise signal
before using this watermarked noise for diffusion-denoising image generation. During detection, it
performs DDIM inversion to recover the injected ring pattern from the initial noise and compares it
to a reference pattern. In the following experiments, we demonstrate that with minimal modifications,
we can both remove and forge Tree-Ring watermarks under different scenarios.

4.4.1 Low-level content-agnostic pattern in Tree-Ring

This section focuses on revealing the low-level content-agnostic component of Tree-Ring watermarks
[14]. First, we curate a specific steganalysis for Tree-Ring’s detection algorithm, demonstrating how
tailored steganalysis more accurately extracts watermark patterns than generic averaging. We then
compare the extracted watermarks with the ground truth to showcase this low-level component.

Our steganalysis incorporates the DDIM inversion steps from Tree-Ring’s detection process. By
inverting watermarked images to the DDIM-inverted latent space and averaging them, we obtain
patterns (Figure 3, second row). As more images are averaged, these patterns closely resemble those

5

56648 https://doi.org/10.52202/079017-1804



0200.20.40.60.81

NR 5 10 20 50 100 200 500 1k 2k 5k

Performance Metric (Blackbox) Performance Metric (Greybox) PSNR (Blackbox) PSNR (Greybox)

All horizontal axes: n (number of images averaged during pattern extraction)

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

A
U

C
Tree-Ring

0

10

20

30

40

50

60

70

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

A
U

C

RAWatermark

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

DwtDctSvd

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

RoSteALS

9

9.2

9.4

9.6

9.8

10

10.2

10.4

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

Gaussian Shading

0

5

10

15

20

25

30

35

0.88

0.92

0.96

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

Stable Signature

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

RivaGAN

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

SSL

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k
P

S
N

R
 (

d
B

)

B
it

 A
c
c

HiDDeN

0

10

20

30

40

0.98

0.99

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

DwtDct

0

10

20

30

40

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

B
it

 A
c
c

WmAdapter

10.5

11

11.5

12

12.5

13

13.5

14

0

0.2

0.4

0.6

0.8

1

NR 5 10 20 50 100 200 500 1k 2k 5k

P
S

N
R

 (
d

B
)

D
e
t 
A

c
c

RingID

Figure 2: Performance of watermark detectors under steganalysis-based removal. Performance
metrics include AUC (watermark verification AUC), Bit Acc (bit accuracy, percentage of correctly
decoded bits), and Det Acc (detection accuracy, accuracy of fully recovered watermark). The plots
also illustrate the corresponding PSNR as a measure of image quality degradation. The left/right
columns show content-agnostic/content-adaptive methods, respectively. NR denotes the case without
removal, reflecting the decoder’s inherent performance.
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Figure 3: Visualisation of Tree-Ring-extracted watermark patterns. Top: Pattern extracted from
DDIM-inverted latents without subtracting x∅. The first and second rows are Fourier transform pairs.
Bottom: Pattern extracted in image space under greybox and blackbox settings, akin to Figure 9.

Steganalysis Noise Blur Brightness

Figure 4: Tree-Ring detection AUC against quality metrics for steganalysis-based removals (n =
5000) and image distortions. Steganalysis-based removals (blue) cluster bottom-left, indicating
effective watermark removal with comparatively low quality degradation.

extracted under greybox or blackbox settings, manifesting as ripples spreading from the corners and
forming aliasing patterns in the centre, reminiscent of superpositioned 2D sinc functions.

In the Fourier domain (Figure 3, first row), these patterns display a clear ring structure nearly identical
to the ground truth. The high similarity between the ground truth and the patterns extracted from
both the image and DDIM-inverted latent domains indicates that Tree-Ring likely propagates a
content-agnostic ripple pattern throughout the image generation process, slightly but directly
revealing it in the generated images. This insight enables us to fool Tree-Ring’s watermark detector
by simply subtracting this ripple pattern, effectively removing the watermark information.

4.4.2 Comparison with distortion-based removal techniques

To compare perceptual quality degradation between our method and distortion-based ones, in Figure
4, we plot Tree-Ring’s AUC versus qualitative metrics varying signal strengths during watermark
subtraction. In all four plots, the steganalysis-based watermark removal curves clustered in the
bottom-left corner, indicating that effective steganalysis can remove watermarks with significantly
less image quality degradation compared to distortion-based methods. Note that although in Section
4.2, the excess performance degradation under small n is believed to be caused by excess distortions
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Table 1: Tree-Ring [14] detection accuracy at 1% FPR for watermark removal and forgery. NRmv
represents "no removal".

