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Abstract

We study how to learn ε-optimal strategies in zero-sum imperfect information
games (IIG) with trajectory feedback. In this setting, players update their policies
sequentially, based on their observations over a fixed number of episodes denoted
by T . As noted by Steinberger et al. (2020) and McAleer et al. (2022), most existing
procedures suffer from high variance due to the use of importance sampling over
sequences of actions. To reduce this variance, we consider a fixed sampling
approach, where players still update their policies over time, but with observations
obtained through a given fixed sampling policy. Our approach is based on an
adaptive Online Mirror Descent (OMD) algorithm that applies OMD locally to
each information set, using individually decreasing learning rates and a regularized
loss. We show that this approach guarantees a convergence rate of Õ(T−1/2) with
high probability and has a near-optimal dependence on the game parameters when
applied with the best theoretical choices of learning rates and sampling policies.
To achieve these results, we generalize the notion of OMD stabilization, allowing
for time-varying regularization with convex increments.

1 Introduction

The extensive-form representation of a game (Osborne & Rubinstein, 1994) can be depicted as a tree
whose nodes correspond to the game states. At each state, the players choose some available actions
and, based on these choices, the game transitions to the next state among the current state’s children.

In imperfect information games (IIGs), players may only have access to partial information about
the current game state upon taking action. Therefore, the state space is partitioned for each player
into multiple information sets, which consist of indistinguishable states from the player’s perspective.
With perfect recall (Kuhn, 1950), when players remember their previous moves, each space of
information sets also has a tree structure.

We focus more specifically on zero-sum IIGs represented in an extensive form under the perfect recall
assumption, where the gains of one player, conventionally called the max-player, are equal to the
losses of his opponent, the min-player. The primary goal is to design an algorithm learning ε-optimal
strategies (von Neumann, 1928). To achieve this, one can use the self-play framework, where an
agent controls both players for T episodes. At the beginning of each episode, the agent prescribes a
strategy for each player. The agent then observes the play and updates the players’ strategies for the
next episode based on the outcome of the game. After T episodes, this protocol returns a guess of
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strategies with a small exploitability gap (Ponsen et al., 2011). In this learning framework, the agent
has very limited feedback, only observing the rewards along each sampled trajectory, as opposed to
richer feedback that would for example include all possible rewards and all transition probabilities,
(Zinkevich et al., 2007; Hoda et al., 2010; Tammelin, 2014; Kroer et al., 2015; Burch et al., 2019)
unrealistic in large games.

To deal with this learning framework, a well-studied approach is to unilaterally minimize the regret
of each player during the interactions with the game, i.e. the difference between the cumulative gain
the player would have obtained had he played the best fixed a posteriori policy and the cumulative
gain obtained by following the sequence of policies. The key observation is that by minimizing
the regret of both players, the average policies over the sequence of policies generated during the
process converge toward optimal strategies at the rate of order O(1/

√
T ) (Cesa-Bianchi & Lugosi,

2006; Kozuno et al., 2021). Regret minimizers such as CFR-based algorithm or online mirror descent
(OMD) (Hoda et al., 2010; Kroer et al., 2015) can be used, leading to optimal rates (with respect to
the game size) with the latter option (Bai et al., 2022; Fiegel et al., 2023).

Since the agent only observes trajectories of the game, an importance sampling estimate (Auer
et al., 2003) of gain (or loss) is fed to the regret minimizer. However, the estimate of this loss
usually suffers from high variance due to two reasons. First, the same sequence of policies is used to
minimize the regret and to collect the trajectories, making the players strive to fulfill two competing
goals: play a policy with small regret and play a policy leading to a small variance gain estimate.
Second, importance sampling is applied to sequences of actions, that have in large games a very small
probability of being played, leading to empirically large importance sampling weights and ultimately
inflating the variance of the gain estimates.

To mitigate this issue, regularization and biasing the estimates can help (Kozuno et al., 2021; Bai
et al., 2020). However, the high variance of the gain estimates remains problematic with large games,
for which the algorithms are generally coupled with function approximation (Steinberger et al., 2020;
McAleer et al., 2022). For instance, neural networks are particularly susceptible to noise (Zhang
et al., 2021). A natural question is thus whether it is possible to learn optimal strategies without
relying on importance-sampling over the sequence of actions.

To this aim, we consider a particular case of the self-play framework: the fixed policy sampling
framework (Lanctot et al., 2009). In this setting, a fixed policy is used to collect the trajectories of the
game. Precisely, at each round, one player, let’s say the min-player, follows the fixed sampling policy
to play against the current policy of the max-player. The collected trajectory is then used to update
the current policy of the min-player. In the next episode, the max-player will follow a sampling policy
against the current policy of the min-player, and so on. The outcome sampling MCCFR algorithm
adopts this framework to update the two players’ policy by regret minimization, feeding the CFR
algorithm with gain estimated via importance sampling (Lanctot et al., 2009; Bai et al., 2020; Farina
et al., 2021b).

Recently, McAleer et al. (2022) proposed the ESCHER algorithm that removes the need for importance
sampling in this framework. In particular, as the CFR algorithm is invariant by re-scaling of the gains
and the weights of the sampling policy are fixed, ESCHER can directly operate with the unweighted
history cumulative gain (Bai et al., 2020). Unfortunately, it still requires access to an oracle that
provides this history of cumulative gains at an arbitrary information set.

Nonetheless, the insight of McAleer et al. (2022) cannot be used directly for OMD-based algorithms
as they are not scale-invariant. Furthermore, the OMD-based algorithms generally work at the global
game level whereas CFR-based algorithms work at the local level of the information set (Bai et al.,
2020), making local adaptation to the problem easier.

Contributions We make the following main contributions:

• We propose the LocalOMD algorithm, in the fixed policy sampling framework, that allows adaptive
learning rates and does not require importance-sampling over the sequence of actions but only for
the current action. We explain how it can simply be seen as a regret minimization procedure applied
to a local loss on each information set, similarly to Farina et al. (2019b).
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• We prove that LocalOMD achieves, in this fixed sampling framework, a Õ
(
1/ε2

)
1 sample complex-

ity with any choice of non-degenerate sampling policy, ignoring the game and policy-dependent
parameters.

• With an appropriate sampling policy and choice of learning rates, we prove that LocalOMD, recover
the Õ

(
H3(AX +BY)/ε

2
)

near-optimal sample complexity for learning ε-optimal strategies in a
tabular setting, where H is the height of the tree, AX the total number of available actions for the
min-player and BY the same quantity for the max-player. This sample complexity was also achieved
in the fixed policy framework by BalancedCFR (Bai et al., 2022), but with a less generalizable
procedure that updates the policy at one depth at a time.

• We generalize the dual-stabilization technique introduced by Fang et al. (2020) to analyze OMD
with a time-varying regularization as long as the increments of the regularization are convex.

• Our tabular experiments reveal that our algorithm yields comparable results to existing baselines
while demonstrating a reduced variance in loss estimation.

2 Settings and fixed sampling procedure

2.1 Extensive-form games and regret

Game definition We consider a finite zero-sum IIG game (S,X ,Y,A,B, p, ℓ) with perfect recall.
Given two behavioral policies µ = (µ(·|x))x∈X and ν = (ν(·|y))y∈Y , one episode of such game
proceeds as follows: An initial game state s1 ∼ p(·|s0) is first sampled in the set of states S according
to the transition function p, starting from the root s0 of the tree. At depth h, the min- and max-
players respectively observe the information set xh and yh associated with the current state sh in the
spaces of information sets X and Y (these spaces being two partitions of S), then simultaneously
choose and execute actions ah ∼ µ(·|xh) and bh ∼ ν(·|yh) in the sets of legal actions A(xh) and
B(yh). As a result, the state transitions to a new state sh+1 ∼ p(·|sh, ah, bh) in S , with the min- and
max- players getting respectively the losses ℓh ∼ ℓ(·|sh, ah, bh) in [0, 1] and 1− ℓh according to the
loss distribution ℓ. This is repeated until a final state sH of a fixed depth H is reached, after which
the episode finishes.

Policies and actions We will denote by Πmin and Πmax the set of behavioral policies of the min-
and max- players. Because of the perfect recall assumption, such policies, with an independent
stochastic choice of action for each information set, are enough to describe the entire set of strategies
(Laraki et al., 2019). We will also denote by AX and BY the total number of actions for respectively
the min- and max- players, i.e. AX :=

∑
x∈X |A(x)| and BY =

∑
y∈Y |B(y)|.

Regret and ε-optimal strategies We are interested in learning ε-optimal policies through self-
play over multiple episodes. A useful notion for this objective is the regret as explained in the
introduction. We first define the value V µ,ν = Eµ,ν [

∑H
h=1 ℓh] as the expected sum of losses (for the

min-player) with respect to a pair of policies (µ, ν) ∈ Πmin ×Πmax. Given a sequence (µt, νt)t∈[T ]

in Πmin ×Πmax, the regrets of the min- and max- players are then defined by

RT
min := max

µ†∈Πmin

T∑
t=1

(V µt,νt

− V µ†,νt

) and RT
max := max

ν†∈Πmax

T∑
t=1

(V µt,ν†
− V µt,νt

) .

Minimizing the regret of both players leads to the computation of an ε-optimal profile (equivalent to
an ε-Nash equilibrium for two players zero-sum games) through the computation of an average of the
policies. The following theorem quantifies this statement under the perfect recall assumption.
Theorem 2.1. (Cesa-Bianchi & Lugosi, 2006; Kozuno et al., 2021) From a sequence (µt, νt)t∈[T ] in
Πmin ×Πmax a certain time-averaged profile (µ, ν) is ε-optimal with ε =

(
RT

min +RT
max

)
/T .

It especially shows that both averaged strategies converge to the set of optimal strategies as long as
the regret of both players is sub-linear.

We now focus on the min-player point of view because of the symmetry of the game. Indeed, the
following ideas will apply exactly the same way to the max-player, using the losses 1− ℓh instead.

1For algorithms with a probability at least 1 − δ of a correct output, the symbol Õ hides dependencies
logarithmic in AX , BY and δ
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Algorithm 1 Learning procedures with fixed sampling policies for two players

1: Input: Fixed sampling policies µs and νs. Initial policies µ1 and ν1 and update procedure for
each player

2: For t = 1 to T
The min-player observes the full outcome of an episode with the policies (µs, νt)
The max-player observes the full outcome of an episode with the policies (µt, νs)
The min- and max-player respectively update µt+1 and νt+1 based on their past observations

3: Output: The time-averaged policies µ, ν of Theorem 2.1

Perfect recall and realization plan Under the perfect recall assumption, players do not forget
their past observations and actions. We can then assume, for any information set x ∈ X and action
a ∈ A(x), the existence of a unique depth h ∈ [H] and history (x1, a1, ..., xh, ah) such that xh = x
and ah = a. Using this unique history, we define the realization plan µ1: ∈ RAX (von Stengel, 1996)
associated to a policy µ ∈ Πmin with, for any x ∈ X and a ∈ A(x) by µ1:(x, a) := Πh

i=1 µ(ai|xi).
It denotes the combined probability of choosing actions that lead to (x, a). We will especially define
Qmax := {µ1:, µ ∈ Πmin} the treeplex, i.e. the set of all possible realization plans.