# Imgs Avged NRmv 5 10 20 100 200 500 1000 2000 5000
Removal 1.00 0.08 0.09 0.13 0.13 0.13 0.14 0.14 0.14 0.14
Forgery 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tampered images (watermarked images after removal/clean images after forgery)

Tree-Ring watermarked images Clean images Tree-Ring TPR@1%FPR threshold

R
e
m
o
v
a
l

F
o
r
g
e
r
y

Figure 5: Histograms of distance to reference watermarking pattern for Tree-Ring watermark removal
(top) and forgery (bottom). For removal, averaging more images pushes the watermark-removed
images (green) away from the true watermarked images (orange). For forgery, oppositely, this
increases the similarity of forged images (green) to true watermarked images (orange). Red dashed
lines are thresholds τ at 1% FPR.

introduced due to imperfect pattern extraction, in this section, we demonstrate that distortions
generally do not help remove watermarks. Appendix A.2 visualises images under these distortions.

4.4.3 Watermark forgery

We demonstrate the ability to forge Tree-Ring watermarks (x̂w = x∅ + δ̂w) on non-watermarked
images, in addition to watermark removal (x̂∅ = xw − δ̂w). Table 1 shows the forged watermarks
completely deceive Tree-Ring’s detection. Figure 5 shows forged watermarks exhibit slightly larger
distances compared to authentic watermarked images. However, when n is large (500 images), the
forged images overlap with true watermarked images in the histogram, precluding threshold-based
separation, thereby demonstrating Tree-Ring’s vulnerability to steganalysis-based watermark forgery.

4.4.4 Effectiveness of removal under multiple watermarks

We study a heterogeneous scenario where the adversary’s image collection contains multiple different
watermark patterns. When there are more patterns in the adversary’s image collection, the detection
AUC rises while the PSNR drops, indicating decreased steganalysis removal efficacy. Mixing three
different watermark patterns increases Tree-Ring’s detection AUC from below 0.2 to above 0.7 in
both greybox and blackbox settings with n = 5000, indicating that mixing watermarking keys could
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Figure 6: Ablation study on watermark removal performance with Tree-Ring [14] when the adver-
sary’s image collection contains multiple watermark patterns.
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Figure 7: Impact of steganalysis-based removal on audio watermark detection. The plot shows
watermark detection accuracy (Det Acc) for AudioSeal [45] and bit accuracy (Bit Acc) for WavMark
[46]. SI-SNR values indicate audio quality changes post-removal. NR represents the baseline
performance without any removal attempts.

improve security against simple steganalysis-based watermark removals. Nevertheless, the remaining
0.3 gap to perfectness still demonstrates the vulnerability of content-agnostic watermarking. We
highlight that assigning multiple watermarks serves as a mitigation and cannot fundamentally address
the steganalysis vulnerability. (Appendix A.6 gives more cases).

4.4.5 Summary

In this case study, we rooted Tree-Ring’s security vulnerabilities in its use of low-level content-
agnostic ripple patterns as watermarks, rather than solely from semantic watermarking. This enables
us to successfully fool Tree-Ring watermark detection with minimal impact on perceptual quality.
Although it exhibits strong robustness to distortions [14] and regeneration attacks [18, 17], through
steganalysis-based removal, we are the first to effectively remove Tree-Ring watermarks without
access to the algorithm.

4.5 Audio watermark steganalysis

The distinction between content-agnostic and content-adaptive watermarks extends beyond images,
applying equally to other media like audio. To test the generality of our steganalysis approach, we
extend the experiments to two audio watermarking methods: AudioSeal [45] and WavMark [46].

Following the methodology outlined in Section 3.3, we extract audio watermark patterns by averaging
in the time domain. Figure 7 illustrates the efficacy of this approach on audio watermarks. Similar
to content-agnostic image watermarks, our steganalysis-based removal significantly impairs the
performance of AudioSeal, reducing its detection accuracy from a perfect 1.0 to around 0.75 in both
greybox and blackbox settings. This decline underscores AudioSeals’s vulnerability to our simple
averaging-based steganalysis.

Interestingly, for WavMark, subtracting the averaged pattern counterintuitively improves its bet
accuracy from below 0.8 to a perfect 1.0 when n is large. While the complexity of WavMark’s
algorithm precludes definitive conclusions from this experiment, the pattern extracted under large n
showcased the existence of the systematic bias and its correlation with the watermark information.
Although our method does not directly "remove" WavMarks’ watermark in the traditional sense, the
observed behaviour raises questions about its resilience to more sophisticated steganalysis attacks.

In both cases, smaller n values lead to lower watermark detection rates and lower SI-SNR values,
demonstrating coarsely extracted patterns further degrading detection performance with additional
audio quality distortions. This mirrors our finding in the image domain, highlighting the importance
of sufficient large n for more accurate watermark pattern extraction across different media types.