Loss and regret linearization For ν a max-player policy, the unique history also allows for the
definition of adversarial transitions pν1: ∈ RX and adversarial losses ℓν ∈ RAX with:

pν1:(x) := p(x1|s0)
h∏

i=2

pν(xi|xi−1, ai−1) and ℓν(x, a) := pν1:(x)ℓ
ν
h(x, a)

where p(x1|s0) is the probability that x1 is initially observed by the min-player, and, assuming that
the max-player policy is set to ν, pν(·|(xi−1, ai−1)) denotes the probability of transitioning to xi

when (xi−1, ai−1) is reached, and ℓνh the average loss ℓh associated to a when x is reached. Similarly
to the realization plan, the adversarial transitions denote the combined probability of both Nature and
max-player actions that lead to x, assuming that the min-player plays the actions (a1, ..., ah−1).

Using a chain-rule argument, we get the relation V µ,ν = ⟨ℓν , µ1:⟩, given a pair of policies
(µ, ν) ∈ Πmin × Πmax, where ⟨·, ·⟩ is the standard inner product of RAX , defined by ⟨z1, z2⟩ :=∑

x∈X
∑

a∈A(x) z1(x, a)z2(x, a). The regret can then be rewritten

RT
min = max

µ†∈Πmin

T∑
t=1

〈
ℓt, µt

1: − µ†
1:

〉
where ℓt := ℓν

t

, which effectively reduces the problem to a linear regret problem over the convex
polytope Qmin of realization plans.

Several techniques exist to sequentially choose policies (µt)t∈[T ] minimizing RT
min, assuming that

the losses ℓt are observed after each round t (Hoda et al., 2010). However, in the trajectory feedback
setting, these losses are not observed, and can only be estimated from the observation of the trajectories
(xt

1, a
t
1, ..., x

t
H , atH) and partial losses (ℓt1, ..., ℓ

t
H) of each round.

2.2 Fixed sampling policy

In the fixed sampling framework (Lanctot et al., 2009), both players always use the same policy for
the observations of the trajectory. However, the two observations can not be done simultaneously
with such an approach, as the learning would then be quite naive. The solution, summarized in
Algorithm 1, is for the two players to take turns between an observation phase, in which they play
their fixed sampling policy µs or νs, and an interaction phase, in which they play their updated policy
µt or νt. The underlying idea is that the observation phase lets each player observe how the game
unfolds against the opponent in its interaction phase, playing its updated policy. Given upper-bounds
of the regrets RT

min and RT
max associated to the sequence (µt, νt)t∈[T ], the previous Theorem 2.1

then characterizes the optimality of the outputted time-averaged profile (µ, ν).

While theoretically optimal algorithms already exist using simultaneous regret minimization pro-
cedures (Bai et al., 2022; Fiegel et al., 2023), this framework allows for the removal of the global
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importance sampling term of the loss, which reduces the variance to make algorithms more suitable
beyond the tabular setting (McAleer et al., 2022). Indeed, as the probability of choosing a sequence
of action reaching a given information set is fixed, the average estimations of the losses do not need
to be re-weighted based on the inverse of a changing probability. This re-weighting eventually leads
to unstable function approximation, e.g. with neural networks, as this probability can be very small.

Furthermore, the fixed sampling framework also allows aggressive policies more focused on exploita-
tion, as the observation side is handled by the sampling strategy. The downside is that this sampling
policy must be fixed in advance, which requires defining a good sampling policy beforehand.

From now on, we again focus on the min-player for the same symmetry reasons.

Estimated regret Based on the min-player observations, we define R̂T
min the estimated regret by

R̂T
min := max

µ†∈Πmin

T∑
t=1

〈
ℓ̂t, µt

1: − µ†
1:

〉
where the ℓ̂t are the importance-sampling estimated loss vectors, defined for each information set x
of depth h and action a ∈ A(x) by

ℓ̂t(x, a) :=
I{x=xt

h,a=at
h}

µs
1:(x, a)

ℓth

with xt
h the visited information set, ath the chosen action and ℓth the loss at depth h of episode t.

The following theorem states that upper-bounding this estimated regret is enough to upper-bound
the actual regret, up to an additional additive term. Its proof is given in Appendix B and relies on
Bernstein-type inequalities.
Theorem 2.2. Assume that the estimated losses are obtained with a fixed positive sampling policy µs

as above. Then, for any sequence (µt)t∈[T ] of Πmin and any δ ∈ (0, 1), the following bound holds
with a probability at least 1− δ

RT
min ≤ max

{
R̂T

min, 0
}
+ 4
√
ιHκ(µs)T

where ι := log
(
AX+1

δ

)
and κ(µs) := maxµ∈Πmin

∑
x∈X

∑
a∈Ax

µ1:(x,a)
µs
1:(x,a)

.

A similar proposition is proved by Farina et al. (2020). Our bound is specific to the importance-
sampling loss estimator, but tighter by a factor

√
κ(µs)/H .

Remark 2.3. The quantity κ(µs) can be efficiently computed recursively for each of the sub-trees
induced by an information set x ∈ X , and we will denote by κ(µs|x) the associated quantities. The
same recursion shows that the balanced policy µ⋆, which plays proportionally to the total number of
actions of each sub-tree, minimizes all these local quantities and satisfies κ(µ⋆) = AX . The related
computations are provided in Appendix C.

3 Adaptive Mirror Descent

We shall now focus on the update procedure the min-player can use to minimize this estimated regret.
Let us first define some important notions of convex optimization.
Definition 3.1. Let Ω ⊂ Rn be a non-empty open convex, and Ω be its closure. A function
Ψ : Ω −→ R is said to be Legendre if Ψ is strictly convex, continuously differentiable on Ω and
∀y ∈ Ω\Ω, limx−→y∥∇Ψ(x)∥ = +∞ . The Bregman divergence DΨ : Ω× Ω −→ R of a Legendre
function Ψ is defined as DΨ(x, y) := Ψ(x) − Ψ(y) − ⟨∇Ψ(y), x− y⟩. The Fenchel conjugate
Ψ⋆ : Rn −→ R ∪ {+∞} of Ψ is defined by Ψ⋆(ξ) = supx∈Ω ⟨ξ, x⟩ −Ψ(x).

3.1 Online Mirror Descent and dilated entropy

In an extensive-form game with perfect recall, algorithms based on the Online Mirror Descent (OMD)
typically compute at each time step t the update

µt+1 = argmin
µ∈Πmin

〈
ℓ̂t, µ1:

〉
+DΨ(µ1:, µ

t
1:) (OMD)

5
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where ℓ̂t is the estimated loss and Ψ : Qmin −→ R a Legendre regularizer.

Dilated entropy A common choice of such regularizer is the dilated entropy (Hoda et al., 2010;
Kroer et al., 2015). It requires for each x ∈ X a Legendre regularizer Ψx over a convex domain
Ωx ⊂ R|A(x)|

≥0 that contains the simplex ∆A(x) :=
{
µ,
∑

a∈A(x) µ(a) = 1
}

. For a given list of

positive weights α = (α(x))x∈X , the dilated entropy Ψdil
α satisfies for any µ ∈ Πmin:

Ψdil
α (µ1:) :=

∑
x∈X

α(x)µ1:(x)Ψx (µ(·|x))

where µ1:(x) :=
∑

a∈A(x) µ1:(x, a). Using this dilated entropy as the regularizer, the OMD updates
become

µt+1 = argmin
µ∈Πmin

〈
ℓ̂t, µ1:

〉
+Ddil

α (µ1:, µ
t
1:)

where Ddil
α (µ1:, µ

t
1:) :=

∑
x∈X α(x)µ1:(x)Dx(µ1:(·|x), µt

1:(·|x)) and (Dx)x∈X are the individual
Bregman divergences of the (Ψx)x∈X . The benefits of this regularization are that it efficiently suits
the structure of the game and that the associated updates are easily computed recursively, starting
from the final states.

3.2 Stabilized OMD algorithm

The regularizer Ψ sometimes needs to change over time. For example, when T is unknown, a
regularizer of the form Ψt = Ψ/ηt is usually considered, with ηt = t−1/2 the learning rate. Fiegel
et al. (2023) gives another example of time-varying regularization, adapting the regularization to the
game structure that is assumed to be initially unknown. The previous updates (OMD) do not however
allow adaptive regularization in general. In fact, even the simple learning rate decrease ηt+1 = t−1/2

can lead to a linear regret dependence with time (Orabona & Pál, 2018).

In this part, we shall consider more generally a sequence of Legendre regularizers (Ψt)t∈[T ] defined
on a convex domain Ω ⊂ Rn, and that the player chooses a sequence of primal iterates (wt)t∈[T ]

(respectively the updated realization plans (µt
1:)t∈[T ] of our settings) in a closed convex set C

(respectively the treeplex Qmin) included in Ω, according to a sequence of dual increments (ξt)t∈[T ]

in Rn (respectively the estimated losses (ℓ̂t)t∈[T ]) observed sequentially.

Fang et al. (2020) proposed in the presence of non-increasing learning rates, to use a technique
called dual-stabilization to recover the classical OMD bounds. We noticed that their updates can be
interpreted as

wt+1 = argmin
w∈C

〈
ξt, w

〉
+DΨt

(
w,wt

)
+DΨt+1−Ψt

(
w,w1

)
(GDS-OMD)

with Ψt+1 −Ψt incremental functions assumed to be convex, generalizing their special case Ψt+1 =
Ψ/ηt+1. The following theorem, proven in Appendix D shows that classical OMD guarantees can be
recovered with these updates.
Theorem 3.2. Let (wt)t∈[T ] be a sequence of primal iterates generated by the updates (GDS-OMD),
with convex incremental functions. Then for any w† ∈ Ω,

T∑
t=1

〈
ξt, wt − w†〉 ≤ DΨT (w†, w1) +

T∑
t=1

DΨt,⋆

(
∇Ψt(wt)− ξt,∇Ψt(wt)

)
where the (Ψt,⋆)t∈[T ] are the respective Fenchel conjugates of the (Ψt)t∈[T ].

Compared to the guarantees obtained with previous adaptive procedures, such as Ada-MD (Joulani
et al., 2017), the first term of the bound is stated with respect to w1 instead of the sequence (wt)t,
which is important for some (Ψt)t sequences (Orabona & Pál, 2018).
Remark 3.3. AdaGrad for stochastic gradient descent (Duchi et al., 2011) is an interesting example
of regularizatiom with convex increments (and not only through a decreasing learning rate). It uses
the adaptive regularization Ψt+1 = ∥·∥2(Gt)1/2 , where Gt is a positive semi-definite matrix defined

with the gradients gk by either Gt =
∑t

k=1 gkg
T
k or, more efficiently, by Gt = Diag

(∑t
k=1 gkg

T
k

)
.

6
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Algorithm 2 LocalOMD

1: Input:
Sampling policy µs ∈ Πmin and initial policy µ1 ∈ Πmin

Bregman divergences Dx for each information set x ∈ X
Sequences of (possibly adaptive) learning rates (ηt(x))t,x for each round t and information

set x.
2: For t = 1 to T

Observes the outcome of an episode using the fixed strategy µs

qtH+1 ← 0

For h = H to 1:
ℓ̃th ← I{a=at

h}
(
ℓth + qth+1

)/
µs(ath|xt

h)

µt+1(·|x)← argminµ∈∆A(x)
ht
x(µ)

qth ← minµ∈∆A(x)
ht
x(µ)

where ht
x(µ) :=

〈
ℓ̃th, µ

〉
+ 1

ηt(xt
h)
Dx (µ, µ

t(·|xt
h))+

(
1

ηt+1(xt
h)
− 1

ηt′+1(xt
h)

)
Dx

(
µ, µ1(·|xt

h)
)

and t′ is the last round in which xt
h was visited

For all non-visited x ∈ X :
µt+1(·|x)← µt(·|x)

3: Output: The time-averaged policy µ

Adaptive dilatation In the extensive-form game setting based on the dilated entropy Ψdil
α , this

stabilization can be applied to have weights (αt(x))x∈X ,t∈[T ] that vary with times. The convexity
assumption of Ψdil

αt+1 −Ψdil
αt then rewrites to having locally non-decreasing weights for each x ∈ X .

In this particular case, the updates are obtained with the formula

µt+1 = argmin
µ∈Πmin

〈
ℓ̂t, µ1:

〉
+Ddil

αt (µ, µt) +Ddil
αt+1−αt(µ, µ1) . (DDS-OMD)

4 LocalOMD algorithm

4.1 Algorithm

Let us now consider the fixed sampling framework introduced in Section 2.2. Given a sequence
(ηt(x))t∈[T ] of locally non-increasing learning rates for each x ∈ X , we introduce the LocalOMD
algorithm described in Algorithm 2, that uses the updates (DDS-OMD) above with the adaptive
weights αt(x) = 1/(µs

1:(x)η
t(x)). Dividing the loss by the importance sampling term 1/µs

1:(x)
through the learning rates lets it bypass the large variance that this rate can introduce.

Local loss This algorithm can be interpreted as one that locally applies the updates (GDS-OMD)
using the local loss ℓ̃th, a regularized version of the sum of subsequent losses. Even though this
algorithm results from a global minimization procedure, the local loss only uses the probability
µs(a|x) of choosing the last action a ∈ A(x) in the important sampling, instead of the combined
probability µs

1:(x, a) of the realization plan. A similar decomposition was observed by Farina et al.
(2019a) for the non-stochastic settings, in which both players directly observe the gradient associated
with their policies.

For this reason, the local loss will consistently be at most of order O(HA). Meanwhile, the loss
used by Fiegel et al. (2023) can be of order O(AX ) (approximately AH in the worst case), even with
IX exploration attempting to alleviate the importance sampling issue. This presents a challenge for
potential applications involving function approximation, where AX becomes very large (McAleer
et al., 2022). For instance, such high-variance estimates could lead to highly unstable training
dynamics of a policy parametrized with a neural network.

Complexity At each iteration, the algorithm only needs to update the policy along the observed
trajectory, so the time complexity per iteration is only H times the cost of a local update. If Dx is the
Kullback-Leibler divergence, the local updates then simplify to some Exponential Weights updates

7
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and the total time complexity of an iteration becomes O(HA), where A is an upper-bound on the
local number of actions.

4.2 Theoretical analysis

The analysis of LocalOMD, detailed in Appendix E is derived from Theorem 3.2 that bounds the
estimated regret. The results on the real regret are then obtained with Theorem 2.2. We now present
two choices of regularization and their associated guarantees.

Adaptive rates As LocalOMD treats each information set x ∈ X as a separate problem through the
local losses ℓ̃th, an interesting choice is to consider the same adaptive rates that would be used in the
K-armed bandit problems. The following theorem provides an upper bound in this case.

Theorem 4.1. (Informal, exact statement in Appendix E)
For a large class of regularizers (Ψx)x∈X and learning rates (ηt(x)x∈X ,t∈[T ]), the regret has a
O(
√
T log(1/δ)) upper bound (hiding the game-dependent terms) with a probability at least 1− δ.

Such learning rates include, for all x ∈ X of depth h,

ηt(x) = η

/√√√√ t∑
k=1

I{x=xk
h} , or the adaptive version ηt(x) = η

/√√√√ t∑
k=1

I{x=xk
h}
(
ℓ̃kh

)2
.

The adaptive learning rates mentioned for this theorem generally enjoy better performances in practice.
Furthermore, they require no initial computation and are easily updated.

Optimal rates The following theorem uses a constant learning rate that locally depends on the
κ(µs|x) quantities of Remark 2.3, and on the A := maxx∈X |A(x)| quantity that upper bounds the
local number of available actions on the whole tree.

Theorem 4.2. Using LocalOMD with µ1 as the uniform policy, with the learning rates ηt(x) =

η/κ(µs|x) where η =
√
log(A)κ(µs)/(3HT ), and with Ψx the Shannon entropy Ψx(µ) =∑

a∈A(x) µ(a) log(µ(a)), we have with a probability at least 1− δ and ι = log(2(AX + 1)/δ),

RT
min ≤

(
4 + 2

√
3
)
H3/2

√
log(A)ικ(µs)T .

Note that these rates are not adaptive and thus do not require the stabilization introduced in Section 3.2.
When using the balanced policy µ⋆ as the sampling policy, for which κ(µ⋆) = AX , we obtain with
Theorem 2.1 the rate Õ

(
H3/2

√
AXT

)
, near-optimal up to the H dependency (Bai et al., 2022).

5 Experiments
We implemented LocalOMD, with the parameters of Theorem 4.1 and Theorem 4.2, then tested
it against the theoretically optimal BalancedCFR (Bai et al., 2022) using the balanced policy as
the sample policy, and BalancedFTRL (Fiegel et al., 2023). The algorithms were compared on
three standard benchmark games: Kuhn poker (Kuhn, 1950), Leduc poker (Southey et al., 2005)
and liars dice, using the version 1.4 of the OpenSpiel library (Lanctot et al., 2019) under the
Apache 2.0 license. The learning rates (and the IX parameters for the relevant algorithms) were
optimized independently for each algorithm using a grid search. The code is available at https:
//github.com/anon5493/LocalOMD-experiments.

The results are given with respect to the total number of episodes used for learning. This technically
disadvantages the fixed sampling algorithms, as these require more than one episode at each round t
while still performing a single update on the policy of each player. The exploitability gap, along with
the variance across the different instances of the simulation, is plotted in Figure 1, top. Note that this
variance across the instances is different from the variance of the estimated loss vector ℓ̂t our method
tries to reduce, which is plotted in the Figure 1, down.

Focusing on the exploitability gap, we observe that the two versions of LocalOMD behave similarly and
constantly beat BalancedCFR, mainly because the latter needs to update each depth with independent
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samples, thus needing H times more episodes overall. The results of BalancedFTRL are more
comparable, exhibiting for example better performances on liars dice but worse on Leduc poker.

In the second figure, we observe that the algorithms based on a fixed sampling procedure indeed
get a smaller variance in their loss estimation as the sampling policy stays consistently balanced.
BalancedCFR again gets worse results compared to LocalOMD as the losses of each depth are only
estimated every H iteration, which increases its variance.
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Figure 1: Performances over 5 simulations of various algorithms with respect to the total number of
episodes. The vertical axis denotes the exploitability gap max(µ,ν)∈Πmin×Πmax

V µ,ν − V µ,ν (top)
and the empirical variance of the ℓ̂t vectors over time (bottom), with all rewards scaled between 0
and 1. The total numbers of actions are AX = BY = 12 for Kuhn poker, AX = BY = 1092 for
Leduc poker, and AX = BY = 24570 for Liars dice.

6 Conclusion

We studied the use of a fixed sampling OMD procedure for the computation of ε-optimal strategies.
This approach relies, for each player, on an uncoupling between the observation policy and the
interaction policy as described in Algorithm 1. This uncoupling is in direct contrast with the more
restrictive semi-bandit setting usually considered for self-play, where these two policies must coincide
by design. Notice that this is not the standard exploration/exploitation trade-off, as even in the expert
setting (with full information), some kind of exploration is still required.

While the balanced observation policy gets the optimal rates in the worst case, it may not always be
the best one for a given game. An alternate choice is to instead use for the observations the current
average policy (Gibson et al., 2012). This choice can be adapted to the fixed sampling framework, by
restarting the algorithm after a certain number of episodes and using the computed average as the
new sampling policy.

The proposed algorithm LocalOMD also enjoys simultaneously two interpretations: one as a Mirror
Descent type algorithm working at the global level, with a single update performed at each iteration
over the whole tree; and one as regret minimizers working locally at each information set, which
makes it very similar to a CFR algorithm despite a fundamentally different approach.
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We would like to conclude by providing the following interesting research directions.

Problem-dependent optimality For a given game structure and fixed sampling policy µs, is there
a policy-dependent lower bound O(

√
κ(µs)T ) on the regret? We wonder if the κ(µs) quantity of

Remark 2.3 denotes some sort of complexity related to the problem.

General sum game Using the same techniques as Bai et al. (2022), in a general sum game with
potentially more than two players, LocalOMD can be shown to converge to an ε-approximate normal-
form coarse correlated equilibrium. Are convergences to other forms of correlated equilibrium
possible using this fixed sampling policy framework?

On-policy algorithms Is it also possible to remove the importance-sampling of the previous actions
in the usual semi-bandit framework that observes with the current policy? The answer is not obvious
since the current approach heavily relies on the fact that the sampling policy is fixed.
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Appendix and Checklist
A Related works

In this section, we review previous works on learning an ε-optimal strategy in IIGs.