5 Guidelines towards steganalysis-secure watermarking

Our analysis demonstrates that content-agnostic watermarking methods like Tree-Ring [14] are
vulnerable to steganalysis-based attacks. Although these methods claim robustness by demonstrating
strong resistance against distortions (e.g., blurring or noise perturbations), adversaries may still
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remove the watermark through steganalysis, thus compromising their robustness. Our experiments
reveal that even complex, highly nonlinear methods based on deep neural networks are susceptible to
steganalysis-based watermark removal.

To avoid such threat, future watermarking algorithms shall use content-adaptive watermarking
methods. One approach is to incorporate image features while encoding watermark information. For
example, HiDDeN [10] and RivaGAN [11] introduce image features into the watermark encoder
through concatenation and attention, respectively. For existing content-agnostic methods, assigning
multiple watermarks per user can mitigate but not fundamentally solve steganalysis threat.

While we performed simple averaging steganalysis on RGB images and 16 kHz monophonic audios,
watermarking methods should resist more complex techniques, such as steganalysis in various colour
spaces or different transform domains. Evaluating security against diverse steganalysis models,
analogous to robustness tests against distortions, is crucial for developing secure watermarking
algorithms. These two aspects form our security guidelines:

1. Ensure watermarks are content-adaptive to resist steganalysis attacks.

2. Evaluate watermark against steganalysis to ensure robustness.

6 Conclusions

This work has revealed the vulnerability of content-agnostic watermarking algorithms to steganalysis
attacks. We have demonstrated effective watermark removal and forgery techniques under both
greybox and blackbox settings across twelve watermarking methods, including recent deep-learning
approaches. Our findings extend to audio watermarking methods as well. To address these threats,
we propose security guidelines that encourage exploring content-adaptive watermarking methods
and evaluating them against steganalysis attacks. We have also proposed temporary mitigations
for existing content-agnostic methods. Only by addressing the vulnerability to steganalysis can we
develop secure and robust digital watermarking systems capable of safeguarding the integrity of
digital content in the era of generative AI.

Limitations and ethical considerations Steganalysis-based watermark removal/forgery is only
effective against content-agnostic watermarking, not content-adaptive techniques. Responsible devel-
opment and deployment of steganalysis technologies are crucial, adhering to fairness, accountability,
and transparency principles to prevent misuse for unwarranted surveillance or privacy violations.

Broader impacts The proposed steganalysis attack and security guidelines extend beyond image
watermarking. They apply to watermarking other media like video [48], audio [49], 3D models [50–
52], and to other domains. Our proposed guidelines and mitigation strategies strengthen watermarking
security, contributing to a safer digital environment.
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A Supplementary Materials

A.1 Watermark implementation details

Tree-Ring watermarks [14] are implemented following the corrected version proposed by RingID
[16] under the verification setting. In comparison, the original Tree-Ring watermarks exhibited an
issue where the watermark pattern actually injected into the initial noise pattern was inconsistent with
the pattern claimed by Tree-Ring [14].

Our implementation adopts the original ring pattern proposed by Tree-Ring [14] with radii from 0
to 10, but the ring pattern is centred at the origin in the Fourier domain, following the correction
proposed by RingID [16]. To ensure lossless watermark injection, we discard the imaginary part of
the sampled watermark pattern during watermark detection. This lossless injection ensures that the
watermark pattern actually injected matches the reference pattern used during detection.

RingID [16] is implemented using patterns with radii ranging from 3 to 14 in the identification
setting.

A.2 Perceptual quality of images under distortions

The distortions applied in plotting Figure 4 are violent, as visualised in Figure 8. Blurring with a
radius of 13 renders the cat’s eyes invisible. Perturbing with σ = 100 noise eliminates the cat’s
pattern. Upscaling the brightness to eight times overexposes the entire background. However, as
shown in Figure 4, none of these distortions can defeat Tree-Ring’s detector, but steganalysis-based
watermark removal can. This is possibly due to Tree-Ring’s large-scale content-agnostic ripple-like
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Figure 8: Visualisation of images under different strengths of steganalysis-based watermark removal
(blackbox, n = 5000) and image distortions. We amplify the signal strength of the extracted pattern
by multiplication with a factor.
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patterns according to our analysis in the main paper. This demonstrates that steganalysis-based
watermark removal effectively captures the vulnerability of the watermarking method through the
extracted pattern, even without knowledge about the watermarking algorithm. Subsequently, it
highlights that Tree-Ring’s robustness to distortions is a Maginot Line that can be breached with
steganalysis attacks.