Full feedback When the game is known, that is the information set structure space, transitions
probability, and reward function are provided, a first line of work recasts the setting through the
sequence-form representation of a game as a linear program which can be solved efficiently (Ro-
manovsky, 1962; von Stengel, 1996; Koller et al., 1996). A second line of work relies on first-order
optimization methods for saddle point computation (Hoda et al., 2010; Kroer et al., 2015, 2018, 2020;
Munos et al., 2020; Lee et al., 2021). In particular Hoda et al. (2010); Kroer et al. (2018) relies
on the Nesterov smoothing technique Nesterov (2005) whereas Kroer et al. (2015, 2020) use the
MirrorProx algorithm (Nemirovski, 2004). These methods have a rate of convergence of order
Õ(poly(H,AX , BY)/ε).

A third approach, counterfactual regret minimization (Zinkevich et al., 2007), leverages local regret
minimization, i.e. minimizing a type of regret at each information set. Popular algorithms are based
on the regret-matching algorithm (Hart & Mas-Colell, 2000; Gordon, 2007) such as CFR algorithm
(Zinkevich et al., 2007) or based on a close variant of regret-matching, e.g. CFR+ (Tammelin, 2014;
Burch et al., 2019; Farina et al., 2021a). Note that other local regret minimizers could be used, see
for example Waugh & Bagnell (2014); Farina et al. (2019b). These algorithms enjoy a guarantee of
convergence of order Õ(poly(H,AX , BY)/ε

2).

Nevertheless, all the methods described above need to explore the whole information set tree (or the
whole state space) in order to compute one update. The cost of one traversal is of order O(X + Y ) if
the transitions and the actions of the other player are sampled; see for example the external-sampling
MCCFR algorithm (Lanctot et al., 2009).

Trajectory feedback A way to tackle the aforementioned issues is to consider the agnostic setting
where the agent has no prior knowledge of the game and only observes trajectories of the game.
Precisely, the rewards and the transition probabilities are unknown.

Model-based A first method to deal with this limited feedback is to build a model of the game and
then run any full feedback algorithm in this model. For example, Zhou et al. (2020) use posterior
sampling (PS, Strens, 2000) to learn a model and then use the CFR algorithm in games sampled from
the posterior. They obtain a convergence rate of order Õ(poly(H,S,A,B)/ε2) but only when the
games are actually sampled according to the known prior. Instead, Zhang & Sandholm (2021) relies
on the principle of optimism in the presence of uncertainty to incrementally build a model of the
game. Then, the CFR algorithm is fed with optimistic estimates of the local regrets. They prove a
high-probability sample complexity of order Õ(poly(H,S,A,B)/ε2).

Model-free Another line of work (Lanctot et al., 2009; Johanson et al., 2012; Schmid et al., 2018;
Farina et al., 2020) directly estimates the local regret via importance sampling that is then fed to
the CFR algorithm. In particular, the outcome-sampling MCCFR (Lanctot et al., 2009; Farina et al.,
2020) builds an importance sampling estimate of the counterfactual regret by playing according to a
well-chosen balanced policy. Intuitively, this policy should ensure to explore all the information sets.
Note that, depending on the structure of the information set space, playing uniformly over the actions
at each information set is not necessarily a good choice. Instead, Farina et al. (2020) propose as a
balanced policy to play action with probability proportional to the number of leaves in the sub-tree of
possible next information sets. In particular, the outcome-sampling MCCFR algorithm requires the
knowledge of the information set space structure to build its balanced policy. Nonetheless, in order
to obtain ε-optimal strategies with high probability, MCCFR needs at most Õ(H3(AX + BY)/ε

2)
realizations of the game (Farina et al., 2020; Bai et al., 2022).

Later, Kozuno et al. (2021) proposed to combine Online Mirror Descent (OMD) with dilated Shannon
entropy as regularizer and importance sampling estimate of the losses of a player, see also Farina
et al. (2021b). They prove a sample complexity, for the proposed algorithm, IXOMD, of order
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Õ(H2(XAX + Y BY)/ε
2). Interestingly, they do not need to know in advance the structure of the

information set space to obtain this bound. However, the sample complexity of IXOMD does not match
the lower bound for this setting which is of order O((AX + BY)/ε

2). Recently, Bai et al. (2022)
proposed the Balanced OMD algorithm that enjoys also relies on OMD but with a dilated entropy
weighted by the realization plans of balanced policies as regularizers. For this algorithm, they prove
a sample complexity of order Õ(H3(AX +BY)/ε

2).

Perfect information Markov game Another line of work considers Markov game Kuhn (1953)
with perfect information and limited feedback. However, it does not assume perfect recall. Sidford
et al. (2020); Zhang et al. (2020); Daskalakis et al. (2020); Wei et al. (2021) consider the case where
a generative model is available whereas Wei et al. (2017); Bai et al. (2020); Xie et al. (2020); Liu
et al. (2021) deal with the trajectory feedback case. Although this setting is related to ours there is no
direct comparison between the two.

B Regret estimation

In this section, we aim to establish Theorem 2.2 of the main paper. We start by stating a Bernstein-type
inequality that we will use multiple times. It can be found e.g. in Exercise 5.15 by Lattimore &
Szepesvári (2020). We provide a short proof below as we did not find any for this precise statement.
Lemma B.1. Let (U t)t∈[T ] be a sequence of random variables with respect to a filtration F , and
γ > 0 be a fixed constant such that for all t, γU t ≤ 1. Then with a probability of at least 1− δ′:

T∑
t=1

(
U t − E

[
U t
∣∣F t−1

])
≤ γ

T∑
t=1

E
[
(U t)2

∣∣F t−1
]
+

1

γ
log(

1

δ′
)

Proof. For any t ∈ [T ], using the inequalities exp(x) ≤ 1+x+x2 for all x ≤ 1 and 1+x ≤ exp(x)
for all x ∈ R, we have

E
[
exp

(
γU t

)∣∣F t−1
]
≤ E

[
1 + γU t + γ2(U t)2

∣∣F t−1
]

= 1 + γE
[
U t
∣∣F t−1

]
+ γ2E

[
(U t)2

∣∣F t−1
]

≤ exp
(
γE
[
U t
∣∣F t−1

]
+ γ2E

[
(U t)2

∣∣F t−1
])

.

This implies that the random process (St)t∈[T ] defined by

St := exp

(
t∑

k=1

γ
(
Uk − E

[
Uk
∣∣Fk−1

])
−

t∑
k=1

γ2E
[
(Uk)2

∣∣Fk−1
])

is a super-martingale, with S0 = 1. Using the Markov inequality, we then get

P
(
1

γ
log(ST ) >

1

γ
log

(
1

δ′

))
= P

(
ST >

1

δ′

)
≤ δ′ E(ST ) ≤ δ′

which immediately yields the stated inequality with probability at least 1− δ′.

This lemma is then used for Theorem 2.2. The filtration (F t)t∈[T ] will be used, such that F t is the
sigma-algebra of all variables of the self-play algorithm up to the execution of episode t+ 1.
Theorem B.2. Assume that the estimated losses are obtained with a fixed positive sampling policy
µs as above. Then, for any sequence (µt)t∈[T ] of Πmin and any δ ∈ (0, 1), the following bound holds
with a probability at least 1− δ

RT
min ≤ max

{
R̂T

min, 0
}
+ 4
√
ιHκ(µs)T

where

ι := log

(
AX + 1

δ

)
and κ(µs) := max

µ∈Πmin

∑
x∈X

∑
a∈Ax

µ1:(x, a)

µs
1:(x, a)

.
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Proof. We want to show that, with probability at least 1− δ, that

t∑
t=1

〈
ℓt − ℓ̂t, µt

1: − µ1:

〉
≤ 4
√

ιHκ(µs)T

holds for all µ ∈ Πmin. Then the property follows after re-organizing the inequality and maximizing
over µ. In order to do so, we divide this term into two parts:

T∑
t=1

〈
ℓt − ℓ̂t, µt

1: − µ1:

〉
=

T∑
t=1

〈
ℓ̂t − ℓt, µ1:

〉
︸ ︷︷ ︸

EST I

+

T∑
t=1

〈
ℓt − ℓ̂t, µt

1:

〉
︸ ︷︷ ︸

EST II

.

We will furthermore assume that HT ≥ ικ(µs), as otherwise, 4
√
ιHκ(µs)T ≤ 4HT and the

property immediately follows from RT
min ≤ HT .

Upper bound of EST I For all x ∈ X of depth h and a ∈ A(x), we apply Lemma B.1 to the random
process

U t
x,a = ℓthI{x=xt

h,a=at
h}

with δ′ = δ/(AX + 1) and a fixed γ1 ∈ (0, 1] we will specify later. This yields, with a probability at
least 1− δ′, that

T∑
t=1

(
ℓthI{x=xt

h,a=at
h} − E

[
ℓthI{x=xt

h,a=at
h}
∣∣∣F t−1

])
≤ γ1

T∑
t=1

E
[(
ℓth
)2 I{x=xt

h,a=at
h}
∣∣∣F t−1

]
+

ι

γ1

≤ γ1

T∑
t=1

E
[
ℓthI{x=xt

h,a=at
h}
∣∣∣F t−1

]
+

ι

γ1
.

By definition of the estimated loss, ℓthI{x=xt
h,a=at

h}/µ
s
1:(x, a) = ℓ̂t(x, a). We thus divide by

µs
1:(x, a) both sides of the inequality, and the unbiasedness of the loss estimator yields

T∑
t=1

[
ℓ̂t(x, a)− ℓt(x, a)

]
≤ γ1

T∑
t=1

ℓt(x, a) +
ι

γ1µs
1 : (x, a)

.

This inequality holds for all (x, a) with a probability of at least 1 − δAX /(AX + 1). Taking the
scalar product with any µ ∈ Πmin then gives

T∑
t=1

〈
ℓ̂t − ℓt, µ1:

〉
≤ γ1

T∑
t=1

〈
ℓt, µ1:

〉
+

1

γ1

∑
x∈X

∑
a∈A(x)

µ1:(x, a)

µs
1:(x, a)

≤ γ1HT +
ι

γ1
κ(µs) .

Using γ1 =
√
ικ(µs)/(HT ) ≤ 1 (by assumption), finally yields

EST I ≤ 2
√
ιHκ(µs)T .