A.3 More visualisations of patterns extracted

In the main text, we have visualised the patterns extracted from content-agnostic watermarking
methods. In this section, we present a more comprehensive visualisation of patterns extracted
from content-agnostic methods in Figure 9, along with visualisations of the patterns extracted from
content-adaptive watermarking techniques, as depicted in Figure 10.

While subtracting these patterns from watermarked images may not effectively circumvent the
watermark detection process, the extracted patterns still exhibit regularities. By averaging 5000
images, the patterns extracted from both Stable Signature [22] and WmAdapter [27] display mild
repetitive grid-like structures, suggesting that images watermarked with this technique may share
commonalities at specific frequency components. For such repetitive patterns, it would be worth
exploring whether they are caused by the patching mechanism of the transformer architecture. Patterns
extracted by RivaGAN [11] exhibit a greenish tint, indicating RivaGAN introduces a systematic bias
during the watermarking process despite content-adaptive components. The patterns extracted by SSL
[25], similar to RAWatermark [23], are biased towards a specific noise distribution. However, while
RAWatermark [23] is vulnerable to steganalysis-based removal, SSL [25] demonstrates robustness
against such attacks. As the parameter n increases, the noise components in the patterns extracted by
HiDDeN [10] transition towards a greyish hue and eventually diminish. By the gray-world assumption
principle, this observation suggests that HiDDeN best incorporates content-adaptive watermarks into
the images. Under spatial domain averaging, DwtDct [12] reveals nothing but a tiny systematic bias,
which aligns with the fact

We also visualise audio patterns extracted from AudioSeal [45] and WavMark [46] in Figure 11.
When n = 5000, the greybox AudioSeal-extracted pattern is highly imperceptible, with a signal
strength below -45dB relative to the cover media. However, directly subtracting this pattern in the
time domain significantly reduces the watermark detection accuracy by 30%. In contrast, WavMark-
extracted patterns have larger amplitudes, indicating that WavMark also introduces a systematic bias
during the watermarking process. Moreover, greybox-extracted WavMark patterns concentrate within
the first second, which aligns with WavMark’s method of adding watermark patterns at one-second
intervals. This exposes WavMark’s watermarking locations, allowing an adversary to potentially
remove the watermark by simply clipping out these segments. The spectrograms further show that
WavMark mainly adds watermarks below 6 kHz, which could represent the robustness threshold
it was trained to withstand against low-pass filtering. In summary, although both methods claim
robustness against various distortion-based attacks, their vulnerabilities can be easily exposed through
simple steganalysis techniques.

A.4 Perceptual quality of images after watermark removal

In the main text, we analyzed the perceptual quality of Tree-Ring watermarked images after watermark
removal. We now visualise content-agnostically watermarked images after watermark removal in
Figure 12, and content-adaptively watermarked images after watermark removal in Figure 13.

From these two figures, we can observe that except for Gaussian Shading [19], images carrying
different watermarks, after watermark removal, have nearly identical visual quality. The visual
quality is predominantly related to n, the number of images averaged during pattern extraction.
In the greybox setting, when n > 50, there are no visually apparent artefacts. In the blackbox
setting, n > 100 is generally required for eliminating significant artefact patterns. For images with
Gaussian Shading [19] watermarks, due to the large magnitude of the extracted watermark pattern
itself, steganalysis-based removal inevitably causes significant changes to the image content, thereby
reducing perceptual quality. This leads to two insights:

1. For adversaries, averaging more images allows for a better approximation of an effective
content-agnostic watermark pattern that can be used for watermark removal;
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Figure 11: Visualisation of audio patterns extracted. Each subplot contains a time-domain audio
signal (top) and its spectrogram (bottom). Amp stands for (time-domain) audio signal amplitude. The
amplitudes are normalised to within [-1, 1].

2. For watermark distributors, reducing the count of distributing the same watermark could
lower the security risk posed by steganalysis.

A.5 More results on quantitative analysis on watermark removal

In Section 4.2, we primarily discussed the Peak Signal-to-Noise Ratio (PSNR) as a measure of image
distortion resulting from our steganalysis-based watermark removal method. To provide a more
comprehensive assessment of the impact on visual quality, we also evaluated three additional metrics:
Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Single
Image Fréchet Inception Distance (SIFID).

Tables 2-13 present the performance of various watermarking methods under our steganalysis-based
removal attack, along with the corresponding image quality metrics. The trends observed in PSNR
are largely mirrored in the additional metrics:

Content-Agnostic Methods For methods like Tree-Ring [14], RingID [16], RAWatermark [23],
DwtDctSvd [12], and RoSteALS [13], all metrics show a consistent trend: as the number of images
averaged (n) decreases, watermark removal becomes more effective (lower detection rates), but at the
cost of increased image distortion (lower PSNR, SSIM, and higher LPIPS, SIFID).

For example, in the case of RAWatermark (Table 4, Blackbox setting), as n decreases from 5000 to 5,
the AUC drops from 0.574 to 0.133, indicating more effective watermark removal. However, this
comes at the cost of image quality: PSNR drops from 27.98 to 17.92, SSIM from 0.964 to 0.528,
while LPIPS increases from 0.020 to 0.424, and SIFID from 0.022 to 1.401, all indicating significant
visual degradation.
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Figure 12: Visualisation of content-agnostically watermarked images after watermark removal.
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Figure 13: Visualisation of content-adaptively watermarked images after watermark removal.
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Figure 14: Ablation study on watermark removal performance with DwtDctSvd [12] when the
adversary’s image collection contains multiple watermark patterns.

Content-Adaptive Methods In contrast, content-adaptive methods like Stable Signature [22],
WmAdapter [27], RivaGAN [11], and SSL [25] maintain good detection performance (bit accuracies
> 0.95) even as n decreases, with the image quality metrics also show minimal degradation. For
instance, SSL (Table 11, greybox setting) maintains a high bit accuracy (0.895 at n = 5) while
preserving image quality: PSNR (34.26), SSIM (0.920), LPIPS (0.048), and SIFID (0.048) are all
close to the no-removal (NRmv) values. This could be due to that the systematic biases averaged out
from content-adaptive methods are mild, so subtracting such mild patterns from the original images
would not lead to significant perturbations.

A.6 Effectiveness of removal under multiple watermarks

In Section 4.4.4, our case study on Tree-Ring [14] demonstrated that when an adversary’s image
collection contains a mix of several different watermark patterns, the effectiveness of watermark
removal is significantly reduced. Based on this finding, we proposed assigning multiple keys as a
mitigation strategy against steganalysis threats. However, in this section, we caution that this approach
is not a universal solution and should be applied judiciously. The high complexity of watermarking
algorithms means that this method cannot guarantee enhanced watermark security. To illustrate this,
we replicate our experiment using the DwtDctSvd [12] algorithm.

Figure 14 shows that in the greybox scenario, DwtDctSvd behaves similarly to Tree-Ring: as the
adversary’s image collection incorporates more diverse watermarks, watermark removal becomes less
effective without significantly impacting image quality. Interestingly, this strategy fails in the blackbox
setting. When the adversary’s collection mixes more than 4 watermarks, DwtDctSvd’s detection
accuracy surprisingly drops below 0.1. While the reasons behind this phenomenon warrant further
investigation, this observation underscores our main point: assigning multiple watermarks per user is
merely a temporary workaround to bolster current content-agnostic watermarking algorithms. It does
not address the fundamental vulnerabilities of these algorithms and may even be counterproductive in
certain scenarios. Therefore, watermark distributors should employ this method cautiously and at

Table 2: Performance (AUC) of Tree-Ring [14] under steganalysis-based removal and the correspond-
ing image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

AUC 1.000 0.293 0.267 0.314 0.275 0.214 0.228 0.211 0.224 0.224 0.241
PSNR 15.62 12.91 14.00 14.43 14.99 15.24 15.33 15.42 15.43 15.46 15.47
SSIM 0.555 0.298 0.355 0.431 0.482 0.512 0.528 0.540 0.545 0.547 0.548
LPIPS 0.411 0.609 0.566 0.514 0.472 0.451 0.440 0.430 0.427 0.425 0.425
SIFID 0.375 1.205 0.751 0.461 0.409 0.392 0.396 0.402 0.404 0.404 0.404

greybox

AUC 1.000 0.141 0.179 0.246 0.260 0.213 0.251 0.237 0.230 0.241 0.259
PSNR 15.62 14.64 14.97 15.33 15.53 15.58 15.63 15.65 15.66 15.66 15.67
SSIM 0.555 0.346 0.401 0.473 0.511 0.531 0.542 0.549 0.551 0.552 0.553
LPIPS 0.411 0.554 0.523 0.479 0.449 0.433 0.422 0.415 0.413 0.412 0.412
SIFID 0.375 0.955 0.588 0.402 0.367 0.364 0.367 0.371 0.372 0.373 0.373
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Table 3: Performance (decoding accuracy) of RingID [16] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Dec Acc 1.000 0.180 0.100 0.140 0.110 0.110 0.130 0.130 0.130 0.130 0.130
PSNR 13.06 11.70 12.21 12.62 13.01 13.12 13.19 13.24 13.26 13.28 13.28
SSIM 0.459 0.240 0.276 0.345 0.392 0.418 0.430 0.441 0.446 0.448 0.449
LPIPS 0.460 0.595 0.564 0.523 0.495 0.483 0.479 0.477 0.475 0.475 0.475
SIFID 0.250 0.613 0.380 0.266 0.258 0.255 0.259 0.260 0.260 0.259 0.259