Upper bound of EST II For this upper bound, we apply Lemma B.1 directly to the sequence U t =〈
−ℓ̂t, µt

1:

〉
. We now choose γ2 ∈ R+ (no further assumption is needed on γ2 as the sequence is

negative) and apply the lemma to get with probability at least 1− δ/(AX + 1)

16

56718https://doi.org/10.52202/079017-1806



T∑
t=1

〈
ℓt − ℓ̂t, µt

1:

〉
≤ γ2

T∑
t=1

E
[〈

ℓ̂t, µt
1:

〉2∣∣∣∣F t−1

]
+

ι

γ2

= γ2

T∑
t=1

E


 H∑

h=1

(
ℓth
)∑
x∈X

∑
a∈A(x)

I{x=xt
h,a=at

h}
µt
1:(x, a)

µs
1:(x, a)

2
∣∣∣∣∣∣∣F t−1

+
ι

γ2

(Cauchy-Schwarz) ≤ γ2H

T∑
t=1

E

 H∑
h=1

(
ℓth
)2 ∑

x∈X

∑
a∈A(x)

I{x=xt
h,a=at

h}
µt
1:(x, a)

2

µs
1:(x, a)

2

∣∣∣∣∣∣F t−1

+
ι

γ2

≤ γ2H

T∑
t=1

E

 H∑
h=1

ℓth
∑
x∈X

∑
a∈A(x)

I{x=xt
h,a=at

h}
µt
1:(x, a)

µs
1:(x, a)

2

∣∣∣∣∣∣F t−1

+
ι

γ2

= γ2H

T∑
t=1

E

 H∑
h=1

∑
x∈X

∑
a∈A(x)

ℓ̂t(x, a)
µt
1:(x, a)

µs
1:(x, a)

∣∣∣∣∣∣F t−1

+
ι

γ2

= γ2H

T∑
t=1

∑
x∈X

∑
a∈A(x)

ℓt(x, a)
µt
1:(x, a)

µs
1:(x, a)

+
ι

γ2

(as ℓt(x, a) ≤ 1) ≤ γ2H

T∑
t=1

∑
x∈X

∑
a∈A(x)

µt
1:(x, a)

µs
1:(x, a)

+
ι

γ2

≤ γ2Hκ(µs)T +
ι

γ2
.

Taking γ2 =
√

ι
Hκ(µs)T then leads to

T∑
t=1

〈
ℓt − ℓ̂t, µt

1:

〉
≤ 2
√

ιHκ(µs)T .

Summing the two inequalities yields the inequality of the theorem with a probability of at least
1− δ.

C Balanced policy and κ

This section deals with the κ(µs) and local κ(µs|x) of the main paper, and links it to the balanced
policy µ⋆.

Recursive κ computation Let µs be the positive sample policy. For any µ ∈ Πmin and x ∈ X of
depth h, we define κµ(µ

s|x) the local sum of ratios against µ in the subtree induced by x, i.e.

κµ(µ
s|x) :=

∑
x′∈X ,x is in the history of x′

∑
a′∈A(x′)

µh:(x
′, a′)

µs
h:(x

′, a′)

where, if (x′
1, a

′
1..., x

′
h′ , a′) is the history of (x′, a′),

µh:(x
′, a′) := Πh′

i=h µ(a′i|x′
i) .

We then formally define κ(µs|x) as κ(µs|x) := maxµ∈Πmin κµ(µ
s|x). For any µ ∈ Πmin, the

following recursive formula stands

κµ(µ
s|x) =

∑
a∈A(x)

µ(a|x)
µs(a|x)

1 +
∑

x′∈X ,x′ directly follows (x,a)

κµ(µ
s|x′)


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that follows from the definition of κµ(µ
s|x). The same kind of recursion can then be obtained for

κ(µs|x), because each appearance of µ in the previous equality can be maximized independently
(depending on different information sets). This yields

κ(µs|x) = max
µ∈∆A(x)

∑
a∈A(x)

µ(a)

µs(a|x)

1 +
∑

x′∈X ,x′ directly follows (x,a)

κ(µs|x′)


= max

a∈A(x)

1

µs(a|x)

1 +
∑

x′∈X ,x′ directly follows (x,a)

κ(µs|x′)

 , (1)

which allows for a simple recursive computation of κ(µs|x). Finally, once the whole recursive
computation is done, κ(µs) itself can be computed by, defining X1 the information sets of depth 1,

κ(µs) =
∑

x1∈X1

κ(µs|x1) .

Balanced policy κ(µs|x) can also be minimized over µs ∈ Πmin recursively from the leaves using
the tree structure. Indeed, for each x ∈ X , assuming that the minimizers of κ(µs|x′) are already
known for subsequent x′, the policy µs ∈ ∆A(x) that minimizes the maximum along the actions
a ∈ A(x) can be computed from (1). Furthermore, if we define Aτ (x, a) and Aτ (x) the total number
of actions in the subtrees respectively induced by (x, a) and x, i.e.

Aτ (x, a) := 1 +
∑

x′∈X ,(x,a) is in the history of x′

|A(x′)| and Aτ (x) :=
∑

a∈A(x)

Aτ (x, a) ,

we can show that minµs∈Πmin
κ(µs|x) = Aτ (x), and that the minimum is attained by the balanced

policy µ⋆ defined by

µ⋆(a|x) := Aτ (x, a)

Aτ (x)
.

Indeed, if we assume in (1) that the previous property holds for the κ(µs|x′), then

κ(µs|x) = max
a∈A(x)

1

µs(a|x)

1 +
∑

x′∈X ,x′ directly follows (x,a)

Aτ (x′)

 = max
a∈A(x)

Aτ (x, a)

µs(a|x)

and the previous equality is minimized when the µs(a|x) are proportional to the Aτ (x, a), achieved
by the balanced policy µ⋆. With this policy, the same equality gives κ(µ⋆|x) = Aτ (x), which
concludes the induction.

Finally, computing κ(µ⋆) yields

κ(µ⋆) =
∑

x1∈X1

κ(µ⋆|x1) =
∑

x1∈X1

Aτ (x1) = AX .

D Generalized dual stabilized online mirror descent

This section will establish the bound related to the updates (GDS-OMD) obtained with any Legendre
function.

D.1 General Bregman divergence properties

We start this section by stating multiple properties of the Bregman divergence DΨ for Ψ a convex
function, continuously differentiable on an open Ω and defined on Ω, proved by Cesa-Bianchi &
Lugosi (2006).

Law of cosines : For any x ∈ Ω and w, z ∈ Ω, the following equality holds

DΨ(x,w) = DΨ(x, z) +DΨ(z, w)− ⟨∇Ψ(w)−∇Ψ(z), x− z⟩ .

18

56720https://doi.org/10.52202/079017-1806



Algorithm 3 Generalized dual-stabilized online mirror descent

1: Input:
A sequence of dual increments ξt

An open subset Ω ∈ Rn and a closed convex C of Ω
A sequence of Legendre regularizers (Ψt)t∈[T ] on Ω such that for all t ∈ [T ], Ψt+1 −Ψt is

convex
An initial primal iterate w1 ∈ C

2: Output:
A sequence (wt)t∈[T ] of primal iterates

3: Algorithm:
For t = 1 to T

zt = ∇Ψt(wt)
yt+1 = zt − ξt +∇Ψt+1(w1)−∇Ψt(w1)
ŵt+1 = ∇Ψt+1,⋆(yt+1)

wt+1 = ΠΨt+1

C (ŵt+1)

Bregman projection : For C a closed convex of Ω, and Ψ strictly convex, we can define the Bregman
projection ΠΨ

C over Ω by

ΠΨ
C (w) = argmin

z∈C
DΨ(z, w) .

This Bregman projection satisfies a generalized Pythagorean inequality, for w ∈ Ω and z ∈ C

DΨ(z, w) ≥ DΨ(z,Π
Ψ
C (w)) +DΨ(Π

Ψ
C (w), w)

Fenchel dual : We defined the Fenchel dual Ψ⋆ of a Legendre function Ψ for any ξ ∈ Rn by

Ψ⋆(ξ) = sup
w∈Ω

⟨ξ, w⟩ −Ψ(w) .

If we consider Ω⋆ := ∇Ψ(Ω), it can be shown that ∇Ψ⋆ is the inverse function of ∇Ψ over Ω⋆, i.e.
for any w ∈ Ω,∇Ψ⋆(∇Ψ(w)) = w. Furthermore, for w, z ∈ Ω,

DΨ(w, z) = DΨ⋆(∇Ψ⋆(z),∇Ψ⋆(y)) .

Strong convexity: Ψ is said to be 1-strongly convex with respect to a norm ∥·∥ if for all w, z ∈ Ω

Ψ(z) ≥ Ψ(w) + ⟨∇Ψ(w), z − w⟩+ 1

2
∥w − z∥2 .

In this case, the Bregman divergence of the Fenchel dual Ψ⋆ satisfies for any ξ1, ξ2 ∈ Ω⋆

DΨ⋆(ξ1, ξ2) ≤ ∥ξ1 − ξ2∥2⋆

where ∥·∥⋆ is the dual norm of ∥·∥.

D.2 GDS-OMD Analysis

We will assume in the following parts that the updates of the following algorithm are properly defined,
which happens when all vectors yt+1 belong to the Fenchel dual space Ωt+1,⋆ := ∇Ψt+1(Ω). We
make the same assumption on the regular OMD iterates zt − ξt.

We start by giving an equivalent formulation of the updates (GDS-OMD) through Algorithm 3.

Proposition D.1. Algorithm 3 computes the updates (GDS-OMD) if they are properly defined, i.e.
computes the sequence of primal iterates defined by

wt+1 = argmin
w∈C

〈
ξt, w

〉
+DΨt

(
w,wt

)
+DΨt+1−Ψt

(
w,w1

)
.
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Proof. By definition of ŵt+1 in Algorithm 3, we have for all iterations t ∈ [T ] and w ∈ C

DΨt+1(w, ŵt+1) = Ψt+1(w)−
〈
∇Ψt+1(ŵt+1), w

〉
+ C1

= Ψt(w) +
(
Ψt+1(w)−Ψt(w)

)
−
〈
yt+1, w

〉
+ C1

=
〈
ξt, w

〉
+
(
Ψt(w)−

〈
∇Ψt(wt), w

〉)
+(

Ψt+1(w)−Ψt(w)−
〈
∇Ψt+1(w1)−∇Ψt(w1), w

〉)
+ C1

=
〈
ξt, w

〉
+DΨt

(
w,wt

)
+DΨt+1−Ψt

(
w,w1

)
+ C2

where C1 and C2 are constants independent of the choice of w (but not independent of the other
variables). As wt+1 = argminw∈C DΨt+1(w, ŵt+1), the updates of Algorithm 3 coincide with
the updates (GDS-OMD), as both minimize the same function at each iteration up to an additive
constant.

The updates of Algorithm 3 are then used to show Theorem 3.2 below. Compared to the ones
of McMahan (2017) that also allow adaptive regularization, these updates do not suffer from the
potential linear rates observed by Orabona & Pál (2018).