greybox

Dec Acc 1.000 0.070 0.050 0.100 0.090 0.110 0.130 0.120 0.130 0.140 0.140
PSNR 13.06 12.19 12.72 13.08 13.28 13.31 13.34 13.36 13.37 13.37 13.37
SSIM 0.459 0.245 0.293 0.368 0.410 0.430 0.440 0.446 0.449 0.450 0.451
LPIPS 0.460 0.574 0.545 0.509 0.486 0.477 0.472 0.470 0.469 0.469 0.469
SIFID 0.250 0.591 0.352 0.253 0.239 0.241 0.243 0.244 0.245 0.245 0.246

Table 4: Performance (AUC) of RAWatermark [23] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

AUC 0.714 0.133 0.205 0.219 0.315 0.379 0.394 0.494 0.540 0.566 0.574
PSNR 28.83 17.92 20.67 22.38 24.86 27.21 28.14 29.15 27.81 27.86 27.98
SSIM 0.928 0.528 0.659 0.764 0.862 0.916 0.939 0.960 0.959 0.961 0.964
LPIPS 0.028 0.424 0.327 0.236 0.149 0.096 0.065 0.036 0.028 0.022 0.020
SIFID 0.017 1.401 0.696 0.286 0.102 0.047 0.039 0.022 0.024 0.023 0.022

greybox

AUC 0.714 0.500 0.501 0.501 0.501 0.501 0.502 0.502 0.502 0.502 0.502
PSNR 28.83 52.64 52.55 53.02 54.96 56.78 57.37 57.65 57.65 57.68 57.67
SSIM 0.928 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
LPIPS 0.028 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SIFID 0.017 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 5: Performance of DwtDctSvd [12] under steganalysis-based removal and the corresponding
image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 1.000 0.485 0.494 0.534 0.526 0.548 0.340 0.482 0.478 0.428 0.572
PSNR 37.59 17.89 20.58 22.28 24.67 26.88 27.74 28.62 27.41 27.46 27.57
SSIM 0.975 0.521 0.650 0.753 0.847 0.900 0.923 0.942 0.941 0.943 0.945
LPIPS 0.019 0.426 0.330 0.240 0.154 0.102 0.071 0.044 0.037 0.032 0.030
SIFID 0.017 1.401 0.704 0.296 0.113 0.057 0.048 0.030 0.033 0.031 0.030

greybox

Bit Acc 1.000 0.639 0.562 0.541 0.585 0.580 0.531 0.480 0.470 0.401 0.317
PSNR 37.59 37.74 38.21 38.38 38.47 38.61 38.67 38.70 38.71 38.69 38.67
SSIM 0.975 0.967 0.972 0.973 0.974 0.976 0.976 0.976 0.976 0.977 0.977
LPIPS 0.019 0.018 0.015 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013
SIFID 0.017 0.012 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009

Table 6: Performance (bit accuracy) of RoSteALS [13] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.994 0.402 0.394 0.390 0.360 0.322 0.273 0.245 0.241 0.243 0.244
PSNR 28.00 17.51 19.81 21.19 22.94 24.38 24.87 25.37 24.68 24.71 24.77
SSIM 0.858 0.457 0.566 0.661 0.747 0.794 0.816 0.833 0.834 0.836 0.838
LPIPS 0.039 0.395 0.305 0.224 0.149 0.109 0.087 0.068 0.065 0.061 0.059
SIFID 0.048 1.606 0.795 0.347 0.145 0.095 0.090 0.074 0.077 0.075 0.074

greybox

Bit Acc 0.994 0.225 0.254 0.274 0.272 0.262 0.240 0.229 0.230 0.236 0.238
PSNR 28.00 26.88 27.68 28.08 28.29 28.39 28.40 28.42 28.43 28.44 28.44
SSIM 0.858 0.750 0.805 0.831 0.846 0.852 0.855 0.856 0.856 0.857 0.857
LPIPS 0.039 0.153 0.099 0.071 0.054 0.047 0.045 0.045 0.045 0.044 0.045
SIFID 0.048 0.140 0.072 0.056 0.050 0.049 0.049 0.049 0.049 0.049 0.049
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Table 7: Performance (bit accuracy) of Gaussian Shading [19] under steganalysis-based removal and
the corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.999 0.490 0.469 0.537 0.488 0.486 0.479 0.461 0.463 0.465 0.462
PSNR 9.726 9.485 9.754 9.844 9.956 10.09 10.11 10.13 10.12 10.12 10.12
SSIM 0.322 0.164 0.197 0.242 0.268 0.286 0.294 0.301 0.305 0.306 0.307
LPIPS 0.613 0.686 0.672 0.648 0.636 0.631 0.632 0.632 0.632 0.631 0.632
SIFID 0.471 0.831 0.604 0.478 0.449 0.443 0.443 0.444 0.444 0.444 0.443

greybox

Bit Acc 0.999 0.507 0.501 0.540 0.490 0.490 0.479 0.462 0.461 0.462 0.462
PSNR 9.726 9.552 9.791 9.961 10.03 10.11 10.14 10.16 10.16 10.17 10.17
SSIM 0.322 0.161 0.196 0.248 0.273 0.290 0.298 0.302 0.305 0.306 0.306
LPIPS 0.613 0.669 0.660 0.639 0.630 0.626 0.626 0.627 0.627 0.627 0.627
SIFID 0.471 0.802 0.597 0.474 0.449 0.444 0.439 0.437 0.438 0.438 0.438

Table 8: Performance (bit accuracy) of Stable Signature [22] under steganalysis-based removal and
the corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.998 0.929 0.970 0.994 0.998 0.998 0.998 0.998 0.998 0.998 0.998
PSNR 30.28 15.75 19.46 22.23 23.99 25.15 26.31 28.88 29.62 29.87 29.85
SSIM 0.879 0.526 0.613 0.698 0.768 0.805 0.831 0.861 0.869 0.873 0.874
LPIPS 0.049 0.437 0.357 0.254 0.168 0.120 0.091 0.065 0.057 0.054 0.052
SIFID 0.068 1.015 0.575 0.246 0.143 0.115 0.106 0.086 0.077 0.074 0.072

greybox

Bit Acc 0.998 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
PSNR 30.28 29.05 29.80 30.28 30.45 30.51 30.52 30.53 30.54 30.54 30.55
SSIM 0.879 0.790 0.833 0.860 0.871 0.875 0.876 0.877 0.878 0.878 0.878
LPIPS 0.049 0.167 0.115 0.074 0.056 0.052 0.050 0.050 0.049 0.049 0.049
SIFID 0.068 0.152 0.095 0.074 0.069 0.068 0.067 0.067 0.067 0.067 0.067

Table 9: Performance (bit accuracy) of WmAdapter [27] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.902 0.825 0.873 0.888 0.897 0.898 0.903 0.902 0.903 0.903 0.903
PSNR 35.18 15.74 19.67 22.75 24.80 26.17 27.74 31.78 33.13 33.60 33.60
SSIM 0.960 0.571 0.667 0.761 0.836 0.876 0.905 0.939 0.948 0.952 0.953
LPIPS 0.010 0.338 0.269 0.171 0.093 0.049 0.029 0.016 0.013 0.012 0.011
SIFID 0.004 0.318 0.155 0.050 0.023 0.016 0.015 0.010 0.007 0.006 0.006

greybox

Bit Acc 0.902 0.904 0.904 0.902 0.902 0.903 0.903 0.903 0.903 0.904 0.903
PSNR 35.18 34.12 34.70 35.04 35.18 35.22 35.23 35.25 35.26 35.26 35.26
SSIM 0.960 0.924 0.942 0.952 0.956 0.957 0.958 0.958 0.959 0.959 0.959
LPIPS 0.010 0.033 0.018 0.012 0.011 0.010 0.010 0.010 0.010 0.010 0.010
SIFID 0.004 0.007 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Table 10: Performance (bit accuracy) of RivaGAN [11] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.973 0.738 0.800 0.864 0.902 0.930 0.946 0.959 0.961 0.963 0.967
PSNR 39.84 17.91 20.63 22.35 24.79 27.07 27.96 28.91 27.63 27.69 27.80
SSIM 0.979 0.525 0.654 0.757 0.851 0.904 0.925 0.945 0.944 0.946 0.948
LPIPS 0.036 0.426 0.331 0.243 0.159 0.110 0.083 0.059 0.054 0.050 0.049
SIFID 0.067 1.465 0.773 0.362 0.176 0.118 0.108 0.088 0.089 0.087 0.085