Theorem D.2. Let (wt)t∈[T ] be a sequence of primal iterates generated by the updates (GDS-OMD),
with convex incremental functions. Then for any w† ∈ Ω,

T∑
t=1

〈
ξt, wt − w†〉 ≤ DΨT (w†, w1) +

T∑
t=1

DΨt,⋆

(
∇Ψt(wt)− ξt,∇Ψt(wt)

)
Proof. We can assume, without any incidence on the (wt)t∈[T ] sequence, that ΨT+1 = ΨT . We also
define for all t ∈ [T ] the notations φt = Ψt+1 −Ψt and

q̂t =
〈
ξt, ŵt+1

〉
+DΨt(ŵt+1, wt) +Dφt(ŵt+1, w1) .

We then divide the sum into a stability and a penalty terms:

T∑
t=1

〈
ξt, wt − w†〉 = T∑

t=1

(
q̂t −

〈
ξt, w†〉)

︸ ︷︷ ︸
penalty

+

T∑
t=1

(〈
ξt, wt

〉
− q̂t

)
︸ ︷︷ ︸

stability

and we look at upper-bounding these two terms.

Penalty term: For all t ∈ [T ], using the law of cosines on the Bregman divergences of Ψt and φt, we
have the two equalities:

DΨt(w†, wt) = DΨt(w†, ŵt+1) +DΨt(ŵt+1, wt)−
〈
∇Ψt(wt)−∇Ψt(ŵt+1), w† − ŵt+1

〉
and

Dφt(w†, w1) = Dφt(w†, ŵt+1) +Dφt(ŵt+1, w1)−
〈
∇φt(w1)−∇φt(ŵt+1), w† − ŵt+1

〉
.

Summing these two equalities, we get

DΨt(w†, wt) +Dφt(w†, w1)

= DΨt+1(w†, ŵt+1) +DΨt(ŵt+1, wt) +Dφt(ŵt+1, w1)−
〈
ξt, w† − ŵt+1

〉
= DΨt+1(w†, ŵt+1) + q̂t −

〈
ξt, w†〉

as by definition of ŵt+1 and yt+1,

∇Ψt+1(ŵt+1) = yt+1 = −ξt +∇Ψt(wt) +∇φt(w1) .

Furthermore, as wt+1 = Πt+1
C (ŵt+1), the Pythagorean inequality for the Bregman divergence yields

that

DΨt+1(w†, ŵt+1) ≥ DΨt+1(w†, wt+1) +DΨt+1(wt+1, ŵt+1) ≥ DΨt+1(w†, wt+1) .
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Injecting this in the previous equality and telescoping leads to

T∑
t=1

(
q̂t −

〈
ξt, w†〉) = T∑

t=1

(
DΨt(w†, wt) +Dφt(w†, w1)−DΨt+1(w†, ŵt+1)

)
≤

T∑
t=1

(
DΨt(w†, wt) +Dφt(w†, w1)−DΨt+1(w†, wt+1)

)
= DΨT+1(w†, w1)−DΨT+1(w†, wt+1)

≤ DΨT (w†, w1)

as ΨT = ΨT+1 by definition.

Stability term: We first notice, for all t ∈ [T ], that〈
ξt, wt

〉
− q̂t =

〈
ξt, wt − ŵt+1

〉
−DΨt(ŵt+1, wt)−Dφt(ŵt+1, w1)

≤
〈
ξt, wt − ŵt+1

〉
−DΨt(ŵt+1, wt)

≤
〈
ξt, wt − w̃t+1

〉
−DΨt(w̃t+1, wt)

where
w̃t+1 := argmin

w̃∈Ω

[〈
ξt, w̃

〉
+DΨt(w̃, wt)

]
is the w̃t+1 iterate that would be obtained using a classical OMD step with Ψt, without the stabiliza-
tion. By optimality, it verifies

∇Ψt(w̃t+1) = ∇Ψt(wt)− ξt

and the law of cosines then yields

DΨt(wt, wt) = DΨt(wt, w̃t+1) +DΨt(w̃t+1, wt)−
〈
∇Ψt(wt)−∇Ψt(w̃t+1), wt − w̃t+1

〉
(0) = DΨt(wt, w̃t+1) +DΨt(w̃t+1, wt)−

〈
ξt, wt − w̃t+1

〉
.

Plugging this in the first inequality, we directly get〈
ξt, wt

〉
− q̂t ≤ DΨt(wt, w̃t+1)

and we conclude using

DΨt(wt, w̃t+1) = DΨt,⋆(∇Ψt(w̃t+1),∇Ψt(wt))

= DΨt,⋆(∇Ψt(wt)− ξt,∇Ψt(wt)) .

E LocalOMD analysis

This section will focus on the dilated entropy approach to extensive-form games, and especially on
the updates

µt+1 = argmin
µ∈Πmin

〈
ℓ̂t, µ1:

〉
+Ddil

αt (µ, µt) +Ddil
αt+1−αt(µ, µ1) (GDS-OMD dilated)

that are used by LocalOMD.

E.1 General analysis

The following proposition shows that each update of this form can be computed recursively starting
from the leaves of the tree. It requires for any t ∈ [T ] the vector qt that satisfies for any x ∈ X of
depth h

qt(x) = min
µ∈Πmin

〈
ℓ̂t,→x, µ→x

h:

〉
+Ddil,→x

αt (µ, µt) +Ddil,→x
αt+1−αt(µ, µ

1)

where→ x means that the quantity is considered on the sub-tree induced by x rather than the full
information set tree, and µh: is defined in Appendix C.
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Proposition E.1. Consider the previous updates (GDS-OMD dilated) and the vectors (qt)t∈[T ]

above. Both µt+1 and qt can be computed recursively starting from the leaves of the tree through

µt+1 = argmin
µ∈∆A(x)

ht
x(µ) and qt(x) = min

µ∈∆A(x)

ht
x(µ)

where

ht
x(µ) =

〈
ℓ̃t(x, ·), µ

〉
+ (1/αt(x))Dx(µ, µ

t(·|x)) +
(
1/αt+1(x)− 1/αt(x)

)
Dx(µ, µ

1(·|x))

and the regularized loss ℓ̃t(x, a) is defined by

ℓ̃t(x, a) := ℓ̂t(x, a) +
∑

x′∈X|x′ directly follows (x,a)

qt(x′) .

Proof. First, note that µt+1 is the unique minimizer associated to each qt(x1) for x1 the information
set of depth 1. Indeed, each of the sub-tree induced by the x1 can be considered as an independent
problem. The idea will be to recursively minimize the qt(x), starting from the leaves (i.e. the final
information sets xH ), and compute µt+1(|x) as the associated minimizer at each information set.

This minimization is done through, at each x ∈ X of depth h, with a decomposition of qt(x). Indeed,
separating the induced tree by x between the root and the rest of the tree leads to

qt(x) = argmin
µ∈Πmin

〈
ℓ̂t(x, ·), µ(·|x)

〉
+ (1/αt(x))Dx(µ(·|x), µt(·|x))

+
(
1/αt+1(x)− 1/αt(x)

)
Dx(µ(·|x), µ1(·|x))

+
∑

a∈A(x)

µ(a|x)
∑

x′∈X|x’ directly follows (x,a)

[〈
ℓ̂t,→x′

, µ→x′

h+1:

〉
+Ddil,→x′

αt (µ, µt) +Ddil,→x′

αt+1−αt(µ, µ
1)
]

= argmin
µ∈∆A(x)

〈
ℓ̂t(x, ·), µ

〉
+ (1/αt(x))Dx(µ, µ

t(·|x)) +
(
1/αt+1(x)− 1/αt(x)

)
Dx(µ, µ

1(·|x))

+
∑

a∈A(x)

µ(a)
∑

x′∈X|x’ directly follows (x,a)

qt(x′)

= argmin
µ∈∆A(x)

〈
ℓ̃t(x, ·), µ

〉
+ (1/αt(x))Dx(µ, µ

t(·|x)) +
(
1/αt+1(x)− 1/αt(x)

)
Dx(µ, µ

1(·|x))

= argmin
µ∈∆A(x)

hx(µ)

as each minimization on µ ∈ Πmin is done on independent components. This justifies the recursive
computation of both µt+1 and qt.

This proposition directly provides the proof of correctness of LocalOMD, for which the regularized
losses at time step t are non-null only on the trajectory with

ℓ̃t(x, a) =
I{x=xt

h,a=at
h}

µs
1:(x)

ℓ̃th .

We now want to upper(bound the regret associated with this sequence µt. The following lemma gives
a valuable property that links the regularized loss and the estimated loss.

Lemma E.2. For any policy µ′ ∈ Πmin, we have

〈
ℓ̃t, µ′

1:

〉
−
∑
x∈X

µ′
1:(x)q

t(x) =
〈
ℓ̂t, µ′

1:

〉
− q̂t

where q̂t = minµ∈Πmin

〈
ℓ̂t, µ1:

〉
+Ddil

αt (µ, µt) +Ddil
αt+1−αt(µ, µ1)
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Proof. By definition of ℓ̃t we have, for any µ ∈ Πmin〈
ℓ̃t, µ′

1:

〉
=
〈
ℓ̂t, µ′

1:

〉
+
∑
x∈X

∑
a∈Ax

µ′
1:(x, a)

∑
x′|(x,a)−→x′

qt(x′)

=
〈
ℓ̂t, µ′

1:

〉
+
∑
x∈X

∑
a∈Ax

∑
x′|(x,a)−→x′

µ′
1:(x

′)qt(x′)

=
〈
ℓ̂t, µ′

1:

〉
+

∑
x′∈X\X1

µ′
1:(x

′)qt(x′)

=
〈
ℓ̂t, µ′

1:

〉
+
∑
x′∈X

µ′
1:(x

′)qt(x′)−
∑

x′∈X1

qt(x′)

in which we identified the components of the second sum as the set of non-initial information sets.
We then conclude using

∑
x∈X1

qt(x) = q̂t by definition of the qt terms.

This lemma is then used to upper bound the estimated regret of the sequence generated by the updates
(GDS-OMD dilated). Indeed, while we could apply Theorem 3.2, the associated stability term, which
depends on the Fenchel dual of the dilated entropy, is not easy to upper bound. Nonetheless, the proof
of the following theorem is mostly the same but with a slightly different definition of the stability and
penalty terms.

Theorem E.3. Let (µt)t∈[T ] be the sequence of policies generated by the updates
(GDS-OMD dilated). The following bound holds

R̂T ≤ sup
µ†∈Πmin

Ddil
αT (µ

†
1:, µ

1
1:)︸ ︷︷ ︸

penalty

+

T∑
t=1

∑
x∈X

αt(x)µt
1:(x)D

⋆
x

(
∇Ψx(µ

t
1:(·|x))−

1

αt(x)
ℓ̃t(x, ·),∇Ψx(µ

t
1:(·|x))

)
︸ ︷︷ ︸

stability

.