greybox

Bit Acc 0.973 0.972 0.973 0.972 0.972 0.972 0.972 0.972 0.972 0.973 0.973
PSNR 39.84 39.61 40.01 40.17 40.26 40.30 40.29 40.28 40.28 40.27 40.27
SSIM 0.979 0.974 0.977 0.978 0.979 0.980 0.980 0.980 0.980 0.980 0.980
LPIPS 0.036 0.045 0.040 0.038 0.037 0.036 0.036 0.036 0.035 0.035 0.035
SIFID 0.067 0.085 0.074 0.070 0.067 0.066 0.065 0.065 0.065 0.065 0.065
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Table 11: Performance (bit accuracy) of SSL [25] under steganalysis-based removal and the corre-
sponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.928 0.531 0.587 0.651 0.719 0.778 0.826 0.880 0.905 0.919 0.917
PSNR 35.05 15.78 19.77 22.85 24.88 26.22 27.81 31.80 33.07 33.52 33.52
SSIM 0.937 0.585 0.675 0.752 0.820 0.858 0.887 0.918 0.927 0.931 0.931
LPIPS 0.040 0.302 0.234 0.155 0.098 0.069 0.055 0.046 0.043 0.042 0.041
SIFID 0.037 0.415 0.250 0.121 0.071 0.057 0.051 0.043 0.040 0.039 0.038

greybox

Bit Acc 0.928 0.895 0.912 0.921 0.924 0.923 0.926 0.927 0.929 0.929 0.929
PSNR 35.05 34.26 34.61 34.79 34.90 34.94 34.96 34.98 35.00 35.02 35.04
SSIM 0.937 0.920 0.928 0.932 0.935 0.936 0.936 0.936 0.936 0.937 0.937
LPIPS 0.040 0.048 0.044 0.042 0.041 0.041 0.041 0.041 0.041 0.041 0.041
SIFID 0.037 0.048 0.042 0.039 0.038 0.037 0.037 0.037 0.037 0.037 0.037

Table 12: Performance (bit accuracy) of HiDDeN [10] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 0.976 0.804 0.835 0.888 0.928 0.942 0.946 0.954 0.959 0.960 0.961
PSNR 36.67 17.88 20.44 21.78 24.27 26.42 28.00 28.68 27.61 27.27 27.80
SSIM 0.956 0.521 0.639 0.738 0.839 0.886 0.913 0.931 0.931 0.932 0.936
LPIPS 0.012 0.322 0.244 0.158 0.086 0.053 0.037 0.025 0.021 0.019 0.018
SIFID 0.018 0.643 0.348 0.156 0.058 0.037 0.030 0.026 0.025 0.024 0.023

greybox

Bit Acc 0.976 0.958 0.960 0.961 0.962 0.962 0.961 0.960 0.959 0.960 0.960
PSNR 36.67 36.00 36.45 36.69 36.85 36.90 36.93 36.97 36.99 37.01 37.04
SSIM 0.956 0.941 0.949 0.953 0.955 0.956 0.956 0.956 0.956 0.956 0.956
LPIPS 0.012 0.017 0.014 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012
SIFID 0.018 0.022 0.019 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017

their own discretion, understanding that it is not a comprehensive solution to the inherent security
challenges of content-agnostic watermarking algorithms.

Table 13: Performance (bit accuracy) of DwtDct [12] under steganalysis-based removal and the
corresponding image quality degradations. NRmv stands for no removal.

# Images Averaged NRmv 5 10 20 50 100 200 500 1000 2000 5000

Blackbox

Bit Acc 1.000 0.989 0.994 0.996 0.997 0.998 0.999 0.998 0.998 0.998 0.998
PSNR 37.61 17.88 20.57 22.27 24.64 26.82 27.67 28.54 27.35 27.40 27.51
SSIM 0.962 0.518 0.645 0.745 0.836 0.887 0.909 0.927 0.926 0.928 0.930
LPIPS 0.036 0.427 0.331 0.241 0.157 0.107 0.080 0.058 0.055 0.053 0.052
SIFID 0.063 1.454 0.766 0.352 0.168 0.110 0.096 0.079 0.080 0.078 0.076

greybox

Bit Acc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PSNR 37.61 36.79 37.17 37.31 37.39 37.46 37.49 37.49 37.49 37.47 37.46
SSIM 0.962 0.950 0.956 0.957 0.959 0.960 0.960 0.961 0.961 0.961 0.961
LPIPS 0.036 0.042 0.039 0.038 0.037 0.037 0.036 0.036 0.036 0.036 0.036
SIFID 0.063 0.075 0.069 0.066 0.064 0.063 0.063 0.063 0.063 0.063 0.063
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims are accurately reflected in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. The limitations are discussed in Section 6 under the paragraph "limita-
tions".
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include any theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. The experimental setups are provided in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code and data are not provided in this manuscript submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes. The experimental setups are provided in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: No. Error bars are not presented because it would be too computationally
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes. These are included in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. The research conforms to the NeurIPS Code of Ethics, as discussed in
Section 6.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes. The broader impacts, including potential positive and negative societal
impacts, are discussed in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: The paper does not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes. The use of existing datasets and evaluation methods are all credited with
citations, as requested by the property owners or licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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