Proof. The separation between the stability and the penalty terms is the same as in Theorem 3.2, but
with q̂t (of Lemma E.2) defined after the projection rather than before. This leads to the decomposition

R̂T = max
µ†∈Πmin

T∑
t=1

(
q̂t −

〈
ℓ̂t, µ†

1:

〉)
︸ ︷︷ ︸

penalty

+

T∑
t=1

(〈
ℓ̂t, µt

1:

〉
− q̂t

)
︸ ︷︷ ︸

stability

.

Penalty term: This part is similar to the general theorem. The optimality of µt+1 leads to, for any
t ∈ [T ],

∇Ψt+1(µt+1
1: ) = −ℓ̂t − gt +∇Ψt(µt

1:) +∇φt(µ1
1:) .

where gt ∈ Q⊥
max and φt = Ψt+1 −Ψt. We use the same two law of cosines as in Theorem 3.2

DΨt(µ†
1:, µ

t
1:) = DΨt(µ†

1:, µ
t+1
1: ) +DΨt(µt+1

1: , µt
1:)−

〈
∇Ψt(µt

1:)−∇Ψt(µt+1
1: ), µ†

1: − µt+1
1:

〉
Dφt(µ†

1:, µ
1
1:) = Dφt(µ†

1:, µ
t+1
1: ) +Dφt(µt+1

1: , µ1
1:)−

〈
∇φt(µ1

1:)−∇φt(µt+1
1: ), µ†

1: − µt+1
1:

〉
which yields by summing

DΨt(µ†
1:, µ

t
1:) +Dφt(µ†

1:, µ
1
1:)

= DΨt+1(µ†
1:, µ

t+1
1: ) +DΨt(µt+1

1: , µt
1:) +Dφ(µ

t+1
1: , µ1

1:)−
〈
ℓ̂t + gt, µ†

1: − µt+1
1:

〉
= DΨt+1(µ†

1:, µ
t+1
1: ) + q̂t −

〈
ℓ̂t, µ†

1:

〉
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where we used
〈
gt, µ†

1: − µt+1
1:

〉
= 0 from the orthogonality. Summing over t ∈ [T ] then gives, by

telescoping similarly to the general theorem,

T∑
t=1

(
q̂t −

〈
ℓ̂t, µ†

1:

〉)
=

T∑
t=1

(
DΨt(µ†

1:, µ
t
1:) +Dφt(µ†

1:, µ
1
1:)−DΨt+1(µ†

1:, µ
t+1
1: )

)
= DΨT+1(µ†

1:, µ
1
1:)−DΨT+1(µ†

1:, µ
t+1
1: )

≤ DΨT (µ†
1:, µ

1
1:)

Stability term: From Lemma E.2 used with µ′ = µt, we get an alternative expression of the stability
term 〈

ℓ̂t, µt
1:

〉
− q̂t =

〈
ℓ̃t, µt

1:

〉
−
∑
x∈X

µt
1:(x)q

t(x)

This shows the stability term can be decomposed in a positive linear combination〈
ℓ̂t, µt

1:

〉
− q̂t =

∑
x∈X

µt
1:(x)

[〈
ℓ̃t(x, ·), µt(·|x)

〉
− qt(x)

]
and we will individually upperbound each of the terms of the combination. The method is again
similar to the general theorem, but locally with the regularized loss. Defining Ψt

x := αt(x)Ψx and
φt
x := Ψt+1

x −Ψt
x, we have〈

ℓ̃t(x, ·), µt(·|x)
〉
− qt(x)

=
〈
ℓ̃t(x, ·), µt(·|x)− µt+1(·|x)

〉
−DΨt

x
(µt+1(·|x), µt(·|x))−Dφt

x
(µt+1(·|x), µ1(·|x))

≤
〈
ℓ̃t(x, ·), µt(·|x)− µt+1(·|x)

〉
−DΨt

x
(µt+1(·|x), µt(·|x))

≤
〈
ℓ̃t(x, ·), µt(·|x)− µ̃t+1(·|x)

〉
−DΨt

x
(µ̃t+1(·|x), µt(·|x))

where
µ̃t+1(·|x) := argmin

µ̃∈Ωx

[〈
ℓ̃t(x, ·), µ̃

〉
+DΨt

x
(µ̃, µt(·|x))

]
By optimality, µ̃t+1(·|x) verifies

∇Ψt
x(µ̃

t+1(·|x)) = ∇Ψt
x(µ

t(·|x))− ℓ̃t(x, ·)
and the law of cosines yields

0 = DΨt
x
(µt(·|x), µt(·|x))

= DΨt
x
(µt(·|x), µ̃t+1(·|x)) +DΨt

x
(µ̃t+1(·|x), µt(·|x))−〈

∇Ψt
x(µ

t(·|x))−∇Ψt
x(µ̃

t+1(·|x)), µt(·|x)− µ̃t+1(·|x)
〉

= DΨt
x
(µt(·|x), µ̃t+1(·|x)) +DΨt

x
(µ̃t+1(·|x), µt(·|x))−

〈
ℓ̃t(x, ·), µt(·|x)− µ̃t+1(·|x)

〉
Plugging this in the first inequality, we directly get〈

ℓ̃t(x, ·), µt(·|x)
〉
− qt(x) ≤ DΨt

x
(µt(·|x), µ̃t+1(·|x))

and we get the individual upper bounds with

DΨt
x
(µt(·|x), µ̃t+1(·[x)) = αt(x)DΨx(µ

t(·|x), µ̃t+1(·[x))
= αt(x)DΨ⋆

x
(∇Ψx(µ̃

t+1(·[x)),∇Ψx(µ
t(·|x)))

= αt(x)DΨ⋆
x

(
∇Ψx(µ

t(·|x))− 1

αt(x)
ℓ̃t(x, ·),∇Ψx(µ

t(·|x))
)

This upper bound on the estimated regret is then used with the learning rates considered in the main
article.
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E.2 Optimal rates analysis

We first consider the optimal rates of the main paper.
Theorem E.4. Using LocalOMD with µ1 as the uniform policy, with the learning rates ηt(x) =

η/κ(µs|x) where η =
√
log(A)κ(µs)/(3HT ), and with Ψx the Shannon entropy Ψx(µ) =∑

a∈A(x) µ(a) log(µ(a)), the regret is bounded with a probability at least 1− δ by

RT
min ≤

(
4 + 2

√
3
)
H3/2

√
log(A)ικ(µs)T where ι = log(2(AX + 1)/δ) .

Proof. We apply Theorem E.3, using the relations αt(x) = 1/(µs
1:(x)η

t(x)) and I{x=xt
h}ℓ̃

t
h =

µs
1:(x)ℓ̃

t(x, ·). We again separately bound the penalty and stability terms.

Penalty term : We will denote by PEN this term defined by

PEN := sup
µ†∈Πmin

Ddil
αT (µ

†
1:, µ

1
1:) .

By definition of the dilated entropy, we have, using that µ1 is the uniform policy and that the Bregman
divergence of the Shannon entropy is the Kullback-Leibler divergence,

PEN = sup
µ†∈Πmin

∑
x∈X

µ†
1:(x)κ(µ

s|x)
ηµs

1:(x)
DΨ(µ

†(·|x), µ1(·|x))

=
1

η
sup

µ†∈Πmin

∑
x∈X

µ†
1:(x)κ(µ

s|x)
µs
1:(x)

∑
a∈A(x)

µ†(a|x) log(µ†(a|x)/µ1(a|x))

≤ 1

η
sup

µ†∈Πmin

∑
x∈X

µ†
1:(x)κ(µ

s|x)
µs
1:(x)

∑
a∈A(x)

µ†(a|x) log(1/µ1(a|x))

≤ log(A)

η
sup

µ†∈Πmin

∑
x∈X

µ†
1:(x)

µs
1:(x)

κ(µs|x)

=
log(A)

η
sup

µ†∈Πmin

H∑
h=1

∑
x∈Xh

µ†
1:(x)

µs
1:(x)

sup
µ′∈Πmin

∑
x′∈X|x is in the history of x′

∑
a′∈A(x′)

µ′
h:(x

′, a′)

µs
h:(x

′, a′)

≤ log(A)

η

H∑
h=1

sup
µ†∈Πmin

∑
x∈Xh

µ†
1:(x)

µs
1:(x)

sup
µ′∈Πmin

∑
x′∈X|x is in the history of x′

∑
a′∈A(x′)

µ′
h:(x

′, a′)

µs
h:(x

′, a′)

(by independance) =
log(A)

η

H∑
h=1

sup
µ†∈Πmin

∑
x∈Xh

µ†
1:(x)

µs
1:(x)

∑
x′∈X|x is in the history of x′

∑
a′∈A(x′)

µ†
h:(x

′, a′)

µs
h:(x

′, a′)

=
log(A)

η

H∑
h=1

sup
µ†∈Πmin

∑
x∈Xh

∑
x′∈X|x is in the history of x′

∑
a′∈A(x′)

µ†
1:(x

′, a′)

µs
1:(x

′, a′)

=
log(A)

η

H∑
h=1

sup
µ†∈Πmin

∑
x′∈X

∑
a′∈A(x′)

µ†
1:(x

′, a′)

µs
1:(x

′, a′)

=
log(A)

η
Hκ(µs)

where Xh is the set of information sets of depth h, the two sums being later merged on the basis of
perfect recall. We now look at the stability term.

Stability term : We will denote by STA this term defined by

STA :=

T∑
t=1

∑
x∈X

αt(x)µt
1:(x)D

⋆
x

(
∇Ψx(µ

t
1:(·|x))−

1

αt(x)
ℓ̃t(x, ·),∇Ψx(µ

t
1:(·|x))

)
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We first look at an upper-bound of D⋆
x

(
∇Ψx(µ

t
1:(·|x))− 1

αt(x) ℓ̃
t(x, ·),∇Ψx(µ

t
1:(·|x))

)
. In or-

der to do so, we upper-bound (in the symmetric matrix sense) the Hessian of Ψ⋆
x on I :={

∇Ψx(µ
t
1:(·|x))−

γ
αt(x) ℓ̃

t(x, ·)
∣∣∣γ ∈ [0, 1]

}
.

Because Ψx(µ) =
∑

a∈A(x) µ(a) log(µ(a)) is the Shannon entropy,

∇Ψx(µ)(a) = log(µ(a)) + 1 and thus ∇2Ψx(µ) = Diag{(1/µ(a))}a∈A(x)

and the Hessian of Ψ⋆
x is given by

∇2Ψ⋆(y) = ∇2Ψx(y)
−1 = Diag{y(a)}a∈A(x) .

In particular, it is upper bounded on I by the matrix Dµ defined by

Dµ := Diag{µ(a)}a∈A(x)

This yields that

D⋆
x

(
∇Ψx(µ

t
1:(·|x))−

1

αt(x)
ℓ̃t(x, ·),∇Ψx(µ

t
1:(·|x))

)
≤ 1

2
∥ 1

αt(x)
ℓ̃t(x, ·)∥2Dt

µ(·|x)

=
1

2αt(x)2

∑
a∈A(x)

µt(a|x)ℓ̃t(x, a)2

which leads to

STA ≤
T∑

t=1

∑
x∈X

µt
1:(x)

2αt(x)

∑
a∈A(x)

µt(a|x)ℓ̃t(x, a)2

=
η

2

T∑
t=1

∑
x∈X

I{x=xt
h}

µt
1:(x)

µs
1:(x)

1

κ(µs|x)
∑

a∈A(x)

I{a=at
h}µ

t(a|x)ℓ̃th(a)2 .

We can first notice from recursively comparing the minimizer µt+1(·|xt
h) with µt(·|xt

h) that the
regularized loss ℓ̃th(a

t
h), satisfies

ℓ̃th(a
t
h) ≤

〈
ℓ̂t,→x, µt,→x

h+1:

〉
,

re-using the notation at the beginning of the section, because the regularization does not evolve with
time. The difficulty is now to upper bound STA with high probability. In order to do so, we use the
Lemma B.1 on the sequence (U t)t∈[T ] defined by

U t :=
∑
x∈X

I{x=xt
h}

µt
1:(x)

µs
1:(x)

1

κ(µs|x)
∑

a∈A(x)

I{a=at
h}µ

t(a|x)ℓ̃th(a)2

with γ′ = γ ∈ (0, 1/(H2κ(µs))] and δ′ = δ/2. This yields with probability at least 1− δ/2

T∑
t=1

U t ≤
T∑

t=1

E
[
U t
∣∣F t−1

]
+ γ

T∑
t=1

E
[
(U t)2

∣∣F t−1
]
+ ι/γ .

On the one hand, we have, using ℓ̂th(a
t
h) ≤ κ(µs|x) and the previous inequality that

E
[
U t
∣∣F t−1

]
≤
∑
x∈X

pt(x)µt(x)
∑

a∈A(x)

〈
ℓt,→x, µt,→x

h:

〉
≤
∑
x∈X

pt(x)µt(x)H

≤ H2 .
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On the other hand, using the same inequality,

E
[
(U t)2

∣∣F t−1
]
= E


∑

x∈X
I{x=xt

h}
µt
1:(x)

µs
1:(x)

∑
a∈A(x)

I{a=at
h}
〈
ℓ̂th(a), µ

t(a|x)
〉2

∣∣∣∣∣∣∣F t−1


≤ HE

∑
x∈X

I{x=xt
h}

µt
1:(x)

2

µs
1:(x)

2

∑
a∈A(x)

I{a=at
h}
〈
ℓ̂th(a)

2, µt(a|x)2
〉∣∣∣∣∣∣F t−1


≤ Hκ(µs)E

∑
x∈X

I{x=xt
h}

µt
1:(x)

µs
1:(x)

∑
a∈A(x)

I{a=at
h}
〈
ℓ̂th(a), µ

t(a|x)
〉∣∣∣∣∣∣F t−1


≤ Hκ(µs)

∑
x∈X

pt(x)µt(x)
∑

a∈A(x)

〈
ℓt,→x, µt,→x

h:

〉
≤ Hκ(µs)

∑
x∈X

pt(x)µt(x)H

≤ H3κ(µs) .

The following upper bound on the stability term thus holds

STA ≤ η

(
H2T + γH3κ(µs)T +

ι

γ

)
.

Taking γ = 1/(H2κ(µs)), we obtain

STA ≤ η
(
2H2T +H2ικ(µs)

)
As the bound of the theorem trivially holds if T < ικ(µs) (the regret being bounded by T anyway),
we even have assuming T ≥ ικ(µs)

STA ≤ 3ηH2T .

Conclusion: Combining all the previous bounds, the estimated regret is bounded, with a probability
of at least 1− δ/2 by

R̂T ≤ log(A)

η
Hκ(µs) + 3ηH2T .

Taking η =
√

log(A)κ(µs)/(3HT ), we obtain

R̂T ≤ 2
√
3H3/2

√
log(A)ικ(µs)T .

We finally conclude by combining this bound with Theorem 2.2 for the true regret, using δ′ = δ/2,
such that the two inequalities hold with a probability at least 1− δ.

E.3 Adaptive rates analysis

We end this appendix by considering the adaptive setting. We will assume that all regularizers Ψx are
1-strongly convex with respect to some norms ∥·∥x, and we will define

CΨ : = sup
x∈X ,µ∈∆Ax

Dx(µ, µ
1(·|x))

C⋆
Ψ : = sup

x∈X ,a∈Ax

∥I{x,a}∥
⋆
x

where µ1 is the initial policy considered in the algorithm and I{x,a} is the loss vector ℓ(x, ·) equal
to 1 for a ∈ A(x) and 0 for a′ ∈ A(x)\ {a}. The following theorem is the formal statement of
Theorem 4.1 in the main article. While being quite general, the upper bound is unsurprisingly not as
tight as the previous one.

27

56729 https://doi.org/10.52202/079017-1806



Theorem E.5. With such regularizers, assume that the learning rates are locally decreasing and let
λ1, λ2 ∈ R>0 be two constants such that for all information set x ∈ X ,

max
t∈[T−1]

[
1

ηt+1(x)
− 1

ηt(x)

]
≤ λ1 and 1/ηT (x) +

T∑
t=1

ηt(x)I{x=xt
h} ≤ λ2

√
T

Then with a probability at least 1− δ, the regret of Algorithm 2 is upper-bounded by

RT
max ≤

[
2 [(1 + λ1)CΨC

⋆
Ψκ(µ

s)]
2
λ2|X |+ 4

√
Hκ(µs)ι

]√
T

where ι = log((AX + 1)/δ).

The proof of this theorem will be based on the following lemma that bounds the regularized loss
using the λ1 constant above.

Lemma E.6. For all t ∈ [T ] and h ∈ [H],

ℓ̃th(a
t
h) ≤ (1 + λ1CΨ)κ(µ

s|xt
h) .

Proof. The proof is done recursively on h, starting from the leaves. Indeed, for h = H , the property
is immediate as ℓ̃th(a

t
h) ≤ 1/µs(atH |xt

H) ≤ κ(µs|xt
H). If we assume that the property holds for a

depth h > 1, then

qth = min
µ∈∆A(xt

h
)

〈
ℓ̃th, µ

〉
+

1

ηt(xt
h)

Dx

(
µ, µt(·|xt

h)
)
+

(
1

ηt+1(xt
h)
− 1

ηt(xt
h)

)
Dx

(
µ, µ1(·|xt

h)
)

≤
〈
ℓ̃th, µ

t(·|xt
h)
〉
+

(
1

ηt+1(xt
h)
− 1

ηt(xt
h)

)
Dx

(
µt(·|xt

h), µ
1(·|xt

h)
)

≤ ℓ̃th(a
t
h) + λ1CΨ .

Then

ℓ̃th−1(a
t
h−1) = (ℓth−1 + qth)/µ

s(ath−1|xt
h−1)

≤ (1 + λ1CΨ + ℓ̃th(a
t
h))/µ

s(ath−1|xt
h−1)

≤ (1 + λ1CΨ)(1 + κ(µs|xt
h))/µ

s(ath−1|xt
h−1)

≤ (1 + λ1CΨ)κ(µ
s|xt

h−1)

which concludes the induction.

Proof. We now prove the theorem. We start with the estimated regret, that we decompose between
the penalty term and the stability term using theorem E.3.

Penalty term: The penalty term PEN is bounded by

PEN ≤ sup
µ†∈Πmin

Ddil
αT (µ

†
1:, µ

1
1:)

≤ sup
µ†∈Πmin

∑
x∈X

1

ηT (x)

µ†
1:(x)

µs
1:(x)

Dx(µ
†(·|x), µ1(·|x))

≤ CΨλ2

√
T sup

µ†∈Πmin

∑
x∈X

µ†
1:(x)

µs
1:(x)

≤ CΨλ2κ(µ
s)
√
T .

Stability term: For the stability term STA, we rely on Lemma E.6 and the 1-strong convexity of Ψx

with respect to ∥·∥x (see Appendix D.1) and get
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STA =

T∑
t=1

∑
x∈X

αt(x)µt
1:(x)D

⋆
x

(
∇Ψx(µ

t
1:(·|x))−

1

αt(x)
ℓ̃t(x, ·),∇Ψx(µ

t
1:(·|x))

)

≤
T∑

t=1

∑
x∈X

µt
1:(x)

αt(x)
∥ℓ̃t(x, ·)∥⋆

2

x

≤
T∑

t=1

∑
x∈X

ηt(x)I{x=xt
h}

µt
1:(x)

µs
1:(x)

∥ℓ̃th∥
⋆2

x

≤ [C⋆
Ψ]

2
T∑

t=1

∑
x∈X

ηt(x)I{x=xt
h}

µt
1:(x)

µs
1:(x)

(
ℓ̃th(a

t
h)
)2

≤ [(1 + λ1)CΨC
⋆
Ψ]

2
T∑

t=1

∑
x∈X

ηt(x)I{x=xt
h}

µt
1:(x)

µs
1:(x)

κ(µs|x)2

≤ [(1 + λ1)CΨC
⋆
Ψ]

2
κ(µs)

T∑
t=1

∑
x∈X

ηt(x)I{x=xt
h}

1

µs
1:(x)

κ(µs|x)

≤ [(1 + λ1)CΨC
⋆
Ψκ(µ

s)]
2

T∑
t=1

∑
x∈X

ηt(x)I{x=xt
h}

≤ [(1 + λ1)CΨC
⋆
Ψκ(µ

s)]
2
λ2|X |

√
T .

Conclusion: By summing these two upper bounds we get

R̂T ≤
[
CΨλ2κ(µ

s) + [(1 + λ1)CΨC
⋆
Ψκ(µ

s)]
2
λ2|X |

]√
T

≤ 2 [(1 + λ1)CΨC
⋆
Ψκ(µ

s)]
2
λ2|X |

√
T .

The bound is finally obtained using the Theorem 2.2 that holds with a probability of at least 1− δ
and links the estimated regret to the true regret.
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